Internet Engineering Task Force (IETF)                     T. Sanda, Ed.
Request for Comments: 5980                                     Panasonic
Category: Informational                                            X. Fu
ISSN: 2070-1721                                 University of Goettingen
                                                               S. Jeong
                                                                   HUFS
                                                              J. Manner
                                                       Aalto University
                                                          H. Tschofenig
                                                 Nokia Siemens Networks
                                                             March 2011


            NSIS Protocol Operation in Mobile Environments

Abstract

  Mobility of an IP-based node affects routing paths, and as a result,
  can have a significant effect on the protocol operation and state
  management.  This document discusses the effects mobility can cause
  to the Next Steps in Signaling (NSIS) protocol suite, and shows how
  the NSIS protocols operate in different scenarios with mobility
  management protocols.

Status of This Memo

  This document is not an Internet Standards Track specification; it is
  published for informational purposes.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Not all documents
  approved by the IESG are a candidate for any level of Internet
  Standard; see Section 2 of RFC 5741.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  http://www.rfc-editor.org/info/rfc5980.












Sanda, et al.                 Informational                     [Page 1]

RFC 5980               NSIS Signaling in Mobility             March 2011


Copyright Notice

  Copyright (c) 2011 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (http://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.

  This document may contain material from IETF Documents or IETF
  Contributions published or made publicly available before November
  10, 2008.  The person(s) controlling the copyright in some of this
  material may not have granted the IETF Trust the right to allow
  modifications of such material outside the IETF Standards Process.
  Without obtaining an adequate license from the person(s) controlling
  the copyright in such materials, this document may not be modified
  outside the IETF Standards Process, and derivative works of it may
  not be created outside the IETF Standards Process, except to format
  it for publication as an RFC or to translate it into languages other
  than English.

























Sanda, et al.                 Informational                     [Page 2]

RFC 5980               NSIS Signaling in Mobility             March 2011


Table of Contents

  1.  Introduction . . . . . . . . . . . . . . . . . . . . . . . . .  3
  2.  Requirements Notation and Terminology  . . . . . . . . . . . .  4
  3.  Challenges with Mobility . . . . . . . . . . . . . . . . . . .  5
  4.  Basic Operations for Mobility Support  . . . . . . . . . . . .  8
    4.1.  General Functionality  . . . . . . . . . . . . . . . . . .  8
    4.2.  QoS NSLP . . . . . . . . . . . . . . . . . . . . . . . . .  9
    4.3.  NATFW NSLP . . . . . . . . . . . . . . . . . . . . . . . . 12
    4.4.  Localized Signaling in Mobile Scenarios  . . . . . . . . . 13
      4.4.1.  CRN Discovery  . . . . . . . . . . . . . . . . . . . . 15
      4.4.2.  Localized State Update . . . . . . . . . . . . . . . . 15
  5.  Interaction with Mobile IPv4/v6  . . . . . . . . . . . . . . . 16
    5.1.  Interaction with Mobile IPv4 . . . . . . . . . . . . . . . 17
    5.2.  Interaction with Mobile IPv6 . . . . . . . . . . . . . . . 19
    5.3.  Interaction with Mobile IP Tunneling . . . . . . . . . . . 20
      5.3.1.  Sender-Initiated Reservation with Mobile IP Tunnel . . 20
      5.3.2.  Receiver-Initiated Reservation with Mobile IP
              Tunnel . . . . . . . . . . . . . . . . . . . . . . . . 23
      5.3.3.  CRN Discovery and State Update with Mobile IP
              Tunneling  . . . . . . . . . . . . . . . . . . . . . . 24
  6.  Further Studies  . . . . . . . . . . . . . . . . . . . . . . . 25
    6.1.  NSIS Operation in the Multihomed Mobile Environment  . . . 25
      6.1.1.  Selecting the Best Interface(s) or CoA(s)  . . . . . . 26
      6.1.2.  Differentiation of Two Types of CRNs . . . . . . . . . 27
    6.2.  Interworking with Other Mobility Protocols . . . . . . . . 28
    6.3.  Intermediate Node Becomes a Dead Peer  . . . . . . . . . . 29
  7.  Security Considerations  . . . . . . . . . . . . . . . . . . . 29
  8.  Contributors . . . . . . . . . . . . . . . . . . . . . . . . . 29
  9.  Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . 30
  10. References . . . . . . . . . . . . . . . . . . . . . . . . . . 30
    10.1. Normative References . . . . . . . . . . . . . . . . . . . 30
    10.2. Informative References . . . . . . . . . . . . . . . . . . 30

1.  Introduction

  Mobility of IP-based nodes incurs route changes, usually at the edge
  of the network.  Since IP addresses are usually part of flow
  identifiers, the change of IP addresses implies the change of flow
  identifiers (i.e., the General Internet Signaling Transport (GIST)
  message routing information or Message Routing Information (MRI)
  [RFC5971]).  Local mobility usually does not cause the change of the
  global IP addresses, but affects the routing paths within the local
  access network.

  The NSIS protocol suite consists of two layers: the NSIS Transport
  Layer Protocol (NTLP) and the NSIS Signaling Layer Protocol (NSLP).
  The General Internet Signaling Transport (GIST) [RFC5971] implements



Sanda, et al.                 Informational                     [Page 3]

RFC 5980               NSIS Signaling in Mobility             March 2011


  the NTLP, which is a protocol that is independent of the signaling
  application and that transports service-related information between
  neighboring GIST nodes.  Each specific service has its own NSLP
  protocol; currently there are two specified NSLP protocols, the QoS
  NSLP [RFC5974] and the Network Address Translator / Firewall (NAT/FW)
  NSLP [RFC5973].

  The goals of this document are to present the effects of mobility on
  the NTLP/NSLPs and to provide guides on how such NSIS protocols work
  in basic mobility scenarios, including support for Mobile IPv4 and
  Mobile IPv6 scenarios.  We also show how these protocols fulfill the
  requirements regarding mobility set forth in [RFC3726].  In general,
  the NSIS protocols work well in mobile environments.  The Session ID
  (SID) used in NSIS signaling enables the separation of the signaling
  state and the IP addresses of the communicating hosts.  This makes it
  possible to directly update a signaling state in the network due to
  mobility without being forced to first remove the old state and then
  re-establish a new one.  This is the fundamental reason why NSIS
  signaling works well in mobile environments.  Additional information
  and mobility-specific enhanced operations, e.g., operations with
  crossover node (CRN), are also introduced.

  This document focuses on basic mobility scenarios.  Key management
  related to handovers, multihoming, and interactions between NSIS and
  other mobility management protocols than Mobile IP are out of scope
  of this document.  Also, practical implementations typically need
  various APIs across components within a node.  API issues, e.g., APIs
  from GIST to the various mobility and routing schemes, are also out
  of scope of this work.  The generic GIST API towards NSLP is flexible
  enough to fulfill most mobility-related needs of the NSLP layer.

2.  Requirements Notation and Terminology

  The terminology in this document is based on [RFC5971] and [RFC3753].
  In addition, the following terms are used.  Note that in this
  document, a generic route change caused by regular IP routing is
  referred to as a 'route change', and the route change caused by
  mobility is referred to as 'mobility'.

  (1) Downstream

  The direction from a data sender towards the data receiver.

  (2) Upstream

  The direction from a data receiver towards the data sender.





Sanda, et al.                 Informational                     [Page 4]

RFC 5980               NSIS Signaling in Mobility             March 2011


  (3) Crossover Node (CRN)

  A Crossover Node is a node that for a given function is a merging
  point of two or more paths belonging to flows of the same session
  along which states are installed.

  In the mobility scenarios, there are two different types of merging
  points in the network according to the direction of signaling flows
  followed by data flows, where we assume that the Mobile Node (MN) is
  the data sender.

     Upstream CRN (UCRN): the node closest to the data sender from
     which the state information in the direction from data receiver to
     data sender begins to diverge after a handover.

     Downstream CRN (DCRN): the node closest to the data sender from
     which the state information in the direction from the data sender
     to the data receiver begins to converge after a handover.

  In general, the DCRN and the UCRN may be different due to the
  asymmetric characteristics of routing, although the data receiver is
  the same.

  (4) State Update

  State Update is the procedure for the re-establishment of NSIS state
  on the new path, the teardown of NSIS state on the old path, and the
  update of NSIS state on the common path due to the mobility.  The
  State Update procedure is used to address mobility for the affected
  flows.

     Upstream State Update: State Update for the upstream signaling
     flow.

     Downstream State Update: State Update for the downstream signaling
     flow.

3.  Challenges with Mobility

  This section identifies problems that are caused by mobility and
  affect the operations of NSIS protocol suite.

  1.  Change of route and possible change of the MN's IP address

  Topology changes or network reconfiguration might lead to path
  changes for data packets sent to or from the MN and can cause an IP
  address change of the MN.  Traditional route changes usually do not
  cause address changes of the flow endpoints.  When an IP address



Sanda, et al.                 Informational                     [Page 5]

RFC 5980               NSIS Signaling in Mobility             March 2011


  changes due to mobility, information within the path-coupled MRI is
  affected (the source or destination address).  Consequently, this
  concerns GIST as well as NSLPs, e.g., the packet classifier in QoS
  NSLP or some rules carried in NAT/FW NSLP.  So, firewall rules, NAT
  bindings, and QoS reservations that are already installed may become
  invalid because the installed states refer to a non-existent flow.
  If the affected nodes are also on the new path, this information must
  be updated accordingly.

  2.  Double state problem

  After a handover, packets may end up getting delivered through a new
  path.  Since the state on the old path still remains as it was after
  re-establishing the state along the new path, we have two separate
  states for the same signaling session.  Although the state on the old
  path will be deleted automatically based on the soft state timeout,
  the state timer value may be quite long (e.g., 90 s as a default
  value).  With the QoS NSLP, this problem might result in the waste of
  resources and lead to failure of admitting new reservations (due to
  lack of resources).  With the NAT/FW NSLP, it is still possible to
  re-use this installed state although an MN roams to a new location;
  this means that another host can send data through a firewall without
  any prior NAT/FW NSLP signaling because the previous state did not
  yet expire.

  3.  End-to-end signaling and frequency of route changes

  The change of route and IP addresses in mobile environments is
  typically much faster and more frequent than traditional route
  changes caused by node or link failure.  This may result in a need to
  speed up the update procedure of NSLP states.

  4.  Identification of the crossover node

  When a handover at the edge of a network has happened, in the typical
  case, only some parts of the end-to-end path used by the data packets
  change.  In this situation, the crossover node (CRN) plays a central
  role in managing the establishment of the new signaling application
  state, and removing any useless state, while localizing the signaling
  to only the affected part of the network.

  5.  Upstream State Update vs. Downstream State Update

  Due to the asymmetric nature of Internet routing, the upstream and
  downstream paths are likely not to be exactly the same.  Therefore,
  state update needs to be handled independently for upstream and
  downstream paths.




Sanda, et al.                 Informational                     [Page 6]

RFC 5980               NSIS Signaling in Mobility             March 2011


  6.  Upstream signaling

  If the MN is the receiver and moves to a new point of attachment, it
  is difficult to signal upstream towards the Correspondent Node (CN).
  New signaling states have to be established along the new path, but
  for a path-coupled Message Routing Method (MRM), this has to be
  initiated in downstream direction.  So, NTLP signaling state in the
  upstream direction cannot be initiated by the MN, i.e., GIST cannot
  easily send a Query in the upstream direction (there is an upstream
  Q-mode, but this is only applicable in a limited scope).  The use of
  additional protocols such as application-level signaling (e.g,
  Session Initiation Protocol (SIP)) or mobility management signaling
  (e.g., Mobile IP) may help to trigger NSLP and NTLP signaling from
  the CN side in the downstream direction though.

  7.  Authorization issues

  The procedure of State Update may be initiated by the MN, the CN, or
  even nodes within the network (e.g., crossover node, Mobility Anchor
  Point (MAP) in Hierarchical Mobile IP (HMIP)).  This State Update on
  behalf of the MN raises authorization issues about the entity that is
  allowed to make these state modifications.

  8.  Dead peer and invalid NSIS Receiver (NR) problem

  When the MN is on the path of a signaling exchange, after handover
  the old Access Router (AR) cannot forward NSLP messages towards the
  MN.  In this case, the old AR's mobility or routing protocol (or even
  the NSLP) may trigger an error message to indicate that the last node
  fails or is truncated.  This error message is forwarded and may
  mistakenly cause the removal of the state on the existing common
  path, if the state is not updated before the error message is
  propagated through the signaling peers.  This is called the 'invalid
  NSIS Receiver (NR) problem'.

  9.  IP-in-IP encapsulation

  Mobility protocols may use IP-in-IP encapsulation on the segment of
  the end-to-end path for routing traffic from the CN to the MN, and
  vice versa.  Encapsulation harms any attempt to identify and filter
  data traffic belonging to, for example, a QoS reservation.  Moreover,
  encapsulation of data traffic may lead to changes in the routing
  paths since the source and the destination IP addresses of the inner
  header differ from those of the outer header.  Mobile IP uses
  tunneling mechanisms to forward data packets among end hosts.
  Traversing through the tunnel, NSIS signaling messages are
  transparent on the tunneling path due to the change of flow's
  addresses.  In case of interworking with Mobile IP tunneling, CRNs



Sanda, et al.                 Informational                     [Page 7]

RFC 5980               NSIS Signaling in Mobility             March 2011


  can be discovered on the tunneling path.  It enables NSIS protocols
  to perform the State Update procedure over the IP tunnel.  In this
  case, GIST needs to cope with the change of Message Routing
  Information (MRI) for the CRN discovery on the tunnel.  Also, NSLP
  signaling needs to determine when to remove the tunneling segment on
  the signaling path and/or how to tear down the old state via
  interworking with the IP tunneling operation.  Furthermore, tunneling
  adds additional IP header as overhead that must be taken into account
  by QoS NSLP, for example, when resources must be reserved
  accordingly.  So an NSLP must usually be aware whether tunneling or
  route optimization is actually used for a flow [RFC5979].

4.  Basic Operations for Mobility Support

  This section presents the basic operations of the NSIS protocol suite
  after mobility-related route changes.  Details of the operation of
  Mobile IP with respect to NSIS protocols are discussed in the
  subsequent section.

4.1.  General Functionality

  The NSIS protocol suite decouples state and flow identification.  A
  state is stored and referred by the Session ID (SID).  Flows
  associated with a given NSLP state are defined by the Message Routing
  Information (MRI).  GIST notices when a routing path associated with
  a SID changes, and provides a notification to the NSLP.  It is then
  up to the NSLP to update the state information in the network.  Thus,
  the effect is an update to the states, not a full new request.  This
  decoupling also effectively solves a typical problem with certain
  signaling protocols, where protocol state is identified by flow
  endpoints, and when flow endpoint addresses change, the whole session
  state becomes invalid.

  A further benefit of the decoupling is that if the MRI, i.e., the IP
  addresses associated with the data flow, remain the same after
  movement, the NSIS signaling will repair only the affected path of
  the end-to-end session.  Thus, updating the session information in
  the network will be localized, and no end-to-end signaling will be
  needed.  If the MRI changes, end-to-end signaling usually cannot be
  avoided since new information for proper data flow identification
  must be provided all the way between the data sender and receiver,
  e.g., in order to update filters, QoS profiles, or other flow-related
  session data.

  GIST provides NSLPs with an identifier of the next signaling peer,
  the Source Identification Information (SII) handle.  When this SII-
  Handle changes, the NSLP knows a routing change has happened.  Yet,




Sanda, et al.                 Informational                     [Page 8]

RFC 5980               NSIS Signaling in Mobility             March 2011


  the NSLP can also figure out whether it is also the crossover node
  for the session.  Thus, CRN discovery is always done at the NSLP
  layer because only NSLPs have a notion of end-to-end signaling.

  When a path changes, the session information on the old path needs to
  be removed.  Normally, the information is released when the session
  timer is expired after a routing change.  But the NSLP running on the
  end-host or the CRN, depending on the direction of the session, may
  use the SII-Handle (provided by GIST) to explicitly remove states on
  the old path; new session information is simultaneously set up on the
  new path.  Both current NSLPs use sequence numbers to identify the
  order of messages, and this information can be used by the protocols
  to recover from a routing change.

  Since NSIS operates on a hop-by-hop basis, any peer can perform state
  updates.  This is possible because a chain of trust is expected
  between NSIS nodes.  If this weren't the case (e.g., true resource
  reservations are not possible), one misbehaving or compromised node
  would effectively break everything.  Thus, currently the NSIS
  protocols do not limit the roles of each NSIS signaling peer on a
  path, and any node can make updates.  Yet, some updates are reflected
  back to the signaling endpoints, and they can decide whether or not
  the signaling actually succeeded.

  If the signaling packets are encapsulated in a tunnel, it is
  necessary to perform a separate signaling exchange for the tunneled
  region.  Furthermore, a binding is needed to tie the end-to-end and
  tunneled session together.

  In some cases, the NSLP must be aware whether tunneling is used,
  since additional tunneling overhead must be taken into account, e.g.,
  for resource reservations, etc.

4.2.  QoS NSLP

  Figure 1 illustrates an example of QoS NSLP signaling in a Mobile
  IPv6 route optimization case, for a data flow from the MN to the CN,
  where sender-initiated reservation is used.  Once a handover event is
  detected in the MN, the MN needs to acquire the new Care-of Address
  (CoA) and update the path coupled MRI accordingly.  Then, the MN
  issues towards the CN a QoS NSLP RESERVE message that carries the
  unique session ID and other identification information for the
  session, as well as the reservation requirements (steps (1)-(4) in
  Figure 1).  Upon receipt of the RESERVE message, the QoS NSLP nodes
  (which will be discovered by the underlying NTLP) establish the
  corresponding QoS NSLP state, and forward the message towards the CN.
  When there is already an existing NSLP state with the same session
  ID, the state will be updated.  If all the QoS NSLP nodes along the



Sanda, et al.                 Informational                     [Page 9]

RFC 5980               NSIS Signaling in Mobility             March 2011


  path support the required QoS, the CN in turn responds with a
  RESPONSE message to confirm the reservation (steps (5)-(6) in
  Figure 1).

  In a bidirectional tunneling case, the only difference is that the
  RESERVE message should be sent to the home agent (HA) instead of the
  CN, and the node that responds with a RESPONSE should be the HA
  instead of the CN, too.  More details are given in Section 5.

  Therefore, for the basic operation there is no fundamental difference
  among different operation modes of Mobile IP, and the main issue of
  mobility support in NSIS is to trigger NSLP signaling appropriately
  when a handover event is detected.  Also, the destination of the NSLP
  signaling shall follow the Mobile IP data path using path-coupled
  signaling.

  In this process, the obsoleted state in the old path is not
  explicitly released because the state can be released by timer
  expiration.  To speed up the process, it may be possible to localize
  the signaling.  When the RESERVE message reaches a node, depicted as
  CRN in this document (step (2) in Figure 1), where a state is
  determined for the first time to reflect the same session, the node
  may issue a NOTIFY message towards the MN's old CoA (step (9) in
  Figure 1).  The QoS NSIS Entity (QNE) adjacent to the MN's old
  position stops the NOTIFY message (step (10) in Figure 1) and sends a
  RESERVE message (with Teardown bit set) towards the CN to release the
  obsoleted state (step (11) in Figure 1).  This RESERVE with tear
  message is stopped by the CRN (step (12) in Figure 1).  The
  Reservation Sequence Number (RSN) is used in the messages to
  distinguish the order of the signaling.  More details are given in
  Section 4.4




















Sanda, et al.                 Informational                    [Page 10]

RFC 5980               NSIS Signaling in Mobility             March 2011


     MN   QNE1 MN       QNE2       QNE3     QNE4     CN
   (CoA1)  | (CoA2)      |        (CRN)      |        |
     |     |    |        |          |        |        |
     |     |    |RESERVE |          |        |        |
     |     |    |------->|          |        |        |
     |     |    | (1)    |RESERVE   |        |        |
     |     |    |        |--------->|        |        |
     |     |    |        | (2)      |RESERVE |        |
     |     |    |        |          |------->|        |
     |     |    |        |          |  (3)   |RESERVE |
     |     |    |        |          |        |------->|
     |     |    |        |    NOTIFY|        |  (4)   |
     |     |    |        |<---------|        |        |
     |     |    |  NOTIFY|    (9)   |        |        |
     |     |<------------|          |        |        |
     |     |    |  (10)  |          |        |        |
     |     |RESERVE(T)   |          |        |        |
     |     |------------>|          |        |        |
     |     |    |  (11)  |RESERVE(T)|        |        |
     |     |    |        |--------->|        |        |
     |     |    |        |   (12)   |        |RESPONSE|
     |     |    |        |          |        |<-------|
     |     |    |        |          |RESPONSE|   (5)  |
     |     |    |        |  RESPONSE|<-------|        |
     |     |    |RESPONSE|<---------|  (6)   |        |
     |     |    |<------ |    (7)   |        |        |
     |     |    |  (8)   |          |        |        |
     |     |    |        |          |        |        |

       Figure 1: Example Basic Handover Signaling in the QoS NSLP

  Further cases to consider are:

     * receiver-initiated reservation if MN is sender

     * sender-initiated reservation if MN is receiver

     * receiver-initiated reservation if MN is receiver

  In the first case, the MN can easily initiate a new QUERY along the
  new path after movement, thereby installing signaling state and
  eventually eliciting a new RESERVE from the CN in upstream direction.
  Similarly, the second and third cases require the CN to initiate a
  RESERVE or QUERY message respectively.  The difficulty in both cases
  is, however, to let the CN know that the MN has moved.  Because the
  MN is the receiver, it cannot simply use an NSLP message to do so,
  because upstream signaling is not possible in this case (cf. Section
  3, Upstream Signaling).



Sanda, et al.                 Informational                    [Page 11]

RFC 5980               NSIS Signaling in Mobility             March 2011


4.3.  NATFW NSLP

  Figure 2 illustrates an example of NATFW NSLP signaling in a Mobile
  IPv6 route optimization case, for a data flow from the MN to the CN.
  The difference to the QoS NSLP is that for the NATFW NSLP only the
  NSIS initiator (NI) can update the signaling session, in any case.
  Once a handover event is detected in the MN, the MN must get to know
  the new Care-of Address and update the path coupled MRI accordingly.
  Then the MN issues a NATFW NSLP CREATE message towards the CN, that
  carries the unique session ID and other identification information
  for the session (steps (1)-(4) in Figure 2).  Upon receipt of the
  CREATE message, the NATFW NSLP nodes (which will be discovered by the
  underlying NTLP) establish the corresponding NATFW NSLP state, and
  forward the message towards the CN.  When there is already an
  existing NSLP state with the same session ID, the state will be
  updated.  If all the NATFW NSLP nodes along the path accept the
  required NAT/firewall configuration, the CN in turn responds with a
  RESPONSE message, to confirm the configuration (steps (5)-(8) in
  Figure 2).

  In a bidirectional tunneling case, the only difference is that the
  CREATE message should be sent to the HA instead of the CN, and the
  node that responds with a RESPONSE should be the HA instead of the CN
  too.

  Therefore, for the basic operation there is no fundamental difference
  among different operation modes of Mobile IP, and the main issue of
  mobility support in NSIS is to trigger NSLP signaling appropriately
  when a handover event is detected, and the destination of the NSLP
  signaling shall follow the Mobile IP data path as being path-coupled
  signaling.

  In this process, the obsoleted state in the old path is not
  explicitly released because the state can be released by timer
  expiration.  To speed up the process, when the CREATE message reaches
  a node, depicted as CRN in this document (step (2) in Figure 2),
  where a state is determined for the first time to reflect the same
  session, the node may issue a NOTIFY message towards the MN's old CoA
  (steps (9)-(10) in Figure 2).  When the NI notices this, it sends a
  CREATE message towards the CN to release the obsoleted state (steps
  (11)-(12)) in Figure 2).










Sanda, et al.                 Informational                    [Page 12]

RFC 5980               NSIS Signaling in Mobility             March 2011


        MN    NI MN         NF1       NF2       NF3     CN
      (CoA1)  | (CoA2)      |        (CRN)      |        |
        |     |    |        |          |        |        |
        |     |    |        |          |        |        |
        |     |    |CREATE  |          |        |        |
        |     |    |------->|          |        |        |
        |     |    | (1)    |CREATE    |        |        |
        |     |    |        |--------->|        |        |
        |     |    |        | (2)      |CREATE  |        |
        |     |    |        |          |------->|        |
        |     |    |        |          |  (3)   |CREATE  |
        |     |    |        |          |        |------->|
        |     |    |        |    NOTIFY|        |  (4)   |
        |     |    |        |<---------|        |        |
        |     |    |  NOTIFY|    (9)   |        |        |
        |     |<------------|          |        |        |
        |     |    |  (10)  |          |        |        |
        |     |CREATE(CoA2) |          |        |        |
        |     |------------>|          |        |        |
        |     |    |  (11)  |CREATE(CoA2)       |        |
        |     |    |        |--------->|        |        |
        |     |    |        |   (12)   |        |RESPONSE|
        |     |    |        |          |        |<-------|
        |     |    |        |          |RESPONSE|   (5)  |
        |     |    |        |  RESPONSE|<-------|        |
        |     |    |RESPONSE|<---------|  (6)   |        |
        |     |    |<------ |    (7)   |        |        |
        |     |    |  (8)   |          |        |        |
        |     |    |        |          |        |        |
        |     |    |        |          |        |        |

                Figure 2: Example of NATFW NSLP Operation

4.4.  Localized Signaling in Mobile Scenarios

  This section describes detailed CRN operations.  As described in
  previous sections, CRN operations are informational.

  As shown in Figure 3, mobility generally causes the signaling path to
  either converge or diverge depending on the direction of each
  signaling flow.










Sanda, et al.                 Informational                    [Page 13]

RFC 5980               NSIS Signaling in Mobility             March 2011


                                Old path
                +--+        +-----+
      original  |MN|<------ |OAR  | ---------^
      address   |  |        |NSLP1|          ^
                +--+        +-----+          ^   common path
                 |             C            +-----+   +-----+    +--+
                 |                          |     |<--|NSLP1|----|CN|
                 |                          |NSLP2|   |NSLP2|    |  |
                 v                New path  +-----+   +-----+    +--+
                +--+        +-----+          V B        A
       New CoA  |MN|<------ |NAR  |----------V      >>>>>>>>>>>>
                |  |        |NSLP1|                  ^
                +--+        +-----+                  ^
                               D                     ^
         <=====(upstream signaling followed by data flows) =====

     (a) The topology for upstream NSIS signaling flow due to
        mobility (in the case that the MN is a data sender)


                                  Old path
                +--+        +-----+
      original  |MN|------> |OAR  | ----------V
                |  |        |NSLP1|
      address   +--+        +-----+           V   common path
                 |             K            +-----+   +-----+    +--+
                 |                          |     |---|NSLP1|--->|CN|
                 |                          |NSLP2|   |NSLP2|    |  |
                 v                New path  +-----+   +-----+    +--+
                +--+        +-----+           ^ M        N
       New CoA  |MN|------> |NAR  |-----------^      >>>>>>>>>>>>
                |  |        |NSLP1|                  ^
                +--+        +-----+                  ^
                               L                     ^
       ====(downstream signaling followed by data flows) ======>

     (b) The topology for downstream NSIS signaling flow due to
        mobility (in the case that the MN is a data sender)

     Note:  OAR - old access router
            NAR - new access router

      Figure 3: The Topology for NSIS Signaling Caused by Mobility

  These topological changes due to mobility cause the NSIS state
  established in the old path to be useless.  Such state may be removed
  as soon as possible.  In addition, NSIS state needs to be established
  along the new path and be updated along the common path.  The re-



Sanda, et al.                 Informational                    [Page 14]

RFC 5980               NSIS Signaling in Mobility             March 2011


  establishment of NSIS signaling may be localized when route changes
  (including mobility) occur; this is to minimize the impact on the
  service and to avoid unnecessary signaling overhead.  This localized
  signaling procedure is referred to as State Update (refer to the
  terminology section).  In mobile environments, for example, the NSLP/
  NTLP needs to limit the scope of signaling information to only the
  affected portion of the signaling path because the signaling path in
  the wireless access network usually changes only partially.

4.4.1.  CRN Discovery

  The CRN is discovered at the NSLP layer.  In case of QoS NSLP, when a
  RESERVE message with an existing SESSION_ID is received and its SII
  and MRI are changed, the QNE knows its upstream or downstream peer
  has changed by the handover, for sender-oriented and receiver-
  oriented reservations, respectively.  Also, the QNE realizes it is
  implicitly the CRN.

4.4.2.  Localized State Update

  In the downstream State Update, the MN initiates the RESERVE with a
  new RSN for state setup toward a CN, and also the implicit DCRN
  discovery is performed by the procedure of signaling as described in
  Section 4.4.1.  The MRI from the DCRN to the CN (i.e., common path)
  is updated by the RESERVE message.  The DCRN may also send a NOTIFY
  with "Route Change" (0x02) to the previous upstream peer.  The NOTIFY
  is forwarded hop-by-hop and reaches the edge QNE (i.e., QNE1 in
  Figure 1).  After the QNE is aware that the MN as QNI has disappeared
  (how this can be noticed is out of scope for NSIS, yet, e.g., GIST
  will eventually know this through undelivered messages), the QNE
  sends a tearing RESERVE towards downstream.  When the tearing RESERVE
  reaches the DCRN, it stops forwarding and drops it.  Note that,
  however, it is not necessary for GIST state to be explicitly removed
  because of the inexpensiveness of the state maintenance at the GIST
  layer [RFC5971].  Note that the sender-initiated approach leads to
  faster setup than the receiver-initiated approach as in RSVP
  [RFC2205].

  In the scenario of an upstream State Update, there are two possible
  methods for state update.  One is the CN (or the HA, Gateway Foreign
  Agent (GFA), or MAP) sends the refreshing RESERVE message toward the
  MN to perform State Update upon receiving the trigger (e.g., Mobile
  IP (MIP) binding update).  The UCRN is discovered implicitly by the
  CN-initiated signaling along the common path as described in
  Section 4.4.1.  When the refreshing RESERVE reaches to the adjacent
  QNE of UCRN, the QNE sends back a RESPONSE saying "Reduced refreshes
  not supported; full QSPEC required" (0x03).  Then, the UCRN sends the
  RESERVE with full QSPEC towards the MN to set up a new reservation.



Sanda, et al.                 Informational                    [Page 15]

RFC 5980               NSIS Signaling in Mobility             March 2011


  The UCRN may also send a tearing RESERVE to the previous downstream
  peer.  The tearing RESERVE is forwarded hop-by-hop and reaches the
  edge QNE.  After the QNE is aware that the MN as QNI has disappeared,
  the QNE drops the tearing peer.  Another method is: if a GIST hop is
  already established on the new path (e.g., by QUERY from the CN, or
  the HA, GFA, or MAP) when MN gets a hint from GIST that routing has
  changed, the MN sends a NOTIFY upstream saying "Route Change" (0x02).
  When the NOTIFY hits the UCRN, the UCRN is aware that the NOTIFY is
  for a known session and comes from a new SII-Handle.  Then, the UCRN
  sends towards the MN a RESERVE with a new RSN and an RII.  By
  receiving the RESERVE, the MN replies with a RESPONSE.  The UCRN may
  also send tearing RESERVE to previous downstream peer.  The tearing
  RESERVE is forwarded hop-by-hop and reaches to the edge QNE.  After
  the QNE is aware that the MN as QNI has disappeared, the QNE drops
  the tearing peer.

  The State Update on the common path to reflect the changed MRI brings
  issues on the end-to-end signaling addressed in Section 3.  Although
  the State Update over the common path does not give rise to re-
  processing of AAA and admission control, it may lead to increased
  signaling overhead and latency.

  One of the goals of the State Update is to avoid the double
  reservation on the common path as described in Section 3.  The double
  reservation problem on the common path can be solved by establishing
  a signaling association using a unique SID and by updating the packet
  classifier / MRI.  In this case, even though the flows on the common
  path have different MRIs, they refer to the same NSLP state.

5.  Interaction with Mobile IPv4/v6

  Mobility management solutions like Mobile IP try to hide mobility
  effects from applications by providing stable addresses and avoiding
  address changes.  On the other hand, the MRI [RFC5971] contains flow
  addresses and will change if the CoA changes.  This makes an impact
  on some NSLPs such as QoS NSLP and NAT/FW NSLP.

  QoS NSLP must be mobility-aware because it needs to care about the
  resources on the actual current path, and sending a new RESERVE or
  QUERY for the new path.  Applications on top of Mobile IP communicate
  along logical flows that use home addresses, whereas QoS NSLP has to
  be aware of the actual flow path, e.g., whether the flow is currently
  tunneled or route-optimized, etc.  QoS NSLP may have to obtain
  current link properties; especially there may be additional overhead
  due to mobility header extensions that must be taken into account in
  QSPEC (e.g., the m parameter in the traffic model (TMOD); see
  [RFC5975]).  Therefore, NSLPs must interact with mobility management
  implementations in order to request information about the current



Sanda, et al.                 Informational                    [Page 16]

RFC 5980               NSIS Signaling in Mobility             March 2011


  flow address (CoAs), source addresses, tunneling, or overhead.
  Furthermore, an implementation must select proper interface addresses
  in the natural language interface (NLI) in order to ensure that a
  corresponding Messaging Association is established along the same
  path as the flow in the MRI.  Moreover, the home agent needs to
  perform additional actions (e.g., reservations) for the tunnel.  If
  the home agent lacks support of a mobility-aware QoS NSLP, a missing
  tunnel reservation is usually the result.  Practical problems may
  occur in situations where a home agent needs to send a GIST query
  (with S-flag=1) towards the MN's home address and the query is not
  tunneled due to route optimization between HA and MN: the query will
  be wrongly intercepted by QNEs within the tunnel.

  NAT/FW box needs to be configured before MIP signaling, hence NAT/FW
  signaling will have to be performed to allow Return Routability Test
  (RRT) and Binding Update (BU) / Binding Acknowledgement (BA) messages
  to traverse the NAT/FWs in the path.  After RRT and BU/BA messages
  are completed, more NAT/FW signaling needs to be performed for
  passing the data.  Optimized version can include a combined NAT/FW
  message to cover both RRT and BU/BA messages pattern.  However, this
  may require NAT/FW NSLP to do a slight update to support carrying
  multiple NAT/FW rules in one signaling round trip.

  This section analyzes NSIS operation with the tunneled route case
  especially for QoS NSLP.

5.1.  Interaction with Mobile IPv4

  In Mobile IPv4 [RFC5944], the data flows are forwarded based on
  triangular routing, and an MN retains a new CoA from the Foreign
  Agent (FA) (or an external method such as DHCP) in the visited access
  network.  When the MN acts as a data sender, the data and signaling
  flows sent from the MN are directly transferred to the CN, not
  necessarily through the HA or indirectly through the HA using the
  reverse tunneling.  On the other hand, when the MN acts as a data
  receiver, the data and signaling flows sent from the CN are routed
  through the IP tunneling between the HA and the FA (or the HA and the
  MN in the case of the co-located CoA).  With this approach, routing
  is dependent on the HA, and therefore the NSIS protocols interact
  with the IP tunneling procedure of Mobile IP for signaling.

  Figure 4 (a) to (e) show how the NSIS signaling flows depend on the
  direction of the data flows and the routing methods.








Sanda, et al.                 Informational                    [Page 17]

RFC 5980               NSIS Signaling in Mobility             March 2011


           MN        FA (or FL)                            CN
           |             |                                  |
           | IPv4-based Standard IP routing                 |
           |------------ |--------------------------------->|
           |             |                                  |

          (a) MIPv4: MN-->CN, no reverse tunnel

           MN              FA               HA             CN
           | IPv4 (normal)  |                |              |
           |--------------->| IPv4(tunnel)   |              |
           |                |--------------->| IPv4 (normal)|
           |                |                |------------->|

          (b) MIPv4: MN-->CN, the reverse tunnel with FA CoA

           MN             (FL)               HA            CN
           |               |                |               |
           |        IPv4(tunnel)            |               |
           |------------------------------->|IPv4 (normal)  |
           |               |                |-------------->|

          (c) MIPv4: MN-->CN, the reverse tunnel with co-located CoA

           CN              HA                FA             MN
           |IPv4 (normal)  |                 |              |
           |-------------->|                 |              |
           |               |  MIPv4 (tunnel) |              |
           |               |---------------->| IPv4 (normal)|
           |               |                 |------------->|

          (d) MIPv4: CN-->MN, Foreign agent CoA

           CN              HA                (FL)           MN
           |IPv4(normal )  |                 |              |
           |-------------->|                 |              |
           |               | MIPv4 (tunnel)  |              |
           |               |------------------------------->|
           |               |                 |              |

          (e) MIPv4: CN-->MN with co-located CoA

  Figure 4: NSIS Signaling Flows under Different Mobile IPv4 Scenarios

  When an MN (as a signaling sender) arrives at a new FA and the
  corresponding binding process is completed (Figure 4 (a), (b), and
  (c)), the MN performs the CRN discovery (DCRN) and the State Update
  toward the CN (as described in Section 4) to establish the NSIS state



Sanda, et al.                 Informational                    [Page 18]

RFC 5980               NSIS Signaling in Mobility             March 2011


  along the new path between the MN and the CN.  In case the reverse
  tunnel is not used (Figure 4 (a)), a new NSIS state is established on
  the direct path from the MN to the CN.  If the reverse tunnel and FA
  CoA are used (Figure 4 (b)), a new NSIS state is established along a
  tunneling path from the FA to the HA separately from the end-to-end
  path.  CRN discovery and State Update in tunneling path is also
  separately performed if necessary.  If the reverse tunnel and co-
  located CoA are used (Figure 4 (c)), the NSIS signaling for the DCRN
  discovery and for the State Update is the same as the case of using
  the FA CoA above, except for the use of the reverse tunneling path
  from the MN to the HA.  That is, in this case, one of the tunnel
  endpoints is the MN, not the FA.

  When an MN (as a signaling receiver) arrives at a new FA and the
  corresponding binding process is completed (Figure 4 (d) and (e)),
  the MN sends a NOTIFY message to the signaling sender, i.e., the CN.
  In case the FA CoA is used (Figure 4 (d)), the CN initiates an NSIS
  signaling to update an existing state between the CN and the HA, and
  afterwards the NSIS signaling messages are forwarded to the FA and
  reach the MN.  A new NSIS state is established along the tunneling
  path from the HA to the FA separately from end-to-end path.  During
  this operation, a UCRN is discovered on the tunneling path, and a new
  MRI for the State Update on the tunnel may need to be created.  CRN
  discovery and State Update in the tunneling path is also separately
  performed if necessary.  In case co-located CoA is used (Figure 4
  (d)), the NSIS signaling for the UCRN discovery and for the State
  Update is also the same as the case of using the FA CoA, above except
  for the endpoint of the tunneling path from the HA to the MN.

  Note that Mobile IPv4 optionally supports route optimization.  In the
  case route optimization is supported, the signaling operation will be
  the same as Mobile IPv6 route optimization.

5.2.  Interaction with Mobile IPv6

  Unlike Mobile IPv4, with Mobile IPv6 [RFC3775], the FA is not
  required on the data path.  If an MN moves to a visited network, a
  CoA at the network is allocated like co-located CoA in Mobile IPv4.
  In addition, the route optimization process between the MN and CN can
  be used to avoid the triangular routing in the Mobile IPv4 scenarios.

  If the route optimization is not used, data flow routing and NSIS
  signaling procedures (including the CRN discovery and the State
  Update) will be similar to the case of using Mobile IPv4 with the co-
  located CoA.  However, if route optimization is used, signaling
  messages are sent directly from the MN to the CN, or from the CN to
  the MN.  Therefore, route change procedures described in Section 4
  are applicable to this case.



Sanda, et al.                 Informational                    [Page 19]

RFC 5980               NSIS Signaling in Mobility             March 2011


5.3.  Interaction with Mobile IP Tunneling

  In this section, we assume that the MN acts as an NI and the CN acts
  as an NR in interworking between Mobile IP and NSIS signaling.

  Scenarios for interaction with Mobile IP tunneling vary depending on:

  -  Whether a tunneling entry point (Tentry) is an MN or other node.
     For a Mobile IPv4 co-located CoA or Mobile IPv6 CoA, Tentry is an
     MN.  For a Mobile IPv4 FA CoA, Tentry is an FA.  In both cases, an
     HA is the tunneling exit point (Texit).

  -  Whether the mode of QoS NSLP signaling is sender-initiated or
     receiver-initiated.

  -  Whether the operation mode over the tunnel is with preconfigured
     QoS sessions or with dynamically created QoS sessions as described
     in [RFC5979].

  The following subsections describe sender-initiated and receiver-
  initiated reservations with Mobile IP tunneling, as well as CRN
  discovery and State Updates with Mobile IP tunneling.

5.3.1.  Sender-Initiated Reservation with Mobile IP Tunnel

  The following scenario assumes that an FA is a Tentry.  However, the
  procedure is the same when an MN is a Tentry if the MN and the FA are
  considered the same node.

  -  When an MN moves into a new network attachment point, QoS NSLP in
     the MN initiates the RESERVE (end-to-end) message to start the
     State Update procedure.  The GIST below the QoS NSLP adds the GIST
     header and then sends the encapsulated RESERVE message to peer
     GIST node with the corresponding QoS NSLP.  In this case, the peer
     GIST node is an FA if the FA is an NSIS-aware node.  The FA is one
     of the endpoints of Mobile IP tunneling: Tentry.  For proper NSIS
     tunneling operation, a Mobile IP endpoint is required to be NSIS
     tunneling aware.  In case of interaction with tunnel signaling
     originated from the FA, there can be two scenarios depending on
     whether or not the tunnel already has preconfigured QoS sessions.
     In the former case, the FA map end-to-end QoS signaling requests
     directly to existing tunnel sessions.  In the latter case, the FA
     dynamically initiates and maintains tunnel QoS sessions that are
     then associated with the corresponding end-to-end QoS sessions.
     [RFC5979].






Sanda, et al.                 Informational                    [Page 20]

RFC 5980               NSIS Signaling in Mobility             March 2011


  -  Figure 5 shows the typical NSIS operation over tunnels with
     preconfigured QoS sessions.  Both the FA and the HA are configured
     with information about the Flow ID of the tunnel QoS session.
     Upon receiving a RESERVE message from the MN, the FA checks tunnel
     QoS configuration, and determines whether and how this end-to-end
     session can be mapped to a preconfigured tunnel session.  The FA
     then tunnels the RESERVE message to the HA.  The CN replies with a
     RESPONSE message which arrives at the HA, the FA, and the MN.

  -  Figure 6 shows the typical NSIS operation over tunnels with
     dynamically created QoS sessions.  When the FA receives an end-to-
     end RESERVE message from the MN, the FA chooses the tunnel Flow
     ID, creates the tunnel session, and associates the end-to-end
     session with the tunnel session.  The FA then sends a tunnel
     RESERVE' message (matching the request of the end-to-end session)
     towards the HA to reserve tunnel resources.  The tunnel RESERVE'
     message is processed hop-by-hop inside the tunnel for the flow
     identified by the chosen tunnel Flow ID, while the end-to-end
     RESERVE message passes through the tunnel intermediate nodes
     (Tmid).  When these two messages arrive at the HA, the HA creates
     the reservation state for the tunnel session, and sends a tunnel
     RESPONSE' message to the FA.  At the same time, the HA updates the
     end-to-end RESERVE message based on the result of the tunnel
     session reservation and forwards the end-to-end RESERVE message
     along the path towards the CN.  When the CN receives the end-to-
     end RESERVE message, it sends an end-to-end RESPONSE message back
     to the MN.

  More detailed operations are specified in [RFC5979].






















Sanda, et al.                 Informational                    [Page 21]

RFC 5980               NSIS Signaling in Mobility             March 2011


   MN (Sender)   FA (Tentry)       Tmid       HA (Texit)  CN (Receiver)

        |              |             |              |              |
        |   RESERVE    |             |              |              |
        +------------->|             |              |              |
        |              |          RESERVE           |              |
        |              +--------------------------->|              |
        |              |             |              |   RESERVE    |
        |              |             |              +------------->|
        |              |             |              |   RESPONSE   |
        |              |             |              |<-------------+
        |              |          RESPONSE          |              |
        |              |<---------------------------+              |
        |   RESPONSE   |             |              |              |
        |<-------------+             |              |              |
        |              |             |              |              |

   Figure 5: Sender-Initiated QoS NSLP over Tunnel with Preconfigured
                              QoS Sessions

   MN (Sender)   FA (Tentry)       Tmid       HA (Texit)  CN (Receiver)

       |              |              |              |              |
       | RESERVE      |              |              |              |
       +------------->|              |              |              |
       |              | RESERVE'     |              |              |
       |              +=============>|              |              |
       |              |              | RESERVE'     |              |
       |              |              +=============>|              |
       |              |          RESERVE            |              |
       |              +---------------------------->|              |
       |              |              | RESPONSE'    |              |
       |              |              |<=============+              |
       |              | RESPONSE'    |              |              |
       |              |<=============+              |              |
       |              |              |              |  RESERVE     |
       |              |              |              +------------->|
       |              |              |              | RESPONSE     |
       |              |              |              |<-------------+
       |              |         RESPONSE            |              |
       |              |<----------------------------+              |
       | RESPONSE     |              |              |              |
       |<-------------+              |              |              |
       |              |              |              |              |

    Figure 6: Sender-Initiated QoS NSLP over Tunnel with Dynamically
                          Created QoS Sessions




Sanda, et al.                 Informational                    [Page 22]

RFC 5980               NSIS Signaling in Mobility             March 2011


5.3.2.  Receiver-Initiated Reservation with Mobile IP Tunnel

  Figures 7 and 8 show examples of receiver-initiated operation over
  Mobile IP tunnel with preconfigured and dynamically created QoS
  sessions, respectively.  The Basic Operation is the same as the
  sender-initiated case.

   MN (Sender)   FA (Tentry)       Tmid       HA (Texit)  CN (Receiver)

        |              |             |              |              |
        |    QUERY     |             |              |              |
        +------------->|             |              |              |
        |              |           QUERY            |              |
        |              +--------------------------->|              |
        |              |             |              |    QUERY     |
        |              |             |              +------------->|
        |              |             |              |   RESERVE    |
        |              |             |              |<-------------+
        |              |          RESERVE           |              |
        |              |<---------------------------+              |
        |   RESERVE    |             |              |              |
        |<-------------+             |              |              |
        |   RESPONSE   |             |              |              |
        +------------->|             |              |              |
        |              |          RESPONSE          |              |
        |              +--------------------------->|              |
        |              |             |              |   RESPONSE   |
        |              |             |              +------------->|
        |              |             |              |              |

  Figure 7: Receiver-Initiated QoS NSLP over Tunnel with Preconfigured
                              QoS Sessions



















Sanda, et al.                 Informational                    [Page 23]

RFC 5980               NSIS Signaling in Mobility             March 2011


   MN (Sender)   FA (Tentry)       Tmid       HA (Texit)  CN (Receiver)

       |   QUERY      |              |              |              |
       +------------->|              |              |              |
       |              |  QUERY'      |              |              |
       |              +=============>|              |              |
       |              |              |  QUERY'      |              |
       |              |              +=============>|              |
       |              |              | RESPONSE'    |              |
       |              |              |<=============+              |
       |              | RESPONSE'    |              |              |
       |              |<=============+              |              |
       |              |           QUERY             |              |
       |              +---------------------------->|              |
       |              |              |              |   QUERY      |
       |              |              |              +------------->|
       |              |              |              |  RESERVE     |
       |              |              |              |<-------------+
       |              |              | RESERVE'     |              |
       |              |              |<=============+              |
       |              | RESERVE'     |              |              |
       |              |<=============+              |              |
       |              |          RESERVE            |              |
       |              |<----------------------------+              |
       |              | RESPONSE'    |              |              |
       |              +=============>|              |              |
       |              |              | RESPONSE'    |              |
       |              |              +=============>|              |
       | RESERVE      |              |              |              |
       |<-------------+              |              |              |
       | RESPONSE     |              |              |              |
       +------------->|              |              |              |
       |              |         RESPONSE            |              |
       |              +---------------------------->|              |
       |              |              |              | RESPONSE     |
       |              |              |              +------------->|
       |              |              |              |              |

   Figure 8: Receiver-Initiated QoS NSLP over Tunnel with Dynamically
                           Created QoS Session

5.3.3.  CRN Discovery and State Update with Mobile IP Tunneling

  If a tunnel is in the mode of using dynamically created QoS sessions,
  the Mobile IP tunneling scenario can include two types of CRNs, i.e.,
  a CRN on an end-to-end path and a CRN on a tunneling path.  If a





Sanda, et al.                 Informational                    [Page 24]

RFC 5980               NSIS Signaling in Mobility             March 2011


  tunnel is in the mode of using preconfigured QoS sessions, it can
  only have CRNs on end-to-end paths.  CRN discovery and State Update
  for these two paths are operated independently.

  CRN discovery for an end-to-end path is initiated by the MN by
  sending a RESERVE (sender-initiated case) or QUERY (receiver-
  initiated case) message.  As the MN uses HoA as the source address
  even after handover, a CRN is found by normal route change process
  (i.e., the same SID and Flow ID, but a different SII-Handle).  If an
  HA is QoS NSLP aware, the HA is found as the CRN.  The CRN initiates
  the tearing-down process on the old path as described in [RFC5974].

  CRN discovery for the tunneling path is initiated by Tentry by
  sending a RESERVE' (sender-initiated case) or QUERY' (receiver-
  initiated case) message.  The route change procedures described in
  Section 4 are applicable to this case.

  The end-to-end state inside the tunnel should not be torn down until
  all states inside the tunnel have been torn from the implementation
  perspective.  However, detailed discussions are out of scope for this
  document.

6.  Further Studies

  All sections above dealt with basic issues on NSIS mobility support.
  This section introduces potential issues and possible approaches for
  complicated scenarios in the mobile environment, i.e., peer failure
  scenarios, multihomed scenarios, and interworking with other mobility
  protocols, which may need to be resolved in the future.  Topics in
  this section are out of scope for this document.  Detailed operations
  in this section are just for future reference.

6.1.  NSIS Operation in the Multihomed Mobile Environment

  In multihomed mobile environments, multiple interfaces and addresses
  (i.e., CoAs and HoAs) are available, so two major issues can be
  considered.  One is how to select or acquire the most appropriate
  interface(s) and/or address(es) from the end-to-end QoS point of
  view.  The other is, when multiple paths are simultaneously used for
  load-balancing purposes, how to differentiate and manage two types of
  CRNs, i.e., the CRN between two ongoing paths (LB-CRN: Load Balancing
  CRN) and the CRN between the old and new paths caused by the MN's
  handover (HO-CRN: Handover CRN).  This section introduces possible
  approaches for these issues.







Sanda, et al.                 Informational                    [Page 25]

RFC 5980               NSIS Signaling in Mobility             March 2011


6.1.1.  Selecting the Best Interface(s) or CoA(s)

  In the MIPv6 route optimization case, if registrations of multiple
  CoAs are provided [RFC5648], the contents of QUERYs sent by candidate
  CoAs can be used to select the best interface(s) or CoA(s).

  Assume that an MN is a data sender and has multiple interfaces.  Now
  the MN moves to a new location and acquires CoA(s) for multiple
  interfaces.  After the MN performs the BU/BA procedure, it sends
  QUERY messages toward the CN through the interface(s) associated with
  the CoA(s).  On receiving the QUERY messages, the CN or gateway,
  determines the best (primary) CoA(s) by checking the 'QoS Available'
  object in the QUERY messages.  Then, a RESERVE message is sent toward
  the MN to reserve resources along the path that the primary CoA
  takes.  If the reservation is not successful, the CN transmits
  another RESERVE message using the CoA with the next highest priority.
  The CRN may initiate a teardown (RESERVE with the TEAR flag set)
  message toward old access router (OAR) to release the reserved
  resources on the old path.

  For a sender-initiated reservation, a similar approach is possible.
  That is, the QUERY and RESERVE messages are initiated by an MN, and
  the MN selects the primary CoA based on the information delivered by
  the QUERY message.



























Sanda, et al.                 Informational                    [Page 26]

RFC 5980               NSIS Signaling in Mobility             March 2011


           |--Handover-->|
    MN    OAR    AR1    AR2    AR3     CRN     CRN     CRN     CN
                                   (OAR/AR1)(OAR/AR2)(OAR/AR3)
    |      |      |      |      |       |       |       |       |
    |---QUERY(1)->|-------------------->|---------------------->|
    |      |      |      |      |       |       |       |       |
    |---QUERY(2)-------->|--------------------->|-------------->|
    |      |      |      |      |       |       |       |       |
    |---QUERY(3)--------------->|---------------------->|------>|
    |      |      |      |      |       |       |       |       |
    |      |      |      |      |       |       |       | Primary CoA
    |      |      |      |      |       |       |       | Selection(4)
    |      |      |      |      |       |       |       |       |
    |      |      |      |      |       |       |<--RESERVE(5)--|
    |      |      |      |<------RESERVE(6)-----|     (MRI      |
    |      |      |      | (Actual reservation) |    Update)    |
    |<----RESERVE(7)-----|      |       |       |       |       |
    |      |      |      |      |       |       |       |       |
    |      |<-----------teardown(8)-------------|       |       |
    |      |      |      |      |       |       |       |       |
    |      |      |      |  Multimedia Traffic  |       |       |
    |<=================->|<===================->|<=============>|
    |      |      |      |      |       |       |       |       |

       Figure 9: Receiver-Initiated Reservation in the Multihomed
                               Environment

6.1.2.  Differentiation of Two Types of CRNs

  When multiple interfaces of the MN are simultaneously used for load-
  balancing purposes, a possible approach for distinguishing the LB-CRN
  and HO-CRN will introduce an identifier to determine the relationship
  between interfaces and paths.

  An MN uses interface 1 and interface 2 for the same session, where
  the paths (say path 1 and path 2) have the same SID but different
  Flow IDs as shown in (a) of Figure 10.  Then, one of the interfaces
  of the MN performs a handover and obtains a new CoA, and the MN will
  try to establish a new path (say Path 3) with the new Flow ID, as
  shown in (b) of Figure 10.  In this case, the CRN between path 2 and
  path 3 cannot determine if it is LB-CRN or HO-CRN since for both
  cases, the SID is the same but the Flow IDs are different.  Hence,
  the CRN will not know if State Update is required.  One possible
  solution to solve this issue is to introduce a path classification
  identifier, which shows the relationship between interfaces and
  paths.  For example, signaling messages and QNEs that belong to paths
  from interface 1 and interface 2 carry the identifiers '00' and '02',
  respectively.  By having this identifier, the CRN between path 2 and



Sanda, et al.                 Informational                    [Page 27]

RFC 5980               NSIS Signaling in Mobility             March 2011


  path 3 will be able to determine whether it is an LB-CRN or HO-CRN.
  For example, if path 3 carries '00', the CRN is an LB-CRN, and if
  '01', the CRN is an HO-CRN.


     +--+      Path 1          +---+             +--+
     |  |IF1 <-----------------|LB-| common path |  |
     |MN|                      |CRN|-------------|CN|
     |  |      Path 2          |   |             |  |
     |  |IF2 <-----------------|   |             |  |
     |  |                      +---+             +--+
     |  |
     +--+

     (a) NSIS Path classification in multihomed environments


     +--+      Path 1          +---+             +--+
     |  |IF1 <-----------------|??-| common path |  |
     |MN|                      |CRN|-------------|CN|
     |  |     Path 2          -|   |             |  |
     |  |IF2 <---  +------+  | |   |             |  |
     |  |        \_|??-CRN|--v +---+             +--+
     |  |        / +------+
     +--+IF? <---
              Path 3

     (b) NSIS Path classification after handover

     Figure 10: The Topology for NSIS Signaling in Multihomed Mobile
                              Environments

6.2.  Interworking with Other Mobility Protocols

  In mobility scenarios, the end-to-end signaling problem by the State
  Update (unlike the problem of generic route changes) gives rise to
  the degradation of network performance, e.g., increased signaling
  overhead, service blackout, and so on.  To reduce signaling latency
  in the Mobile-IP-based scenarios, the NSIS protocol suite may need to
  interwork with localized mobility management (LMM).  If the GIST/NSLP
  (QoS NSLP or NAT/FW NSLP) protocols interact with Hierarchical Mobile
  IPv6 and the CRN is discovered between an MN and an MAP, the State
  Update can be localized by address mapping.  However, how the State
  Update is performed with scoped signaling messages within the access
  network under the MAP is for future study.






Sanda, et al.                 Informational                    [Page 28]

RFC 5980               NSIS Signaling in Mobility             March 2011


  In the interdomain handover, a possible way to mitigate the latency
  penalty is to use the multihomed MN.  It is also possible to allow
  the NSIS protocols to interact with mobility protocols such as
  Seamoby protocols (e.g., Candidate Access Router Discovery (CARD)
  [RFC4066] and the Context Transfer Protocol (CXTP) [RFC4067]) and
  Fast Mobile IP (FMIP).  Another scenario is to use a peering
  agreement that allows aggregation authorization to be performed for
  aggregate reservation on an interdomain link without authorizing each
  individual session.  How these approaches can be used in NSIS
  signaling is for further study.

6.3.  Intermediate Node Becomes a Dead Peer

  The failure of a (potential) NSIS CRN may result in incomplete state
  re-establishment on the new path and incomplete teardown on the old
  path after handover.  In this case, a new CRN should be rediscovered
  immediately by the CRN discovery procedure.

  The failure of an AR may make the interactions with Seamoby protocols
  (such as CARD and CXTP) impossible.  In this case, the neighboring
  peer closest to the dead AR may need to interact with such protocols.
  A more detailed analysis of interactions with Seamoby protocols is
  left for future work.

  In Mobile-IP-based scenarios, the failures of NSIS functions at an FA
  and an HA may result in incomplete interaction with IP tunneling.  In
  this case, recovery for NSIS functions needs to be performed
  immediately.  In addition, a more detailed analysis of interactions
  with IP tunneling is left for future work.

7.  Security Considerations

  This document does not introduce new security concerns.  The security
  considerations pertaining to the NSIS protocol specifications,
  especially [RFC5971], [RFC5973], and [RFC5974], remain relevant.
  When deployed in service provider networks, it is mandatory to ensure
  that only authorized entities are permitted to initiate re-
  establishment and removal of NSIS states in mobile environments,
  including the use of NSIS proxies and CRNs.

8.  Contributors

  Sung-Hyuck Lee was the editor of early drafts of this document.
  Since draft version 06, Takako Sanda has taken the editorship.

  Many individuals have contributed to this document.  Since it was not
  possible to list them all in the authors section, this section was
  created to have a sincere respect for those who contributed: Paulo



Sanda, et al.                 Informational                    [Page 29]

RFC 5980               NSIS Signaling in Mobility             March 2011


  Mendes, Robert Hancock, Roland Bless, Shivanajay Marwaha, and Martin
  Stiemerling.  Separating authors into two groups was done without
  treating any one of them better (or worse) than others.

9.  Acknowledgements

  The authors would like to thank Byoung-Joon Lee, Charles Q. Shen,
  Cornelia Kappler, Henning Schulzrinne, and Jongho Bang for
  significant contributions in early drafts of this document.  The
  authors would also like to thank Robert Hancock, Andrew Mcdonald,
  John Loughney, Rudiger Geib, Cheng Hong, Elena Scialpi, Pratic Bose,
  Martin Stiemerling, and Luis Cordeiro for their useful comments and
  suggestions.

10.  References

10.1.  Normative References

  [RFC3775]  Johnson, D., "Mobility Support in IPv6", RFC3775 ,
             June 2004.

  [RFC5971]  Schulzrinne, H. and R. Hancock, "GIST: General Internet
             Signalling Transport", RFC 5971, October 2010.

  [RFC5973]  Stiemerling, M., Tschofenig, H., Aoun, C., and E. Davies,
             "NAT/Firewall NSIS Signaling Layer Protocol (NSLP)",
             RFC 5973, October 2010.

  [RFC5974]  Manner, J., Karagiannis, G., and A. McDonald, "NSIS
             Signaling Layer Protocol (NSLP) for Quality-of-Service
             Signaling", RFC 5974, October 2010.

  [RFC5944]  Perkins, C., Ed., "IP Mobility Support for IPv4, Revised",
             RFC 5944, November 2010.

10.2.  Informative References

  [RFC2205]  Braden, B., "Resource ReSerVation Protocol (RSVP) --
             Version 1 Functional Specification", RFC2205 ,
             September 1997.

  [RFC3726]  Brunner, (Ed), M., "Requirements for Signaling Protocols",
             RFC3726 , June 2004.

  [RFC3753]  Manner, J., "Mobility Related Terminology", RFC3753 ,
             June 2004.





Sanda, et al.                 Informational                    [Page 30]

RFC 5980               NSIS Signaling in Mobility             March 2011


  [RFC4066]  Liebsch, M., "Candidate Access Router Discovery (CARD)",
             RFC4066 , July 2005.

  [RFC4067]  Loughney, J., "Context Transfer Protocol (CXTP)",
             RFC4067 , July 2005.

  [RFC5648]  Wakikawa, R., "Multiple Care-of-Address Registration",
             RFC5648 , October 2009.

  [RFC5975]  Ash, G., Bader, A., Kappler, C., and D. Oran, "QSPEC
             Template for the Quality-of-Service NSIS Signaling Layer
             Protocol (NSLP)", RFC 5975, October 2010.

  [RFC5979]  Shen, C., Schulzrinne, H., Lee, S., and J. Bang, "NSIS
             Operation over IP Tunnels", RFC 5979, March 2011.

Authors' Addresses

  Takako Sanda (editor)
  Panasonic Corporation
  600 Saedo-cho, Tsuzuki-ku, Yokohama
  Kanagawa  224-8539
  Japan

  Phone: +81 45 938 3056
  EMail: [email protected]


  Xiaoming Fu
  University of Goettingen
  Computer Networks Group
  Goldschmidtstr. 7
  Goettingen  37077
  Germany

  Phone: +49 551 39 172023
  EMail: [email protected]


  Seong-Ho Jeong
  Hankuk University of FS
  Dept. of Information and Communications Engineering
  89 Wangsan, Mohyun, Cheoin-gu
  Yongin-si, Gyeonggi-do  449-791
  Korea

  Phone: +82 31 330 4642
  EMail: [email protected]



Sanda, et al.                 Informational                    [Page 31]

RFC 5980               NSIS Signaling in Mobility             March 2011


  Jukka Manner
  Aalto University
  Department of Communications and Networking (Comnet)
  P.O. Box 13000
  FIN-00076 Aalto
  Finland

  Phone: +358 9 470 22481
  EMail: [email protected]
  URI:   http://www.netlab.tkk.fi/~jmanner/


  Hannes Tschofenig
  Nokia Siemens Networks
  Linnoitustie 6
  Espoo
  02600
  Finland

  Phone: +358 50 4871445
  EMail: [email protected]






























Sanda, et al.                 Informational                    [Page 32]