Internet Engineering Task Force (IETF)                       Y. Shi, Ed.
Request for Comments: 5834                  Hangzhou H3C Tech. Co., Ltd.
Category: Informational                                  D. Perkins, Ed.
ISSN: 2070-1721                                          C. Elliott, Ed.

                                                          Y. Zhang, Ed.
                                                         Fortinet, Inc.
                                                               May 2010


 Control and Provisioning of Wireless Access Points (CAPWAP) Protocol
                     Binding MIB for IEEE 802.11

Abstract

  This memo defines a portion of the Management Information Base (MIB)
  for use with network management protocols.  In particular, it
  describes managed objects for modeling the Control And Provisioning
  of Wireless Access Points (CAPWAP) protocol for IEEE 802.11 wireless
  binding.  This MIB module is presented as a basis for future work on
  the management of the CAPWAP protocol using the Simple Network
  Management Protocol (SNMP).

Status of This Memo

  This document is not an Internet Standards Track specification; it is
  published for informational purposes.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Not all documents
  approved by the IESG are a candidate for any level of Internet
  Standard; see Section 2 of RFC 5741.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  http://www.rfc-editor.org/info/rfc5834.













Shi, et al.                   Informational                     [Page 1]

RFC 5834               CAPWAP Protocol Binding MIB              May 2010


Copyright Notice

  Copyright (c) 2010 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (http://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.

Table of Contents

  1.  Introduction . . . . . . . . . . . . . . . . . . . . . . . . .  3
  2.  The Internet-Standard Management Framework . . . . . . . . . .  3
  3.  Terminology  . . . . . . . . . . . . . . . . . . . . . . . . .  3
  4.  Conventions  . . . . . . . . . . . . . . . . . . . . . . . . .  5
  5.  Overview . . . . . . . . . . . . . . . . . . . . . . . . . . .  5
    5.1.  WLAN Profile . . . . . . . . . . . . . . . . . . . . . . .  5
    5.2.  Requirements and Constraints . . . . . . . . . . . . . . .  5
    5.3.  Mechanism of Reusing Wireless Binding MIB Module . . . . .  6
  6.  Structure of MIB Module  . . . . . . . . . . . . . . . . . . .  6
  7.  Relationship to Other MIB Modules  . . . . . . . . . . . . . .  7
    7.1.  Relationship to SNMPv2-MIB Module  . . . . . . . . . . . .  7
    7.2.  Relationship to IF-MIB Module  . . . . . . . . . . . . . .  7
    7.3.  Relationship to CAPWAP-BASE-MIB Module . . . . . . . . . .  7
    7.4.  Relationship to MIB Module in the IEEE 802.11 Standard . .  8
    7.5.  MIB Modules Required for IMPORTS . . . . . . . . . . . . .  8
  8.  Example of CAPWAP-DOT11-MIB Module Usage . . . . . . . . . . .  8
  9.  Definitions  . . . . . . . . . . . . . . . . . . . . . . . . . 14
  10. Security Considerations  . . . . . . . . . . . . . . . . . . . 21
  11. IANA Considerations  . . . . . . . . . . . . . . . . . . . . . 22
    11.1. IANA Considerations for CAPWAP-DOT11-MIB Module  . . . . . 22
    11.2. IANA Considerations for ifType . . . . . . . . . . . . . . 22
  12. Contributors . . . . . . . . . . . . . . . . . . . . . . . . . 22
  13. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . 23
  14. References . . . . . . . . . . . . . . . . . . . . . . . . . . 23
    14.1. Normative References . . . . . . . . . . . . . . . . . . . 23
    14.2. Informative References . . . . . . . . . . . . . . . . . . 24








Shi, et al.                   Informational                     [Page 2]

RFC 5834               CAPWAP Protocol Binding MIB              May 2010


1.  Introduction

  The CAPWAP protocol [RFC5415] defines a standard, interoperable
  protocol, which enables an Access Controller (AC) to manage a
  collection of Wireless Termination Points (WTPs).  CAPWAP supports
  the use of various wireless technologies by the WTPs, with one
  specified in the CAPWAP Protocol Binding for IEEE 802.11 [RFC5416].

  This document defines a MIB module that can be used to manage CAPWAP
  implementations for IEEE 802.11 wireless binding.  This MIB module
  covers both configuration for Wireless Local Area Network (WLAN) and
  a way to reuse the IEEE 802.11 MIB module [IEEE.802-11.2007].  It is
  presented as a basis for future work on the SNMP management of the
  CAPWAP protocol.

2.  The Internet-Standard Management Framework

  For a detailed overview of the documents that describe the current
  Internet-Standard Management Framework, please refer to section 7 of
  RFC 3410 [RFC3410].

  Managed objects are accessed via a virtual information store, termed
  the Management Information Base or MIB.  MIB objects are generally
  accessed through the Simple Network Management Protocol (SNMP).
  Objects in the MIB are defined using the mechanisms defined in the
  Structure of Management Information (SMI).  This memo specifies a MIB
  module that is compliant to the SMIv2, which is described in STD 58,
  RFC 2578 [RFC2578], STD 58, RFC 2579 [RFC2579], and STD 58, RFC 2580
  [RFC2580].

3.  Terminology

  This document uses terminology from the CAPWAP protocol specification
  [RFC5415], the CAPWAP Protocol Binding for IEEE 802.11 [RFC5416], and
  the CAPWAP Protocol Base MIB [RFC5833].

  Access Controller (AC): The network entity that provides WTP access
  to the network infrastructure in the data plane, control plane,
  management plane, or a combination therein.

  Wireless Termination Point (WTP): The physical or network entity that
  contains an RF antenna and wireless physical layer (PHY) to transmit
  and receive station traffic for wireless access networks.








Shi, et al.                   Informational                     [Page 3]

RFC 5834               CAPWAP Protocol Binding MIB              May 2010


  Control And Provisioning of Wireless Access Points (CAPWAP): It is a
  generic protocol defining AC and WTP control and data plane
  communication via a CAPWAP protocol transport mechanism.  CAPWAP
  control messages, and optionally CAPWAP data messages, are secured
  using Datagram Transport Layer Security (DTLS) [RFC4347].

  CAPWAP Control Channel: A bi-directional flow defined by the AC IP
  Address, WTP IP Address, AC control port, WTP control port, and the
  transport-layer protocol (UDP or UDP-Lite) over which CAPWAP control
  packets are sent and received.

  CAPWAP Data Channel: A bi-directional flow defined by the AC IP
  Address, WTP IP Address, AC data port, WTP data port, and the
  transport-layer protocol (UDP or UDP-Lite) over which CAPWAP data
  packets are sent and received.

  Station (STA): A device that contains an interface to a wireless
  medium (WM).

  Split and Local MAC: The CAPWAP protocol supports two modes of
  operation: Split and Local MAC (medium access control).  In Split MAC
  mode, all Layer 2 wireless data and management frames are
  encapsulated via the CAPWAP protocol and exchanged between the AC and
  the WTPs.  The Local MAC mode of operation allows the data frames to
  be either locally bridged or tunneled as 802.3 frames.

  Wireless Binding: The CAPWAP protocol is independent of a specific
  WTP radio technology, as well its associated wireless link layer
  protocol.  Elements of the CAPWAP protocol are designed to
  accommodate the specific needs of each wireless technology in a
  standard way.  Implementation of the CAPWAP protocol for a particular
  wireless technology MUST define a binding protocol for it, e.g., the
  binding for IEEE 802.11, provided in [RFC5416].

  Wireless Local Area Network (WLAN): A WLAN refers to a logical
  component instantiated on a WTP device.  A single physical WTP MAY
  operate a number of WLANs.  Each Basic Service Set Identifier (BSSID)
  and its constituent wireless terminal radios are denoted as a
  distinct WLAN on a physical WTP.  To support a physical WTP with
  multiple WLANs is an important feature for CAPWAP protocol's 802.11
  binding, and it is also for MIB module design.

  Wireless Binding MIB Module: Other Standards Development
  Organizations (SDOs), such as IEEE, already defined MIB modules for
  specific wireless technologies, e.g., the IEEE 802.11 MIB module
  [IEEE.802-11.2007].  Such MIB modules are called wireless binding MIB
  modules.




Shi, et al.                   Informational                     [Page 4]

RFC 5834               CAPWAP Protocol Binding MIB              May 2010


  CAPWAP Protocol Wireless Binding MIB Module: It is a MIB module
  corresponding to the CAPWAP Protocol Binding for a wireless binding.
  Sometimes, not all the technology-specific message elements in a
  CAPWAP binding protocol have MIB objects defined by other SDOs.  For
  example, the protocol of [RFC5416] defines WLAN conception.  Also,
  Local or Split MAC modes could be specified for a WLAN.  The MAC mode
  for a WLAN is not in the scope of IEEE 802.11 [IEEE.802-11.2007].  In
  such cases, in addition to the existing wireless binding MIB modules
  defined by other SDOs, a CAPWAP protocol wireless binding MIB module
  is required to be defined for a wireless binding.

4.  Conventions

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in RFC 2119 [RFC2119].

5.  Overview

5.1.  WLAN Profile

  A WLAN profile stores configuration parameters such as MAC type and
  tunnel mode for a WLAN.  Each WLAN profile is identified by a profile
  identifier.  The operator needs to create WLAN profiles before WTPs
  connect to the AC.  To provide WLAN service, the operator SHOULD bind
  WLAN profiles to a WTP Virtual Radio Interface that corresponds to a
  PHY radio.  During the binding operation, the AC MUST select an
  unused WLAN ID between 1 and 16 [RFC5416].  For example, to bind one
  more WLAN profile to a radio that has been bound with a WLAN profile,
  the AC SHOULD allocate WLAN ID 2 to the radio.  Although the maximum
  value of a WLAN ID is 16, the operator could configure more than 16
  WLAN Profiles on the AC.

5.2.  Requirements and Constraints

  The IEEE 802.11 MIB module [IEEE.802-11.2007] already defines MIB
  objects for most IEEE 802.11 Message Elements in the CAPWAP Protocol
  Binding for IEEE 802.11 [RFC5416].  As a CAPWAP protocol 802.11
  binding MIB module, the CAPWAP-DOT11-MIB module MUST be able to reuse
  such MIB objects in the IEEE 802.11 MIB module and support functions
  (such as MAC mode for WLAN in the [RFC5416]) that are not in the
  scope of IEEE 802.11 standard.  The CAPWAP-DOT11-MIB module MUST
  support such functions.

  In summary, the CAPWAP-DOT11-MIB module needs to support:

  - Reuse of wireless binding MIB modules in the IEEE 802.11 standard;




Shi, et al.                   Informational                     [Page 5]

RFC 5834               CAPWAP Protocol Binding MIB              May 2010


  - Centralized management and configuration of WLAN profiles on the
    AC;

  - Configuration of a MAC type and tunnel mode for a specific WLAN
    profile.

5.3.  Mechanism of Reusing Wireless Binding MIB Module

  In the IEEE 802.11 MIB module, the MIB tables such as
  dot11AuthenticationAlgorithmsTable are able to support WLAN
  configuration (such as authentication algorithm), and these tables
  use the ifIndex as the index which works well in the autonomous WLAN
  architecture.

  Reuse of such wireless binding MIB modules is very important to
  centralized WLAN architectures.  The key point is to abstract a WLAN
  profile as a WLAN Profile Interface on the AC, which could be
  identified by an ifIndex.  The MIB objects in the IEEE 802.11 MIB
  module which are associated with this interface can be used to
  configure WLAN parameters for the WLAN, such as authentication
  algorithm.  With the ifIndex of a WLAN Profile Interface, the AC is
  able to reuse the IEEE 802.11 MIB module.

  In the CAPWAP-BASE-MIB module, each PHY radio is identified by a WTP
  ID and a radio ID, and has a corresponding WTP Virtual Radio
  Interface on the AC.  The IEEE 802.11 MIB module associated with this
  interface can be used to configure IEEE 802.11 wireless binding
  parameters for the radio such as RTS Threshold.  A WLAN Basic Service
  Set (BSS) Interface, created by binding a WLAN to a WTP Virtual Radio
  Interface, is used for data forwarding.

6.  Structure of MIB Module

  The MIB objects are derived from the CAPWAP protocol binding for IEEE
  802.11 document [RFC5416].

     capwapDot11WlanTable

     The table allows the operator to display and configure WLAN
     profiles, such as specifying the MAC type and tunnel mode for a
     WLAN.  Also, it helps the AC to configure a WLAN through the IEEE
     802.11 MIB module.









Shi, et al.                   Informational                     [Page 6]

RFC 5834               CAPWAP Protocol Binding MIB              May 2010


     capwapDot11WlanBindTable

     The table provides a way to bind WLAN profiles to a WTP Virtual
     Radio Interface, which has a corresponding PHY radio.  A binding
     operation dynamically creates a WLAN BSS Interface, which is used
     for data forwarding.

7.  Relationship to Other MIB Modules

7.1.  Relationship to SNMPv2-MIB Module

  The CAPWAP-DOT11-MIB module does not duplicate the objects of the
  'system' group in the SNMPv2-MIB [RFC3418] that is defined as being
  mandatory for all systems, and the objects apply to the entity as a
  whole.  The 'system' group provides identification of the management
  entity and certain other system-wide data.

7.2.  Relationship to IF-MIB Module

  The Interfaces Group [RFC2863] defines generic managed objects for
  managing interfaces.  This memo contains the media-specific
  extensions to the Interfaces Group for managing WLAN that are modeled
  as interfaces.

  Each WLAN profile corresponds to a WLAN Profile Interface on the AC.
  The interface MUST be modeled as an ifEntry, and ifEntry objects such
  as ifIndex, ifDescr, ifName, and ifAlias are to be used as per
  [RFC2863].  The WLAN Profile Interface provides a way to configure
  IEEE 802.11 parameters for a specific WLAN and reuse the IEEE 802.11
  MIB module.

  To provide data forwarding service, the AC dynamically creates WLAN
  BSS Interfaces.  A WLAN BSS Interface MUST be modeled as an ifEntry,
  and ifEntry objects such as ifIndex, ifDescr, ifName, and ifAlias are
  to be used as per [RFC2863].  The interface enables a single physical
  WTP to support multiple WLANs.

  Also, the AC MUST have a mechanism that preserves the value of the
  ifIndexes (of both the WLAN Profile Interfaces and the WLAN BSS
  Interfaces) in the ifTable at AC reboot.

7.3.  Relationship to CAPWAP-BASE-MIB Module

  The CAPWAP-BASE-MIB module provides a way to manage and control WTP
  and radio objects.  Especially, it provides the WTP Virtual Radio
  Interface mechanism to enable the AC to reuse the IEEE 802.11 MIB
  module.  With this mechanism, an operator could configure an IEEE




Shi, et al.                   Informational                     [Page 7]

RFC 5834               CAPWAP Protocol Binding MIB              May 2010


  802.11 radio's parameters and view the radio's traffic statistics on
  the AC.  Based on the CAPWAP-BASE-MIB module, the CAPWAP-DOT11-MIB
  module provides more WLAN information.

7.4.  Relationship to MIB Module in the IEEE 802.11 Standard

  With the ifIndex of WLAN Profile Interface and WLAN BSS Interface,
  the MIB module is able to reuse the IEEE 802.11 MIB module
  [IEEE.802-11.2007].  The CAPWAP-DOT11-MIB module does not duplicate
  those objects in the IEEE 802.11 MIB module.

  The CAPWAP Protocol Binding for IEEE 802.11 [RFC5416] involves some
  of the MIB objects defined in the IEEE 802.11 standard.  Although
  CAPWAP-DOT11-MIB module uses it [RFC5416] as a reference, it could
  reuse all the MIB objects in the IEEE 802.11 standard , and is not
  limited by the scope of CAPWAP Protocol Binding for IEEE 802.11.

7.5.  MIB Modules Required for IMPORTS

  The following MIB modules are required for IMPORTS: SNMPv2-SMI
  [RFC2578], SNMPv2-TC [RFC2579], SNMPv2-CONF [RFC2580], IF-MIB
  [RFC2863], and CAPWAP-BASE-MIB [RFC5833].

8.  Example of CAPWAP-DOT11-MIB Module Usage

  1) Create a WTP profile.

     Suppose the WTP's base MAC address is '00:01:01:01:01:00'.
     Creates a WTP profile for it through the capwapBaseWtpProfileTable
     [RFC5833] as follows:

    In capwapBaseWtpProfileTable
    {
      capwapBaseWtpProfileId                  = 1,
      capwapBaseWtpProfileName                = 'WTP Profile 123456',
      capwapBaseWtpProfileWtpMacAddress       = '00:01:01:01:01:00',
      capwapBaseWtpProfileWTPModelNumber             = 'WTP123',
      capwapBaseWtpProfileWtpName                    = 'WTP 123456',
      capwapBaseWtpProfileWtpLocation                = 'office',
      capwapBaseWtpProfileWtpStaticIpEnable          = true(1),
      capwapBaseWtpProfileWtpStaticIpType            = ipv4(1),
      capwapBaseWtpProfileWtpStaticIpAddress         = '192.0.2.10',
      capwapBaseWtpProfileWtpNetmask                 = '255.255.255.0',
      capwapBaseWtpProfileWtpGateway                 = '192.0.2.1',
      capwapBaseWtpProfileWtpFallbackEnable          = true(1),
      capwapBaseWtpProfileWtpEchoInterval            = 30,
      capwapBaseWtpProfileWtpIdleTimeout             = 300,
      capwapBaseWtpProfileWtpMaxDiscoveryInterval    = 20,



Shi, et al.                   Informational                     [Page 8]

RFC 5834               CAPWAP Protocol Binding MIB              May 2010


      capwapBaseWtpProfileWtpReportInterval          = 120,
      capwapBaseWtpProfileWtpStatisticsTimer         = 120,
      capwapBaseWtpProfileWtpEcnSupport              = limited(0)
    }

     Suppose the WTP with model number 'WTP123' has one PHY radio and
     this PHY radio is identified by ID 1.  The creation of this WTP
     profile triggers the AC to automatically create a WTP Virtual
     Radio Interface and add a new row object to the
     capwapBaseWirelessBindingTable without manual intervention.
     Suppose the ifIndex of the WTP Virtual Radio Interface is 10.  The
     following information is stored in the
     capwapBaseWirelessBindingTable.

     In capwapBaseWirelessBindingTable
     {
       capwapBaseWtpProfileId                          = 1,
       capwapBaseWirelessBindingRadioId                = 1,
       capwapBaseWirelessBindingVirtualRadioIfIndex    = 10,
       capwapBaseWirelessBindingType                   = dot11(2)
     }

     The WTP Virtual Radio Interfaces on the AC correspond to the PHY
     radios on the WTP.  The WTP Virtual Radio Interface is modeled by
     ifTable [RFC2863].

     In ifTable
     {
       ifIndex              = 10,
       ifDescr              = 'WTP Virtual Radio Interface',
       ifType               = 254,
       ifMtu                = 0,
       ifSpeed              = 0,
       ifPhysAddress        = '00:00:00:00:00:00',
       ifAdminStatus        = true(1),
       ifOperStatus         = false(0),
       ifLastChange         = 0,
       ifInOctets           = 0,
       ifInUcastPkts        = 0,
       ifInDiscards         = 0,
       ifInErrors           = 0,
       ifInUnknownProtos    = 0,
       ifOutOctets          = 0,
       ifOutUcastPkts       = 0,
       ifOutDiscards        = 0,
       ifOutErrors          = 0
      }




Shi, et al.                   Informational                     [Page 9]

RFC 5834               CAPWAP Protocol Binding MIB              May 2010


  2) Query the ifIndexes of WTP Virtual Radio Interfaces.

     Before configuring PHY radios, the operator needs to get the
     ifIndexes of WTP Virtual Radio Interfaces corresponding to the PHY
     radios.

     As the capwapBaseWirelessBindingTable already stores the mappings
     between PHY radios (Radio IDs) and the ifIndexes of WTP Virtual
     Radio Interfaces, the operator can get the ifIndex information by
     querying this table.  Such a query operation SHOULD run from radio
     ID 1 to radio ID 31 (according to [RFC5415]), and stop when an
     invalid ifIndex value (0) is returned.

     This example uses capwapBaseWtpProfileId = 1 and
     capwapBaseWirelessBindingRadioId = 1 as inputs to query the
     capwapBaseWirelessBindingTable, and gets
     capwapBaseWirelessBindingVirtualRadioIfIndex = 10.  Then it uses
     capwapBaseWtpProfileId = 1 and capwapBaseWirelessBindingRadioId =
     2, and gets an invalid ifIndex value (0), so the query operation
     ends.  This method gets not only the ifIndexes of WTP Virtual
     Radio Interfaces, but also the numbers of PHY radios.  Besides
     checking whether the ifIndex value is valid, the operator SHOULD
     check whether the capwapBaseWirelessBindingType is the desired
     binding type.

  3) Configure IEEE 802.11 parameters for a WTP Virtual Radio Interface

     This configuration is made on the AC through the IEEE 802.11 MIB
     module.

     The following shows an example of configuring parameters for a WTP
     Virtual Radio Interface with ifIndex 10 through the
     dot11OperationTable [IEEE.802-11.2007].

     In dot11OperationTable
     {
       ifIndex                                  = 10,
       dot11MACAddress                          = '00:00:00:00:00:00',
       dot11RTSThreshold                        = 2347,
       dot11ShortRetryLimit                     = 7,
       dot11LongRetryLimit                      = 4,
       dot11FragmentationThreshold              = 256,
       dot11MaxTransmitMSDULifetime             = 512,
       dot11MaxReceiveLifetime                  = 512,
       dot11ManufacturerID                      = 'capwap',
       dot11ProductID                           = 'capwap',
       dot11CAPLimit                            = 2,
       dot11HCCWmin                             = 0,



Shi, et al.                   Informational                    [Page 10]

RFC 5834               CAPWAP Protocol Binding MIB              May 2010


       dot11HCCWmax                             = 0,
       dot11HCCAIFSN                            = 1,
       dot11ADDBAResponseTimeout                = 1,
       dot11ADDTSResponseTimeout                = 1,
       dot11ChannelUtilizationBeaconInterval    = 50,
       dot11ScheduleTimeout                     = 10,
       dot11DLSResponseTimeout                  = 10,
       dot11QAPMissingAckRetryLimit             = 1,
       dot11EDCAAveragingPeriod                 = 5
     }

  4) Configure a WLAN Profile.

     WLAN configuration is made on the AC through the CAPWAP-DOT11-MIB
     module, and IEEE 802.11 MIB module.

     The first step is to create a WLAN Profile Interface through the
     CAPWAP-DOT11-MIB module on the AC.

     For example, when you configure a WLAN profile that is identified
     by capwapDot11WlanProfileId 1, the capwapDot11WlanTable creates
     the following row object for it.

     In capwapDot11WlanTable
     {
       capwapDot11WlanProfileId          = 1,
       capwapDot11WlanProfileIfIndex     = 20,
       capwapDot11WlanMacType            = splitMAC(2),
       capwapDot11WlanTunnelMode         = dot3Tunnel(2),
       capwapDot11WlanRowStatus          = createAndGo(4)
     }

     The creation of a row object triggers the AC to automatically
     create a WLAN Profile Interface and it is identified by ifIndex 20
     without manual intervention.

     A WLAN Profile Interface MUST be modeled as an ifEntry on the AC
     that provides appropriate interface information.  The
     capwapDot11WlanTable stores the mappings between
     capwapDot11WlanProfileIds and the ifIndexes of WLAN Profile
     Interfaces.

     In ifTable
     {
       ifIndex              = 20,
       ifDescr              = 'WLAN Profile Interface',
       ifType               = 252,
       ifMtu                = 0,



Shi, et al.                   Informational                    [Page 11]

RFC 5834               CAPWAP Protocol Binding MIB              May 2010


       ifSpeed              = 0,
       ifPhysAddress        = '00:00:00:00:00:00',
       ifAdminStatus        = true(1),
       ifOperStatus         = true(1),
       ifLastChange         = 0,
       ifInOctets           = 0,
       ifInUcastPkts        = 0,
       ifInDiscards         = 0,
       ifInErrors           = 0,
       ifInUnknownProtos    = 0,
       ifOutOctets          = 0,
       ifOutUcastPkts       = 0,
       ifOutDiscards        = 0,
       ifOutErrors          = 0
     }

     The second step is to configure WLAN parameters for the WLAN
     Profile Interface through the IEEE 802.11 MIB module on the AC.

     The following example configures an authentication algorithm for a
     WLAN.

     In dot11AuthenticationAlgorithmsTable
     {
       ifIndex                                = 20,
       dot11AuthenticationAlgorithmsIndex     = 1,
       dot11AuthenticationAlgorithm           = Shared Key(2),
       dot11AuthenticationAlgorithmsEnable    = true(1)
     }

     Here, ifIndex 20 identifies the WLAN Profile Interface, and the
     index of the configured authentication algorithm is 1.

  5) Bind WLAN Profiles to a WTP radio.

     On the AC, the capwapDot11WlanBindTable in the CAPWAP-DOT11-MIB
     stores the bindings between WLAN profiles(identified by
     capwapDot11WlanProfileId) and WTP Virtual Radio Interfaces
     (identified by the ifIndex).

     For example, after the operator binds a WLAN profile with
     capwapDot11WlanProfileId 1 to WTP Virtual Radio Interface with
     ifIndex 10, the capwapDot11WlanBindTable creates the following row
     object.







Shi, et al.                   Informational                    [Page 12]

RFC 5834               CAPWAP Protocol Binding MIB              May 2010


     In capwapDot11WlanBindTable
     {
       ifIndex                          = 10,
       capwapDot11WlanProfileId         = 1,
       capwapDot11WlanBindBssIfIndex    = 30,
       capwapDot11WlanBindRowStatus     = createAndGo(4)
     }

     If the capwapDot11WlanMacType of the WLAN is splitMAC(2), the
     creation of the row object in the capwapDot11WlanBindTable
     triggers the AC to automatically create a WLAN BSS Interface
     identified by ifIndex 30 without manual intervention.

     The WLAN BSS Interface MUST be modeled as an ifEntry on the AC,
     which provides appropriate interface information.  The
     capwapDot11WlanBindTable stores the mappings among the ifIndex of
     a WTP Virtual Radio Interface, WLAN profile ID, WLAN ID, and the
     ifIndex of a WLAN BSS Interface.

  6) Get the current configuration status report from the WTP to the
     AC.

     Before a WTP that has joined the AC gets configuration from the
     AC, it needs to report its current configuration status by sending
     a configuration status request message to the AC, which uses the
     message to update corresponding MIB objects on the AC.  For
     example, for ifIndex 10 (which identifies a WLAN Virtual Radio
     Interface), its ifOperStatus in the ifTable is updated according
     to the current radio operational status in the CAPWAP message
     [RFC5415].

  7) Query WTP and radio statistical data.

     After WTPs start to run, the operator could query WTP and radio
     statistics data through the CAPWAP-BASE-MIB and CAPWAP-DOT11-MIB
     modules.  For example, through the dot11CountersTable
     [IEEE.802-11.2007], the operator could query counter data of a
     radio that is identified by the ifIndex of the corresponding WLAN
     Virtual Radio Interface.

  8) Query other statistical data.

     The operator could query the configuration of a WLAN through the
     dot11AuthenticationAlgorithmsTable [IEEE.802-11.2007] and the
     statistical data of a WLAN BSS Interface through the ifTable
     [RFC2863].





Shi, et al.                   Informational                    [Page 13]

RFC 5834               CAPWAP Protocol Binding MIB              May 2010


9.  Definitions

CAPWAP-DOT11-MIB DEFINITIONS ::= BEGIN

IMPORTS
  RowStatus, TEXTUAL-CONVENTION
      FROM SNMPv2-TC
  OBJECT-GROUP, MODULE-COMPLIANCE
      FROM SNMPv2-CONF
  MODULE-IDENTITY, OBJECT-TYPE, mib-2, Unsigned32
      FROM SNMPv2-SMI
  ifIndex, InterfaceIndex
      FROM IF-MIB
  CapwapBaseMacTypeTC, CapwapBaseTunnelModeTC
      FROM CAPWAP-BASE-MIB;

capwapDot11MIB MODULE-IDENTITY
   LAST-UPDATED "201004300000Z"        -- 30 April 2010
   ORGANIZATION "IETF Control And Provisioning of Wireless Access
                 Points (CAPWAP) Working Group
                 http://www.ietf.org/html.charters/capwap-charter.html"
   CONTACT-INFO
       "General Discussion: [email protected]
        To Subscribe: http://lists.frascone.com/mailman/listinfo/capwap

        Yang Shi (editor)
        Hangzhou H3C Tech. Co., Ltd.
        Beijing R&D Center of H3C, Digital Technology Plaza
        NO. 9 Shangdi 9th Street, Haidian District
        Beijing  100085
        China
        Phone: +86 010 82775276
        Email: [email protected]

        David T. Perkins (editor)
        228 Bayview Dr.
        San Carlos, CA  94070
        USA
        Phone: +1 408 394-8702
        Email:  [email protected]

        Chris Elliott (editor)
        1516 Kent St.
        Durham, NC  27707
        USA
        Phone: +1 919-308-1216
        Email: [email protected]




Shi, et al.                   Informational                    [Page 14]

RFC 5834               CAPWAP Protocol Binding MIB              May 2010


        Yong Zhang (editor)
        Fortinet, Inc.
        1090 Kifer Road
        Sunnyvale, CA  94086
        USA
        Email: [email protected]"

  DESCRIPTION
      "Copyright (c) 2010 IETF Trust and the persons identified as
       authors of the code.  All rights reserved.

       Redistribution and use in source and binary forms, with or
       without modification, is permitted pursuant to, and subject
       to the license terms contained in, the Simplified BSD License
       set forth in Section 4.c of the IETF Trust's Legal Provisions
       Relating to IETF Documents
       (http://trustee.ietf.org/license-info).

       This version of this MIB module is part of RFC 5834;
       see the RFC itself for full legal notices.

       This MIB module contains managed object definitions for
       CAPWAP Protocol binding for IEEE 802.11."
  REVISION    "201004300000Z"
  DESCRIPTION
      "Initial version, published as RFC 5834"
       ::= { mib-2 195 }

-- Textual conventions

CapwapDot11WlanIdTC ::= TEXTUAL-CONVENTION
   DISPLAY-HINT "d"
   STATUS      current
   DESCRIPTION
       "Represents the unique identifier of a Wireless Local Area
        Network (WLAN)."
   SYNTAX      Unsigned32 (1..16)

CapwapDot11WlanIdProfileTC ::= TEXTUAL-CONVENTION
   DISPLAY-HINT "d"
   STATUS      current
   DESCRIPTION
       "Represents the unique identifier of a WLAN profile."
   SYNTAX      Unsigned32 (1..512)

-- Top level components of this MIB module

-- Tables, Scalars



Shi, et al.                   Informational                    [Page 15]

RFC 5834               CAPWAP Protocol Binding MIB              May 2010


capwapDot11Objects OBJECT IDENTIFIER
   ::= { capwapDot11MIB 1 }
-- Conformance
capwapDot11Conformance OBJECT IDENTIFIER
   ::= { capwapDot11MIB 2 }

-- capwapDot11WlanTable Table

capwapDot11WlanTable OBJECT-TYPE
   SYNTAX      SEQUENCE OF CapwapDot11WlanEntry
   MAX-ACCESS  not-accessible
   STATUS      current
   DESCRIPTION
       "A table that allows the operator to display and configure
        WLAN profiles, such as specifying the MAC type and tunnel mode
        for a WLAN.  Also, it helps the AC to configure a WLAN through
        the IEEE 802.11 MIB module.
        Values of all objects in this table are persistent at
        restart/reboot."
   ::= { capwapDot11Objects 1 }

capwapDot11WlanEntry  OBJECT-TYPE
   SYNTAX      CapwapDot11WlanEntry
   MAX-ACCESS  not-accessible
   STATUS      current
   DESCRIPTION
       "A set of objects that stores the settings of a WLAN profile."
   INDEX { capwapDot11WlanProfileId }
   ::= { capwapDot11WlanTable 1 }

CapwapDot11WlanEntry ::=
   SEQUENCE {
     capwapDot11WlanProfileId          CapwapDot11WlanIdProfileTC,
     capwapDot11WlanProfileIfIndex     InterfaceIndex,
     capwapDot11WlanMacType            CapwapBaseMacTypeTC,
     capwapDot11WlanTunnelMode         CapwapBaseTunnelModeTC,
     capwapDot11WlanRowStatus          RowStatus
   }

capwapDot11WlanProfileId OBJECT-TYPE
   SYNTAX      CapwapDot11WlanIdProfileTC
   MAX-ACCESS  not-accessible
   STATUS      current
   DESCRIPTION
       "Represents the identifier of a WLAN profile that has a
        corresponding capwapDot11WlanProfileIfIndex."
   ::= { capwapDot11WlanEntry 1 }




Shi, et al.                   Informational                    [Page 16]

RFC 5834               CAPWAP Protocol Binding MIB              May 2010


capwapDot11WlanProfileIfIndex OBJECT-TYPE
   SYNTAX      InterfaceIndex
   MAX-ACCESS  read-only
   STATUS      current
   DESCRIPTION
       "Represents the index value that uniquely identifies a
        WLAN Profile Interface.  The interface identified by a
        particular value of this index is the same interface as
        identified by the same value of the ifIndex.
        The creation of a row object in the capwapDot11WlanTable
        triggers the AC to automatically create an WLAN Profile
        Interface identified by an ifIndex without manual
        intervention.
        Most MIB tables in the IEEE 802.11 MIB module
        [IEEE.802-11.2007] use an ifIndex to identify an interface
        to facilitate the configuration and maintenance, for example,
        dot11AuthenticationAlgorithmsTable.
        Using the ifIndex of a WLAN Profile Interface, the Operator
        could configure a WLAN through the IEEE 802.11 MIB module."
   ::= { capwapDot11WlanEntry 2 }

capwapDot11WlanMacType OBJECT-TYPE
   SYNTAX      CapwapBaseMacTypeTC
   MAX-ACCESS  read-create
   STATUS      current
   DESCRIPTION
       "Represents whether the WTP SHOULD support the WLAN in
        Local or Split MAC modes."
   REFERENCE
       "Section 6.1 of CAPWAP Protocol Binding for IEEE 802.11,
        RFC 5416."
   ::= { capwapDot11WlanEntry 3 }

capwapDot11WlanTunnelMode OBJECT-TYPE
   SYNTAX      CapwapBaseTunnelModeTC
   MAX-ACCESS  read-create
   STATUS      current
   DESCRIPTION
       "Represents the frame tunneling mode to be used for IEEE 802.11
        data frames from all stations associated with the WLAN.
        Bits are exclusive with each other for a specific WLAN profile,
        and only one tunnel mode could be configured.
        If the operator set more than one bit, the value of the
        Response-PDU's error-status field is set to 'wrongValue',
        and the value of its error-index field is set to the index of
        the failed variable binding."
   REFERENCE
       "Section 6.1 of CAPWAP Protocol Binding for IEEE 802.11,



Shi, et al.                   Informational                    [Page 17]

RFC 5834               CAPWAP Protocol Binding MIB              May 2010


        RFC 5416."
   ::= { capwapDot11WlanEntry 4 }

capwapDot11WlanRowStatus OBJECT-TYPE
   SYNTAX      RowStatus
   MAX-ACCESS  read-create
   STATUS      current
   DESCRIPTION
       "This variable is used to create, modify, and/or delete a row
        in this table.
        All the objects in a row can be modified only when the value
        of this object in the corresponding conceptual row is not
        'active'.  Thus, to modify one or more of the objects in
        this conceptual row:
             a. change the row status to 'notInService',
             b. change the values of the row
             c. change the row status to 'active'
        The capwapDot11WlanRowStatus may be changed to 'active'
        if all the managed objects in the conceptual row with
        MAX-ACCESS read-create have been assigned valid values.

        When the operator deletes a WLAN profile, the AC SHOULD
        check whether the WLAN profile is bound with a radio.
        If yes, the value of the Response-PDU's error-status field
        is set to 'inconsistentValue', and the value of its
        error-index field is set to the index of the failed variable
        binding.  If not, the row object could be deleted."
   ::= { capwapDot11WlanEntry 5 }

-- End of capwapDot11WlanTable Table


-- capwapDot11WlanBindTable Table

capwapDot11WlanBindTable OBJECT-TYPE
   SYNTAX      SEQUENCE OF CapwapDot11WlanBindEntry
   MAX-ACCESS  not-accessible
   STATUS      current
   DESCRIPTION
       "A table that stores bindings between WLAN profiles
        (identified by capwapDot11WlanProfileId) and WTP Virtual Radio
        Interfaces.  The WTP Virtual Radio Interfaces on the AC
        correspond to physical layer (PHY) radios on the WTPs.
        It also stores the mappings between WLAN IDs and WLAN
        Basic Service Set (BSS) Interfaces.
        Values of all objects in this table are persistent at
        restart/reboot."
   REFERENCE



Shi, et al.                   Informational                    [Page 18]

RFC 5834               CAPWAP Protocol Binding MIB              May 2010


       "Section 6.1 of CAPWAP Protocol Binding for IEEE 802.11,
        RFC 5416."
   ::= { capwapDot11Objects 2 }

capwapDot11WlanBindEntry OBJECT-TYPE
   SYNTAX      CapwapDot11WlanBindEntry
   MAX-ACCESS  not-accessible
   STATUS      current
   DESCRIPTION
       "A set of objects that stores the binding of a WLAN profile
        to a WTP Virtual Radio Interface.  It also stores the mapping
        between WLAN ID and WLAN BSS Interface.
        The INDEX object ifIndex is the ifIndex of a WTP Virtual
        Radio Interface."
   INDEX { ifIndex, capwapDot11WlanProfileId }
   ::= { capwapDot11WlanBindTable 1 }

CapwapDot11WlanBindEntry ::=
   SEQUENCE {
     capwapDot11WlanBindWlanId        CapwapDot11WlanIdTC,
     capwapDot11WlanBindBssIfIndex    InterfaceIndex,
     capwapDot11WlanBindRowStatus     RowStatus
   }

capwapDot11WlanBindWlanId OBJECT-TYPE
   SYNTAX      CapwapDot11WlanIdTC
   MAX-ACCESS  read-only
   STATUS      current
   DESCRIPTION
       "Represents the WLAN ID of a WLAN.
        During a binding operation, the AC MUST select an unused
        WLAN ID from between 1 and 16 [RFC5416].  For example, to bind
        another WLAN profile to a radio that has been bound with
        a WLAN profile, WLAN ID 2 should be assigned."
   REFERENCE
       "Section 6.1 of CAPWAP Protocol Binding for IEEE 802.11,
        RFC 5416."
   ::= { capwapDot11WlanBindEntry 1 }

capwapDot11WlanBindBssIfIndex OBJECT-TYPE
   SYNTAX      InterfaceIndex
   MAX-ACCESS  read-only
   STATUS      current
   DESCRIPTION
       "Represents the index value that uniquely identifies a
        WLAN BSS Interface.  The interface identified by a
        particular value of this index is the same interface as
        identified by the same value of the ifIndex.



Shi, et al.                   Informational                    [Page 19]

RFC 5834               CAPWAP Protocol Binding MIB              May 2010


        The ifIndex here is for a WLAN BSS Interface.
        The creation of a row object in the capwapDot11WlanBindTable
        triggers the AC to automatically create a WLAN BSS Interface
        identified by an ifIndex without manual intervention.
        The PHY address of the capwapDot11WlanBindBssIfIndex is the
        BSSID.  While manufacturers are free to assign BSSIDs by using
        any arbitrary mechanism, it is advised that where possible the
        BSSIDs are assigned as a contiguous block.
        When assigned as a block, implementations can still assign
        any of the available BSSIDs to any WLAN.  One possible method
        is for the WTP to assign the address using the following
        algorithm: base BSSID address + WLAN ID."
   REFERENCE
       "Section 2.4 of CAPWAP Protocol Binding for IEEE 802.11,
        RFC 5416."
   ::= { capwapDot11WlanBindEntry 2 }

capwapDot11WlanBindRowStatus OBJECT-TYPE
   SYNTAX      RowStatus
   MAX-ACCESS  read-create
   STATUS      current
   DESCRIPTION
       "This variable is used to create, modify, and/or delete a row
        in this table.
        All the objects in a row can be modified only when the value
        of this object in the corresponding conceptual row is not
        'active'.  Thus, to modify one or more of the objects in
        this conceptual row:
             a. change the row status to 'notInService',
             b. change the values of the row
             c. change the row status to 'active'"
   ::= { capwapDot11WlanBindEntry 3 }

-- End of capwapDot11WlanBindTable Table


-- Module compliance

capwapDot11Groups OBJECT IDENTIFIER
   ::= { capwapDot11Conformance 1 }

capwapDot11Compliances OBJECT IDENTIFIER
   ::= { capwapDot11Conformance 2 }

capwapDot11Compliance MODULE-COMPLIANCE
   STATUS current
   DESCRIPTION
       "Describes the requirements for conformance to the



Shi, et al.                   Informational                    [Page 20]

RFC 5834               CAPWAP Protocol Binding MIB              May 2010


        CAPWAP-DOT11-MIB module."

   MODULE -- this module
     MANDATORY-GROUPS {
       capwapDot11WlanGroup,
       capwapDot11WlanBindGroup
     }
   ::= { capwapDot11Compliances 1 }

capwapDot11WlanGroup    OBJECT-GROUP
   OBJECTS {
     capwapDot11WlanProfileIfIndex,
     capwapDot11WlanMacType,
     capwapDot11WlanTunnelMode,
     capwapDot11WlanRowStatus
   }
   STATUS  current
   DESCRIPTION
       "A collection of objects that is used to configure
        the properties of a WLAN profile."
   ::= { capwapDot11Groups 1 }

capwapDot11WlanBindGroup    OBJECT-GROUP
   OBJECTS {
     capwapDot11WlanBindWlanId,
     capwapDot11WlanBindBssIfIndex,
     capwapDot11WlanBindRowStatus
   }
   STATUS  current
   DESCRIPTION
       "A collection of objects that is used to bind the
        WLAN profiles with a radio."
   ::= { capwapDot11Groups 2 }

END

10.  Security Considerations

  There are a number of management objects defined in this MIB module
  with a MAX-ACCESS clause of read-write and/or read-create.  Such
  objects MAY be considered sensitive or vulnerable in some network
  environments.  The support for SET operations in a non-secure
  environment without proper protection can have a negative effect on
  network operations.  The following are the tables and objects and
  their sensitivity/vulnerability:






Shi, et al.                   Informational                    [Page 21]

RFC 5834               CAPWAP Protocol Binding MIB              May 2010


  o  Unauthorized changes to the capwapDot11WlanTable and
     capwapDot11WlanBindTable MAY disrupt allocation of resources in
     the network, and also change the behavior of the WLAN system such
     as MAC type.

  SNMP versions prior to SNMPv3 did not include adequate security.
  Even if the network itself is secure (for example by using IPSec),
  even then, there is no control as to who on the secure network is
  allowed to access and GET/SET (read/change/create/delete) the objects
  in this MIB module.

  It is RECOMMENDED that implementers consider the security features as
  provided by the SNMPv3 framework (see [RFC3410], section 8),
  including full support for the SNMPv3 cryptographic mechanisms (for
  authentication and privacy).

  Further, deployment of SNMP versions prior to SNMPv3 is NOT
  RECOMMENDED.  Instead, it is RECOMMENDED to deploy SNMPv3 and to
  enable cryptographic security.  It is then a customer/operator
  responsibility to ensure that the SNMP entity giving access to an
  instance of this MIB module is properly configured to give access to
  the objects only to those principals (users) that have legitimate
  rights to indeed GET or SET (change/create/delete) them.

11.  IANA Considerations

11.1.  IANA Considerations for CAPWAP-DOT11-MIB Module

       The MIB module in this document uses the following IANA-assigned
       OBJECT IDENTIFIER value recorded in the SMI Numbers registry:

       Descriptor      OBJECT IDENTIFIER value
       ----------      -----------------------
       capwapDot11MIB  { mib-2 195 }

11.2.  IANA Considerations for ifType

  IANA has assigned the following ifTypes:

      Decimal   Name                Description
      -------   ------------        -------------------------------
      252       capwapDot11Profile  WLAN Profile Interface
      253       capwapDot11Bss      WLAN BSS Interface

12.  Contributors

  This MIB module is based on contributions from Long Gao.




Shi, et al.                   Informational                    [Page 22]

RFC 5834               CAPWAP Protocol Binding MIB              May 2010


13.  Acknowledgements

  Thanks to David Harrington, Dan Romascanu, Abhijit Choudhury, and
  Elwyn Davies for helpful comments on this document and guiding some
  technical solutions.

  The authors also thank their friends and coworkers Fei Fang, Xuebin
  Zhu, Hao Song, Yu Liu, Sachin Dutta, Ju Wang, Yujin Zhao, Haitao
  Zhang, Xiansen Cai, and Xiaolan Wan.

14.  References

14.1.  Normative References

  [IEEE.802-11.2007]  "Information technology - Telecommunications and
                      information exchange between systems  - Local and
                      metropolitan area networks - Specific
                      requirements - Part 11: Wireless LAN Medium
                      Access Control (MAC) and Physical Layer (PHY)
                      specifications", IEEE Standard 802.11, 2007, <htt
                      p://standards.ieee.org/getieee802/download/
                      802.11-2007.pdf>.

  [RFC2119]           Bradner, S., "Key words for use in RFCs to
                      Indicate Requirement Levels", BCP 14, RFC 2119,
                      March 1997.

  [RFC2578]           McCloghrie, K., Ed., Perkins, D., Ed., and J.
                      Schoenwaelder, Ed., "Structure of Management
                      Information Version 2 (SMIv2)", STD 58, RFC 2578,
                      April 1999.

  [RFC2579]           McCloghrie, K., Ed., Perkins, D., Ed., and J.
                      Schoenwaelder, Ed., "Textual Conventions for
                      SMIv2", STD 58, RFC 2579, April 1999.

  [RFC2580]           McCloghrie, K., Perkins, D., and J.
                      Schoenwaelder, "Conformance Statements for
                      SMIv2", STD 58, RFC 2580, April 1999.

  [RFC2863]           McCloghrie, K. and F. Kastenholz, "The Interfaces
                      Group MIB", RFC 2863, June 2000.

  [RFC3418]           Presuhn, R., "Management Information Base (MIB)
                      for the Simple Network Management Protocol
                      (SNMP)", STD 62, RFC 3418, December 2002.





Shi, et al.                   Informational                    [Page 23]

RFC 5834               CAPWAP Protocol Binding MIB              May 2010


  [RFC5415]           Calhoun, P., Montemurro, M., and D. Stanley,
                      "Control And Provisioning of Wireless Access
                      Points (CAPWAP) Protocol Specification",
                      RFC 5415, March 2009.

  [RFC5416]           Calhoun, P., Montemurro, M., and D. Stanley,
                      "Control and Provisioning of Wireless Access
                      Points (CAPWAP) Protocol Binding for IEEE
                      802.11", RFC 5416, March 2009.

  [RFC5833]           Shi, Y., Ed., Perkins, D., Ed., Elliott, C., Ed.,
                      and Y. Zhang, Ed., "Control and Provisioning of
                      Wireless Access Points (CAPWAP) Protocol Base
                      MIB", RFC 5833, May 2010.

14.2.  Informative References

  [RFC3410]           Case, J., Mundy, R., Partain, D., and B. Stewart,
                      "Introduction and Applicability Statements for
                      Internet-Standard Management Framework",
                      RFC 3410, December 2002.

  [RFC4347]           Rescorla, E. and N. Modadugu, "Datagram Transport
                      Layer Security", RFC 4347, April 2006.



























Shi, et al.                   Informational                    [Page 24]

RFC 5834               CAPWAP Protocol Binding MIB              May 2010


Authors' Addresses

  Yang Shi (editor)
  Hangzhou H3C Tech. Co., Ltd.
  Beijing R&D Center of H3C, Digital Technology Plaza
  NO. 9 Shangdi 9th Street, Haidian District
  Beijing  100085
  China

  Phone: +86 010 82775276
  EMail: [email protected]


  David T. Perkins (editor)
  228 Bayview Dr.
  San Carlos, CA  94070
  USA

  Phone: +1 408 394-8702
  EMail: [email protected]


  Chris Elliott (editor)
  1516 Kent St.
  Durham, NC  27707
  USA

  Phone: +1 919-308-1216
  EMail: [email protected]


  Yong Zhang (editor)
  Fortinet, Inc.
  1090 Kifer Road
  Sunnyvale, CA  94086
  USA

  EMail: [email protected]













Shi, et al.                   Informational                    [Page 25]