Internet Engineering Task Force (IETF)                          J. Abley
Request for Comments: 5855                                  T. Manderson
BCP: 155                                                           ICANN
Category: Best Current Practice                                 May 2010
ISSN: 2070-1721


             Nameservers for IPv4 and IPv6 Reverse Zones

Abstract

  This document specifies a stable naming scheme for the nameservers
  that serve the zones IN-ADDR.ARPA and IP6.ARPA in the DNS.  These
  zones contain data that facilitate reverse mapping (address to name).

Status of This Memo

  This memo documents an Internet Best Current Practice.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Further information on
  BCPs is available in Section 2 of RFC 5741.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  http://www.rfc-editor.org/info/rfc5855.

Copyright Notice

  Copyright (c) 2010 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (http://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.








Abley & Manderson         Best Current Practice                 [Page 1]

RFC 5855              Nameservers for Reverse Zones             May 2010


Table of Contents

  1. Introduction ....................................................2
  2. Nameservers for IN-ADDR.ARPA ....................................3
  3. Nameservers for IP6.ARPA ........................................3
  4. IAB Statement ...................................................4
  5. IANA Considerations .............................................4
  6. Security Considerations .........................................4
  7. References ......................................................4
     7.1. Normative References .......................................4
     7.2. Informative References .....................................5
  Appendix A.  Existing NS RRSets ....................................6
  Appendix B.  Performance Characteristics ...........................7
    B.1.  Label Compression ..........................................7
    B.2.  Query Patterns .............................................9
      B.2.1.  QNAME under IN-ADDR.ARPA ..............................10
      B.2.2.  QNAME under IP6.ARPA ..................................10

1.  Introduction

  The Domain Name System (DNS) is described in [RFC1034] and [RFC1035].
  The DNS currently supports keyed data retrieval using three
  namespaces -- domain names, IPv4 addresses, and IPv6 addresses.
  Mapping of IPv4 addresses to names is accomplished using data
  published in the IN-ADDR.ARPA zone.  For IPv6, the IP6.ARPA zone is
  used (see [RFC3596]).  The process of mapping an address to a name is
  generally known as a "reverse lookup", and the IN-ADDR.ARPA and
  IP6.ARPA zones are said to support the "reverse DNS".

  The secure and stable hosting of the IN-ADDR.ARPA and IP6.ARPA zones
  is critical to the operation of the Internet, since many applications
  rely upon timely responses to reverse lookups to be able to operate
  normally.

  At the time of this writing, the IN-ADDR.ARPA zone is served by a
  subset of the DNS root servers, and IP6.ARPA by servers operated by
  APNIC, ARIN, ICANN, LACNIC, and the RIPE NCC (see Appendix A).

  This document specifies a dedicated and stable set of nameserver
  names for each of the IN-ADDR.ARPA and IP6.ARPA zones.

  The naming scheme specified in this document allows IN-ADDR.ARPA and
  IP6.ARPA to be delegated to two different sets of nameservers, to
  facilitate operational separation of the infrastructure used to serve
  each zone.  This separation might help ensure that an operational
  failure of IN-ADDR.ARPA servers does not impact IPv6 reverse lookups
  as collateral damage, for example.




Abley & Manderson         Best Current Practice                 [Page 2]

RFC 5855              Nameservers for Reverse Zones             May 2010


  The choice of operators for individual nameservers is beyond the
  scope of this document and is an IANA function that falls under the
  scope of Section 4 of the Memorandum of Understanding (MoU) between
  the IETF and ICANN [RFC2860].

2.  Nameservers for IN-ADDR.ARPA

  This document specifies the following naming scheme for servers that
  host the IN-ADDR.ARPA zone:

        A.IN-ADDR-SERVERS.ARPA
        B.IN-ADDR-SERVERS.ARPA
        C.IN-ADDR-SERVERS.ARPA
        D.IN-ADDR-SERVERS.ARPA
        E.IN-ADDR-SERVERS.ARPA
        F.IN-ADDR-SERVERS.ARPA
        ...

  The IN-ADDR-SERVERS.ARPA zone has been delegated to the same set of
  servers as IN-ADDR.ARPA.  IPv4 and IPv6 glue records for each of
  those servers has been added to the ARPA zone.

  The IN-ADDR-SERVERS.ARPA and IN-ADDR.ARPA zones are delegated to the
  same servers, since they are both dedicated for a single purpose and
  hence can reasonably share fate.

  All servers in the set are named under the same domain to facilitate
  label compression.  Since glue for all servers exist in the ARPA
  zone, the use of a single domain does not present a practical single
  point of failure.

3.  Nameservers for IP6.ARPA

  This document specifies the following nameserver set for the IP6.ARPA
  zone:

        A.IP6-SERVERS.ARPA
        B.IP6-SERVERS.ARPA
        C.IP6-SERVERS.ARPA
        D.IP6-SERVERS.ARPA
        E.IP6-SERVERS.ARPA
        F.IP6-SERVERS.ARPA
        ...

  The IP6-SERVERS.ARPA zone has been delegated to the same set of
  servers as IP6.ARPA.  IPv4 and IPv6 glue records for each of those
  servers has been added to the ARPA zone.




Abley & Manderson         Best Current Practice                 [Page 3]

RFC 5855              Nameservers for Reverse Zones             May 2010


4.  IAB Statement

  In its capacity as the body that provides technical guidance to ICANN
  for the administration of the ARPA top-level domain as described in
  [RFC3172], the IAB has reviewed this proposal and supports it as an
  operational change that is in line with the respective roles of ICANN
  and the IAB.

5.  IANA Considerations

  With due consideration to the approval of the IAB (see Section 4),
  the IANA has delegated:

  1. IN-ADDR-SERVERS.ARPA to the nameservers listed in Section 2;

  2. IP6-SERVERS.ARPA to the nameservers listed in Section 3.

  Additionally, IANA has installed IPv4 and IPv6 glue records for the
  nameservers concerned in the ARPA zone.

  The choice of operators for all nameservers concerned is beyond the
  scope of this document and is an IANA function that falls under the
  scope of Section 4 of the MoU between the IETF and ICANN [RFC2860].

6.  Security Considerations

  This document introduces no additional security risks for the
  Internet.

7.  References

7.1.  Normative References

  [RFC1034]   Mockapetris, P., "Domain names - concepts and
              facilities", STD 13, RFC 1034, November 1987.

  [RFC1035]   Mockapetris, P., "Domain names - implementation and
              specification", STD 13, RFC 1035, November 1987.

  [RFC3172]   Huston, G., Ed., "Management Guidelines & Operational
              Requirements for the Address and Routing Parameter Area
              Domain ("arpa")", BCP 52, RFC 3172, September 2001.









Abley & Manderson         Best Current Practice                 [Page 4]

RFC 5855              Nameservers for Reverse Zones             May 2010


7.2.  Informative References

  [RFC2860]   Carpenter, B., Baker, F., and M. Roberts, "Memorandum of
              Understanding Concerning the Technical Work of the
              Internet Assigned Numbers Authority", RFC 2860,
              June 2000.

  [RFC3596]   Thomson, S., Huitema, C., Ksinant, V., and M. Souissi,
              "DNS Extensions to Support IP Version 6", RFC 3596,
              October 2003.









































Abley & Manderson         Best Current Practice                 [Page 5]

RFC 5855              Nameservers for Reverse Zones             May 2010


Appendix A.  Existing NS RRSets

  The NS RRSet for the IN-ADDR.ARPA zone at the time of this writing is
  as follows:

    IN-ADDR.ARPA.         86400   IN      NS      A.ROOT-SERVERS.NET.
    IN-ADDR.ARPA.         86400   IN      NS      B.ROOT-SERVERS.NET.
    IN-ADDR.ARPA.         86400   IN      NS      C.ROOT-SERVERS.NET.
    IN-ADDR.ARPA.         86400   IN      NS      D.ROOT-SERVERS.NET.
    IN-ADDR.ARPA.         86400   IN      NS      E.ROOT-SERVERS.NET.
    IN-ADDR.ARPA.         86400   IN      NS      F.ROOT-SERVERS.NET.
    IN-ADDR.ARPA.         86400   IN      NS      G.ROOT-SERVERS.NET.
    IN-ADDR.ARPA.         86400   IN      NS      H.ROOT-SERVERS.NET.
    IN-ADDR.ARPA.         86400   IN      NS      I.ROOT-SERVERS.NET.
    IN-ADDR.ARPA.         86400   IN      NS      K.ROOT-SERVERS.NET.
    IN-ADDR.ARPA.         86400   IN      NS      L.ROOT-SERVERS.NET.
    IN-ADDR.ARPA.         86400   IN      NS      M.ROOT-SERVERS.NET.

  The NS RRSet for the IP6.ARPA zone at the time of this writing is as
  follows:

    IP6.ARPA.             84600   IN      NS      NS-SEC.RIPE.NET.
    IP6.ARPA.             86400   IN      NS      SEC1.APNIC.NET.
    IP6.ARPA.             86400   IN      NS      NS2.LACNIC.NET.
    IP6.ARPA.             86400   IN      NS      NS.ICANN.ORG.
    IP6.ARPA.             86400   IN      NS      TINNIE.ARIN.NET.

  For completeness, the NS RRSet for the ARPA zone at the time of this
  writing is as follows:

    ARPA.                 86400   IN      NS      A.ROOT-SERVERS.NET.
    ARPA.                 86400   IN      NS      B.ROOT-SERVERS.NET.
    ARPA.                 86400   IN      NS      C.ROOT-SERVERS.NET.
    ARPA.                 86400   IN      NS      D.ROOT-SERVERS.NET.
    ARPA.                 86400   IN      NS      E.ROOT-SERVERS.NET.
    ARPA.                 86400   IN      NS      F.ROOT-SERVERS.NET.
    ARPA.                 86400   IN      NS      G.ROOT-SERVERS.NET.
    ARPA.                 86400   IN      NS      H.ROOT-SERVERS.NET.
    ARPA.                 86400   IN      NS      I.ROOT-SERVERS.NET.
    ARPA.                 86400   IN      NS      K.ROOT-SERVERS.NET.
    ARPA.                 86400   IN      NS      L.ROOT-SERVERS.NET.
    ARPA.                 86400   IN      NS      M.ROOT-SERVERS.NET.









Abley & Manderson         Best Current Practice                 [Page 6]

RFC 5855              Nameservers for Reverse Zones             May 2010


Appendix B.  Performance Characteristics

B.1.  Label Compression

  The choice of names for the respective NS RRSets of the IN-ADDR.ARPA
  and IP6.ARPA zones have a relatively minor impact on the delegation
  response sizes from their parent zones, given other anticipated
  contributors such as DNSSEC.  However, it is still considered good
  practice to use a naming scheme that is reasonably compressible:
  doing so for frequently queried zones such as these is likely to have
  at least measurable impact on aggregate DNS traffic in the Internet
  as a whole, and has potential transport benefits to clients whose
  queries will not result in secure replies.

  The naming schemes described in Sections 2 and 3 are highly
  compressible.  That is, once a single nameserver name has been
  encoded in a DNS message, subsequent nameservers can be specified
  with substantially smaller encoding.

  In the DNS, a complete encoding of an a-label involves a one-byte
  length field, plus a one-byte-per-character encoding of the a-label
  itself.  A domain name's encoding consists of one or more a-labels,
  so-encoded, plus a single terminating zero byte.  Where a terminating
  series of a-labels has already been encoded as described above,
  subsequent terminating references to the same series can be made
  using a two-byte pointer to that full encoding.

  The non-compressed representation of the nameserver A.IN-ADDR-
  SERVERS.ARPA fills (1 + 1) + (15 + 1) + (4 + 1) + 1 = 24 bytes.

  The non-compressed representation of A.IP6-SERVERS.ARPA fills
  (1 + 1) + (10 + 1) + (4 + 1) + 1 = 19 bytes.

  Subsequent nameservers under either domain are encoded with the
  initial label, plus two bytes for a pointer to the repeated domain
  elsewhere in the message, i.e., (1 + 1) + 2 = 4 bytes.















Abley & Manderson         Best Current Practice                 [Page 7]

RFC 5855              Nameservers for Reverse Zones             May 2010


  The encoded size of the a-labels in a twelve-record NS RRSet named
  according to Section 2 for IN-ADDR.ARPA is as follows:

   +------------------------+---------------------------------------+
   | Nameserver             | Encoded Size                          |
   +------------------------+---------------------------------------+
   | A.IN-ADDR-SERVERS.ARPA | (1 + 1) + (15 + 1) + (4 + 1) + 1 = 24 |
   |                        |                                       |
   | B.IN-ADDR-SERVERS.ARPA | (1 + 1) + 2 = 4                       |
   |                        |                                       |
   | C.IN-ADDR-SERVERS.ARPA | (1 + 1) + 2 = 4                       |
   |                        |                                       |
   | D.IN-ADDR-SERVERS.ARPA | (1 + 1) + 2 = 4                       |
   |                        |                                       |
   | E.IN-ADDR-SERVERS.ARPA | (1 + 1) + 2 = 4                       |
   |                        |                                       |
   | F.IN-ADDR-SERVERS.ARPA | (1 + 1) + 2 = 4                       |
   |                        |                                       |
   | G.IN-ADDR-SERVERS.ARPA | (1 + 1) + 2 = 4                       |
   |                        |                                       |
   | H.IN-ADDR-SERVERS.ARPA | (1 + 1) + 2 = 4                       |
   |                        |                                       |
   | I.IN-ADDR-SERVERS.ARPA | (1 + 1) + 2 = 4                       |
   |                        |                                       |
   | J.IN-ADDR-SERVERS.ARPA | (1 + 1) + 2 = 4                       |
   |                        |                                       |
   | K.IN-ADDR-SERVERS.ARPA | (1 + 1) + 2 = 4                       |
   |                        |                                       |
   | L.IN-ADDR-SERVERS.ARPA | (1 + 1) + 2 = 4                       |
   |                        |                                       |
   | Total                  | 68 bytes                              |
   +------------------------+---------------------------------------+



















Abley & Manderson         Best Current Practice                 [Page 8]

RFC 5855              Nameservers for Reverse Zones             May 2010


  The encoded size of the a-labels in a six-record NS RRSet named
  according to Section 3 for IP6.ARPA is, hence, as follows:

     +--------------------+---------------------------------------+
     | Nameserver         | Encoded Size                          |
     +--------------------+---------------------------------------+
     | A.IP6-SERVERS.ARPA | (1 + 1) + (10 + 1) + (4 + 1) + 1 = 19 |
     |                    |                                       |
     | B.IP6-SERVERS.ARPA | (1 + 1) + 2 = 4                       |
     |                    |                                       |
     | C.IP6-SERVERS.ARPA | (1 + 1) + 2 = 4                       |
     |                    |                                       |
     | D.IP6-SERVERS.ARPA | (1 + 1) + 2 = 4                       |
     |                    |                                       |
     | E.IP6-SERVERS.ARPA | (1 + 1) + 2 = 4                       |
     |                    |                                       |
     | F.IP6-SERVERS.ARPA | (1 + 1) + 2 = 4                       |
     |                    |                                       |
     | Total              | 39 bytes                              |
     +--------------------+---------------------------------------+

  By way of comparison, the encoded size of the labels in the NS RRSet
  for IP6.ARPA (shown in Appendix A) is as follows:

       +-----------------+--------------------------------------+
       | Nameserver      | Encoded Size                         |
       +-----------------+--------------------------------------+
       | NS-SEC.RIPE.NET | (6 + 1) + (4 + 1) + (3 + 1) + 1 = 17 |
       |                 |                                      |
       | SEC1.APNIC.NET  | (4 + 1) + (5 + 1) + 2 + 1 = 14       |
       |                 |                                      |
       | NS2.LANIC.NET   | (3 + 1) + (6 + 1) + 2 + 1 = 14       |
       |                 |                                      |
       | NS.ICANN.ORG    | (2 + 1) + (5 + 1) + (3 + 1) + 1 = 14 |
       |                 |                                      |
       | TINNIE.ARIN.NET | (6 + 1) + (4 + 1) + 2 + 1 = 15       |
       |                 |                                      |
       | Total           | 74 bytes                             |
       +-----------------+--------------------------------------+

B.2.  Query Patterns

  A brief description of likely query patterns for an empty cache with
  the existing and new NS RRSets follows.







Abley & Manderson         Best Current Practice                 [Page 9]

RFC 5855              Nameservers for Reverse Zones             May 2010


B.2.1.  QNAME under IN-ADDR.ARPA

  Consider the IN-ADDR.ARPA NS RRSet (described in Appendix A) and a
  QNAME that is delegated beneath the IN-ADDR.ARPA zone:

  1. Query sent to root server that is also authoritative for
     IN-ADDR.ARPA; response is a referral from the IN-ADDR.ARPA zone.

  In the case where the initial query is sent to the J root server:

  1. Query sent to J.ROOT-SERVERS.NET (which is not authoritative for
     the IN-ADDR.ARPA zone); response is a referral to an ARPA server
     with additional-section glue.

  2. Query sent to an ARPA server (all of which are also authoritative
     in this case for IN-ADDR.ARPA); response is a referral from the
     IN-ADDR.ARPA zone.

  Consider the same query with the IN-ADDR.ARPA NS RRSet (described in
  Section 2):

  1. Query sent to a root server that is also authoritative for ARPA;
     response is a referral to an IN-ADDR.ARPA server, with additional-
     section glue.

  2. Query sent to an IN-ADDR.ARPA server; response is a referral from
     the IN-ADDR.ARPA zone.

  In the case where the first query is sent to the J root server:

  1. Query sent to J.ROOT-SERVERS.NET (which is not authoritative for
     ARPA); response is a referral to an ARPA server, with additional-
     section glue.

  2. Query sent to an ARPA server; response is a referral to an
     IN-ADDR.ARPA server, with additional-section glue.

  3. Query sent to an IN-ADDR.ARPA server; response is a referral from
     the IN-ADDR.ARPA zone.

B.2.2.  QNAME under IP6.ARPA

  Consider the IP6.ARPA NS RRSet (described in Appendix A) and a QNAME
  that is delegated beneath the IP6.ARPA zone:

  1. Query sent to root server that is also authoritative for ARPA;
     response is a referral from the ARPA zone to an IP6.ARPA server
     with no additional-section glue.



Abley & Manderson         Best Current Practice                [Page 10]

RFC 5855              Nameservers for Reverse Zones             May 2010


  2. A recursive lookup for one of the nameservers specified in the
     referral must now be performed in order to obtain an address for
     an IP6.ARPA server.  In all cases, three queries are required.
     Successive recursive lookups may be performed in the event that a
     server is unresponsive.

  3. Query sent to IP6.ARPA server; response is a referral from the
     IP6.ARPA zone.

  In the case where the first query is sent to the J root server:

  1. Query sent to J.ROOT-SERVERS.NET; response is a referral to an
     ARPA server with additional-section glue.

  2. Query sent to an ARPA server; response is a referral from the ARPA
     zone to an IP6.ARPA server with no additional-section glue.

  3. A recursive lookup for one of the nameservers specified in the
     referral must now be performed in order to obtain an address for
     an IP6.ARPA server.  In all cases, three queries are required.
     Successive recursive lookups may be performed in the event that a
     server is unresponsive.

  4. Query sent to IP6.ARPA server; response is a referral from the
     IP6.ARPA zone.

  Consider the same query with the IP6.ARPA NS RRSet (described in
  Section 3):

  1. Query sent to a root server that is also authoritative for ARPA;
     response is a referral to an IP6.ARPA server, with additional-
     section glue.

  2. Query sent to an IP6.ARPA server; response is a referral from the
     IP6.ARPA zone.

  In the case where the first query is sent to the J root server:

  1. Query sent to J.ROOT-SERVERS.NET (which is not authoritative for
     ARPA); response is a referral to an ARPA server, with additional-
     section glue.

  2. Query sent to an ARPA server; response is a referral to an
     IP6.ARPA server with additional-section glue.

  3. Query sent to an IP6.ARPA server; response is a referral from the
     IP6.ARPA zone.




Abley & Manderson         Best Current Practice                [Page 11]

RFC 5855              Nameservers for Reverse Zones             May 2010


Authors' Addresses

  Joe Abley
  ICANN
  4676 Admiralty Way, Suite 330
  Marina del Rey, CA  90292
  USA
  Phone: +1 310 463 9062
  EMail: [email protected]


  Terry Manderson
  ICANN
  4676 Admiralty Way, Suite 330
  Marina del Rey, CA  90292
  USA
  Phone: +61 4 1127 5673
  EMail: [email protected]

































Abley & Manderson         Best Current Practice                [Page 12]