Internet Engineering Task Force (IETF)                          M. Brown
Request for Comments: 5878                             RedPhone Security
Updates: 5246                                                 R. Housley
Category: Experimental                                    Vigil Security
ISSN: 2070-1721                                                 May 2010


       Transport Layer Security (TLS) Authorization Extensions

Abstract

  This document specifies authorization extensions to the Transport
  Layer Security (TLS) Handshake Protocol.  Extensions are carried in
  the client and server hello messages to confirm that both parties
  support the desired authorization data types.  Then, if supported by
  both the client and the server, authorization information, such as
  attribute certificates (ACs) or Security Assertion Markup Language
  (SAML) assertions, is exchanged in the supplemental data handshake
  message.

Status of This Memo

  This document is not an Internet Standards Track specification; it is
  published for examination, experimental implementation, and
  evaluation.

  This document defines an Experimental Protocol for the Internet
  community.  This document is a product of the Internet Engineering
  Task Force (IETF).  It represents the consensus of the IETF
  community.  It has received public review and has been approved for
  publication by the Internet Engineering Steering Group (IESG).  Not
  all documents approved by the IESG are a candidate for any level of
  Internet Standard; see Section 2 of RFC 5741.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  http://www.rfc-editor.org/info/rfc5878.

Copyright Notice

  Copyright (c) 2010 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (http://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect



Brown & Housley               Experimental                      [Page 1]

RFC 5878              TLS Authorization Extensions              May 2010


  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.

1.  Introduction

  The Transport Layer Security (TLS) protocol ([TLS1.0], [TLS1.1],
  [TLS1.2]) is being used in an increasing variety of operational
  environments, including ones that were not envisioned at the time of
  the original design for TLS.  The extensions introduced in this
  document are designed to enable TLS to operate in environments where
  authorization information needs to be exchanged between the client
  and the server before any protected data is exchanged.  The use of
  these TLS authorization extensions is especially attractive when more
  than one application protocol can make use of the same authorization
  information.

  The format and content of the authorization information carried in
  these extensions are extensible.  This document references Security
  Assertion Markup Language (SAML) assertion ([SAML1.1], [SAML2.0]) and
  X.509 attribute certificate (AC) [ATTRCERT] authorization formats,
  but other formats can be used.  Future authorization extensions may
  include any opaque assertion that is digitally signed by a trusted
  issuer.  Recognizing the similarity to certification path validation,
  this document recommends the use of TLS Alert messages related to
  certificate processing to report authorization information processing
  failures.

  Straightforward binding of identification, authentication, and
  authorization information to an encrypted session is possible when
  all of these are handled within TLS.  If each application requires
  unique authorization information, then it might best be carried
  within the TLS-protected application protocol.  However, care must be
  taken to ensure appropriate bindings when identification,
  authentication, and authorization information are handled at
  different protocol layers.

  This document describes authorization extensions for the TLS
  Handshake Protocol in TLS 1.0, TLS 1.1, and TLS 1.2.  These
  extensions observe the conventions defined for TLS extensions that
  were originally defined in [TLSEXT1] and revised in [TLSEXT2]; TLS
  extensions are now part of TLS 1.2 [TLS1.2].  TLS extensions use
  general extension mechanisms for the client hello message and the







Brown & Housley               Experimental                      [Page 2]

RFC 5878              TLS Authorization Extensions              May 2010


  server hello message.  The extensions described in this document
  confirm that both the client and the server support the desired
  authorization data types.  Then, if supported, authorization
  information is exchanged in the supplemental data handshake message
  [TLSSUPP].

  The authorization extensions may be used in conjunction with TLS 1.0,
  TLS 1.1, and TLS 1.2.  The extensions are designed to be backwards
  compatible, meaning that the handshake protocol supplemental data
  messages will only contain authorization information of a particular
  type if the client indicates support for them in the client hello
  message and the server indicates support for them in the server hello
  message.

  Clients typically know the context of the TLS session that is being
  set up; thus, the client can use the authorization extensions when
  they are needed.  Servers must accept extended client hello messages,
  even if the server does not "understand" all of the listed
  extensions.  However, the server will not indicate support for these
  "not understood" extensions.  Then, clients may reject communications
  with servers that do not support the authorization extensions.

1.1.  Conventions

  The syntax for the authorization messages is defined using the TLS
  Presentation Language, which is specified in Section 4 of [TLS1.0].

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in RFC 2119 [STDWORDS].

1.2.  Overview

  Figure 1 illustrates the placement of the authorization extensions
  and supplemental data messages in the full TLS handshake.

  The ClientHello message includes an indication of the client
  authorization data formats that are supported and an indication of
  the server authorization data formats that are supported.  The
  ServerHello message contains similar indications, but any
  authorization data formats that are not supported by the server are
  not included.  Both the client and the server MUST indicate support
  for the authorization data types.  If the list of mutually supported
  authorization data formats is empty, then the ServerHello message
  MUST NOT carry the affected extension at all.

  Successful session resumption uses the same authorization information
  as the original session.



Brown & Housley               Experimental                      [Page 3]

RFC 5878              TLS Authorization Extensions              May 2010


   Client                                                   Server

   ClientHello (w/ extensions) -------->

                                       ServerHello (w/ extensions)
                                                 SupplementalData*
                                                      Certificate*
                                                ServerKeyExchange*
                                               CertificateRequest*
                               <--------           ServerHelloDone
   SupplementalData*
   Certificate*
   ClientKeyExchange
   CertificateVerify*
   [ChangeCipherSpec]
   Finished                    -------->
                                                [ChangeCipherSpec]
                               <--------                  Finished
   Application Data            <------->          Application Data

    *  Indicates optional or situation-dependent messages that
       are not always sent.

    [] Indicates that ChangeCipherSpec is an independent TLS
       protocol content type; it is not actually a TLS
       handshake message.

      Figure 1.  Authorization Data Exchange in Full TLS Handshake

2.  Authorization Extension Types

  The general extension mechanisms enable clients and servers to
  negotiate whether to use specific extensions, and how to use specific
  extensions.  As specified in [TLS1.2], the extension format used in
  the extended client hello message and extended server hello message
  is repeated here for convenience:

     struct {
        ExtensionType extension_type;
        opaque extension_data<0..2^16-1>;
     } Extension;

  The extension_type identifies a particular extension type, and the
  extension_data contains information specific to the particular
  extension type.  This document specifies the use of two new extension
  types: client_authz and server_authz.  These extension types are
  described in Section 2.1 and Section 2.2, respectively.  This
  specification adds two new types to ExtensionType:



Brown & Housley               Experimental                      [Page 4]

RFC 5878              TLS Authorization Extensions              May 2010


     enum {
       client_authz(7), server_authz(8), (65535)
     } ExtensionType;

  The authorization extensions are relevant when a session is initiated
  and on any subsequent session resumption.  However, a client that
  requests resumption of a session does not know whether the server
  will have all of the context necessary to accept this request, and
  therefore the client SHOULD send an extended client hello message
  that includes the extension types associated with the authorization
  extensions.  This way, if the resumption request is denied, then the
  authorization extensions will be negotiated as normal.

  When a session is resumed, ClientHello is followed immediately by
  ChangeCipherSpec, which does not provide an opportunity for different
  authorization information can be exchanged.  Successful session
  resumption MUST use the same authorization information as the
  original session.

2.1.  The client_authz Extension Type

  Clients MUST include the client_authz extension type in the extended
  client hello message to indicate their desire to send authorization
  data to the server.  The extension_data field indicates the format of
  the authorization data that will be sent in the supplemental data
  handshake message.  The syntax of the client_authz extension_data
  field is described in Section 2.3.

  Servers that receive an extended client hello message containing the
  client_authz extension MUST respond with the same client_authz
  extension in the extended server hello message if the server is
  willing to receive authorization data in the indicated format.  Any
  unacceptable formats must be removed from the list provided by the
  client.  The client_authz extension MUST be omitted from the extended
  server hello message if the server is not willing to receive
  authorization data in any of the indicated formats.

2.2.  The server_authz Extension Type

  Clients MUST include the server_authz extension type in the extended
  client hello message to indicate their desire to receive
  authorization data from the server.  The extension_data field
  indicates the format of the authorization data that will be sent in
  the supplemental data handshake message.  The syntax of the
  server_authz extension_data field is described in Section 2.3.






Brown & Housley               Experimental                      [Page 5]

RFC 5878              TLS Authorization Extensions              May 2010


  Servers that receive an extended client hello message containing the
  server_authz extension MUST respond with the same server_authz
  extension in the extended server hello message if the server is
  willing to provide authorization data in the requested format.  Any
  unacceptable formats must be removed from the list provided by the
  client.  The server_authz extension MUST be omitted from the extended
  server hello message if the server is not able to provide
  authorization data in any of the indicated formats.

2.3.  AuthzDataFormat Type

  The AuthzDataFormat type is used in both the client_authz and the
  server_authz extensions.  It indicates the format of the
  authorization data that will be transferred.  The AuthzDataFormats
  type definition is:

     enum {
        x509_attr_cert(0), saml_assertion(1), x509_attr_cert_url(2),
        saml_assertion_url(3), (255)
     } AuthzDataFormat;

     AuthzDataFormats authz_format_list<1..2^8-1>;

  When the x509_attr_cert value is present, the authorization data is
  an X.509 attribute certificate (AC) that conforms to the profile in
  RFC 5755 [ATTRCERT].

  When the saml_assertion value is present, the authorization data is
  an assertion composed using the Security Assertion Markup Language
  (SAML) ([SAML1.1], [SAML2.0]).

  When the x509_attr_cert_url value is present, the authorization data
  is an X.509 AC that conforms to the profile in RFC 5755 [ATTRCERT];
  however, the AC is fetched with the supplied URL.  A one-way hash
  value is provided to ensure that the intended AC is obtained.

  When the saml_assertion_url value is present, the authorization data
  is a SAML assertion; however, the SAML assertion is fetched with the
  supplied URL.  A one-way hash value is provided to ensure that the
  intended SAML assertion is obtained.

  Implementations that support either x509_attr_cert_url or
  saml_assertion_url MUST support URLs that employ the http scheme
  [HTTP].  These implementations MUST confirm that the hash value
  computed on the fetched authorization matches the one received in the
  handshake.  Mismatch of the hash values SHOULD be treated as though
  the authorization was not provided, which will result in a
  bad_certificate_hash_value alert (see Section 4).  Implementations



Brown & Housley               Experimental                      [Page 6]

RFC 5878              TLS Authorization Extensions              May 2010


  MUST deny access if the authorization cannot be obtained from the
  provided URL, by sending a certificate_unobtainable alert (see
  Section 4).

3.  Supplemental Data Handshake Message Usage

  As shown in Figure 1, supplemental data can be exchanged in two
  places in the handshake protocol.  The client_authz extension
  determines what authorization data formats are acceptable for
  transfer from the client to the server, and the server_authz
  extension determines what authorization data formats are acceptable
  for transfer from the server to the client.  In both cases, the
  syntax specified in [TLSSUPP] is used along with the authz_data type
  defined in this document.

     enum {
        authz_data(16386), (65535)
     } SupplementalDataType;

     struct {
        SupplementalDataType supplemental_data_type;
        select(SupplementalDataType) {
           case authz_data:  AuthorizationData;
        }
     } SupplementalData;

3.1.  Client Authorization Data

  The SupplementalData message sent from the client to the server
  contains authorization data associated with the TLS client.
  Following the principle of least privilege, the client ought to send
  the minimal set of authorization information necessary to accomplish
  the task at hand.  That is, only those authorizations that are
  expected to be required by the server in order to gain access to the
  needed server resources ought to be included.  The format of the
  authorization data depends on the format negotiated in the
  client_authz hello message extension.  The AuthorizationData
  structure is described in Section 3.3.

  In some systems, clients present authorization information to the
  server, and then the server provides new authorization information.
  This type of transaction is not supported by SupplementalData
  messages.  In cases where the client intends to request the TLS
  server to perform authorization translation or expansion services,
  such translation services ought to occur within the ApplicationData
  messages, and not within the TLS Handshake Protocol.





Brown & Housley               Experimental                      [Page 7]

RFC 5878              TLS Authorization Extensions              May 2010


3.2.  Server Authorization Data

  The SupplementalData message sent from the server to the client
  contains authorization data associated with the TLS server.  This
  authorization information is expected to include statements about the
  server's qualifications, reputation, accreditation, and so on.
  Wherever possible, authorizations that can be misappropriated for
  fraudulent use ought to be avoided.  The format of the authorization
  data depends on the format negotiated in the server_authz hello
  message extensions.  The AuthorizationData structure is described in
  Section 3.3, and the following fictitious example of a single 5-octet
  SAML assertion illustrates its use:

     17             # Handshake.msg_type == supplemental_data(23)
     00 00 11       # Handshake.length = 17
     00 00 0e       # length of SupplementalData.supp_data = 14
     40 02          # SupplementalDataEntry.supp_data_type = 16386
     00 0a          # SupplementalDataEntry.supp_data_length = 10
     00 08          # length of AuthorizationData.authz_data_list = 8
     01             # authz_format = saml_assertion(1)
     00 05          # length of SAMLAssertion
     aa aa aa aa aa # SAML assertion (fictitious: "aa aa aa aa aa")

3.3.  AuthorizationData Type

  The AuthorizationData structure carries authorization information for
  either the client or the server.  The AuthzDataFormat specified in
  Section 2.3 for use in the hello extensions is also used in this
  structure.

  All of the entries in the authz_data_list MUST employ authorization
  data formats that were negotiated in the relevant hello message
  extension.

  The HashAlgorithm type is taken from [TLS1.2], which allows
  additional one-way hash functions to be registered in the IANA TLS
  HashAlgorithm registry in the future.














Brown & Housley               Experimental                      [Page 8]

RFC 5878              TLS Authorization Extensions              May 2010


     struct{
        AuthorizationDataEntry authz_data_list<1..2^16-1>;
     } AuthorizationData;

     struct {
        AuthzDataFormat authz_format;
        select (AuthzDataFormat) {
           case x509_attr_cert:         X509AttrCert;
           case saml_assertion:         SAMLAssertion;
           case x509_attr_cert_url:     URLandHash;
           case saml_assertion_url:     URLandHash;
        }
     } AuthorizationDataEntry;

     enum {
        x509_attr_cert(0), saml_assertion(1), x509_attr_cert_url(2),
        saml_assertion_url(3), (255)
     } AuthzDataFormat;

     opaque X509AttrCert<1..2^16-1>;

     opaque SAMLAssertion<1..2^16-1>;

     struct {
        opaque url<1..2^16-1>;
        HashAlgorithm hash_alg;
        select (hash_alg) {
           case md5:    MD5Hash;
           case sha1:   SHA1Hash;
           case sha224: SHA224Hash;
           case sha256: SHA256Hash;
           case sha384: SHA384Hash;
           case sha512: SHA512Hash;
        } hash;
     } URLandHash;

     enum {
        none(0), md5(1), sha1(2), sha224(3), sha256(4), sha384(5),
        sha512(6), (255)
     } HashAlgorithm;











Brown & Housley               Experimental                      [Page 9]

RFC 5878              TLS Authorization Extensions              May 2010


     opaque MD5Hash[16];

     opaque SHA1Hash[20];

     opaque SHA224Hash[28];

     opaque SHA256Hash[32];

     opaque SHA384Hash[48];

     opaque SHA512Hash[64];

3.3.1.  X.509 Attribute Certificate

  When X509AttrCert is used, the field contains an ASN.1 Distinguished
  Encoding Rules (DER)-encoded X.509 attribute certificate (AC) that
  follows the profile in RFC 5755 [ATTRCERT].  An AC is a structure
  similar to a public key certificate (PKC) [PKIX1]; the main
  difference is that the AC contains no public key.  An AC may contain
  attributes that specify group membership, role, security clearance,
  or other authorization information associated with the AC holder.

  When making an authorization decision based on an AC, proper linkage
  between the AC holder and the public key certificate that is
  transferred in the TLS Certificate message is needed.  The AC holder
  field provides this linkage.  The holder field is a SEQUENCE allowing
  three different (optional) syntaxes: baseCertificateID, entityName,
  and objectDigestInfo.  In the TLS authorization context, the holder
  field MUST use either the baseCertificateID or entityName.  In the
  baseCertificateID case, the baseCertificateID field MUST match the
  issuer and serialNumber fields in the certificate.  In the entityName
  case, the entityName MUST be the same as the subject field in the
  certificate or one of the subjectAltName extension values in the
  certificate.  Note that [PKIX1] mandates that the subjectAltName
  extension be present if the subject field contains an empty
  distinguished name.

3.3.2.  SAML Assertion

  When SAMLAssertion is used, the field MUST contain well-formed XML
  [XML1.0] and MUST use either UTF-8 [UTF-8] or UTF-16 [UTF-16]
  character encoding.  UTF-8 is the preferred character encoding.  The
  XML text declaration MUST be followed by an <Assertion> element using
  the AssertionType complex type as defined in [SAML1.1] and [SAML2.0].
  The XML text MUST also follow the rules of [XML1.0] for including the
  Byte Order Mark (BOM) in encoded entities.  SAML is an XML-based
  framework for exchanging security information.  This security
  information is expressed in the form of assertions about subjects,



Brown & Housley               Experimental                     [Page 10]

RFC 5878              TLS Authorization Extensions              May 2010


  where a subject is either human or computer with an identity.  In
  this context, the SAML assertions are most likely to convey
  authentication or attribute statements to be used as input to
  authorization policy governing whether subjects are allowed to access
  certain resources.  Assertions are issued by SAML authorities.

  When making an authorization decision based on a SAML assertion,
  proper linkage between the SAML assertion and the public key
  certificate that is transferred in the TLS Certificate message may be
  needed.  A "Holder of Key" subject confirmation method in the SAML
  assertion can provide this linkage.  In other scenarios, it may be
  acceptable to use alternate confirmation methods that do not provide
  a strong binding, such as a bearer mechanism.  SAML assertion
  recipients MUST decide which subject confirmation methods are
  acceptable; such decisions MAY be specific to the SAML assertion
  contents and the TLS session context.

  There is no general requirement that the subject of the SAML
  assertion correspond directly to the subject of the certificate.
  They may represent the same or different entities.  When they are
  different, SAML also provides a mechanism by which the certificate
  subject can be identified separately from the subject in the SAML
  assertion subject confirmation method.

  Since the SAML assertion is being provided at a part of the TLS
  handshake that is unencrypted, an eavesdropper could replay the same
  SAML assertion when they establish their own TLS session.  This is
  especially important when a bearer mechanism is employed; the
  recipient of the SAML assertion assumes that the sender is an
  acceptable attesting entity for the SAML assertion.  Some constraints
  may be included to limit the context where the bearer mechanism will
  be accepted.  For example, the period of time that the SAML assertion
  can be short-lived (often minutes), the source address can be
  constrained, or the destination endpoint can be identified.  Also,
  bearer assertions are often checked against a cache of SAML assertion
  unique identifiers that were recently received, in order to detect
  replay.  This is an appropriate countermeasure if the bearer
  assertion is intended to be used just once.  Section 6 provides a way
  to protect authorization information when necessary.

3.3.3.  URL and Hash

  Since the X.509 AC and SAML assertion can be large, alternatives
  provide a URL to obtain the ASN.1 DER-encoded X.509 AC or SAML
  assertion.  To ensure that the intended object is obtained, a one-way
  hash value of the object is also included.  Integrity of this one-way
  hash value is provided by the TLS Finished message.




Brown & Housley               Experimental                     [Page 11]

RFC 5878              TLS Authorization Extensions              May 2010


  Implementations that support either x509_attr_cert_url or
  saml_assertion_url MUST support URLs that employ the HTTP scheme.
  Other schemes may also be supported.  When dereferencing these URLs,
  circular dependencies MUST be avoided.  Avoiding TLS when
  dereferencing these URLs is one way to avoid circular dependencies.
  Therefore, clients using the HTTP scheme MUST NOT use these TLS
  extensions if UPGRADE in HTTP [UPGRADE] is used.  For other schemes,
  similar care must be taken to avoid using these TLS extensions.

  Implementations that support either x509_attr_cert_url or
  saml_assertion_url MUST support both SHA-1 [SHS] and SHA-256 [SHS] as
  one-way hash functions.  Other one-way hash functions may also be
  supported.  Additional one-way hash functions can be added to the
  IANA TLS HashAlgorithm registry in the future.

  Implementations that support x509_attr_cert_url MUST support
  responses that employ the "application/pkix-attr-cert" Multipurpose
  Internet Mail Extension (MIME) media type as defined in [ACTYPE].

  Implementations that support saml_assertion_url MUST support
  responses that employ the "application/samlassertion+xml" MIME type
  as defined in Appendix A of [SAMLBIND].

  TLS authorizations SHOULD follow the additional guidance provided in
  Section 3.3 of [TLSEXT2] regarding client certificate URLs.

4.  Alert Messages

  This document specifies the reuse of TLS Alert messages related to
  public key certificate processing for any errors that arise during
  authorization processing, while preserving the AlertLevels as
  authoritatively defined in [TLS1.2] or [TLSEXT2].  All alerts used in
  authorization processing are fatal.

  The following updated definitions for the Alert messages are used to
  describe errors that arise while processing authorizations.  For ease
  of comparison, we reproduce the Alert message definition from
  Section 7.2 of [TLS1.2], augmented with two values defined in
  [TLSEXT2]:












Brown & Housley               Experimental                     [Page 12]

RFC 5878              TLS Authorization Extensions              May 2010


     enum { warning(1), fatal(2), (255) } AlertLevel;

     enum {
         close_notify(0),
         unexpected_message(10),
         bad_record_mac(20),
         decryption_failed_RESERVED(21),
         record_overflow(22),
         decompression_failure(30),
         handshake_failure(40),
         no_certificate_RESERVED(41),
         bad_certificate(42),
         unsupported_certificate(43),
         certificate_revoked(44),
         certificate_expired(45),
         certificate_unknown(46),
         illegal_parameter(47),
         unknown_ca(48),
         access_denied(49),
         decode_error(50),
         decrypt_error(51),
         export_restriction_RESERVED(60),
         protocol_version(70),
         insufficient_security(71),
         internal_error(80),
         user_canceled(90),
         no_renegotiation(100),
         unsupported_extension(110),
         certificate_unobtainable(111),
         bad_certificate_hash_value(114),
         (255)
     } AlertDescription;

     struct {
         AlertLevel level;
         AlertDescription description;
     } Alert;

  TLS processing of alerts includes some ambiguity because the message
  does not indicate which certificate in a certification path gave rise
  to the error.  This problem is made slightly worse in this extended
  use of alerts, as the alert could be the result of an error in
  processing of either a certificate or an authorization.
  Implementations that support these extensions should be aware of this
  imprecision.






Brown & Housley               Experimental                     [Page 13]

RFC 5878              TLS Authorization Extensions              May 2010


  The AlertDescription values are used as follows to report errors in
  authorizations processing:

     bad_certificate
        In certificate processing, bad_certificate indicates that a
        certificate was corrupt, contained signatures that did not
        verify correctly, and so on.  Similarly, in authorization
        processing, bad_certificate indicates that an authorization was
        corrupt, contained signatures that did not verify correctly,
        and so on.  In authorization processing, bad_certificate can
        also indicate that the handshake established that an
        AuthzDataFormat was to be provided, but no AuthorizationData of
        the expected format was provided in SupplementalData.

     unsupported_certificate
        In certificate processing, unsupported_certificate indicates
        that a certificate was of an unsupported type.  Similarly, in
        authorization processing, unsupported_certificate indicates
        that AuthorizationData uses a version or format unsupported by
        the implementation.

     certificate_revoked
        In certificate processing, certificate_revoked indicates that a
        certificate was revoked by its issuer.  Similarly, in
        authorization processing, certificate_revoked indicates that
        authorization was revoked by its issuer, or a certificate that
        was needed to validate the signature on the authorization was
        revoked by its issuer.

     certificate_expired
        In certificate processing, certificate_expired indicates that a
        certificate has expired or is not currently valid.  Similarly,
        in authorization processing, certificate_expired indicates that
        an authorization has expired or is not currently valid.

     certificate_unknown
        In certificate processing, certificate_unknown indicates that
        some other (unspecified) issue arose while processing the
        certificate, rendering it unacceptable.  Similarly, in
        authorization processing, certificate_unknown indicates that
        processing of AuthorizationData failed because of other
        (unspecified) issues, including AuthzDataFormat parse errors.

     unknown_ca
        In certificate processing, unknown_ca indicates that a valid
        certification path or partial certification path was received,
        but the certificate was not accepted because the certification
        authority (CA) certificate could not be located or could not be



Brown & Housley               Experimental                     [Page 14]

RFC 5878              TLS Authorization Extensions              May 2010


        matched with a known, trusted CA.  Similarly, in authorization
        processing, unknown_ca indicates that the authorization issuer
        is not known and trusted.

     access_denied
        In certificate processing, access_denied indicates that a valid
        certificate was received, but when access control was applied,
        the sender decided not to proceed with negotiation.  Similarly,
        in authorization processing, access_denied indicates that the
        authorization was not sufficient to grant access.

     certificate_unobtainable
        The client_certificate_url extension defined in RFC 4366
        [TLSEXT2] specifies that download errors lead to a
        certificate_unobtainable alert.  Similarly, in authorization
        processing, certificate_unobtainable indicates that a URL does
        not result in an authorization.  While certificate processing
        does not require this alert to be fatal, this is a fatal alert
        in authorization processing.

     bad_certificate_hash_value
        In certificate processing, bad_certificate_hash_value indicates
        that a downloaded certificate does not match the expected hash.
        Similarly, in authorization processing,
        bad_certificate_hash_value indicates that a downloaded
        authorization does not match the expected hash.

5.  IANA Considerations

  This document defines two TLS extensions: client_authz(7) and
  server_authz(8).  These extension type values are assigned from the
  TLS Extension Type registry defined in [TLSEXT2].

  This document defines one TLS supplemental data type:
  authz_data(16386).  This supplemental data type is assigned from the
  TLS Supplemental Data Type registry defined in [TLSSUPP].

  This document establishes a new registry, to be maintained by IANA,
  for TLS Authorization Data Formats.  The first four entries in the
  registry are x509_attr_cert(0), saml_assertion(1),
  x509_attr_cert_url(2), and saml_assertion_url(3).  TLS Authorization
  Data Format identifiers with values in the inclusive range 0-63
  (decimal) are assigned via RFC 5226 [IANA] IETF Review.  Values from
  the inclusive range 64-223 (decimal) are assigned via RFC 5226
  Specification Required.  Values from the inclusive range 224-255
  (decimal) are reserved for RFC 5226 Private Use.





Brown & Housley               Experimental                     [Page 15]

RFC 5878              TLS Authorization Extensions              May 2010


6.  Security Considerations

  A TLS server can support more than one application, and each
  application may include several features, each of which requires
  separate authorization checks.  This is the reason that more than one
  piece of authorization information can be provided.

  A TLS server that requires different authorization information for
  different applications or different application features may find
  that a client has provided sufficient authorization information to
  grant access to a subset of these offerings.  In this situation, the
  TLS Handshake Protocol will complete successfully; however, the
  server must ensure that the client will only be able to use the
  appropriate applications and application features.  That is, the TLS
  server must deny access to the applications and application features
  for which authorization has not been confirmed.

  In cases where the authorization information itself is sensitive, the
  double handshake technique can be used to provide protection for the
  authorization information.  Figure 2 illustrates the double
  handshake, where the initial handshake does not include any
  authorization extensions, but it does result in protected
  communications.  Then, a second handshake that includes the
  authorization information is performed using the protected
  communications.  In Figure 2, the number on the right side indicates
  the amount of protection for the TLS message on that line.  A zero
  (0) indicates that there is no communication protection; a one (1)
  indicates that protection is provided by the first TLS session; and a
  two (2) indicates that protection is provided by both TLS sessions.

  The placement of the SupplementalData message in the TLS handshake
  results in the server providing its authorization information before
  the client is authenticated.  In many situations, servers will not
  want to provide authorization information until the client is
  authenticated.  The double handshake illustrated in Figure 2 provides
  a technique to ensure that the parties are mutually authenticated
  before either party provides authorization information.

  The use of bearer SAML assertions allows an eavesdropper or a man-in-
  the-middle to capture the SAML assertion and try to reuse it in
  another context.  The constraints discussed in Section 3.3.2 might be
  effective against an eavesdropper, but they are less likely to be
  effective against a man-in-the-middle.  Authentication of both
  parties in the TLS session, which involves the use of client
  authentication, will prevent an undetected man-in-the-middle, and the
  use of the double handshake illustrated in Figure 2 will prevent the
  disclosure of the bearer SAML assertion to any party other than the
  TLS peer.



Brown & Housley               Experimental                     [Page 16]

RFC 5878              TLS Authorization Extensions              May 2010


  AuthzDataFormats that point to authorization data, such as
  x509_attr_cert_url and saml_assertion_url, rather than simply
  including the authorization data in the handshake, may be exploited
  by an attacker.  Implementations that accept pointers to
  authorization data SHOULD adopt a policy of least privilege that
  limits the acceptable references that they will attempt to use.  For
  more information, see Section 6.3 of [TLSEXT2].

   Client                                                   Server

   ClientHello (no extensions) -------->                            |0
                                       ServerHello (no extensions)  |0
                                                      Certificate*  |0
                                                ServerKeyExchange*  |0
                                               CertificateRequest*  |0
                               <--------           ServerHelloDone  |0
   Certificate*                                                     |0
   ClientKeyExchange                                                |0
   CertificateVerify*                                               |0
   [ChangeCipherSpec]                                               |0
   Finished                    -------->                            |1
                                                [ChangeCipherSpec]  |0
                               <--------                  Finished  |1
   ClientHello (w/ extensions) -------->                            |1
                                       ServerHello (w/ extensions)  |1
                                 SupplementalData (w/ authz data)*  |1
                                                      Certificate*  |1
                                                ServerKeyExchange*  |1
                                               CertificateRequest*  |1
                               <--------           ServerHelloDone  |1
   SupplementalData (w/ authz data)*                                |1
   Certificate*                                                     |1
   ClientKeyExchange                                                |1
   CertificateVerify*                                               |1
   [ChangeCipherSpec]                                               |1
   Finished                    -------->                            |2
                                                [ChangeCipherSpec]  |1
                               <--------                  Finished  |2
   Application Data            <------->          Application Data  |2

        Figure 2.  Double Handshake To Protect Authorization Data

7.  Acknowledgement

  The authors thank Scott Cantor for his assistance with the SAML
  assertion portion of the document.





Brown & Housley               Experimental                     [Page 17]

RFC 5878              TLS Authorization Extensions              May 2010


8.  References

8.1.  Normative References

  [ACTYPE]    Housley, R., "The application/pkix-attr-cert Media Type
              for Attribute Certificates", RFC 5877, May 2010.

  [ATTRCERT]  Farrell, S., Housley, R., and S. Turner, "An Internet
              Attribute Certificate Profile for Authorization",
              RFC 5755, January 2010.

  [HTTP]      Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
              Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
              Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

  [IANA]      Narten, T. and H. Alvestrand, "Guidelines for Writing an
              IANA Considerations Section in RFCs", BCP 26, RFC 5226,
              May 2008.

  [PKIX1]     Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
              Housley, R., and W. Polk, "Internet X.509 Public Key
              Infrastructure Certificate and Certificate Revocation
              List (CRL) Profile", RFC 5280, May 2008.

  [SAML1.1]   OASIS Security Services Technical Committee, "Security
              Assertion Markup Language (SAML) Version 1.1
              Specification Set", September 2003.

  [SAML2.0]   OASIS Security Services Technical Committee, "Security
              Assertion Markup Language (SAML) Version 2.0
              Specification Set", March 2005.

  [SAMLBIND]  OASIS Security Services Technical Committee, "Bindings
              for the OASIS Security Assertion Markup Language (SAML)
              V2.0", March 2005.

  [SHS]       National Institute of Standards and Technology (NIST),
              FIPS PUB 180-3, Secure Hash Standard (SHS), October 2008.

  [STDWORDS]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119, March 1997.

  [TLS1.0]    Dierks, T. and C. Allen, "The TLS Protocol Version 1.0",
              RFC 2246, January 1999.

  [TLS1.1]    Dierks, T. and E. Rescorla, "The Transport Layer Security
              (TLS) Protocol Version 1.1", RFC 4346, April 2006.




Brown & Housley               Experimental                     [Page 18]

RFC 5878              TLS Authorization Extensions              May 2010


  [TLS1.2]    Dierks, T. and E. Rescorla, "The Transport Layer Security
              (TLS) Protocol Version 1.2", RFC 5246, August 2008.

  [TLSEXT2]   Blake-Wilson, S., Nystrom, M., Hopwood, D.,
              Mikkelsen, J., and T. Wright, "Transport Layer Security
              (TLS) Extensions", RFC 4366, April 2006.

  [TLSSUPP]   Santesson, S., "TLS Handshake Message for Supplemental
              Data", RFC 4680, October 2006.

  [UPGRADE]   Khare, R. and S. Lawrence, "Upgrading to TLS Within
              HTTP/1.1", RFC 2817, May 2000.

  [UTF-8]     Yergeau, F., "UTF-8, a transformation format of
              ISO 10646", STD 63, RFC 3629, November 2003.

  [UTF-16]    Hoffman, P. and F. Yergeau, "UTF-16, an encoding of
              ISO 10646", RFC 2781, February 2000.

  [XML1.0]    Bray, T., J. Paoli, C. M. Sperberg-McQueen, E. Maler, and
              F.  Yergeau, "Extensible Markup Language (XML) 1.0 (Fifth
              Edition)", http://www.w3.org/TR/xml/, November 2008.

8.2.  Informative References

  [TLSEXT1]   Blake-Wilson, S., Nystrom, M., Hopwood, D.,
              Mikkelsen, J., and T. Wright, "Transport Layer Security
              (TLS) Extensions", RFC 3546, June 2003.

Authors' Addresses

  Mark Brown
  RedPhone Security
  1199 Falls View Court
  Mendota Heights, MN  55118
  USA
  EMail: [email protected]


  Russell Housley
  Vigil Security, LLC
  918 Spring Knoll Drive
  Herndon, VA  20170
  USA
  EMail: [email protected]






Brown & Housley               Experimental                     [Page 19]