Internet Engineering Task Force (IETF)                            G. Ash
Request for Comments: 5976                                     A. Morton
Category: Experimental                                          M. Dolly
ISSN: 2070-1721                                              P. Tarapore
                                                              C. Dvorak
                                                              AT&T Labs
                                                          Y. El Mghazli
                                                         Alcatel-Lucent
                                                           October 2010


Y.1541-QOSM: Model for Networks Using Y.1541 Quality-of-Service Classes

Abstract

  This document describes a QoS-NSLP Quality-of-Service model (QOSM)
  based on ITU-T Recommendation Y.1541 Network QoS Classes and related
  guidance on signaling.  Y.1541 specifies 8 classes of Network
  Performance objectives, and the Y.1541-QOSM extensions include
  additional QSPEC parameters and QOSM processing guidelines.

Status of This Memo

  This document is not an Internet Standards Track specification; it is
  published for examination, experimental implementation, and
  evaluation.

  This document defines an Experimental Protocol for the Internet
  community.  This document is a product of the Internet Engineering
  Task Force (IETF).  It represents the consensus of the IETF
  community.  It has received public review and has been approved for
  publication by the Internet Engineering Steering Group (IESG).  Not
  all documents approved by the IESG are a candidate for any level of
  Internet Standard; see Section 2 of RFC 5741.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  http://www.rfc-editor.org/info/rfc5976.

Copyright Notice

  Copyright (c) 2010 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (http://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents



Ash, et al.                   Experimental                      [Page 1]

RFC 5976                       Y.1541 QOSM                  October 2010


  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.

  This document may contain material from IETF Documents or IETF
  Contributions published or made publicly available before November
  10, 2008.  The person(s) controlling the copyright in some of this
  material may not have granted the IETF Trust the right to allow
  modifications of such material outside the IETF Standards Process.
  Without obtaining an adequate license from the person(s) controlling
  the copyright in such materials, this document may not be modified
  outside the IETF Standards Process, and derivative works of it may
  not be created outside the IETF Standards Process, except to format
  it for publication as an RFC or to translate it into languages other
  than English.

Table of Contents

  1.  Introduction . . . . . . . . . . . . . . . . . . . . . . . . .  3
    1.1.  Requirements Language  . . . . . . . . . . . . . . . . . .  3
  2.  Summary of ITU-T Recommendations Y.1541 and Signaling
      Requirements . . . . . . . . . . . . . . . . . . . . . . . . .  3
    2.1.  Description of Y.1541 Classes  . . . . . . . . . . . . . .  4
    2.2.  Y.1541-QOSM Processing Requirements  . . . . . . . . . . .  6
  3.  Additional QSPEC Parameters for Y.1541 QOSM  . . . . . . . . .  7
    3.1.  Traffic Model (TMOD) Extension Parameter . . . . . . . . .  7
    3.2.  Restoration Priority Parameter . . . . . . . . . . . . . .  8
  4.  Y.1541-QOSM Considerations and Processing Example  . . . . . . 10
    4.1.  Deployment Considerations  . . . . . . . . . . . . . . . . 10
    4.2.  Applicable QSPEC Procedures  . . . . . . . . . . . . . . . 10
    4.3.  QNE Processing Rules . . . . . . . . . . . . . . . . . . . 10
    4.4.  Processing Example . . . . . . . . . . . . . . . . . . . . 10
    4.5.  Bit-Level QSPEC Example  . . . . . . . . . . . . . . . . . 12
    4.6.  Preemption Behavior  . . . . . . . . . . . . . . . . . . . 14
  5.  IANA Considerations  . . . . . . . . . . . . . . . . . . . . . 14
    5.1.  Assignment of QSPEC Parameter IDs  . . . . . . . . . . . . 14
    5.2.  Restoration Priority Parameter Registry  . . . . . . . . . 14
      5.2.1.  Restoration Priority Field . . . . . . . . . . . . . . 14
      5.2.2.  Time to Restore Field  . . . . . . . . . . . . . . . . 15
      5.2.3.  Extent of Restoration Field  . . . . . . . . . . . . . 15
  6.  Security Considerations  . . . . . . . . . . . . . . . . . . . 16
  7.  Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . 16
  8.  References . . . . . . . . . . . . . . . . . . . . . . . . . . 17
    8.1.  Normative References . . . . . . . . . . . . . . . . . . . 17
    8.2.  Informative References . . . . . . . . . . . . . . . . . . 17




Ash, et al.                   Experimental                      [Page 2]

RFC 5976                       Y.1541 QOSM                  October 2010


1.  Introduction

  This document describes a QoS model (QOSM) for Next Steps in
  Signaling (NSIS) QoS signaling layer protocol (QoS-NSLP) application
  based on ITU-T Recommendation Y.1541 Network QoS Classes and related
  guidance on signaling.  [Y.1541] currently specifies 8 classes of
  Network Performance objectives, and the Y.1541-QOSM extensions
  include additional QSPEC [RFC5975] parameters and QOSM processing
  guidelines.  The extensions are based on standardization work in the
  ITU-T on QoS signaling requirements ([Y.1541] and [E.361]), and
  guidance in [TRQ-QoS-SIG].

  [RFC5974] defines message types and control information for the QoS-
  NSLP that are generic to all QOSMs.  A QOSM is a defined mechanism
  for achieving QoS as a whole.  The specification of a QOSM includes a
  description of its QSPEC parameter information, as well as how that
  information should be treated or interpreted in the network.  The
  QSPEC [RFC5975] contains a set of parameters and values describing
  the requested resources.  It is opaque to the QoS-NSLP and similar in
  purpose to the TSpec, RSpec, and AdSpec specified in [RFC2205] and
  [RFC2210].  A QOSM provides a specific set of parameters to be
  carried in the QSPEC object.  At each QoS NSIS Entity (QNE), the
  QSPEC contents are interpreted by the resource management function
  (RMF) for purposes of policy control and traffic control, including
  admission control and configuration of the scheduler.

1.1.  Requirements Language

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in RFC 2119 [RFC2119].

2.  Summary of ITU-T Recommendations Y.1541 and Signaling Requirements

  As stated above, [Y.1541] is a specification of standardized QoS
  classes for IP networks (a summary of these classes is given below).
  Section 7 of [TRQ-QoS-SIG] describes the signaling features needed to
  achieve end-to-end QoS in IP networks, with Y.1541 QoS classes as a
  basis.  [Y.1541] recommends a flexible allocation of the end-to-end
  performance objectives (e.g., delay) across networks, rather than a
  fixed per-network allocation.  NSIS protocols already address most of
  the requirements; this document identifies additional QSPEC
  parameters and processing requirements needed to support the Y.1541
  QOSM.







Ash, et al.                   Experimental                      [Page 3]

RFC 5976                       Y.1541 QOSM                  October 2010


2.1.  Description of Y.1541 Classes

  [Y.1541] proposes grouping services into QoS classes defined
  according to the desired QoS performance objectives.  These QoS
  classes support a wide range of user applications.  The classes group
  objectives for one-way IP packet delay, IP packet delay variation, IP
  packet loss ratio, etc., where the parameters themselves are defined
  in [Y.1540].

  Note that [Y.1541] is maintained by the ITU-T and subject to
  occasional updates and revisions.  The material in this section is
  provided for information and to make this document easier to read.
  In the event of any discrepancies, the normative definitions found in
  [Y.1541] take precedence.

  Classes 0 and 1 might be implemented using the Diffserv Expedited
  Forwarding (EF) Per-Hop Behavior (PHB), and they support interactive
  real-time applications [RFC3246].  Classes 2, 3, and 4 might be
  implemented using the Diffserv Assured Forwarding (AFxy) PHB Group,
  and they support data transfer applications with various degrees of
  interactivity [RFC2597].  Class 5 generally corresponds to the
  Diffserv Default PHB, and it has all the QoS parameters unspecified
  consistent with a best-effort service[RFC2474].  Classes 6 and 7
  provide support for extremely loss-sensitive user applications, such
  as high-quality digital television, Time Division Multiplexing (TDM)
  circuit emulation, and high-capacity file transfers using TCP.  These
  classes are intended to serve as a basis for agreements between end-
  users and service providers, and between service providers.  They
  support a wide range of user applications including point-to-point
  telephony, data transfer, multimedia conferencing, and others.  The
  limited number of classes supports the requirement for feasible
  implementation, particularly with respect to scale in global
  networks.

  The QoS classes apply to a packet flow, where [Y.1541] defines a
  packet flow as the traffic associated with a given connection or
  connectionless stream having the same source host, destination host,
  class of service, and session identification.  The characteristics of
  each Y.1541 QoS class are summarized here:

  Class 0:
  Real-time, highly interactive applications, sensitive to jitter.
  Mean delay <= 100 ms, delay variation <= 50 ms, and loss ratio <=
  10^-3.  Application examples include VoIP and video teleconference.







Ash, et al.                   Experimental                      [Page 4]

RFC 5976                       Y.1541 QOSM                  October 2010


  Class 1:
  Real-time, interactive applications, sensitive to jitter.  Mean delay
  <= 400 ms, delay variation <= 50 ms, and loss ratio <= 10^-3.
  Application examples include VoIP and video teleconference.

  Class 2:
  Highly interactive transaction data.  Mean delay <= 100 ms, delay
  variation is unspecified, loss ratio <= 10^-3.  Application examples
  include signaling.

  Class 3:
  Interactive transaction data.  Mean delay <= 400 ms, delay variation
  is unspecified, loss ratio <= 10^-3.  Application examples include
  signaling.

  Class 4:
  Low Loss Only applications.  Mean delay <= 1 s, delay variation is
  unspecified, loss ratio <= 10^-3.  Application examples include short
  transactions, bulk data, and video streaming.

  Class 5:
  Unspecified applications with unspecified mean delay, delay
  variation, and loss ratio.  Application examples include traditional
  applications of default IP networks.

  Class 6:
  Applications that are highly sensitive to loss.  Mean delay <= 100
  ms, delay variation <= 50 ms, and loss ratio <= 10^-5.  Application
  examples include television transport, high-capacity TCP transfers,
  and Time-Division Multiplexing (TDM) circuit emulation.

  Class 7:
  Applications that are highly sensitive to loss.  Mean delay <= 400
  ms, delay variation <= 50 ms, and loss ratio <= 10^-5.  Application
  examples include television transport, high-capacity TCP transfers,
  and TDM circuit emulation.

  These classes enable service level agreements (SLAs) to be defined
  between customers and network service providers with respect to QoS
  requirements.  The service provider then needs to ensure that the
  requirements are recognized and receive appropriate treatment across
  network layers.

  Work is in progress to specify methods for combining local values of
  performance metrics to estimate the performance of the complete path.
  See Section 8 of [Y.1541], [RFC5835], and [COMPOSITION].





Ash, et al.                   Experimental                      [Page 5]

RFC 5976                       Y.1541 QOSM                  October 2010


2.2.  Y.1541-QOSM Processing Requirements

  [TRQ-QoS-SIG] guides the specification of signaling information for
  IP-based QoS at the interface between the user and the network (UNI)
  and across interfaces between different networks (NNI).  To meet
  specific network performance requirements specified for the Y.1541
  QoS classes [Y.1541] , a network needs to provide specific user-plane
  functionality at the UNI and NNI.  Dynamic network provisioning at a
  UNI and/or NNI node allows a traffic contract for an IP flow to be
  dynamically requested from a specific source node to one or more
  destination nodes.  In response to the request, the network
  determines if resources are available to satisfy the request and
  provision the network.

  For implementations to claim compliance with this memo, it MUST be
  possible to derive the following service-level parameters as part of
  the process of requesting service:

  a.  Y.1541 QoS class, 32-bit integer, range: 0-7

  b.  rate (r), octets per second

  c.  peak rate (p), octets per second

  d.  bucket size (b), octets

  e.  maximum packet size (MPS), octets, IP header + IP payload

  f.  Diffserv PHB class [RFC2475]

  g.  admission priority, 32-bit integer, range: 0-2

  Compliant implementations MAY derive the following service-level
  parameters as part of the service request process:

  h.  peak bucket size (Bp), octets, 32-bit floating point number in
      single-precision IEEE floating point format [IEEE754]

  i.  restoration priority, multiple integer values defined in
      Section 3 below

  All parameters except Bp and restoration priority have already been
  specified in [RFC5975].  These additional parameters are defined as

  o  Bp, the size of the peak-rate bucket in a dual-token bucket
     arrangement, essentially setting the maximum length of bursts in
     the peak-rate stream.  For example, see Annex B of [Y.1221]




Ash, et al.                   Experimental                      [Page 6]

RFC 5976                       Y.1541 QOSM                  October 2010


  o  restoration priority, as defined in Section 3 of this memo

  Their QSPEC Parameter format is specified in Section 3.

  It MUST be possible to perform the following QoS-NSLP signaling
  functions to meet Y.1541-QOSM requirements:

  a.  accumulate delay, delay variation, and loss ratio across the end-
      to-end connection, which may span multiple domains.

  b.  enable negotiation of Y.1541 QoS class across domains.

  c.  enable negotiation of delay, delay variation, and loss ratio
      across domains.

  These signaling requirements are supported in [RFC5974], and the
  functions are illustrated in Section 4 of this memo.

3.  Additional QSPEC Parameters for Y.1541 QOSM

  The specifications in this section extend the QSPEC [RFC5975].

3.1.  Traffic Model (TMOD) Extension Parameter

  The traffic model (TMOD) extension parameter is represented by one
  floating point number in single-precision IEEE floating point format
  and one 32-bit reserved field.

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |M|E|N|r|           15          |r|r|r|r|          1            |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |  Peak Bucket Size [Bp] (32-bit IEEE floating point number)    |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                        Figure 1: TMOD Extension

  The Peak Bucket Size term, Bp, is represented as an IEEE floating
  point value [IEEE754] in units of octets.  The sign bit MUST be zero
  (all values MUST be non-negative).  Exponents less than 127 (i.e., 0)
  are prohibited.  Exponents greater than 162 (i.e., positive 35) are
  discouraged, except for specifying a peak rate of infinity.  Infinity
  is represented with an exponent of all ones (255), and a sign bit and
  mantissa of all zeros.






Ash, et al.                   Experimental                      [Page 7]

RFC 5976                       Y.1541 QOSM                  October 2010


  The QSPEC parameter behavior for the TMOD extended parameter follows
  that defined in Section 3.3.1 of [RFC5975].  The new parameter (and
  all traffic-related parameters) are specified independently from the
  Y.1541 class parameter.

3.2.  Restoration Priority Parameter

  Restoration priority is the urgency with which a service requires
  successful restoration under failure conditions.  Restoration
  priority is achieved by provisioning sufficient backup capacity, as
  necessary, and allowing relative priority for access to available
  bandwidth when there is contention for restoration bandwidth.
  Restoration priority is defined as follows:

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |M|E|N|r|           16          |r|r|r|r|          1            |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    | Rest. Priority|  TTR  |  EOR  |        (Reserved)             |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                Figure 2: Restoration Priority Parameter

  This parameter has three fields and a reserved area, as defined
  below.

  Restoration Priority Field (8-bit unsigned integer):  3 priority
     values are listed here in the order of lowest priority to highest
     priority:

        0 - best effort

        1 - normal

        2 - high

     These priority values are described in [Y.2172], where best-effort
     priority is the same as Priority level 3, normal priority is
     Priority level 2, and high priority is Priority level 1.  There
     are several ways to elaborate on restoration priority, and the two
     current parameters are described below.

  Time-to-Restore (TTR) Field (4-bit unsigned integer):  Total amount
     of time to restore traffic streams belonging to a given
     restoration class impacted by the failure.  This time period
     depends on the technology deployed for restoration.  A fast
     recovery period of < 200 ms is based on current experience with



Ash, et al.                   Experimental                      [Page 8]

RFC 5976                       Y.1541 QOSM                  October 2010


     Synchronous Optical Network (SONET) rings and a slower recovery
     period of 2 seconds is suggested in order to enable a voice call
     to recover without being dropped.  Accordingly, TTR restoration
     suggested ranges are:

        0 - Unspecified Time-to-Restore

        1 - Best Time-to-Restore: <= 200 ms

        2 - Normal Time-to-Restore <= 2 s

  Extent of Restoration (EOR) Field (4-bit unsigned integer):
     Percentage of traffic belonging to the restoration class that can
     be restored.  This percentage depends on the amount of spare
     capacity engineered.  All high-priority restoration traffic, for
     example, may be "guaranteed" at 100% by the service provider.
     Other classes may offer lesser chances for successful restoration.
     The restoration extent for these lower priority classes depend on
     SLAs developed between the service provider and the customer.

        EOR values are assigned as follows:

        0 - unspecified EOR

        1 - high priority restored at 100%;
            medium priority restored at 100%

        2 - high priority restored at 100%;
            medium priority restored at 80%

        3 - high priority restored >= 80%;
            medium priority restored >= 80%

        4 - high priority restored >= 80%;
            medium priority restored >= 60%

        5 - high priority restored >= 60%;
            medium priority restored >= 60%

  Reserved:  These 2 octets are reserved.  The Reserved bits MAY be
     designated for other uses in the future.  Senders conforming to
     this version of the Y.1541 QOSM SHALL set the Reserved bits to
     zero.  Receivers conforming to this version of the Y.1541 QOSM
     SHALL ignore the Reserved bits.







Ash, et al.                   Experimental                      [Page 9]

RFC 5976                       Y.1541 QOSM                  October 2010


4.  Y.1541-QOSM Considerations and Processing Example

  In this section, we illustrate the operation of the Y.1541 QOSM, and
  show how current QoS-NSLP and QSPEC functionality is used.  No new
  processing capabilities are required to enable the Y.1541 QOSM
  (excluding the two OPTIONAL new parameters specified in Section 3).

4.1.  Deployment Considerations

  [TRQ-QoS-SIG] emphasizes the deployment of Y.1541 QNEs at the borders
  of supporting domains.  There may be domain configurations where
  interior QNEs are desirable, and the example below addresses this
  possibility.

4.2.  Applicable QSPEC Procedures

  All procedures defined in Section 5.3 of [RFC5975] are applicable to
  this QOSM.

4.3.  QNE Processing Rules

  Section 7 of [TRQ-QoS-SIG] describes the information processing in
  Y.1541 QNEs.

  Section 8 of [Y.1541] defines the accumulation rules for individual
  performance parameters (e.g., delay, jitter).

  When a QoS NSIS initiator (QNI) specifies the Y.1541 QoS Class
  number, <Y.1541 QoS Class>, it is a sufficient specification of
  objectives for the <Path Latency>, <Path Jitter>, and <Path BER>
  parameters.  As described in Section 2, some Y.1541 Classes do not
  set objectives for all the performance parameters above.  For
  example, Classes 2, 3, and 4 do not specify an objective for <Path
  Jitter> (referred to as IP Packet Delay Variation).  In the case that
  the QoS Class leaves a parameter unspecified, then that parameter
  need not be included in the accumulation processing.

4.4.  Processing Example

  As described in the example given in Section 3.4 of [RFC5975] and as
  illustrated in Figure 3, the QoS NSIS initiator (QNI) initiates an
  end-to-end, interdomain QoS NSLP RESERVE message containing the
  Initiator QSPEC.  In the case of the Y.1541 QOSM, the Initiator QSPEC
  specifies the <Y.1541 QOS Class>, <TMOD>, <TMOD Extension>,
  <Admission Priority>, <Restoration Priority>, and perhaps other QSPEC
  parameters for the flow.  As described in Section 3, the TMOD





Ash, et al.                   Experimental                     [Page 10]

RFC 5976                       Y.1541 QOSM                  October 2010


  extension parameter contains the OPTIONAL Y.1541-QOSM-specific terms;
  restoration priority is also an OPTIONAL Y.1541-QOSM-specific
  parameter.

  As Figure 3 below shows, the RESERVE message may cross multiple
  domains supporting different QOSMs.  In this illustration, the
  Initiator QSPEC arrives in a QoS NSLP RESERVE message at the ingress
  node of the local-QOSM domain.  As described in [RFC5974] and
  [RFC5975], at the ingress edge node of the local-QOSM domain, the
  end-to-end, interdomain QoS-NSLP message may trigger the generation
  of a Local QSPEC, and the Initiator QSPEC is encapsulated within the
  messages signaled through the local domain.  The Local QSPEC is used
  for QoS processing in the local-QOSM domain, and the Initiator QSPEC
  is used for QoS processing outside the local domain.  As specified in
  [RFC5975], if any QNE cannot meet the requirements designated by the
  Initiator QSPEC to support an optional QSPEC parameter (i.e., with
  the M bit set to zero for the parameter), the QNE sets the N flag
  (not supported flag) for the parameter to one.  For example, if the
  QNE cannot support the accumulation of end-to-end delay with the
  <Path Latency> parameter, where the M flag for the <Path Latency>
  parameter is set to zero denoting <Path Latency> as an optional
  parameter, the QNE sets the N flag (not supported flag) for the <Path
  Latency> parameter to one.

  Also, the Y.1541-QOSM requires negotiation of the <Y.1541 QoS Class>
  across domains.  This negotiation can be done with the use of the
  existing procedures already defined in [RFC5974].  For example, the
  QNI sets <Desired QoS>, <Minimum QoS>, and <Available QoS> objects to
  include <Y.1541 QoS Class>, which specifies objectives for the <Path
  Latency>, <Path Jitter>, and <Path BER> parameters.  In the case that
  the QoS Class leaves a parameter unspecified, then that parameter
  need not be included in the accumulation processing.  The QNE/domain
  SHOULD set the Y.1541 class and cumulative parameters, e.g., <Path
  Latency>, that can be achieved in the <QoS Available> object (but not
  less than specified in <Minimum QoS>).  This could include, for
  example, setting the <Y.1541 QoS Class> to a lower class than
  specified in <QoS Desired> (but not lower than specified in <Minimum
  QoS>).  If the <Available QoS> fails to satisfy one or more of the
  <Minimum QoS> objectives, the QNE/domain notifies the QNI and the
  reservation is aborted.  Otherwise, the QoS NSIS Receiver (QNR)
  notifies the QNI of the <QoS Available> for the reservation.

  When the available <Y.1541 QoS Class> must be reduced from the
  desired <Y.1541 QoS Class> (say, because the delay objective has been
  exceeded), then there is an incentive to respond with an available
  value for delay in the <Path Latency> parameter.  If the available
  <Path Latency> is 150 ms (still useful for many applications) and the
  desired QoS is Class 0 (with its 100 ms objective), then the response



Ash, et al.                   Experimental                     [Page 11]

RFC 5976                       Y.1541 QOSM                  October 2010


  would be that Class 0 cannot be achieved, and Class 1 is available
  (with its 400 ms objective).  In addition, this QOSM allows the
  response to include an available <Path Latency> = 150 ms, making
  acceptance of the available <Y.1541 QoS Class> more likely.  There
  are many long paths where the propagation delay alone exceeds the
  Y.1541 Class 0 objective, so this feature adds flexibility to commit
  to exceed the Class 1 objective when possible.

  This example illustrates Y.1541-QOSM negotiation of <Y.1541 QoS
  Class> and cumulative parameter values that can be achieved end-to-
  end.  The example illustrates how the QNI can use the cumulative
  values collected in <QoS Available> to decide if a lower <Y.1541 QoS
  Class> than specified in <QoS Desired> is acceptable.

    |------|   |------|                           |------|   |------|
    | e2e  |<->| e2e  |<------------------------->| e2e  |<->| e2e  |
    | QOSM |   | QOSM |                           | QOSM |   | QOSM |
    |      |   |------|   |-------|   |-------|   |------|   |      |
    | NSLP |   | NSLP |<->| NSLP  |<->| NSLP  |<->| NSLP |   | NSLP |
    |Y.1541|   |local |   |local  |   |local  |   |local |   |Y.1541|
    | QOSM |   | QOSM |   | QOSM  |   | QOSM  |   | QOSM |   | QOSM |
    |------|   |------|   |-------|   |-------|   |------|   |------|
    -----------------------------------------------------------------
    |------|   |------|   |-------|   |-------|   |------|   |------|
    | NTLP |<->| NTLP |<->| NTLP  |<->| NTLP  |<->| NTLP |<->| NTLP |
    |------|   |------|   |-------|   |-------|   |------|   |------|
      QNI         QNE        QNE         QNE         QNE       QNR
    (End)  (Ingress Edge) (Interior)  (Interior) (Egress Edge)  (End)

               Figure 3: Example of Y.1541-QOSM Operation

4.5.  Bit-Level QSPEC Example

  This is an example where the QOS Desired specification contains the
  TMOD-1 parameters and TMOD extended parameters defined in this
  specification, as well as the Y.1541 Class parameter.  The QOS
  Available specification utilizes the Latency, Jitter, and Loss
  parameters to enable accumulation of these parameters for easy
  comparison with the objectives desired for the Y.1541 Class.

  This example assumes that all the parameters MUST be supported by the
  QNEs, so all M-flags have been set to 1.









Ash, et al.                   Experimental                     [Page 12]

RFC 5976                       Y.1541 QOSM                  October 2010


     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |  Vers.|QType=I|QSPEC Proc.=0/1|0|R|R|R|      Length = 23      |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |E|r|r|r|  Type = 0 (QoS Des.)  |r|r|r|r|      Length = 10      |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |1|E|0|r|    ID = 1 <TMOD-1>    |r|r|r|r|      Length = 5       |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |  TMOD Rate-1 [r] (32-bit IEEE floating point number)          |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |  TMOD Size-1 [b] (32-bit IEEE floating point number)          |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |  Peak Data Rate-1 [p] (32-bit IEEE floating point number)     |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |  Minimum Policed Unit-1 [m] (32-bit unsigned integer)         |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |  Maximum Packet Size [MPS] (32-bit unsigned integer)          |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |1|E|N|r|           15          |r|r|r|r|          1            |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |  Peak Bucket Size [Bp] (32-bit IEEE floating point number)    |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |1|E|N|r|           14          |r|r|r|r|          1            |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |Y.1541 QoS Cls.|                (Reserved)                     |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |E|r|r|r|  Type = 1 (QoS Avail) |r|r|r|r|      Length = 11      |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |1|E|N|r|           3           |r|r|r|r|          1            |
    +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
    |                Path Latency (32-bit integer)                  |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |1|E|N|r|           4           |r|r|r|r|          4            |
    +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
    |          Path Jitter STAT1(variance) (32-bit integer)         |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |          Path Jitter STAT2(99.9%-ile) (32-bit integer)        |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |       Path Jitter STAT3(minimum Latency) (32-bit integer)     |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |       Path Jitter STAT4(Reserved)        (32-bit integer)     |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |1|E|N|r|           5           |r|r|r|r|          1            |
    +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
    |             Path Packet Loss Ratio (32-bit floating point)    |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |1|E|N|r|           14          |r|r|r|r|          1            |



Ash, et al.                   Experimental                     [Page 13]

RFC 5976                       Y.1541 QOSM                  October 2010


    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |Y.1541 QoS Cls.|                (Reserved)                     |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                 Figure 4: An Example QSPEC (Initiator)

  where 32-bit floating point numbers are as specified in [IEEE754].

4.6.  Preemption Behavior

  The default QNI behavior of tearing down a preempted reservation is
  followed in the Y.1541 QOSM.  The restoration priority parameter
  described above does not rely on preemption.

5.  IANA Considerations

  This section defines additional codepoint assignments in the QSPEC
  Parameter ID registry and establishes one new registry for the
  Restoration Priority Parameter (and assigns initial values), in
  accordance with BCP 26 [RFC5226].  It also defines the procedural
  requirements to be followed by IANA in allocating new codepoints for
  the new registry.

5.1.  Assignment of QSPEC Parameter IDs

  This document specifies the following QSPEC parameters, which have
  been assigned in the QSPEC Parameter ID registry created in
  [RFC5975]:

     <TMOD Extension> parameter (Section 3.1, ID=15)

     <Restoration Priority> parameter (Section 3.2, ID=16)

5.2.  Restoration Priority Parameter Registry

  The Registry for Restoration Priority contains assignments for 3
  fields in the 4-octet word and a Reserved section of the word.

  This specification creates the following registry with the structure
  as defined below.

5.2.1.  Restoration Priority Field

  The Restoration Priority Field is 8 bits in length.

  The following values are allocated by this specification:





Ash, et al.                   Experimental                     [Page 14]

RFC 5976                       Y.1541 QOSM                  October 2010


  0-2: assigned as specified in Section 3.2:

     0: best-effort priority

     1: normal priority

     2: high priority

  Further values are as follows:

  3-255: Unassigned

  The registration procedure is Specification Required.

5.2.2.  Time to Restore Field

  The Time to Restore Field is 4 bits in length.

  The following values are allocated by this specification:

  0-2: assigned as specified in Section 3.2:

     0 - Unspecified Time-to-Restore

     1 - Best Time-to-Restore: <= 200 ms

     2 - Normal Time-to-Restore <= 2 s

  Further values are as follows:

  3-15: Unassigned

  The registration procedure is Specification Required.

5.2.3.  Extent of Restoration Field

  The Extent of Restoration (EOR) Field is 4 bits in length.

  The following values are allocated by this specification:

  0-5: assigned as specified in Section 3.2:

      0 - unspecified EOR

      1 - high priority restored at 100%;
          medium priority restored at 100%





Ash, et al.                   Experimental                     [Page 15]

RFC 5976                       Y.1541 QOSM                  October 2010


      2 - high priority restored at 100%;
          medium priority restored at 80%

      3 - high priority restored >= 80%;
          medium priority restored >= 80%

      4 - high priority restored >= 80%;
          medium priority restored >= 60%

      5 - high priority restored >= 60%;
          medium priority restored >= 60%

  Further values are as follows:

  6-15: Unassigned

  The registration procedure is Specification Required.

6.  Security Considerations

  The security considerations of [RFC5974] and [RFC5975] apply to this
  document.

  The restoration priority parameter raises possibilities for theft-of-
  service attacks because users could claim an emergency priority for
  their flows without real need, thereby effectively preventing serious
  emergency calls from getting through.  Several options exist for
  countering such attacks, for example:

  -  only some user groups (e.g., the police) are authorized to set the
     emergency priority bit

  -  any user is authorized to employ the emergency priority bit for
     particular destination addresses (e.g., police or fire
     departments)

  There are no other known security considerations based on this
  document.

7.  Acknowledgements

  The authors thank Attila Bader, Cornelia Kappler, Sven Van den Bosch,
  and Hannes Tschofenig for helpful comments and discussion.








Ash, et al.                   Experimental                     [Page 16]

RFC 5976                       Y.1541 QOSM                  October 2010


8.  References

8.1.  Normative References

  [IEEE754]      ANSI/IEEE, "ANSI/IEEE 754-1985, IEEE Standard for
                 Binary Floating-Point Arithmetic", 1985.

  [RFC2119]      Bradner, S., "Key words for use in RFCs to Indicate
                 Requirement Levels", BCP 14, RFC 2119, March 1997.

  [RFC5974]      Manner, J., Karagiannis, G., and A. McDonald, "NSIS
                 Signaling Layer Protocol (NSLP) for Quality-of-Service
                 Signaling", RFC 5974, October 2010.

  [RFC5975]      Ash, G., Bader, A., Kappler, C., and D. Oran, "QSPEC
                 Template for the Quality-of-Service NSIS Signaling
                 Layer Protocol (NSLP)", RFC 5975, October 2010.

  [Y.1221]       ITU-T Recommendation Y.1221, "Traffic control and
                 congestion control in IP based networks", March 2002.

  [Y.1540]       ITU-T Recommendation Y.1540, "Internet protocol data
                 communication service - IP packet transfer and
                 availability performance parameters", December 2007.

  [Y.1541]       ITU-T Recommendation Y.1541, "Network Performance
                 Objectives for IP-Based Services", February 2006.

  [Y.2172]       ITU-T Recommendation Y.2172, "Service restoration
                 priority levels in Next Generation Networks", June
                 2007.

8.2.  Informative References

  [COMPOSITION]  Morton, A. and E. Stephan, "Spatial Composition of
                 Metrics", Work in Progress, July 2010.

  [E.361]        ITU-T Recommendation E.361, "QoS Routing Support for
                 Interworking of QoS Service Classes Across Routing
                 Technologies", May 2003.

  [RFC2205]      Braden, B., Zhang, L., Berson, S., Herzog, S., and S.
                 Jamin, "Resource ReSerVation Protocol (RSVP) --
                 Version 1 Functional Specification", RFC 2205,
                 September 1997.

  [RFC2210]      Wroclawski, J., "The Use of RSVP with IETF Integrated
                 Services", RFC 2210, September 1997.



Ash, et al.                   Experimental                     [Page 17]

RFC 5976                       Y.1541 QOSM                  October 2010


  [RFC2474]      Nichols, K., Blake, S., Baker, F., and D. Black,
                 "Definition of the Differentiated Services Field (DS
                 Field) in the IPv4 and IPv6 Headers", RFC 2474,
                 December 1998.

  [RFC2475]      Blake, S., Black, D., Carlson, M., Davies, E., Wang,
                 Z., and W. Weiss, "An Architecture for Differentiated
                 Services", RFC 2475, December 1998.

  [RFC2597]      Heinanen, J., Baker, F., Weiss, W., and J. Wroclawski,
                 "Assured Forwarding PHB Group", RFC 2597, June 1999.

  [RFC3246]      Davie, B., Charny, A., Bennet, J., Benson, K., Le
                 Boudec, J., Courtney, W., Davari, S., Firoiu, V., and
                 D. Stiliadis, "An Expedited Forwarding PHB (Per-Hop
                 Behavior)", RFC 3246, March 2002.

  [RFC5226]      Narten, T. and H. Alvestrand, "Guidelines for Writing
                 an IANA Considerations Section in RFCs", BCP 26, RFC
                 5226, May 2008.

  [RFC5835]      Morton, A. and S. Van den Berghe, "Framework for
                 Metric Composition", RFC 5835, April 2010.

  [TRQ-QoS-SIG]  ITU-T Supplement 51 to the Q-Series, "Signaling
                 Requirements for IP-QoS", January 2004.

Authors' Addresses

  Gerald Ash
  AT&T Labs
  200 Laurel Avenue South
  Middletown, NJ  07748
  USA

  EMail: [email protected]


  Al Morton
  AT&T Labs
  200 Laurel Avenue South
  Middletown, NJ  07748
  USA

  Phone: +1 732 420 1571
  Fax:   +1 732 368 1192
  EMail: [email protected]
  URI:   http://home.comcast.net/~acmacm/



Ash, et al.                   Experimental                     [Page 18]

RFC 5976                       Y.1541 QOSM                  October 2010


  Martin Dolly
  AT&T Labs
  200 Laurel Avenue South
  Middletown, NJ  07748
  USA

  EMail: [email protected]


  Percy Tarapore
  AT&T Labs
  200 Laurel Avenue South
  Middletown, NJ  07748
  USA

  EMail: [email protected]


  Chuck Dvorak
  AT&T Labs
  180 Park Ave Bldg 2
  Florham Park, NJ  07932
  USA

  Phone: + 1 973-236-6700
  EMail: [email protected]


  Yacine El Mghazli
  Alcatel-Lucent
  Route de Nozay
  Marcoussis cedex  91460
  France

  Phone: +33 1 69 63 41 87
  EMail: [email protected]















Ash, et al.                   Experimental                     [Page 19]