Internet Engineering Task Force (IETF)                    T. Nadeau, Ed.
Request for Comments: 5885                                            BT
Category: Standards Track                              C. Pignataro, Ed.
ISSN: 2070-1721                                      Cisco Systems, Inc.
                                                              June 2010


             Bidirectional Forwarding Detection (BFD) for
   the Pseudowire Virtual Circuit Connectivity Verification (VCCV)

Abstract

  This document describes Connectivity Verification (CV) Types using
  Bidirectional Forwarding Detection (BFD) with Virtual Circuit
  Connectivity Verification (VCCV).  VCCV provides a control channel
  that is associated with a pseudowire (PW), as well as the
  corresponding operations and management functions such as
  connectivity verification to be used over that control channel.

Status of This Memo

  This is an Internet Standards Track document.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Further information on
  Internet Standards is available in Section 2 of RFC 5741.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  http://www.rfc-editor.org/info/rfc5885.

Copyright Notice

  Copyright (c) 2010 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (http://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.




Nadeau & Pignataro           Standards Track                    [Page 1]

RFC 5885                        BFD VCCV                       June 2010


  This document may contain material from IETF Documents or IETF
  Contributions published or made publicly available before November
  10, 2008.  The person(s) controlling the copyright in some of this
  material may not have granted the IETF Trust the right to allow
  modifications of such material outside the IETF Standards Process.
  Without obtaining an adequate license from the person(s) controlling
  the copyright in such materials, this document may not be modified
  outside the IETF Standards Process, and derivative works of it may
  not be created outside the IETF Standards Process, except to format
  it for publication as an RFC or to translate it into languages other
  than English.

Table of Contents

  1.  Introduction . . . . . . . . . . . . . . . . . . . . . . . . .  3
  2.  Specification of Requirements  . . . . . . . . . . . . . . . .  3
  3.  Bidirectional Forwarding Detection Connectivity
      Verification . . . . . . . . . . . . . . . . . . . . . . . . .  3
    3.1.  BFD CV Type Operation  . . . . . . . . . . . . . . . . . .  4
    3.2.  BFD Encapsulation  . . . . . . . . . . . . . . . . . . . .  5
    3.3.  CV Types for BFD . . . . . . . . . . . . . . . . . . . . .  7
  4.  Capability Selection . . . . . . . . . . . . . . . . . . . . .  9
  5.  IANA Considerations  . . . . . . . . . . . . . . . . . . . . . 10
    5.1.  MPLS CV Types for the VCCV Interface Parameters Sub-TLV  . 10
    5.2.  PW Associated Channel Type . . . . . . . . . . . . . . . . 10
    5.3.  L2TPv3 CV Types for the VCCV Capability AVP  . . . . . . . 11
  6.  Congestion Considerations  . . . . . . . . . . . . . . . . . . 11
  7.  Security Considerations  . . . . . . . . . . . . . . . . . . . 12
  8.  Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . 12
  9.  References . . . . . . . . . . . . . . . . . . . . . . . . . . 12
    9.1.  Normative References . . . . . . . . . . . . . . . . . . . 12
    9.2.  Informative References . . . . . . . . . . . . . . . . . . 13



















Nadeau & Pignataro           Standards Track                    [Page 2]

RFC 5885                        BFD VCCV                       June 2010


1.  Introduction

  This document describes Connectivity Verification (CV) Types using
  Bidirectional Forwarding Detection (BFD) with Virtual Circuit
  Connectivity Verification (VCCV).  VCCV [RFC5085] provides a control
  channel that is associated with a pseudowire (PW), as well as the
  corresponding operations and management functions such as
  connectivity/fault verification to be used over that control channel.

  BFD [RFC5880] is used over the VCCV control channel primarily as a
  pseudowire fault detection mechanism, for detecting data-plane
  failures.  Some BFD CV Types can additionally carry fault status
  between the endpoints of the pseudowire.  Furthermore, this
  information can then be translated into the native Operations,
  Administration, and Maintenance (OAM) status codes used by the native
  access technologies, such as ATM, Frame Relay, or Ethernet.  The
  specific details of such status interworking are out of the scope of
  this document, and are only noted here to illustrate the utility of
  BFD over VCCV for such purposes.  Those details can be found in
  [OAM-MSG-MAP].

  The new BFD CV Types are PW demultiplexer-agnostic, and hence
  applicable for both MPLS and Layer Two Tunneling Protocol version 3
  (L2TPv3) pseudowire demultiplexers.  This document concerns itself
  with the BFD VCCV operation over single-segment pseudowires (SS-PWs).
  This specification describes procedures only for BFD asynchronous
  mode.

2.  Specification of Requirements

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in [RFC2119].

  The reader is expected to be familiar with the terminology and
  abbreviations defined in [RFC5085].

3.  Bidirectional Forwarding Detection Connectivity Verification

  VCCV can support several Connectivity Verification (CV) Types.  This
  section defines new CV Types for use when BFD is used as the VCCV
  payload.

  Four CV Types are defined for BFD.  Table 1 summarizes the BFD CV
  Types, grouping them by encapsulation (i.e., with versus without IP/
  UDP headers) and by functionality (i.e., fault detection only versus
  fault detection and status signaling).




Nadeau & Pignataro           Standards Track                    [Page 3]

RFC 5885                        BFD VCCV                       June 2010


  +----------------------------+--------------+-----------------------+
  |                            |     Fault    |  Fault Detection and  |
  |                            |   Detection  |    Status Signaling   |
  |                            |     Only     |                       |
  +----------------------------+--------------+-----------------------+
  |  BFD, IP/UDP Encapsulation |     0x04     |          0x08         |
  |      (with IP/UDP Headers) |              |                       |
  |                            |              |                       |
  |  BFD, PW-ACH Encapsulation |     0x10     |          0x20         |
  |   (without IP/UDP Headers) |              |                       |
  +----------------------------+--------------+-----------------------+

                Table 1: Bitmask Values for BFD CV Types

3.1.  BFD CV Type Operation

  When heart-beat indication is necessary for one or more PWs, the
  Bidirectional Forwarding Detection (BFD) [RFC5880] provides a means
  of continuous monitoring of the PW data path and, in some operational
  modes, propagation of PW receive and transmit defect state
  indications.

  In order to use BFD, both ends of the PW connection need to agree on
  the BFD CV Type to use:

     For statically provisioned pseudowires, both ends need to be
     statically configured to use the same BFD CV Type (in addition to
     being statically configured for VCCV with the same CC Type).

     For dynamically established pseudowires, both ends of the PW must
     have signaled the existence of a control channel and the ability
     to run BFD on it (see Sections 3.3 and 4).

  Once a node has selected a valid BFD CV Type to use (either
  statically provisioned or selected dynamically after the node has
  both signaled and received signaling from its peer of these
  capabilities), it begins sending BFD Control packets:

  o  The BFD Control packets are sent on the VCCV control channel.  The
     use of the VCCV control channel provides the context required to
     bind and bootstrap the BFD session, since discriminator values are
     not exchanged; the pseudowire demultiplexer field (e.g., MPLS PW
     Label or L2TPv3 Session ID) provides the context to demultiplex
     the first BFD Control packet, and thus single-hop BFD
     initialization procedures are followed (see Section 3 of [RFC5881]
     and Section 6 of [RFC5882]).





Nadeau & Pignataro           Standards Track                    [Page 4]

RFC 5885                        BFD VCCV                       June 2010


  o  A single BFD session exists per pseudowire.  Both PW endpoints
     take the Active role sending initial BFD Control packets with a
     Your Discriminator field of zero, and BFD Control packets received
     with a Your Discriminator field of zero are associated to the BFD
     session bound to the PW.

  o  BFD MUST be run in asynchronous mode (see [RFC5880]).

  The operation of BFD VCCV for PWs is therefore symmetrical.  Both
  endpoints of the bidirectional pseudowire MUST send BFD messages on
  the VCCV control channel.

  The details of the BFD state machine are as per Section 6.2 of
  [RFC5880].  The following scenario exemplifies the operation: when
  the downstream PE (D-PE) does not receive BFD Control messages from
  its upstream peer PE (U-PE) during a certain number of transmission
  intervals (a number provisioned by the operator as "Detect Mult" or
  detection time multiplier [RFC5880]), D-PE declares that the PW in
  its receive direction is down.  In other words, D-PE enters the "PW
  receive defect" state for this PW.  After this calculated Detection
  Time (see Section 6.8.4 of [RFC5880]), D-PE declares the session
  Down, and signals this to the remote end via the State (Sta) with
  Diagnostic code 1 (Control Detection Time Expired).  In turn, U-PE
  declares the PW is down in its transmit direction, setting the State
  to Down with Diagnostic code 3 (Neighbor signaled session down) in
  its control messages to D-PE.  U-PE enters the "PW transmit defect"
  state for this PW.  How it further processes this error condition,
  and potentially conveys this status to the attachment circuits, is
  out of the scope of this specification, and is defined in
  [OAM-MSG-MAP].

3.2.  BFD Encapsulation

  The VCCV message comprises a BFD Control packet [RFC5880]
  encapsulated as specified by the CV Type.  There are two ways in
  which a BFD connectivity verification packet may be encapsulated over
  the VCCV control channel.  This document defines four BFD CV Types
  (see Section 3), which can be grouped into two pairs of BFD CV Types
  from an encapsulation point of view.  See Table 1 in Section 3, which
  summarizes the BFD CV Types.

  o  IP/UDP BFD Encapsulation (BFD with IP/UDP Headers)

     In the first method, the VCCV encapsulation of BFD includes the
     IP/UDP headers as defined in Section 4 of [RFC5881].  BFD Control
     packets are therefore transmitted in UDP with destination port
     3784 and source port within the range 49152 through 65535.  The IP




Nadeau & Pignataro           Standards Track                    [Page 5]

RFC 5885                        BFD VCCV                       June 2010


     Protocol Number and UDP Port numbers discriminate among the
     possible VCCV payloads (i.e., differentiate among ICMP Ping and
     LSP Ping defined in [RFC5085] and BFD).

     The IP version (IPv4 or IPv6) MUST match the IP version used for
     signaling for dynamically established pseudowires or MUST be
     configured for statically provisioned pseudowires.  The source IP
     address is an address of the sender.  The destination IP address
     is a (randomly chosen) IPv4 address from the range 127/8 or IPv6
     address from the range 0:0:0:0:0:FFFF:127.0.0.0/104.  The
     rationale is explained in Section 2.1 of [RFC4379].  The Time to
     Live/Hop Limit and Generalized TTL Security Mechanism (GTSM)
     procedures from Section 5 of [RFC5881] apply to this
     encapsulation, and hence the TTL/Hop Limit is set to 255.

     If the PW is established by signaling, then the BFD CV Type used
     for this encapsulation is either 0x04 or 0x08.

  o  PW-ACH BFD Encapsulation (BFD without IP/UDP Headers)

     In the second method, a BFD Control packet (format defined in
     Section 4 of [RFC5880]) is encapsulated directly in the VCCV
     control channel (see Sections 6 and 8 of [RFC5882]) and the IP/UDP
     headers are omitted from the BFD encapsulation.  Therefore, to
     utilize this encapsulation, a pseudowire MUST use the PW
     Associated Channel Header (PW-ACH) Control Word format (see
     [RFC5586]) for its Control Word (CW) or L2-Specific Sublayer
     (L2SS, used in L2TPv3).

     In this encapsulation, a "raw" BFD Control packet (i.e., a BFD
     Control packet as defined in Section 4.1 of [RFC5880] without IP/
     UDP headers) follows directly the PW-ACH.  The PW-ACH Channel Type
     indicates that the Associated Channel carries "raw" BFD.  The PW
     Associated Channel (PWAC) is defined in Section 5 of [RFC4385],
     and its Channel Type field is used to discriminate the VCCV
     payload types.

     The usage of the PW-ACH on different VCCV CC Types is specified
     for CC Type 1, Type 2, and Type 3 respectively in Sections 5.1.1,
     5.1.2, and 5.1.3 of [RFC5085], and in all cases requires the use
     of a CW (see Section 7 of [RFC4385]).  When VCCV carries PW-ACH-
     encapsulated BFD (i.e., "raw" BFD), the PW-ACH (pseudowire CW's or
     L2SS') Channel Type MUST be set to 0x0007 to indicate "BFD
     Control, PW-ACH-encapsulated" (i.e., BFD without IP/UDP headers;
     see Section 5.2).  This is to allow the identification of the
     encased BFD payload when demultiplexing the VCCV control channel.





Nadeau & Pignataro           Standards Track                    [Page 6]

RFC 5885                        BFD VCCV                       June 2010


     If the PW is established by signaling, then the BFD CV Type used
     for this encapsulation is either 0x10 or 0x20.

  In summary, for the IP/UDP encapsulation of BFD (BFD with IP/UDP
  headers), if a PW Associated Channel Header is used, the Channel Type
  MUST indicate either IPv4 (0x0021) or IPv6 (0x0057).  For the PW-ACH
  encapsulation of BFD (BFD without IP/UDP headers), the PW Associated
  Channel Header MUST be used and the Channel Type MUST indicate BFD
  Control packet (0x0007).

3.3.  CV Types for BFD

  The CV Type is defined as a bitmask field used to indicate the
  specific CV Type or Types (i.e., none, one, or more) of VCCV packets
  that may be sent on the VCCV control channel.  The CV Types shown in
  the table below augment those already defined in [RFC5085].  Their
  values shown in parentheses represent the numerical value
  corresponding to the actual bit being set in the CV Type bitfield.

  BFD CV Types:

     The defined values for the different BFD CV Types for MPLS and
     L2TPv3 PWs are:

     Bit (Value)   Description
     ============  ====================================================
     Bit 2 (0x04)  BFD IP/UDP-encapsulated, for PW Fault Detection only
     Bit 3 (0x08)  BFD IP/UDP-encapsulated, for PW Fault Detection and
                   AC/PW Fault Status Signaling
     Bit 4 (0x10)  BFD PW-ACH-encapsulated, for PW Fault Detection only
     Bit 5 (0x20)  BFD PW-ACH-encapsulated, for PW Fault Detection and
                   AC/PW Fault Status Signaling

  It should be noted that four BFD CV Types have been defined by
  combining two types of encapsulation with two types of functionality;
  see Table 1 in Section 3.

  Given the bidirectional nature of BFD, before selecting a given BFD
  CV Type capability to be used in dynamically established pseudowires,
  there MUST be common CV Types in the VCCV capability advertised and
  received.  That is, only BFD CV Types that were both advertised and
  received are available to be selected.  Additionally, only one BFD CV
  Type can be used (selecting a BFD CV Type excludes all the remaining
  BFD CV Types).







Nadeau & Pignataro           Standards Track                    [Page 7]

RFC 5885                        BFD VCCV                       June 2010


  The following list enumerates rules, restrictions, and clarifications
  on the usage of BFD CV Types:

  1.  BFD CV Types used for fault detection and status signaling (i.e.,
      CV Types 0x08 and 0x20) SHOULD NOT be used when a control
      protocol such as LDP [RFC4447] or L2TPV3 [RFC3931] is available
      that can signal the AC/PW status to the remote endpoint of the
      PW.  More details can be found in [OAM-MSG-MAP].

  2.  BFD CV Types used for fault detection only (i.e., CV Types 0x04
      and 0x10) can be used whether or not a protocol that can signal
      AC/PW status is available.  This includes both statically
      provisioned and dynamically signaled pseudowires.

      2.1.  In this case, BFD is used exclusively to detect faults on
            the PW; if it is desired to convey AC/PW fault status, some
            means other than BFD are to be used.  Examples include
            using LDP status messages when using MPLS as a transport
            (see Section 5.4 of [RFC4447]), and the Circuit Status
            Attribute Value Pair (AVP) in an L2TPv3 SLI message for
            L2TPv3 (see Section 5.4.5 of [RFC3931]).

  3.  Pseudowires that do not use a CW or L2SS using the PW Associated
      Channel Header MUST NOT use the BFD CV Types 0x10 or 0x20 (i.e.,
      PW-ACH encapsulation of BFD, without IP/UDP headers).

      3.1.  PWs that use a PW-ACH include CC Type 1 (for both MPLS and
            L2TPv3 as defined in Sections 5.1.1 and 6.1 of [RFC5085]),
            and MPLS CC Types 2 and 3 when using a Control Word (as
            specified in Sections 5.1.2 and 5.1.3 of [RFC5085]).  This
            restriction stems from the fact that the encapsulation uses
            the Channel Type in the PW-ACH.

      3.2.  PWs that do not use a PW-ACH can use the VCCV BFD
            encapsulation with IP/UDP headers, as the only VCCV BFD
            encapsulation supported.  Using the IP/UDP encapsulated BFD
            CV Types allows for the concurrent use of other VCCV CV
            Types that use an encapsulation with IP headers (e.g., ICMP
            Ping or LSP Ping defined in [RFC5085]).

  4.  Only a single BFD CV Type can be selected and used.  All BFD CV
      Types are mutually exclusive.  After selecting a BFD CV Type, a
      node MUST NOT use any of the other three BFD CV Types.

  5.  Once a PE has chosen a single BFD CV Type to use, it MUST
      continue using it until when the PW is re-signaled.  In order to
      change the negotiated and selected BFD CV Type, the PW must be
      torn down and re-established.



Nadeau & Pignataro           Standards Track                    [Page 8]

RFC 5885                        BFD VCCV                       June 2010


4.  Capability Selection

  The precedence rules for selection of various CC and CV Types is
  clearly outlined in Section 7 of [RFC5085].  This section augments
  these rules when the BFD CV Types defined herein are supported.  The
  selection of a specific BFD CV Type to use out of the four available
  CV Types defined is tied to multiple factors, as described in
  Section 3.3.  Given that BFD is bidirectional in nature, only CV
  Types that are both received and sent in VCCV capability signaling
  advertisement can be selected.

  When multiple BFD CV Types are advertised, and after applying the
  rules in Section 3.3, the set that both ends of the pseudowire have
  in common is determined.  If the two ends have more than one BFD CV
  Type in common, the following list of BFD CV Types is considered in
  the order of the lowest list number CV Type to the highest list
  number CV Type, and the CV Type with the lowest list number is used:

  1.  0x20 - BFD PW-ACH-encapsulated (without IP/UDP headers), for PW
      Fault Detection and AC/PW Fault Status Signaling

  2.  0x10 - BFD PW-ACH-encapsulated (without IP/UDP headers), for PW
      Fault Detection only

  3.  0x08 - BFD IP/UDP-encapsulated, for PW Fault Detection and AC/PW
      Fault Status Signaling

  4.  0x04 - BFD IP/UDP-encapsulated, for PW Fault Detection only























Nadeau & Pignataro           Standards Track                    [Page 9]

RFC 5885                        BFD VCCV                       June 2010


5.  IANA Considerations

5.1.  MPLS CV Types for the VCCV Interface Parameters Sub-TLV

  The VCCV Interface Parameters Sub-TLV codepoint is defined in
  [RFC4446], and the VCCV CV Types registry is defined in [RFC5085].
  This section lists the new BFD CV Types.

  IANA has augmented the "VCCV Connectivity Verification (CV) Types"
  registry in the Pseudowire Name Spaces reachable from [IANA].  These
  are bitfield values.  CV Type values 0x04, 0x08, 0x10, and 0x20 are
  specified in Section 3 of this document.

     MPLS Connectivity Verification (CV) Types:

     Bit (Value)   Description
     ============  ====================================================
     Bit 2 (0x04)  BFD IP/UDP-encapsulated, for PW Fault Detection only
     Bit 3 (0x08)  BFD IP/UDP-encapsulated, for PW Fault Detection and
                   AC/PW Fault Status Signaling
     Bit 4 (0x10)  BFD PW-ACH-encapsulated, for PW Fault Detection only
     Bit 5 (0x20)  BFD PW-ACH-encapsulated, for PW Fault Detection and
                   AC/PW Fault Status Signaling

5.2.  PW Associated Channel Type

  The PW Associated Channel Types used by VCCV rely on previously
  allocated numbers from the Pseudowire Associated Channel Types
  Registry [RFC4385] in the Pseudowire Name Spaces reachable from
  [IANA].

  IANA has reserved a new Pseudowire Associated Channel Type value as
  follows:

  Registry:
                                               TLV
   Value   Description                         Follows  Reference
   ------  ----------------------------------  -------  ---------------
   0x0007  BFD Control, PW-ACH encapsulation   No       [This document]
           (without IP/UDP Headers)











Nadeau & Pignataro           Standards Track                   [Page 10]

RFC 5885                        BFD VCCV                       June 2010


5.3.  L2TPv3 CV Types for the VCCV Capability AVP

  This section lists the new BFD CV Types to be added to the existing
  "VCCV Capability AVP" registry in the L2TP name spaces.  The Layer
  Two Tunneling Protocol "L2TP" Name Spaces are reachable from [IANA].

  IANA has reserved the following L2TPv3 Connectivity Verification (CV)
  Types in the VCCV Capability AVP Values registry.

     VCCV Capability AVP (Attribute Type 96) Values
     ----------------------------------------------

     L2TPv3 Connectivity Verification (CV) Types:

     Bit (Value)   Description
     ============  ====================================================
     Bit 2 (0x04)  BFD IP/UDP-encapsulated, for PW Fault Detection only
     Bit 3 (0x08)  BFD IP/UDP-encapsulated, for PW Fault Detection and
                   AC/PW Fault Status Signaling
     Bit 4 (0x10)  BFD PW-ACH-encapsulated, for PW Fault Detection only
     Bit 5 (0x20)  BFD PW-ACH-encapsulated, for PW Fault Detection and
                   AC/PW Fault Status Signaling

6.  Congestion Considerations

  The congestion considerations that apply to [RFC5085] apply to this
  mode of operation as well.  This section describes explicitly how
  they apply.

  BFD as a VCCV application is required to provide details on
  congestion and bandwidth considerations.  BFD provides with a desired
  minimum transmit interval and a required minimum receive interval,
  negotiates the transmission interval using these configurable fields,
  and has a packet of fixed size (setting the transmission rate).
  Therefore, it results in a configuration limited bandwidth
  utilization.  As stated in [RFC5085], this is sufficient protection
  against congestion as long as BFD's configured maximum bit-rate is
  minimal compared to the bit-rate of the pseudowire the VCCV channel
  is associated with.  If the pseudowire bit-rate can't be guaranteed
  to be minimal, like potentially for highly variable bit-rate and/or
  congestion responsive pseudowires, BFD will be required to operate
  using an adaptive congestion control mechanism (for example,
  including a throttled transmission rate on "congestion detected"
  situations, and a slow-start after shutdown due to congestion and
  until basic connectivity is verified).






Nadeau & Pignataro           Standards Track                   [Page 11]

RFC 5885                        BFD VCCV                       June 2010


  Since the bandwidth utilized by BFD is configuration-limited, the
  VCCV channel MUST NOT be rate-limited below this maximum configurable
  bandwidth or BFD will not operate correctly.  The VCCV channel could
  provide rate-limiting above the maximum BFD rate, to protect from a
  misbehaving BFD application, so that it does not conflict and can
  coexist.  Additionally, the VCCV channel SHOULD NOT use any
  additional congestion control loop that would interfere or negatively
  interact with that of BFD.  There are no additional congestion
  considerations.

7.  Security Considerations

  Routers that implement the additional CV Types defined herein are
  subject to the same security considerations as defined in [RFC5085],
  [RFC5880], and [RFC5881].  This specification does not raise any
  additional security issues beyond these.  The IP/UDP-encapsulated BFD
  makes use of the TTL/Hop Limit procedures described in Section 5 of
  [RFC5881], including the use of the Generalized TTL Security
  Mechanism (GTSM) as a security mechanism.

8.  Acknowledgements

  This work forks from a previous revision of the PWE3 WG document that
  resulted in [RFC5085], to which a number of people contributed,
  including Rahul Aggarwal, Peter B. Busschbach, Yuichi Ikejiri, Kenji
  Kumaki, Luca Martini, Monique Morrow, George Swallow, and others.

  Mustapha Aissaoui, Sam Aldrin, Stewart Bryant, Peter B. Busschbach,
  Annamaria Fulignoli, Vishwas Manral, Luca Martini, Dave McDysan, Ben
  Niven-Jenkins, Pankil Shah, Yaakov Stein, and George Swallow provided
  useful feedback and valuable comments and suggestions improving newer
  versions of this document.

9.  References

9.1.  Normative References

  [RFC2119]      Bradner, S., "Key words for use in RFCs to Indicate
                 Requirement Levels", BCP 14, RFC 2119, March 1997.

  [RFC4385]      Bryant, S., Swallow, G., Martini, L., and D.
                 McPherson, "Pseudowire Emulation Edge-to-Edge (PWE3)
                 Control Word for Use over an MPLS PSN", RFC 4385,
                 February 2006.

  [RFC5085]      Nadeau, T. and C. Pignataro, "Pseudowire Virtual
                 Circuit Connectivity Verification (VCCV): A Control
                 Channel for Pseudowires", RFC 5085, December 2007.



Nadeau & Pignataro           Standards Track                   [Page 12]

RFC 5885                        BFD VCCV                       June 2010


  [RFC5880]      Katz, D. and D. Ward, "Bidirectional Forwarding
                 Detection", RFC 5880, June 2010.

  [RFC5881]      Katz, D. and D. Ward, "Bidirectional Forwarding
                 Detection (BFD) for IPv4 and IPv6 (Single Hop)",
                 RFC 5881, June 2010.

  [RFC5882]      Katz, D. and D. Ward, "Generic Application of
                 Bidirectional Forwarding Detection (BFD)", RFC 5882,
                 June 2010.

9.2.  Informative References

  [IANA]         Internet Assigned Numbers Authority, "Protocol
                 Registries", <http://www.iana.org>.

  [OAM-MSG-MAP]  Aissaoui, M., Busschbach, P., Morrow, M., Martini, L.,
                 Stein, Y., Allan, D., and T. Nadeau, "Pseudowire (PW)
                 OAM Message Mapping", Work in Progress, March 2010.

  [RFC3931]      Lau, J., Townsley, M., and I. Goyret, "Layer Two
                 Tunneling Protocol - Version 3 (L2TPv3)", RFC 3931,
                 March 2005.

  [RFC4379]      Kompella, K. and G. Swallow, "Detecting Multi-Protocol
                 Label Switched (MPLS) Data Plane Failures", RFC 4379,
                 February 2006.

  [RFC4446]      Martini, L., "IANA Allocations for Pseudowire Edge to
                 Edge Emulation (PWE3)", BCP 116, RFC 4446, April 2006.

  [RFC4447]      Martini, L., Rosen, E., El-Aawar, N., Smith, T., and
                 G. Heron, "Pseudowire Setup and Maintenance Using the
                 Label Distribution Protocol (LDP)", RFC 4447,
                 April 2006.

  [RFC5586]      Bocci, M., Vigoureux, M., and S. Bryant, "MPLS Generic
                 Associated Channel", RFC 5586, June 2009.













Nadeau & Pignataro           Standards Track                   [Page 13]

RFC 5885                        BFD VCCV                       June 2010


Authors' Addresses

  Thomas D. Nadeau (editor)
  BT
  BT Centre
  81 Newgate Street
  London  EC1A 7AJ
  United Kingdom

  EMail: [email protected]


  Carlos Pignataro (editor)
  Cisco Systems, Inc.
  7200 Kit Creek Road
  PO Box 14987
  Research Triangle Park, NC  27709
  USA

  EMail: [email protected]































Nadeau & Pignataro           Standards Track                   [Page 14]