Internet Engineering Task Force (IETF)                  D. Papadimitriou
Request for Comments: 6001                                  M. Vigoureux
Updates: 4202, 4203, 4206, 4874, 4974, 5307               Alcatel-Lucent
Category: Standards Track                                    K. Shiomoto
ISSN: 2070-1721                                                      NTT
                                                            D. Brungard
                                                                    ATT
                                                            JL. Le Roux
                                                         France Telecom
                                                           October 2010


             Generalized MPLS (GMPLS) Protocol Extensions
         for Multi-Layer and Multi-Region Networks (MLN/MRN)

Abstract

  There are specific requirements for the support of networks
  comprising Label Switching Routers (LSRs) participating in different
  data plane switching layers controlled by a single Generalized Multi-
  Protocol Label Switching (GMPLS) control plane instance, referred to
  as GMPLS Multi-Layer Networks / Multi-Region Networks (MLN/MRN).

  This document defines extensions to GMPLS routing and signaling
  protocols so as to support the operation of GMPLS Multi-Layer /
  Multi-Region Networks.  It covers the elements of a single GMPLS
  control plane instance controlling multiple Label Switched Path (LSP)
  regions or layers within a single Traffic Engineering (TE) domain.

Status of This Memo

  This is an Internet Standards Track document.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Further information on
  Internet Standards is available in Section 2 of RFC 5741.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  http://www.rfc-editor.org/info/rfc6001.









Papadimitriou, et al.        Standards Track                    [Page 1]

RFC 6001          GMPLS Protocol Extensions for MLN/MRN     October 2010


Copyright Notice

  Copyright (c) 2010 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (http://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.

  This document may contain material from IETF Documents or IETF
  Contributions published or made publicly available before November
  10, 2008.  The person(s) controlling the copyright in some of this
  material may not have granted the IETF Trust the right to allow
  modifications of such material outside the IETF Standards Process.
  Without obtaining an adequate license from the person(s) controlling
  the copyright in such materials, this document may not be modified
  outside the IETF Standards Process, and derivative works of it may
  not be created outside the IETF Standards Process, except to format
  it for publication as an RFC or to translate it into languages other
  than English.

























Papadimitriou, et al.        Standards Track                    [Page 2]

RFC 6001          GMPLS Protocol Extensions for MLN/MRN     October 2010


Table of Contents

  1. Introduction ....................................................3
     1.1. Conventions Used in This Document ..........................4
  2. Summary of the Requirements and Evaluation ......................4
  3. Interface Adjustment Capability Descriptor (IACD) ...............5
     3.1. Overview ...................................................5
     3.2. Interface Adjustment Capability Descriptor (IACD) ..........6
  4. Multi-Region Signaling ..........................................9
     4.1. XRO Subobjects ............................................10
  5. Virtual TE Link ................................................12
     5.1. Edge-to-Edge Association ..................................13
     5.2. Soft Forwarding Adjacency (Soft FA) .......................16
  6. Backward Compatibility .........................................18
  7. Security Considerations ........................................18
  8. IANA Considerations ............................................18
     8.1. RSVP ......................................................18
     8.2. OSPF ......................................................20
     8.3. IS-IS .....................................................20
  9. References .....................................................20
     9.1. Normative References ......................................20
     9.2. Informative References ....................................22
  Acknowledgments....................................................23
  Contributors ......................................................23

1.  Introduction

  Generalized Multi-Protocol Label Switching (GMPLS) [RFC3945] extends
  MPLS to handle multiple switching technologies: packet switching
  (PSC), Layer 2 switching (L2SC), Time-Division Multiplexing (TDM)
  Switching, wavelength switching (LSC) and fiber switching (FSC).  A
  GMPLS switching type (PSC, TDM, etc.) describes the ability of a node
  to forward data of a particular data plane technology, and uniquely
  identifies a control plane LSP region.  LSP regions are defined in
  [RFC4206].  A network comprised of multiple switching types (e.g.,
  PSC and TDM) controlled by a single GMPLS control plane instance is
  called a Multi-Region Network (MRN).

  A data plane layer is a collection of network resources capable of
  terminating and/or switching data traffic of a particular format.
  For example, LSC, TDM VC-11, and TDM VC-4-64c represent three
  different layers.  A network comprising transport nodes participating
  in different data plane switching layers controlled by a single GMPLS
  control plane instance is called a Multi-Layer Network (MLN).







Papadimitriou, et al.        Standards Track                    [Page 3]

RFC 6001          GMPLS Protocol Extensions for MLN/MRN     October 2010


  The applicability of GMPLS to multiple switching technologies
  provides the unified control and operations for both LSP provisioning
  and recovery.  This document covers the elements of a single GMPLS
  control plane instance controlling multiple layers within a given TE
  domain.  A TE domain is defined as group of Label Switching Routers
  (LSRs) that enforces a common TE policy.  A Control Plane (CP)
  instance can serve one, two, or more layers.  Other possible
  approaches, such as having multiple CP instances serving disjoint
  sets of layers, are outside the scope of this document.

  The next sections provide the procedural aspects in terms of routing
  and signaling for such environments as well as the extensions
  required to instrument GMPLS to provide the capabilities for MLN/MRN
  unified control.  The rationales and requirements for Multi-
  Layer/Region networks are set forth in [RFC5212].  These requirements
  are evaluated against GMPLS protocols in [RFC5339] and several areas
  where GMPLS protocol extensions are required are identified.

  This document defines GMPLS routing and signaling extensions so as to
  cover GMPLS MLN/MRN requirements.

1.1.  Conventions Used in This Document

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in [RFC2119].

  In addition, the reader is assumed to be familiar with [RFC3945],
  [RFC3471], [RFC4201], [RFC4202], [RFC4203], [RFC4206], and [RFC5307].

2.  Summary of the Requirements and Evaluation

  As identified in [RFC5339], most MLN/MRN requirements rely on
  mechanisms and procedures (such as local procedures and policies, or
  specific TE mechanisms and algorithms) that are outside the scope of
  the GMPLS protocols, and thus do not require any GMPLS protocol
  extensions.

  Four areas for extensions of GMPLS protocols and procedures have been
  identified in [RFC5339]:

  o GMPLS routing extensions for the advertisement of the internal
    adjustment capability of hybrid nodes.  See Section 3.2.2 of
    [RFC5339].







Papadimitriou, et al.        Standards Track                    [Page 4]

RFC 6001          GMPLS Protocol Extensions for MLN/MRN     October 2010


  o GMPLS signaling extensions for constrained multi-region signaling
    (Switching Capability inclusion/exclusion).  See Section 3.2.1 of
    [RFC5339].  An additional eXclude Route Object (XRO) Label
    subobject is also defined since it was absent from [RFC4874].

  o GMPLS signaling extensions for the setup/deletion of virtual TE
    links (as well as exact trigger for its actual provisioning).  See
    Section 3.1.1.2 of [RFC5339].

  o GMPLS routing and signaling extensions for graceful TE link
    deletion.  See Section 3.1.1.3 of [RFC5339].

  The first three requirements are addressed in Sections 3, 4, and 5 of
  this document, respectively.  The fourth requirement is addressed in
  [RFC5710] with additional context provided by [RFC5817].

3.  Interface Adjustment Capability Descriptor (IACD)

  In the MRN context, nodes that have at least one interface that
  supports more than one switching capability are called hybrid nodes
  [RFC5212].  The logical composition of a hybrid node contains at
  least two distinct switching elements that are interconnected by
  "internal links" to provide adjustment between the supported
  switching capabilities.  These internal links have finite capacities
  that MUST be taken into account when computing the path of a multi-
  region TE-LSP.  The advertisement of the internal adjustment
  capability is required as it provides critical information when
  performing multi-region path computation.

3.1.  Overview

  In an MRN environment, some LSRs could contain multiple switching
  capabilities, such as PSC and TDM or PSC and LSC, all under the
  control of a single GMPLS instance.

  These nodes, hosting multiple Interface Switching Capabilities (ISCs)
  [RFC4202], are required to hold and advertise resource information on
  link states and topology, just like other nodes (hosting a single
  ISC).  They may also have to consider some portions of internal node
  resources use to terminate hierarchical LSPs, since in circuit-
  switching technologies (such as TDM, LSC, and FSC) LSPs require the
  use of resources allocated in a discrete manner (as predetermined by
  the switching type).  For example, a node with PSC+LSC hierarchical
  switching capability can switch a lambda LSP, but cannot terminate
  the Lambda LSP if there is no available (i.e., not already in use)
  adjustment capability between the LSC and the PSC switching
  components.  Another example occurs when L2SC (Ethernet) switching
  can be adapted in the Link Access Procedure-SDH (LAPS) X.86 and



Papadimitriou, et al.        Standards Track                    [Page 5]

RFC 6001          GMPLS Protocol Extensions for MLN/MRN     October 2010


  Generic Framing Procedure (GFP) for instance, before reaching the TDM
  switching matrix.  Similar circumstances can occur, for example, if a
  switching fabric that supports both PSC and L2SC functionalities is
  assembled with LSC interfaces enabling "lambda" encoding.  In the
  switching fabric, some interfaces can terminate Lambda LSPs and
  perform frame (or cell) switching whilst other interfaces can
  terminate Lambda LSPs and perform packet switching.

  Therefore, within multi-region networks, the advertisement of the so-
  called adjustment capability to terminate LSPs (not the interface
  capability since the latter can be inferred from the bandwidth
  available for each switching capability) provides the information to
  take into account when performing multi-region path computation.
  This concept enables a node to discriminate the remote nodes (and
  thus allows their selection during path computation) with respect to
  their adjustment capability, e.g., to terminate LSPs at the PSC or
  LSC level.

  Hence, we introduce the capability of discriminating the (internal)
  adjustment capability from the (interface) switching capability by
  defining an Interface Adjustment Capability Descriptor (IACD).

  A more detailed problem statement can be found in [RFC5339].

3.2.  Interface Adjustment Capability Descriptor (IACD)

  The Interface Adjustment Capability Descriptor (IACD) provides the
  information for the forwarding/switching capability.

  Note that the addition of the IACD as a TE link attribute does not
  modify the format of the Interface Switching Capability Descriptor
  (ISCD) defined in [RFC4202], and does not change how the ISCD sub-TLV
  is carried in the routing protocols or how it is processed when it is
  received [RFC4201], [RFC4203].

  The receiving LSR uses its Link State Database to determine the
  IACD(s) of the far end of the link.  Different Interface Adjustment
  Capabilities at two ends of a TE link are allowed.

3.2.1.  OSPF

  In OSPF, the IACD sub-TLV is defined as an optional sub-TLV of the TE
  Link TLV (Type 2, see [RFC3630]), with Type 25 and variable length.








Papadimitriou, et al.        Standards Track                    [Page 6]

RFC 6001          GMPLS Protocol Extensions for MLN/MRN     October 2010


  The IACD sub-TLV format is defined as follows:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | Lower SC      | Lower Encoding| Upper SC      | Upper Encoding|
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                  Max LSP Bandwidth at priority 0              |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                  Max LSP Bandwidth at priority 1              |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                  Max LSP Bandwidth at priority 2              |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                  Max LSP Bandwidth at priority 3              |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                  Max LSP Bandwidth at priority 4              |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                  Max LSP Bandwidth at priority 5              |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                  Max LSP Bandwidth at priority 6              |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                  Max LSP Bandwidth at priority 7              |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |            Adjustment Capability-specific information         |
  |                           (variable)                          |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Lower Switching Capability (SC) field (byte 1) - 8 bits

        Indicates the lower switching capability associated with the
        Lower Encoding field (byte 2).  The value of the Lower
        Switching Capability field MUST be set to the value of
        Switching Capability of the ISCD sub-TLV advertised for this TE
        link.  If multiple ISCD sub-TLVs are advertised for that TE
        link, the Lower Switching Capability (SC) value MUST be set to
        the value of SC to which the adjustment capacity is associated.

     Lower Encoding (byte 2) - 8 bits

        Contains one of the LSP Encoding Type values specified in
        Section 3.1.1 of [RFC3471] and updates.

     Upper Switching Capability (SC) field (byte 3) - 8 bits

        Indicates the upper switching capability.  The Upper Switching
        Capability field MUST be set to one of the values defined in
        [RFC4202].




Papadimitriou, et al.        Standards Track                    [Page 7]

RFC 6001          GMPLS Protocol Extensions for MLN/MRN     October 2010


     Upper Encoding (byte 4) - 8 bits

        Set to the encoding of the available adjustment capacity and to
        0xFF when the corresponding SC value has no access to the wire,
        i.e., there is no ISC sub-TLV for this upper switching
        capability.  The adjustment capacity is the set of resources
        associated to the upper switching capability.

     Max LSP Bandwidth

        The Maximum LSP Bandwidth is encoded as a list of eight 4-octet
        fields in the IEEE floating point format [IEEE], with priority
        0 first and priority 7 last.  The units are bytes per second.
        Processing MUST follow the rules specified in [RFC4202].

     The Adjustment Capability-specific information - variable

        This field is defined so as to leave the possibility for future
        addition of technology-specific information associated to the
        adjustment capability.

        Other fields MUST be processed as specified in [RFC4202] and
        [RFC4203].

  The bandwidth values provide an indication of the resources still
  available to perform insertion/extraction for a given adjustment at a
  given priority (resource pool concept: set of shareable available
  resources that can be assigned dynamically).

  Multiple IACD sub-TLVs MAY be present within a given TE Link TLV.

  The presence of the IACD sub-TLV as part of the TE Link TLV does not
  modify the format/messaging and the processing associated to the ISCD
  sub-TLV defined in [RFC4203].

3.2.2.  IS-IS

  In IS-IS, the IACD sub-TLV is an optional sub-TLV of the Extended IS
  Reachability TLV (see [RFC5305]) with Type 27.

  The IACD sub-TLV format is identical to the OSPF sub-TLV format
  defined in Section 3.2.1.  The fields of the IACD sub-TLV have the
  same processing and interpretation rules as defined in Section 3.2.1.

  Multiple IACD sub-TLVs MAY be present within a given extended IS
  reachability TLV.





Papadimitriou, et al.        Standards Track                    [Page 8]

RFC 6001          GMPLS Protocol Extensions for MLN/MRN     October 2010


  The presence of the IACD sub-TLV as part of the extended IS
  reachability TLV does not modify format/messaging and processing
  associated to the ISCD sub-TLV defined in [RFC5307].

4.  Multi-Region Signaling

  Section 6.2 of [RFC4206] specifies that when a region boundary node
  receives a Path message, the node determines whether or not it is at
  the edge of an LSP region with respect to the Explicit Route Object
  (ERO) carried in the message.  If the node is at the edge of a
  region, it must then determine the other edge of the region with
  respect to the Explicit Route Object (ERO), using the IGP database.
  The node then extracts from the ERO the sub-sequence of hops from
  itself to the other end of the region.

  The node then compares the sub-sequence of hops with all existing
  Forwarding Agency LSPs (FA-LSPs) originated by the node:

  o If a match is found, that FA-LSP has enough unreserved bandwidth
    for the LSP being signaled, and the Generalized PID (G-PID) of the
    FA-LSP is compatible with the G-PID of the LSP being signaled, the
    node uses that FA-LSP as follows.  The Path message for the
    original LSP is sent to the egress of the FA-LSP.  The previous hop
    (PHOP) in the message is the address of the node at the head-end of
    the FA-LSP.  Before sending the Path message, the ERO in that
    message is adjusted by removing the subsequence of the ERO that
    lies in the FA-LSP, and replacing it with just the endpoint of the
    FA-LSP.

  o If no existing FA-LSP is found, the node sets up a new FA-LSP.
    That is, it initiates a new LSP setup just for the FA-LSP.

    Note: compatible G-PID implies that traffic can be processed by
    both ends of the FA-LSP without dropping traffic after its
    establishment.

  Applying the procedure of [RFC4206] in an MRN environment MAY lead to
  the setup of single-hop FA-LSPs between each pair of nodes.
  Therefore, considering that the path computation is able to take into
  account richness of information with regard to the SC available on
  given nodes belonging to the path, it is consistent to provide enough
  signaling information to indicate the SC to be used and over which
  link.  Particularly, in case a TE link has multiple SCs advertised as
  part of its ISCD sub-TLVs, an ERO does not provide a mechanism to
  select a particular SC.






Papadimitriou, et al.        Standards Track                    [Page 9]

RFC 6001          GMPLS Protocol Extensions for MLN/MRN     October 2010


  In order to limit the modifications to existing RSVP-TE procedures
  ([RFC3473] and referenced), this document defines a new subobject of
  the eXclude Route Object (XRO), see [RFC4874], called the Switching
  Capability subobject.  This subobject enables (when desired) the
  explicit identification of at least one switching capability to be
  excluded from the resource selection process described above.

  Including this subobject as part of the XRO that explicitly indicates
  which SCs have to be excluded (before initiating the procedure
  described here above) over a specified TE link, solves the ambiguous
  choice among SCs that are potentially used along a given path and
  give the possibility to optimize resource usage on a multi-region
  basis.  Note that implicit SC inclusion is easily supported by
  explicitly excluding other SCs (e.g., to include LSC, it is required
  to exclude PSC, L2SC, TDM, and FSC).

  The approach followed here is to concentrate exclusions in XRO and
  inclusions in ERO.  Indeed, the ERO specifies the topological
  characteristics of the path to be signaled.  Usage of Explicit
  Exclusion Route Subobjects (EXRSs) would also lead in the exclusion
  over certain portions of the LSP during the FA-LSP setup.  Thus, it
  is more suited to extend generality of the elements excluded by the
  XRO but also prevent complex consistency checks as well as
  transpositions between EXRS and XRO at FA-LSP head-ends.

4.1.  XRO Subobjects

  The contents of an EXCLUDE_ROUTE object defined in [RFC4874] are a
  series of variable-length data items called subobjects.

  This document defines the Switching Capability (SC) subobject of the
  XRO (Type 35), its encoding, and processing.  It also complements the
  subobjects defined in [RFC4874] with a Label subobject (Type 3).

4.1.1.  SC Subobject

  XRO subobject Type 35: Switching Capability

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |L|   Type=35   |    Length     |   Attribute   | Switching Cap |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     L (1 bit)

        0 indicates that the attribute specified MUST be excluded.




Papadimitriou, et al.        Standards Track                   [Page 10]

RFC 6001          GMPLS Protocol Extensions for MLN/MRN     October 2010


        1 indicates that the attribute specified SHOULD be avoided.

     Type (7 bits)

        The Type of the XRO SC subobject is 35.

     Length (8 bits)

        The total length of the subobject in bytes (including the Type
        and Length fields).  The Length of the XRO SC subobject is 4.

     Attribute (8 bits)

        0 reserved value.

        1 indicates that the specified SC SHOULD be excluded or avoided
          with respect to the preceding numbered (Type 1 or Type 2) or
          unnumbered interface (Type) subobject.

     Switching Cap (8 bits)

        Switching Capability value to be excluded.

  The Switching Capability subobject MUST follow the set of one or more
  numbered or unnumbered interface subobjects to which this subobject
  refers.

  In the case of a loose-hop ERO subobject, the XRO subobject MUST
  precede the loose-hop subobject identifying the tail-end
  node/interface of the traversed region(s).

4.1.2.  Label Subobject

  The encoding of the XRO Label subobject is identical to the Label ERO
  subobject defined in [RFC3473] with the exception of the L bit.  The
  XRO Label subobject is defined as follows:

  XRO Subobject Type 3: Label Subobject

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |L|  Type=3     |    Length     |U|   Reserved  |   C-Type      |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                             Label                             |
  |                              ...                              |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+




Papadimitriou, et al.        Standards Track                   [Page 11]

RFC 6001          GMPLS Protocol Extensions for MLN/MRN     October 2010


     L (1 bit)

        0 indicates that the attribute specified MUST be excluded.

        1 indicates that the attribute specified SHOULD be avoided.

     Type (7 bits)

        The Type of the XRO Label subobject is 3.

     Length (8 bits)

        The total length of the subobject in bytes (including the Type
        and Length fields).  The Length is always divisible by 4.

     U (1 bit)

        See [RFC3471].

     C-Type (8 bits)

        The C-Type of the included Label Object.  Copied from the Label
        Object (see [RFC3471]).

     Label

        See [RFC3471].

  XRO Label subobjects MUST follow the numbered or unnumbered interface
  subobjects to which they refer, and, when present, MUST also follow
  the Switching Capability subobject.

  When XRO Label subobjects are following the Switching Capability
  subobject, the corresponding label values MUST be compatible with the
  SC capability to be explicitly excluded.

5.  Virtual TE Link

  A virtual TE link is defined as a TE link between two upper-layer
  nodes that is not associated with a fully provisioned FA-LSP in a
  lower layer [RFC5212].  A virtual TE link is advertised as any TE
  link, following the rules in [RFC4206] defined for fully provisioned
  TE links.  A virtual TE link represents thus the potentiality to set
  up an FA-LSP in the lower layer to support the TE link that has been
  advertised.  In particular, the flooding scope of a virtual TE link
  is within an IGP area, as is the case for any TE link.





Papadimitriou, et al.        Standards Track                   [Page 12]

RFC 6001          GMPLS Protocol Extensions for MLN/MRN     October 2010


  Two techniques can be used for the setup, operation, and maintenance
  of virtual TE links.  The corresponding GMPLS protocols extensions
  are described in this section.  The procedures described in this
  section complement those defined in [RFC4206] and [HIER-BIS].

5.1.  Edge-to-Edge Association

  This approach, that does not require state maintenance on transit
  LSRs, relies on extensions to the GMPLS RSVP-TE Call procedure (see
  [RFC4974]).  This technique consists of exchanging identification and
  TE attributes information directly between TE link endpoints through
  the establishment of a call between terminating LSRs.  These TE link
  endpoints correspond to the LSP head-end and tail-end points of the
  LSPs that will be established.  The endpoints MUST belong to the same
  (LSP) region.

  Once the call is established, the resulting association populates the
  local Traffic Engineering DataBase (TEDB) and the resulting virtual
  TE link is advertised as any other TE link.  The latter can then be
  used to attract traffic.  When an upper-layer/region LSP tries to
  make use of this virtual TE link, one or more FA LSPs MUST be
  established using the procedures defined in [RFC4206] to make the
  virtual TE link "real" and allow it to carry traffic by nesting the
  upper-layer/region LSP.

  In order to distinguish usage of such call from the call and
  associated procedures defined in [RFC4974], a CALL_ATTRIBUTES object
  is introduced.

5.1.1.  CALL_ATTRIBUTES Object

  The CALL_ATTRIBUTES object is used to signal attributes required in
  support of a call, or to indicate the nature or use of a call.  It is
  modeled on the LSP_ATTRIBUTES object defined in [RFC5420].  The
  CALL_ATTRIBUTES object MAY also be used to report call operational
  state on a Notify message.

  The CALL_ATTRIBUTES object class is 202 of the form 11bbbbbb.  This
  C-Num value (see [RFC2205], Section 3.10) ensures that LSRs that do
  not recognize the object pass it on transparently.

  One C-Type is defined, C-Type = 1 for Call Attributes.  This object
  is OPTIONAL and MAY be placed on Notify messages to convey additional
  information about the desired attributes of the call.







Papadimitriou, et al.        Standards Track                   [Page 13]

RFC 6001          GMPLS Protocol Extensions for MLN/MRN     October 2010


  CALL_ATTRIBUTES class = 202, C-Type = 1

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  //                      Call Attributes TLVs                   //
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  The Call Attributes TLVs are encoded as described in Section 5.1.3.

5.1.2.  Processing

  If an egress (or intermediate) LSR does not support the object, it
  forwards it unexamined and unchanged.  This facilitates the exchange
  of attributes across legacy networks that do not support this new
  object.

5.1.3.  Call Attributes TLVs

  Attributes carried by the CALL_ATTRIBUTES object are encoded within
  TLVs named Call Attributes TLVs.  One or more Call Attributes TLVs
  MAY be present in each object.

  There are no ordering rules for Call Attributes TLVs, and no
  interpretation SHOULD be placed on the order in which these TLVs are
  received.

  Each Call Attributes TLV carried by the CALL_ATTRIBUTES object is
  encoded as follows:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |             Type              |           Length              |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  //                            Value                            //
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Type

        The identifier of the TLV.






Papadimitriou, et al.        Standards Track                   [Page 14]

RFC 6001          GMPLS Protocol Extensions for MLN/MRN     October 2010


     Length

        Indicates the total length of the TLV in octets.  That is, the
        combined length of the Type, Length, and Value fields, i.e.,
        four plus the length of the Value field in octets.

        The entire TLV MUST be padded with between zero and three
        trailing zeros to make it four-octet aligned.  The Length field
        does not count any padding.

     Value

        The data field for the TLV padded as described above.

  Assignment of Call Attributes TLV types MUST follow the rules
  specified in Section 8 (IANA Considerations).

5.1.4.  Call Attributes Flags TLV

  The Call Attributes TLV of Type 1 defines the Call Attributes Flags
  TLV.  The Call Attributes Flags TLV MAY be present in a
  CALL_ATTRIBUTES object.

  The Call Attributes Flags TLV value field is an array of units of 32
  flags numbered from the most significant bit as bit zero.  The Length
  field for this TLV MUST therefore always be a multiple of 4 bytes,
  regardless of the number of bits carried and no padding is required.

  Unassigned bits are considered reserved and MUST be set to zero on
  transmission by the originator of the object.  Bits not contained in
  the Call Attributes Flags TLV MUST be assumed to be set to zero.  If
  the Call Attributes Flags TLV is absent, either because it is not
  contained in the CALL_ATTRIBUTES object or because this object is
  itself absent, all processing MUST be performed as though the bits
  were present and set to zero.  In other terms, assigned bits that are
  not present either because the Call Attributes Flags TLV is
  deliberately foreshortened or because the TLV is not included MUST be
  treated as though they are present and are set to zero.

5.1.5.  Call Inheritance Flag

  This document introduces a specific Call Inheritance Flag at position
  bit 0 (most significant bit) in the Call Attributes Flags TLV.  This
  flag indicates that the association initiated between the endpoints
  belonging to a call results into a (virtual) TE link advertisement.






Papadimitriou, et al.        Standards Track                   [Page 15]

RFC 6001          GMPLS Protocol Extensions for MLN/MRN     October 2010


  The Call Inheritance Flag MUST be set to 1 in order to indicate that
  the established association is to be translated into a TE link
  advertisement.  The value of this flag SHALL by default be set to 1.
  Setting this flag to 0 results in a hidden TE link or in deleting the
  corresponding TE link advertisement (by setting the corresponding
  Opaque LSA Age to MaxAge) if the association had been established
  with this flag set to 1.  In the latter case, the corresponding FA-
  LSP SHOULD also be torn down to prevent unused resources.

  The Notify message used for establishing the association is defined
  as per [RFC4974].  Additionally, the Notify message MUST carry an
  LSP_TUNNEL_INTERFACE_ID Object, that allows identifying unnumbered
  FA-LSPs ([RFC3477], [RFC4206], [HIER-BIS]) and numbered FA-LSPs
  ([RFC4206], [HIER-BIS]).

5.2.  Soft Forwarding Adjacency (Soft FA)

  The Soft Forwarding Adjacency (Soft FA) approach consists of setting
  up the FA LSP at the control plane level without actually committing
  resources in the data plane.  This means that the corresponding LSP
  exists only in the control plane domain.  Once such an FA is
  established, the corresponding TE link can be advertised following
  the procedures described in [RFC4206].

  There are two techniques to set up Soft FAs:

  o The first one consists in setting up the FA LSP by precluding
    resource commitment during its establishment.  These are known as
    pre-planned LSPs.

  o The second technique consists in making use of path-provisioned
    LSPs only.  In this case, there is no associated resource demand
    during the LSP establishment.  This can be considered as the RSVP-
    TE equivalent of the Null service type specified in [RFC2997].

5.2.1.  Pre-Planned LSP Flag

  The LSP ATTRIBUTES object and Attributes Flags TLV are defined in
  [RFC5420].  The present document defines a new flag, the Pre-Planned
  LSP flag, in the existing Attributes Flags TLV (numbered as Type 1).

  The position of this flag is bit 6 in accordance with IANA
  assignment.  This flag, part of the Attributes Flags TLV, follows
  general processing of [RFC5420] for LSP_REQUIRED_ATTRIBUTE object.
  That is, LSRs that do not recognize the object reject the LSP setup
  effectively saying that they do not support the attributes requested.
  Indeed, the newly defined attribute requires examination at all
  transit LSRs along the LSP being established.



Papadimitriou, et al.        Standards Track                   [Page 16]

RFC 6001          GMPLS Protocol Extensions for MLN/MRN     October 2010


  The Pre-Planned LSP flag can take one of the following values:

  o When set to 0, this means that the LSP MUST be fully provisioned.
    Absence of this flag (hence corresponding TLV) is therefore
    compliant with the signaling message processing per [RFC3473]).

  o When set to 1, this means that the LSP MUST be provisioned in the
    control plane only.

  If an LSP is established with the Pre-Planned flag set to 1, no
  resources are committed at the data plane level.

  The operation of committing data plane resources occurs by re-
  signaling the same LSP with the Pre-Planned flag set to 0.  It is
  RECOMMENDED that no other modifications are made to other RSVP
  objects during this operation.  That is each intermediate node,
  processing a flag transiting from 1 to 0 shall only be concerned with
  the commitment of data plane resources and no other modification of
  the LSP properties and/or attributes.

  If an LSP is established with the Pre-Planned flag set to 0, it MAY
  be re-signaled by setting the flag to 1.

5.2.2.  Path Provisioned LSPs

  There is a difference between an LSP that is established with 0
  bandwidth (path provisioning) and an LSP that is established with a
  certain bandwidth value not committed at the data plane level (i.e.,
  pre-planned LSP).

  Mechanisms for provisioning (pre-planned or not) LSP with 0 bandwidth
  is straightforward for PSC LSP: in the SENDER_TSPEC/FLOWSPEC object,
  the Peak Data Rate field of IntServ objects (see [RFC2210]) MUST be
  set to 0.  For L2SC LSP: the Committed Information Rate (CIR), Excess
  Information Rate (EIR), Committed Burst Size (CBS), and Excess Burst
  Size (EBS) values MUST be set to 0 in the Type 2 sub-TLV of the
  Ethernet Bandwidth Profile TLV.  In both cases, upon LSP resource
  commitment, actual traffic parameter values are used to perform
  corresponding resource reservation.

  However, mechanisms for provisioning (pre-planned or not) a TDM or
  LSC LSP with 0 bandwidth is currently not possible because the
  exchanged label value is tightly coupled with resource allocation
  during LSP signaling (e.g., see [RFC4606] for a SONET/SDH LSP).  For
  TDM and LSC LSP, a NULL Label value is used to prevent resource
  allocation at the data plane level.  In these cases, upon LSP
  resource commitment, actual label value exchange is performed to
  commit allocation of timeslots/ wavelengths.



Papadimitriou, et al.        Standards Track                   [Page 17]

RFC 6001          GMPLS Protocol Extensions for MLN/MRN     October 2010


6.  Backward Compatibility

  New objects and procedures defined in this document are running
  within a given TE domain, defined as group of LSRs that enforces a
  common TE policy.  Thus, the extensions defined in this document are
  expected to run in the context of a consistent TE policy.
  Specification of a consistent TE policy is outside the scope of this
  document.

  In such TE domains, we distinguish between edge LSRs and intermediate
  LSRs.  Edge LSRs MUST be able to process Call Attributes as defined
  in Section 5.1 if this is the method selected for creating edge-to-
  edge associations.  In that domain, intermediate LSRs are by
  definition transparent to the Call processing.

  In case the Soft FA method is used for the creation of virtual TE
  links, edge and intermediate LSRs MUST support processing of the LSP
  ATTRIBUTE object per Section 5.2.

7.  Security Considerations

  This document does not introduce any new security considerations from
  the ones already detailed in [RFC5920] that describes the MPLS and
  GMPLS security threats, the related defensive techniques, and the
  mechanisms for detection and reporting.  Indeed, the applicability of
  the proposed GMPLS extensions is limited to single TE domain.  Such a
  domain is under the authority of a single administrative entity.  In
  this context, multiple switching layers comprised within such TE
  domain are under the control of a single GMPLS control plane
  instance.

  Nevertheless, Call initiation, as depicted in Section 5.1, MUST
  strictly remain under control of the TE domain administrator.  To
  prevent any abuse of Call setup, edge nodes MUST ensure isolation of
  their call controller (i.e., the latter is not reachable via external
  TE domains).  To further prevent man-in-the-middle attacks, security
  associations MUST be established between edge nodes initiating and
  terminating calls.  For this purpose, Internet Key Exchange (IKE)
  protocol [RFC5996] MUST be used for performing mutual authentication
  and establishing and maintaining these security associations.

8.  IANA Considerations

8.1.  RSVP

  IANA has made the following assignments in the "Class Names, Class
  Numbers, and Class Types" section of the "RSVP PARAMETERS" registry
  available from http://www.iana.org.



Papadimitriou, et al.        Standards Track                   [Page 18]

RFC 6001          GMPLS Protocol Extensions for MLN/MRN     October 2010


  This document introduces a new class named CALL_ATTRIBUTES, which has
  been created in the 11bbbbbb range with the following definition:

  Class Number  Class Name                         Reference
  ------------  -----------------------            ---------
  202           CALL ATTRIBUTES                    [RFC6001]

                Class Type (C-Type):

                1   Call Attributes                [RFC6001]

  IANA has established a "Call Attributes TLV" registry.  The following
  types are defined:

  TLV Value  Name                                  Reference
  ---------  -------------------------             ---------
  0          Reserved                              [RFC6001]
  1          Call Attributes Flags TLV             [RFC6001]

  The values should be allocated based on the following allocation
  policy as defined in [RFC5226].

  Range         Registration Procedures
  -----         ------------------------
  0-32767       RFC Required
  32768-65535   Reserved for Private Use

  IANA has established a "Call Attributes Flags" registry.  The
  following flags are defined:

  Bit Number  32-bit Value  Name                   Reference
  ----------  ------------  ---------------------  ---------
  0           0x80000000    Call Inheritance Flag  [RFC6001]

  The values should be allocated based on the "RFC Required" policy as
  defined in [RFC5226].

  This document introduces a new Flag in the Attributes Flags TLV
  defined in [RFC5420]:

  Bit Number  Name                   Reference
  ----------  --------------------   ---------
  6           Pre-Planned LSP Flag   [RFC6001]

  This document introduces two new subobjects for the EXCLUDE_ROUTE
  object [RFC4874], C-Type 1.





Papadimitriou, et al.        Standards Track                   [Page 19]

RFC 6001          GMPLS Protocol Extensions for MLN/MRN     October 2010


  Subobject Type   Subobject Description
  --------------   -------------------------
  3                Label
  35               Switching Capability (SC)

8.2.  OSPF

  IANA maintains the "Open Shortest Path First (OSPF) Traffic
  Engineering TLVs" registries including the "Types for sub-TLVs of TE
  link TLV (Value 2)" registry.

  This document defines the following sub-TLV of TE link TLV (Value 2).

  Value  Sub-TLV
  -----  -------------------------------------------------
  25     Interface Adjustment Capability Descriptor (IACD)

8.3.  IS-IS

  This document defines the following new sub-TLV type of top-level TLV
  22 that has been reflected in the ISIS sub-TLV registry for TLV 22,
  141, and 222:

  Type  Description                                        Length
  ----  -------------------------------------------------  ------
  27    Interface Adjustment Capability Descriptor (IACD)  Var.

9.  References

9.1.  Normative References

  [IEEE]     IEEE, "IEEE Standard for Binary Floating-Point
             Arithmetic", Standard 754-1985, 1985.

  [RFC2205]  Braden, R., Ed., Zhang, L., Berson, S., Herzog, S., and S.
             Jamin, "Resource ReSerVation Protocol (RSVP) -- Version 1
             Functional Specification", RFC 2205, September 1997.

  [RFC2210]  Wroclawski, J., "The Use of RSVP with IETF Integrated
             Services", RFC 2210, September 1997.

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119, March 1997.

  [RFC2997]  Bernet, Y., Smith, A., and B. Davie, "Specification of the
             Null Service Type", RFC 2997, November 2000.





Papadimitriou, et al.        Standards Track                   [Page 20]

RFC 6001          GMPLS Protocol Extensions for MLN/MRN     October 2010


  [RFC3471]  Berger, L., Ed., "Generalized Multi-Protocol Label
             Switching (GMPLS) Signaling Functional Description", RFC
             3471, January 2003.

  [RFC3473]  Berger, L., Ed., "Generalized Multi-Protocol Label
             Switching (GMPLS) Signaling Resource ReserVation Protocol-
             Traffic Engineering (RSVP-TE) Extensions", RFC 3473,
             January 2003.

  [RFC3477]  Kompella, K. and Y. Rekhter, "Signalling Unnumbered Links
             in Resource ReSerVation Protocol - Traffic Engineering
             (RSVP-TE)", RFC 3477, January 2003.

  [RFC3630]  Katz, D., Kompella, K., and D. Yeung, "Traffic Engineering
             (TE) Extensions to OSPF Version 2", RFC 3630, September
             2003.

  [RFC3945]  Mannie, E., Ed., "Generalized Multi-Protocol Label
             Switching (GMPLS) Architecture", RFC 3945, October 2004.

  [RFC4201]  Kompella, K., Rekhter, Y., and L. Berger, "Link Bundling
             in MPLS Traffic Engineering (TE)", RFC 4201, October 2005.

  [RFC4202]  Kompella, K., Ed., and Y. Rekhter, Ed., "Routing
             Extensions in Support of Generalized Multi-Protocol Label
             Switching (GMPLS)", RFC 4202, October 2005.

  [RFC4203]  Kompella, K., Ed., and Y. Rekhter, Ed., "OSPF Extensions
             in Support of Generalized Multi-Protocol Label Switching
             (GMPLS)", RFC 4203, October 2005.

  [RFC4206]  Kompella, K. and Y. Rekhter, "Label Switched Paths (LSP)
             Hierarchy with Generalized Multi-Protocol Label Switching
             (GMPLS) Traffic Engineering (TE)", RFC 4206, October 2005.

  [RFC4606]  Mannie, E. and D. Papadimitriou, "Generalized Multi-
             Protocol Label Switching (GMPLS) Extensions for
             Synchronous Optical Network (SONET) and Synchronous
             Digital Hierarchy (SDH) Control", RFC 4606, August 2006.

  [RFC4874]  Lee, CY., Farrel, A., and S. De Cnodder, "Exclude Routes -
             Extension to Resource ReserVation Protocol-Traffic
             Engineering (RSVP-TE)", RFC 4874, April 2007.








Papadimitriou, et al.        Standards Track                   [Page 21]

RFC 6001          GMPLS Protocol Extensions for MLN/MRN     October 2010


  [RFC4974]  Papadimitriou, D. and A. Farrel, "Generalized MPLS (GMPLS)
             RSVP-TE Signaling Extensions in Support of Calls", RFC
             4974, August 2007.

  [RFC5226]  Narten, T. and H. Alvestrand, "Guidelines for Writing an
             IANA Considerations Section in RFCs", BCP 26, RFC 5226,
             May 2008.

  [RFC5305]  Li, T. and H. Smit, "IS-IS Extensions for Traffic
             Engineering", RFC 5305, October 2008.

  [RFC5307]  Kompella, K., Ed., and Y. Rekhter, Ed., "IS-IS Extensions
             in Support of Generalized Multi-Protocol Label Switching
             (GMPLS)", RFC 5307, October 2008.

  [RFC5420]  Farrel, A., Ed., Papadimitriou, D., Vasseur, JP., and A.
             Ayyangarps, "Encoding of Attributes for MPLS LSP
             Establishment Using Resource Reservation Protocol Traffic
             Engineering (RSVP-TE)", RFC 5420, February 2009.

  [RFC5996]  Kaufman, C., Hoffman, P., Nir, Y., and P. Eronen,
             "Internet Key Exchange Protocol Version 2 (IKEv2)", RFC
             5996, September 2010.

9.2.  Informative References

  [HIER-BIS] Shiomoto, K., Ed., and A. Farrel, "Procedures for
             Dynamically Signaled Hierarchical Label Switched Paths",
             Work in Progress, February 2010.

  [RFC5212]  Shiomoto, K., Papadimitriou, D., Le Roux, JL., Vigoureux,
             M., and D. Brungard, "Requirements for GMPLS-Based Multi-
             Region and Multi-Layer Networks (MRN/MLN)", RFC 5212, July
             2008.

  [RFC5339]  Le Roux, JL., Ed., and D. Papadimitriou, Ed., "Evaluation
             of Existing GMPLS Protocols against Multi-Layer and Multi-
             Region Networks (MLN/MRN)", RFC 5339, September 2008.

  [RFC5710]  Berger, L., Papadimitriou, D., and JP. Vasseur, "PathErr
             Message Triggered MPLS and GMPLS LSP Reroutes", RFC 5710,
             January 2010.

  [RFC5817]  Ali, Z., Vasseur, JP., Zamfir, A., and J. Newton,
             "Graceful Shutdown in MPLS and Generalized MPLS Traffic
             Engineering Networks", RFC 5817, April 2010.





Papadimitriou, et al.        Standards Track                   [Page 22]

RFC 6001          GMPLS Protocol Extensions for MLN/MRN     October 2010


  [RFC5920]  Fang, L., Ed., "Security Framework for MPLS and GMPLS
             Networks", RFC 5920, July 2010.

Acknowledgments

  The authors would like to thank Mr. Wataru Imajuku for the
  discussions on adjustment between regions.

Contributors

  Eiji Oki
  University of Electro-Communications
  1-5-1 Chofugaoka
  Chofu, Tokyo 182-8585, Japan
  EMail: [email protected]

  Ichiro Inoue
  NTT Network Service Systems Laboratories
  3-9-11 Midori-cho
  Musashino-shi, Tokyo 180-8585, Japan
  Phone: +81 422 596076
  EMail: [email protected]

  Emmanuel Dotaro
  Alcatel-Lucent France
  Route de Villejust
  91620 Nozay, France
  Phone: +33 1 69634723
  EMail: [email protected]

  Gert Grammel
  Alcatel-Lucent SEL
  Lorenzstrasse, 10
  70435 Stuttgart, Germany
  EMail: [email protected]
















Papadimitriou, et al.        Standards Track                   [Page 23]

RFC 6001          GMPLS Protocol Extensions for MLN/MRN     October 2010


Authors' Addresses

  Dimitri Papadimitriou
  Alcatel-Lucent
  Copernicuslaan 50
  B-2018 Antwerpen, Belgium
  Phone: +32 3 2408491
  EMail: [email protected]

  Martin Vigoureux
  Alcatel-Lucent
  Route de Villejust
  91620 Nozay, France
  Phone: +33 1 30772669
  EMail: [email protected]

  Kohei Shiomoto
  NTT
  3-9-11 Midori-cho
  Musashino-shi, Tokyo 180-8585, Japan
  Phone: +81 422 594402
  EMail: [email protected]

  Deborah Brungard
  ATT
  Rm. D1-3C22 - 200 S. Laurel Ave.
  Middletown, NJ 07748, USA
  Phone: +1 732 4201573
  EMail: [email protected]

  Jean-Louis Le Roux
  France Telecom
  Avenue Pierre Marzin
  22300 Lannion, France
  Phone: +33 2 96053020
  EMail: [email protected]















Papadimitriou, et al.        Standards Track                   [Page 24]