Internet Engineering Task Force (IETF)                    K. Kumaki, Ed.
Request for Comments: 5824                              KDDI Corporation
Category: Informational                                         R. Zhang
ISSN: 2070-1721                                                       BT
                                                              Y. Kamite
                                         NTT Communications Corporation
                                                             April 2010


                     Requirements for Supporting
            Customer Resource ReSerVation Protocol (RSVP)
    and RSVP Traffic Engineering (RSVP-TE) over a BGP/MPLS IP-VPN

Abstract

  Today, customers expect to run triple-play services through BGP/MPLS
  IP-VPNs.  Some service providers will deploy services that request
  Quality of Service (QoS) guarantees from a local Customer Edge (CE)
  to a remote CE across the network.  As a result, the application
  (e.g., voice, video, bandwidth-guaranteed data pipe, etc.)
  requirements for an end-to-end QoS and reserving an adequate
  bandwidth continue to increase.

  Service providers can use both an MPLS and an MPLS Traffic
  Engineering (MPLS-TE) Label Switched Path (LSP) to meet their service
  objectives.  This document describes service-provider requirements
  for supporting a customer Resource ReSerVation Protocol (RSVP) and
  RSVP-TE over a BGP/MPLS IP-VPN.

Status of This Memo

  This document is not an Internet Standards Track specification; it is
  published for informational purposes.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Not all documents
  approved by the IESG are a candidate for any level of Internet
  Standard; see Section 2 of RFC 5741.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  http://www.rfc-editor.org/info/rfc5824.







Kumaki, et al.                Informational                     [Page 1]

RFC 5824      Supporting RSVP/RSVP-TE over BGP/MPLS IP-VPN    April 2010


Copyright Notice

  Copyright (c) 2010 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (http://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.

  This document may contain material from IETF Documents or IETF
  Contributions published or made publicly available before November
  10, 2008.  The person(s) controlling the copyright in some of this
  material may not have granted the IETF Trust the right to allow
  modifications of such material outside the IETF Standards Process.
  Without obtaining an adequate license from the person(s) controlling
  the copyright in such materials, this document may not be modified
  outside the IETF Standards Process, and derivative works of it may
  not be created outside the IETF Standards Process, except to format
  it for publication as an RFC or to translate it into languages other
  than English.

























Kumaki, et al.                Informational                     [Page 2]

RFC 5824      Supporting RSVP/RSVP-TE over BGP/MPLS IP-VPN    April 2010


Table of Contents

  1. Introduction ....................................................4
  2. Requirements Language ...........................................4
  3. Terminology .....................................................5
  4. Problem Statement ...............................................5
  5. Application Scenarios ...........................................7
     5.1. Scenario I: Fast Recovery over BGP/MPLS IP-VPNs ............8
     5.2. Scenario II: Strict C-TE LSP QoS Guarantees ................8
     5.3. Scenario III: Load Balance of CE-to-CE Traffic .............9
     5.4. Scenario IV: RSVP Aggregation over MPLS-TE Tunnels ........11
     5.5. Scenario V: RSVP over Non-TE LSPs .........................12
     5.6. Scenario VI: RSVP-TE over Non-TE LSPs .....................13
  6. Detailed Requirements for C-TE LSP Model .......................14
     6.1. Selective P-TE LSPs .......................................14
     6.2. Graceful Restart Support for C-TE LSPs ....................14
     6.3. Rerouting Support for C-TE LSPs ...........................15
     6.4. FRR Support for C-TE LSPs .................................15
     6.5. Admission Control Support on P-TE LSP Head-Ends ...........15
     6.6. Admission Control Support for C-TE LSPs in
          LDP-Based Core Networks ...................................16
     6.7. Policy Control Support for C-TE LSPs ......................16
     6.8. PCE Features Support for C-TE LSPs ........................16
     6.9. Diversely Routed C-TE LSP Support .........................16
     6.10. Optimal Path Support for C-TE LSPs .......................17
     6.11. Reoptimization Support for C-TE LSPs .....................17
     6.12. DS-TE Support for C-TE LSPs ..............................17
  7. Detailed Requirements for C-RSVP Path Model ....................18
     7.1. Admission Control between PE-CE for C-RSVP Paths ..........18
     7.2. Aggregation of C-RSVP Paths by P-TE LSPs ..................18
     7.3. Non-TE LSP Support for C-RSVP Paths .......................18
     7.4. Transparency of C-RSVP Paths ..............................18
  8. Commonly Detailed Requirements for Two Models ..................18
     8.1. CE-PE Routing .............................................18
     8.2. Complexity and Risks ......................................19
     8.3. Backward Compatibility ....................................19
     8.4. Scalability Considerations ................................19
     8.5. Performance Considerations ................................19
     8.6. Management Considerations .................................20
  9. Security Considerations ........................................20
  10. References ....................................................21
     10.1. Normative References .....................................21
     10.2. Informative References ...................................22
  Acknowledgments....................................................23
  Appendix A. Reference Model........................................24
     A.1 End-to-End C-RSVP Path Model................................24
     A.2 End-to-End C-TE LSP Model...................................25




Kumaki, et al.                Informational                     [Page 3]

RFC 5824      Supporting RSVP/RSVP-TE over BGP/MPLS IP-VPN    April 2010


1.  Introduction

  Some service providers want to build a service that guarantees
  Quality of Service (QoS) and a bandwidth from a local Customer Edge
  (CE) to a remote CE through the network.  A CE includes the network
  client equipment owned and operated by the service provider.
  However, the CE may not be part of the MPLS provider network.

  Today, customers expect to run triple-play services such as Internet
  access, telephone, and television through BGP/MPLS IP-VPNs [RFC4364].

  As these services evolve, the requirements for an end-to-end QoS to
  meet the application requirements also continue to grow.  Depending
  on the application (e.g., voice, video, bandwidth-guaranteed data
  pipe, etc.), a native IP using an RSVP and/or an end-to-end
  constrained MPLS Traffic Engineering (MPLS-TE) Label Switched Path
  (LSP) may be required.  The RSVP path may be used to provide QoS
  guarantees and reserve an adequate bandwidth for the data.  An end-
  to-end MPLS-TE LSP may also be used to guarantee a bandwidth, and
  provide extended functionality like MPLS fast reroute (FRR) [RFC4090]
  for maintaining the service continuity around node and link,
  including the CE-PE link, failures.  It should be noted that an RSVP
  session between two CEs may also be mapped and tunneled into an MPLS-
  TE LSP across an MPLS provider network.

  A number of advantages exist for deploying the model previously
  mentioned.  The first is that customers can use these network
  services while being able to use both private addresses and global
  addresses.  The second advantage is that the traffic is tunneled
  through the service-provider backbone so that customer traffic and
  route confidentiality are maintained.

  This document defines a reference model, example application
  scenarios, and detailed requirements for a solution supporting a
  customer RSVP and RSVP-TE over a BGP/MPLS IP-VPN.

  A specification for a solution is out of scope in this document.

2.  Requirements Language

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in [RFC2119].








Kumaki, et al.                Informational                     [Page 4]

RFC 5824      Supporting RSVP/RSVP-TE over BGP/MPLS IP-VPN    April 2010


3.  Terminology

  This document uses the BGP/MPLS IP-VPN terminology defined in
  [RFC4364] and also uses Path Computation Element (PCE) terms defined
  in [RFC4655].

  TE LSP: Traffic Engineering Label Switched Path

  MPLS-TE LSP: Multiprotocol Label Switching TE LSP

  C-RSVP path: Customer RSVP path: a native RSVP path with the
               bandwidth reservation of X for customers

  C-TE LSP: Customer Traffic Engineering Label Switched Path: an end-
            to-end MPLS-TE LSP for customers

  P-TE LSP: Provider Traffic Engineering Label Switched Path: a
            transport TE LSP between two Provider Edges (PEs)

  LSR: a Label Switched Router

  Head-end LSR: an ingress LSR

  Tail-end LSR: an egress LSR

4.  Problem Statement

  Service providers want to deliver triple-play services with QoS
  guarantees to their customers.  Various techniques are available to
  achieve this.  Some service providers will wish to offer advanced
  services using an RSVP signaling for native IP flows (C-RSVP) or an
  RSVP-TE signaling for Customer TE LSPs (C-TE LSPs) over BGP/MPLS
  IP-VPNs.

  The following examples outline each method:

  A C-RSVP path with the bandwidth reservation of X can be used to
  transport voice traffic.  In order to achieve recovery in under 50 ms
  during link, node, and Shared Risk Link Group (SRLG) failures, and to
  provide strict QoS guarantees, a C-TE LSP with bandwidth X between
  data centers or customer sites can be used to carry voice and video
  traffic.  Thus, service providers or customers can choose a C-RSVP
  path or a C-TE LSP to meet their requirements.

  When service providers offer a C-RSVP path between hosts or CEs over
  BGP/MPLS IP-VPNs, the CE/host requests an end-to-end C-RSVP path with
  the bandwidth reservation of X to the remote CE/host.  However, if a
  C-RSVP signaling is to send within a VPN, the service-provider



Kumaki, et al.                Informational                     [Page 5]

RFC 5824      Supporting RSVP/RSVP-TE over BGP/MPLS IP-VPN    April 2010


  network will face scalability issues because routers need to retain
  the RSVP state per a customer.  Therefore, in order to solve
  scalability issues, multiple C-RSVP reservations can be aggregated at
  a PE, where a P-TE LSP head-end can perform admission control using
  the aggregated C-RSVP reservations.  The method that is described in
  [RFC4804] can be considered as a useful approach.  In this case, a
  reservation request from within the context of a Virtual Routing and
  Forwarding (VRF) instance can get aggregated onto a P-TE LSP.  The
  P-TE LSP can be pre-established, resized based on the request, or
  triggered by the request.  Service providers, however, cannot provide
  a C-RSVP path over the VRF instance as defined in [RFC4364].  The
  current BGP/MPLS IP-VPN architecture also does not support an RSVP
  instance running in the context of a VRF to process RSVP messages and
  integrated services (int-serv) ([RFC1633], [RFC2210]).  One solution
  is described in [RSVP-L3VPN].

  If service providers offer a C-TE LSP from a CE to a CE over the
  BGP/MPLS IP-VPN, they require that an MPLS-TE LSP from a local CE to
  a remote CE be established.  However, if a C-TE LSP signaling is to
  send within the VPN, the service-provider network may face the
  following scalability issues:

  - A C-TE LSP can be aggregated by a P-TE LSP at a PE (i.e.,
    hierarchical LSPs).  In this case, only a PE maintains the state of
    customer RSVP sessions.

  - A C-TE LSP cannot be aggregated by a P-TE LSP at a PE, depending on
    some policies (i.e., continuous LSPs).  In this case, both Ps and
    PEs maintain the state of customer RSVP sessions.

  - A C-TE LSP can be aggregated by the non-TE LSP (i.e., LDP).
    In this case, only a PE maintains the state of customer RSVP-TE
    sessions.  Note that it is assumed that there is always enough
    bandwidth available in the service-provider core network.

  Furthermore, if service providers provide the C-TE LSP over the
  BGP/MPLS IP-VPN, they currently cannot provide it over the VRF
  instance as defined in [RFC4364].  Specifically, the current BGP/MPLS
  IP-VPN architecture does not support the RSVP-TE instance running in
  the context of a VRF to process RSVP messages and trigger the
  establishment of the C-TE LSP over the service-provider core network.
  If every C-TE LSP is to trigger the establishment or resizing of a
  P-TE LSP, the service-provider network will also face scalability
  issues that arise from maintaining a large number of P-TE LSPs and/or







Kumaki, et al.                Informational                     [Page 6]

RFC 5824      Supporting RSVP/RSVP-TE over BGP/MPLS IP-VPN    April 2010


  the dynamic signaling of these P-TE LSPs.  Section 8.4 of this
  document, "Scalability Considerations", provides detailed scalability
  requirements.

  Two different models have been described above.  The differences
  between C-RSVP paths and C-TE LSPs are as follows:

  - C-RSVP path model: data packets among CEs are forwarded by "native
    IP packets" (i.e., not labeled packets).

  - C-TE LSP model: data packets among CEs are forwarded by "labeled IP
    packets".

  Depending on the service level and the need to meet specific
  requirements, service providers should be able to choose P-TE LSPs or
  non-TE LSPs in the backbone network.  The selection may be dependent
  on the service provider's policy and the node's capability to support
  the mechanisms described.

  The items listed below are selectively required to support C-RSVP
  paths and C-TE LSPs over BGP/MPLS IP-VPNs based on the service level.
  For example, some service providers need all of the following items
  to provide a service, and some service providers need only some of
  them to provide the service.  It depends on the service level and
  policy of service providers.  Detailed requirements are described in
  Sections 6, 7, and 8.

  - C-RSVP path QoS guarantees.

  - Fast recovery over the BGP/MPLS IP-VPN to protect traffic for the
    C-TE LSP against CE-PE link failure and PE node failure.

  - Strict C-TE LSP bandwidth and QoS guarantees.

  - Resource optimization for C-RSVP paths and C-TE LSPs.

  - Scalability for C-RSVP paths and C-TE LSPs.

5.  Application Scenarios

  The following sections present a few application scenarios for C-RSVP
  paths and C-TE LSPs in BGP/MPLS IP-VPN environments.  Appendix A,
  "Reference Model", describes a C-RSVP path, a C-TE LSP, and a
  P-TE LSP.

  In all scenarios, it is the responsibility of the service provider to
  ensure that enough bandwidth is available to meet the customers'
  application requirements.



Kumaki, et al.                Informational                     [Page 7]

RFC 5824      Supporting RSVP/RSVP-TE over BGP/MPLS IP-VPN    April 2010


5.1.  Scenario I: Fast Recovery over BGP/MPLS IP-VPNs

  In this scenario, as shown in Figure 1, a customer uses a VoIP
  application between its sites (i.e., between CE1 and CE2).  H0 and H1
  represent voice equipment.

  In this case, the customer establishes C-TE LSP1 as a primary path
  and C-TE LSP2 as a backup path.  If the link between PE1 and CE1 or
  the node of PE1 fails, C-TE LSP1 needs C-TE LSP2 as a path
  protection.

  Generally speaking, C-RSVP paths are used by customers, and P-TE LSPs
  are used by service providers.

                               C-TE LSP1
            <---------------------------------------------->
                               P-TE LSP1
                     <--------------------------->
  .............                                         .............
  . ---   --- .     ---      ---       ---      ---     . ---   --- .
  .|H0 | |CE1|-----|PE1|----|P1 |-----|P2 |----|PE2|-----|CE2| |H1 |.
  . ---   --- .     ---      ---       ---      ---     . ---   --- .
  .........|...     ---      ---       ---      ---     ...|.........
           +-------|PE3|----|P3 |-----|P4 |----|PE4|-------+
                    ---      ---       ---      ---

                     <--------------------------->
                               P-TE LSP2
            <---------------------------------------------->
                               C-TE LSP2

  <--customer-->    <--------BGP/MPLS IP-VPN------->    <--customer->
     network                                               network

                          Figure 1.  Scenario I

5.2.  Scenario II: Strict C-TE LSP QoS Guarantees

  In this scenario, as shown in Figure 2, service provider B (SP B)
  transports voice and video traffic between its sites (i.e., between
  CE1 and CE2).  In this case, service provider B establishes C-TE LSP1
  with preemption priority 0 and 100-Mbps bandwidth for the voice
  traffic, and C-TE LSP2 with preemption priority 1 and 200-Mbps
  bandwidth for the unicast video traffic.  On the other hand, service
  provider A (SP A) also pre-establishes P-TE LSP1 with preemption
  priority 0 and 1-Gbps bandwidth for the voice traffic, and P-TE LSP2
  with preemption priority 1 and 2-Gbps bandwidth for the video




Kumaki, et al.                Informational                     [Page 8]

RFC 5824      Supporting RSVP/RSVP-TE over BGP/MPLS IP-VPN    April 2010


  traffic.  In this scenario, P-TE LSP1 and P-TE LSP2 should support
  Diffserv-aware MPLS Traffic Engineering (DS-TE) [RFC4124].

  PE1 and PE3 should choose an appropriate P-TE LSP based on the
  preemption priority.  In this case, C-TE LSP1 must be associated with
  P-TE LSP1 at PE1, and C-TE LSP2 must be associated with P-TE LSP2 at
  PE3.

  Furthermore, PE1 and PE3 head-ends should control the bandwidth of
  C-TE LSPs.  In this case, PE1 and PE3 can choose C-TE LSPs by the
  amount of maximum available bandwidth for each P-TE LSP,
  respectively.

                               C-TE LSP1
            <---------------------------------------------->
                               P-TE LSP1
                     <--------------------------->
  .............                                         .............
  . ---   --- .     ---      ---       ---      ---     . ---   --- .
  .|CE0| |CE1|-----|PE1|----|P1 |-----|P2 |----|PE2|-----|CE2| |CE3|.
  . ---   --- .     ---      ---       ---      ---     . ---   --- .
  .........|...     ---      ---       ---      ---     ...|.........
           +-------|PE3|----|P3 |-----|P4 |----|PE4|-------+
                    ---      ---       ---      ---

                     <--------------------------->
                               P-TE LSP2
            <---------------------------------------------->
                               C-TE LSP2

   <---SP B---->    <--------BGP/MPLS IP-VPN------->     <---SP B--->
      network                 SP A network                 network

                         Figure 2.  Scenario II

  It's possible that the customer and the service provider have
  differing preemption priorities.  In this case, the PE policy will
  override the customers.  In the case where the service provider does
  not support preemption priorities, then such priorities should be
  ignored.

5.3.  Scenario III: Load Balance of CE-to-CE Traffic

  In this scenario, as shown in Figure 3, service provider C (SP C)
  uses voice and video traffic between its sites (i.e., between CE0 and
  CE5/CE7, between CE2 and CE5/CE7, between CE5 and CE0/CE2, and
  between CE7 and CE0/CE2).  H0 and H1 represent voice and video
  equipment.  In this case, service provider C establishes C-TE LSP1,



Kumaki, et al.                Informational                     [Page 9]

RFC 5824      Supporting RSVP/RSVP-TE over BGP/MPLS IP-VPN    April 2010


  C-TE LSP3, C-TE LSP5, and C-TE LSP7 with preemption priority 0 and
  100-Mbps bandwidth for the voice traffic, and establishes C-TE LSP2,
  C-TE LSP4, C-TE LSP6, and C-TE LSP8 with preemption priority 1 and
  200-Mbps bandwidth for the video traffic.  On the other hand, service
  provider A also pre-establishes P-TE LSP1 and P-TE LSP3 with
  preemption priority 0 and 1-Gbps bandwidth for the voice traffic, and
  P-TE LSP2 and P-TE LSP4 with preemption priority 1 and 2-Gbps
  bandwidth for the video traffic.  In this scenario, P-TE LSP1,
  P-TE LSP2, P-TE LSP3, and P-TE LSP4 should support DS-TE [RFC4124].

  All PEs should choose an appropriate P-TE LSP based on the preemption
  priority.  To minimize the traffic disruption due to a single network
  failure, diversely routed C-TE LSPs are established.  In this case,
  the FRR [RFC4090] is not necessarily required.

  Also, unconstrained TE LSPs (i.e., C-TE LSPs/P-TE LSPs with
  0 bandwidth) [RFC5330] are applicable to this scenario.

  Furthermore, the load balancing for any communication between H0 and
  H1 can be done by setting up full-mesh C-TE LSPs between CE0/CE2 and
  CE5/CE7.






























Kumaki, et al.                Informational                    [Page 10]

RFC 5824      Supporting RSVP/RSVP-TE over BGP/MPLS IP-VPN    April 2010


            C-TE LSP1(P=0),2(P=1) (CE0->CE1->...->CE4->CE5)
                                  (CE0<-CE1<-...<-CE4<-CE5)
           <---------------------------------------------->

            C-TE LSP3(P=0),4(P=1) (CE2->CE1->...->CE4->CE7)
                                  (CE2<-CE1<-...<-CE4<-CE7)
           <---------------------------------------------->
                            P-TE LSP1 (p=0)
                        <-------------------->
                            P-TE LSP2 (p=1)
                        <-------------------->
  ..................                             ..................
  .      ---   --- .  ---    ---     ---    ---  . ---   ---      .
  .     |CE0|-|CE1|--|PE1|--|P1 |---|P2 |--|PE2|--|CE4|-|CE5|     .
  . --- /---   --- .  ---     ---    ---    ---  . ---   ---\ --- .
  .|H0 |     +     .              +              .     +     |H1 |.
  . --- \---   --- .  ---    ---     ---    ---  . ---   ---/ --- .
  .     |CE2|-|CE3|--|PE3|--|P3 |---|P4 |--|PE4|--|CE6|-|CE7|     .
  .      ---   --- .  ---    ---     ---    ---  . ---   ---      .
  ..................                             ..................
                        <-------------------->
                            P-TE LSP3 (p=0)
                        <-------------------->
                            P-TE LSP4 (p=1)
           <---------------------------------------------->
            C-TE LSP5(P=0),6(P=1)  (CE0->CE3->...->CE6->CE5)
                                   (CE0<-CE3<-...<-CE6<-CE5)

           <---------------------------------------------->
            C-TE LSP7(P=0),8(P=1)  (CE2->CE3->...->CE6->CE7)
                                   (CE2<-CE3<-...<-CE6<-CE7)

   <-----SP C----->   <----BGP/MPLS IP-VPN---->   <-----SP C----->
        network               SP A network             network

                         Figure 3.  Scenario III

5.4.  Scenario IV: RSVP Aggregation over MPLS-TE Tunnels

  In this scenario, as shown in Figure 4, the customer has two hosts
  connecting to CE1 and CE2, respectively.  CE1 and CE2 are connected
  to PE1 and PE2, respectively, within a VRF instance belonging to the
  same VPN.  The requesting host (H1) may request from H2 an RSVP path
  with the bandwidth reservation of X.  This reservation request from
  within the context of VRF will get aggregated onto a pre-established
  P-TE/DS-TE LSP based upon procedures similar to [RFC4804].  As in the
  case of [RFC4804], there may be multiple P-TE LSPs belonging to
  different DS-TE class-types.  Local policies can be implemented to



Kumaki, et al.                Informational                    [Page 11]

RFC 5824      Supporting RSVP/RSVP-TE over BGP/MPLS IP-VPN    April 2010


  map the incoming RSVP path request from H1 to the P-TE LSP with the
  appropriate class-type.  Please note that the end-to-end (e2e) RSVP
  path request may also be initiated by the CE devices themselves.

                               C-RSVP path
       <----------------------------------------------------->

                               P-TE LSP
                    <--------------------------->
   .............                                     .............
   . ---   --- .   ---      ---       ---      ---   . ---   --- .
   .|H1 | |CE1|---|PE1|----|P1 |-----|P2 |----|PE2|---|CE2| |H2 |.
   . ---   --- .   ---      ---       ---      ---   . ---   --- .
   .............                                     .............
                  ^                               ^
                  |                               |
              VRF instance                    VRF instance

    <-customer->   <--------BGP/MPLS IP-VPN------->   <-customer->
      network                                           network

                         Figure 4.  Scenario IV

5.5.  Scenario V: RSVP over Non-TE LSPs

  In this scenario, as shown in Figure 5, a customer has two hosts
  connecting to CE1 and CE2, respectively.  CE1 and CE2 are connected
  to PE1 and PE2, respectively, within a VRF instance belonging to the
  same VPN.  The requesting host (H1) may request from H2 an RSVP path
  with the bandwidth reservation of X.  In this case, a non-TE LSP
  (i.e., LDP, etc.) is provided between PEs and has LDP, which supports
  MPLS Diffserv [RFC3270].

  Note that this only provides Diffserv, and not the bandwidth
  reservation as is done with RSVP-TE.

  Local policies can be implemented to map the customer's reserved flow
  to the LSP with the appropriate Traffic Class [RFC5462] at PE1.













Kumaki, et al.                Informational                    [Page 12]

RFC 5824      Supporting RSVP/RSVP-TE over BGP/MPLS IP-VPN    April 2010


                              C-RSVP path
             <------------------------------------------>

                              Non-TE LSP
                    <--------------------------->
   .............                                     .............
   . ---   --- .   ---      ---       ---      ---   . ---   --- .
   .|H1 | |CE1|---|PE1|----|P1 |-----|P2 |----|PE2|---|CE2| |H2 |.
   . ---   --- .   ---      ---       ---      ---   . ---   --- .
   .............                                     .............
                  ^                               ^
                  |                               |
              VRF instance                    VRF instance

    <-customer->   <-------BGP/MPLS IP-VPN------->   <-customer->
      network                                          network

                          Figure 5.  Scenario V

5.6.  Scenario VI: RSVP-TE over Non-TE LSPs

  In this scenario, as shown in Figure 6, a customer uses a VoIP
  application between its sites (i.e., between CE1 and CE2).  H0 and H1
  represent voice equipment.  In this case, a non-TE LSP means LDP, and
  the customer establishes C-TE LSP1 as a primary path and C-TE LSP2 as
  a backup path.  If the link between PE1 and CE1 or the node of PE1
  fails, C-TE LSP1 needs C-TE LSP2 as a path protection.
























Kumaki, et al.                Informational                    [Page 13]

RFC 5824      Supporting RSVP/RSVP-TE over BGP/MPLS IP-VPN    April 2010


                              C-TE LSP1
              <----------------------------------------->
                              Non-TE LSP
                     <-------------------------->
    .............                                     .............
    . ---   --- .   ---      ---       ---      ---   . ---   --- .
    .|H0 | |CE1|---|PE1|----|P1 |-----|P2 |----|PE2|---|CE2| |H1 |.
    . ---   --- .   ---      ---       ---      ---   . ---   --- .
    .........|...   ---      ---       ---      ---   ...|.........
             +-----|PE3|----|P3 |-----|P4 |----|PE4|-----+
                    ---      ---       ---      ---

                     <-------------------------->
                              Non-TE LSP
              <----------------------------------------->
                              C-TE LSP2

    <-customer->     <------BGP/MPLS IP-VPN------>    <-customer->
       network                                           network

                         Figure 6.  Scenario VI

6.  Detailed Requirements for the C-TE LSP Model

  This section describes detailed requirements for C-TE LSPs in
  BGP/MPLS IP-VPN environments.

6.1.   Selective P-TE LSPs

  The solution MUST provide the ability to decide which P-TE LSPs a PE
  uses for a C-RSVP path and a C-TE LSP.  When a PE receives a native
  RSVP and/or a path message from a CE, it MUST be able to decide which
  P-TE LSPs it uses.  In this case, various kinds of P-TE LSPs exist in
  the service-provider network.  For example, the PE MUST choose an
  appropriate P-TE LSP based on local policies such as:

  1. preemption priority
  2. affinity
  3. class-type
  4. on the data plane: (Differentiated Services Code Point (DSCP) or
     Traffic Class bits)

6.2.  Graceful Restart Support for C-TE LSPs

  The solution SHOULD support the graceful restart capability, where
  the C-TE LSP traffic continues to be forwarded during a PE graceful
  restart.  Graceful restart mechanisms related to this architecture
  are described in [RFC3473], [RFC3623], and [RFC4781].



Kumaki, et al.                Informational                    [Page 14]

RFC 5824      Supporting RSVP/RSVP-TE over BGP/MPLS IP-VPN    April 2010


6.3.  Rerouting Support for C-TE LSPs

  The solution MUST provide the rerouting of a C-TE LSP in case of
  link, node, and SRLG failures, or in case of preemption.  Such
  rerouting may be controlled by a CE or by a PE, depending on the
  failure.  In a dual-homed environment, the ability to perform
  rerouting MUST be provided against a CE-PE link failure or a PE
  failure, if another CE-PE link or PE is available between the head-
  end and the tail-end of the C-TE LSP.

6.4.  FRR Support for C-TE LSPs

  The solution MUST support FRR [RFC4090] features for a C-TE LSP over
  a VRF instance.

  In BGP/MPLS IP-VPN environments, a C-TE LSP from a CE traverses
  multiple PEs and Ps, albeit tunneled over a P-TE LSP.  In order to
  avoid PE-CE link/PE node/SRLG failures, a CE (a customer's head-end
  router) needs to support link protection or node protection.

  The following protection MUST be supported:

  1. CE link protection
  2. PE node protection
  3. CE node protection

6.5.  Admission Control Support on P-TE LSP Head-Ends

  The solution MUST support admission control on a P-TE LSP tunnel
  head-end for C-TE LSPs.  C-TE LSPs may potentially try to reserve the
  bandwidth that exceeds the bandwidth of the P-TE LSP.  The P-TE LSP
  tunnel head-end SHOULD control the number of C-TE LSPs and/or the
  bandwidth of C-TE LSPs.  For example, the transport TE LSP head-end
  SHOULD have a configurable limit on the maximum number of C-TE LSPs
  that it can admit from a CE.  As for the amount of bandwidth that can
  be reserved by C-TE LSPs, there could be two situations:

  1. Let the P-TE LSP do its natural bandwidth admission
  2. Set a cap on the amount of bandwidth, and have the configuration
     option to:

     a. Reserve the minimum cap bandwidth or the C-TE LSP bandwidth on
        the P-TE LSP if the required bandwidth is available
     b. Reject the C-TE LSP if the required bandwidth by the C-TE LSP
        is not available






Kumaki, et al.                Informational                    [Page 15]

RFC 5824      Supporting RSVP/RSVP-TE over BGP/MPLS IP-VPN    April 2010


6.6.  Admission Control Support for C-TE LSPs in LDP-Based Core
     Networks

  The solution MUST support admission control for a C-TE LSP at a PE in
  the LDP-based core network.  Specifically, PEs MUST have a
  configurable limit on the maximum amount of bandwidth that can be
  reserved by C-TE LSPs for a given VRF instance (i.e., for a given
  customer).  Also, a PE SHOULD have a configurable limit on the total
  amount of bandwidth that can be reserved by C-TE LSPs between PEs.

6.7.  Policy Control Support for C-TE LSPs

  The solution MUST support the policy control for a C-TE LSP at a PE.

  The PE MUST be able to perform the following:

  1. Limit the rate of RSVP messages per CE link.
  2. Accept and map, or reject, requests for a given affinity.
  3. Accept and map, or reject, requests with a specified setup and/or
     preemption priorities.
  4. Accept or reject requests for fast reroutes.
  5. Ignore the requested setup and/or preemption priorities, and
     select a P-TE LSP based on a local policy that applies to the
     CE-PE link or the VRF.
  6. Ignore the requested affinity, and select a P-TE LSP based on a
     local policy that applies to the CE-PE link or the VRF.
  7. Perform mapping in the data plane between customer Traffic Class
     bits and transport P-TE LSP Traffic Class bits, as signaled per
     [RFC3270].

6.8.  PCE Features Support for C-TE LSPs

  The solution SHOULD support the PCE architecture for a C-TE LSP
  establishment in the context of a VRF instance.  When a C-TE LSP is
  provided, CEs, PEs, and Ps may support PCE features ([RFC4655],
  [RFC5440]).

  In this case, CE routers or PE routers may be Path Computation
  Clients (PCCs), and PE routers and/or P routers may be PCEs.
  Furthermore, the solution SHOULD support a mechanism for dynamic PCE
  discovery.  Specifically, all PCEs are not necessarily discovered
  automatically, and only specific PCEs that know VPN routes should be
  discovered automatically.

6.9.  Diversely Routed C-TE LSP Support

  The solution MUST provide for setting up diversely routed C-TE LSPs
  over the VRF instance.  These diverse C-TE LSPs MAY be traversing



Kumaki, et al.                Informational                    [Page 16]

RFC 5824      Supporting RSVP/RSVP-TE over BGP/MPLS IP-VPN    April 2010


  over two different P-TE LSPs that are fully disjoint within a
  service-provider network.  When a single CE has multiple uplinks that
  connect to different PEs, it is desirable that multiple C-TE LSPs
  over the VRF instance be established between a pair of LSRs.  When
  two CEs have multiple uplinks that connect to different PEs, it is
  desirable that multiple C-TE LSPs over the VRF instance be
  established between two different pairs of LSRs.  In these cases, for
  example, the following points will be beneficial to customers.

  1. load balance of the CE-to-CE traffic across diverse C-TE LSPs so
     as to minimize the traffic disruption in case of a single network
     element failure
  2. path protection (e.g., 1:1, 1:N)

6.10.  Optimal Path Support for C-TE LSPs

  The solution MUST support the optimal path for a C-TE LSP over the
  VRF instance.  Depending on an application (e.g., voice and video),
  an optimal path is needed for a C-TE LSP over the VRF instance.  In
  the case of a TE LSP, an optimal route may be the shortest path based
  on the TE metric applied.  For a non-TE LSP using LDP, the IGP metric
  may be used to compute optimal paths.

6.11.  Reoptimization Support for C-TE LSPs

  The solution MUST support the reoptimization of a C-TE LSP over the
  VRF instance.  These LSPs MUST be reoptimized using "make-before-
  break" [RFC3209].

  In this case, it is desirable for a CE to be configured with regard
  to the timer-based or event-driven reoptimization.  Furthermore,
  customers SHOULD be able to reoptimize a C-TE LSP manually.  To
  provide for delay-sensitive or jitter-sensitive traffic (i.e., voice
  traffic), C-TE LSP path computation and route selection are expected
  to be optimal for the specific application.

6.12.  DS-TE Support for C-TE LSPs

  The solution MUST support DS-TE [RFC4124] for a C-TE LSP over the VRF
  instance.  In the event that the service provider and the customer
  have differing bandwidth constraint models, then only the service-
  provider bandwidth model should be supported.

  Applications, which have different traffic characteristics, are used
  in BGP/MPLS IP-VPN environments.  Service providers try to achieve
  the fine-grained optimization of transmission resources, efficiency,
  and further-enhanced network performance.  It may be desirable to
  perform TE at a per-class level.



Kumaki, et al.                Informational                    [Page 17]

RFC 5824      Supporting RSVP/RSVP-TE over BGP/MPLS IP-VPN    April 2010


  By mapping the traffic from a given Diffserv class of service on a
  separate C-TE LSP, DS-TE allows this traffic to utilize resources
  available to the given class on both shortest paths and non-shortest
  paths, and also to follow paths that meet TE constraints that are
  specific to the given class.

7.  Detailed Requirements for the C-RSVP Path Model

  This section describes detailed requirements for C-RSVP paths in
  BGP/MPLS IP-VPN environments.

7.1.  Admission Control between PE and CE for C-RSVP Paths

  The solution MUST support admission control at the ingress PE.  PEs
  MUST control RSVP messages per a VRF instance.

7.2.  Aggregation of C-RSVP Paths by P-TE LSPs

  The solution SHOULD support C-RSVP paths aggregated by P-TE LSPs.
  P-TE LSPs SHOULD be pre-established manually or dynamically by
  operators and MAY be established if triggered by C-RSVP messages.
  Also, the P-TE LSP SHOULD support DS-TE.

7.3.  Non-TE LSP Support for C-RSVP Paths

  The solution SHOULD support non-TE LSPs (i.e., LDP-based LSP, etc.).
  Non-TE LSPs are established by LDP [RFC5036] between PEs and support
  MPLS Diffserv [RFC3270].  The solution MAY support local policies to
  map the customer's reserved flow to the LSP with the appropriate
  Traffic Class at the PE.

7.4.  Transparency of C-RSVP Paths

  The solution SHOULD NOT change RSVP messages from the local CE to the
  remote CE (Path, Resv, Path Error, Resv Error, etc.).  The solution
  SHOULD allow customers to receive RSVP messages transparently between
  CE sites.

8.  Commonly Detailed Requirements for Two Models

  This section describes commonly detailed requirements for C-TE LSPs
  and C-RSVP paths in BGP/MPLS IP-VPN environments.

8.1.  CE-PE Routing

  The solution SHOULD support the following routing configuration on
  the CE-PE links with either RSVP or RSVP-TE on the CE-PE link:




Kumaki, et al.                Informational                    [Page 18]

RFC 5824      Supporting RSVP/RSVP-TE over BGP/MPLS IP-VPN    April 2010


  1. static routing
  2. BGP routing
  3. OSPF
  4. OSPF-TE (RSVP-TE case only)

8.2.  Complexity and Risks

  The solution SHOULD avoid introducing unnecessary complexity to the
  current operating network to such a degree that it would affect the
  stability and diminish the benefits of deploying such a solution over
  SP networks.

8.3.  Backward Compatibility

  The deployment of C-RSVP paths and C-TE LSPs SHOULD avoid impacting
  existing RSVP and MPLS-TE mechanisms, respectively, but should allow
  for a smooth migration or co-existence.

8.4.  Scalability Considerations

  The solution SHOULD minimize the impact on network scalability from a
  C-RSVP path and a C-TE LSP over the VRF instance.  As identified in
  earlier sections, PCE provides a method for offloading computation of
  C-TE LSPs and helps with the solution scalability.

  The solution MUST address the scalability of C-RSVP paths and
  C-TE LSPs for the following protocols.

  1. RSVP (e.g., number of RSVP messages, retained state, etc.).
  2. RSVP-TE (e.g., number of RSVP control messages, retained state,
     message size, etc.).
  3. BGP (e.g., number of routes, flaps, overload events, etc.).

8.5.  Performance Considerations

  The solution SHOULD be evaluated with regard to the following
  criteria.

  1. Degree of path optimality of the C-TE LSP.
  2. TE LSP setup time.
  3. Failure and restoration time.
  4. Impact and scalability of the control plane due to added overhead.
  5. Impact and scalability of the data/forwarding plane due to added
     overhead.







Kumaki, et al.                Informational                    [Page 19]

RFC 5824      Supporting RSVP/RSVP-TE over BGP/MPLS IP-VPN    April 2010


8.6.  Management Considerations

  The solution MUST address the manageability of C-RSVP paths and
  C-TE LSPs for the following considerations.

  1. Need for a MIB module for the control plane (including mapping of
     P-TE LSPs and C-TE LSPs) and bandwidth monitoring.
  2. Need for diagnostic tools (this includes traceroute and Ping).

  The solution MUST allow routers to support the MIB module for C-RSVP
  paths and C-TE LSPs per a VRF instance.  If a CE is managed by
  service providers, the solution MUST allow service providers to
  collect MIB information for C-RSVP paths and C-TE LSPs from the CE
  per a customer.

  Diagnostic tools can detect failures of the control plane and data
  plane for general MPLS-TE LSPs [RFC4379].  The solution MUST allow
  routers to be able to detect failures of the control plane and the
  data plane for C-TE LSPs over a VRF instance.

  MPLS Operations, Administration, and Maintenance (OAM) for C-TE LSPs
  MUST be supported within the context of VRF, except for the above.

9.  Security Considerations

  Any solution should consider the following general security
  requirements:

  1. The solution SHOULD NOT divulge the service-provider topology
     information to the customer network.
  2. The solution SHOULD minimize the service-provider network's
     vulnerability to Denial of Service (DoS) attacks.
  3. The solution SHOULD minimize the misconfiguration of DSCP marking,
     preemption, and holding priorities of the customer traffic.

  The following additional security issues for C-TE LSPs relate to both
  the control plane and the data plane.

  In terms of the control plane, in both the C-RSVP path and C-TE LSP
  models, a PE receives IPv4 or IPv6 RSVP control packets from a CE.
  If the CE is a router that is not trusted by service providers, the
  PE MUST be able to limit the rate and number of IPv4 or IPv6 RSVP
  control packets.

  In terms of the data plane, in the C-TE LSP model, a PE receives
  labeled IPv4 or IPv6 data packets from a CE.  If the CE is a router
  that is not trusted by service providers, the PE MUST be able to
  limit the rate of labeled IPv4 or IPv6 data packets.  If the CE is a



Kumaki, et al.                Informational                    [Page 20]

RFC 5824      Supporting RSVP/RSVP-TE over BGP/MPLS IP-VPN    April 2010


  trusted router for service providers, the PE MAY be able to limit the
  rate of labeled IPv4 or IPv6 data packets.  Specifically, the PE must
  drop MPLS-labeled packets if the MPLS label was not assigned over the
  PE-CE link on which the packet was received.  The PE must also be
  able to police traffic to the traffic profile associated with the LSP
  on which traffic is received on the PE-CE link.

  Moreover, flooding RSVP/RSVP-TE control packets from malicious
  customers must be avoided.  Therefore, a PE MUST isolate the impact
  of such customers' RSVP/RSVP-TE packets from other customers.

  In the event that C-TE LSPs are diversely routed over VRF instances,
  the VRF should indicate to the CE how such diversity was provided.

10.  References

10.1.  Normative References

  [RFC1633]      Braden, R., Clark, D., and S. Shenker, "Integrated
                 Services in the Internet Architecture: an Overview",
                 RFC 1633, June 1994.

  [RFC2119]      Bradner, S., "Key words for use in RFCs to Indicate
                 Requirement Levels", BCP 14, RFC 2119, March 1997.

  [RFC2210]      Wroclawski, J., "The Use of RSVP with IETF Integrated
                 Services", RFC 2210, September 1997.

  [RFC3209]      Awduche, D., Berger, L., Gan, D., Li, T.,
                 Srinivasan, V., and G. Swallow, "RSVP-TE: Extensions
                 to RSVP for LSP Tunnels", RFC 3209, December 2001.

  [RFC3270]      Le Faucheur, F., Wu, L., Davie, B., Davari, S.,
                 Vaananen, P., Krishnan, R., Cheval, P., and
                 J. Heinanen, "Multi-Protocol Label Switching (MPLS)
                 Support of Differentiated Services", RFC 3270,
                 May 2002.

  [RFC3473]      Berger, L., Ed., "Generalized Multi-Protocol Label
                 Switching (GMPLS) Signaling Resource ReserVation
                 Protocol-Traffic Engineering (RSVP-TE) Extensions",
                 RFC 3473, January 2003.

  [RFC3623]      Moy, J., Pillay-Esnault, P., and A. Lindem, "Graceful
                 OSPF Restart", RFC 3623, November 2003.






Kumaki, et al.                Informational                    [Page 21]

RFC 5824      Supporting RSVP/RSVP-TE over BGP/MPLS IP-VPN    April 2010


  [RFC4090]      Pan, P., Ed., Swallow, G., Ed., and A. Atlas, Ed.,
                 "Fast Reroute Extensions to RSVP-TE for LSP Tunnels",
                 RFC 4090, May 2005.

  [RFC4124]      Le Faucheur, F., Ed., "Protocol Extensions for Support
                 of Diffserv-aware MPLS Traffic Engineering", RFC 4124,
                 June 2005.

  [RFC4364]      Rosen, E. and Y. Rekhter, "BGP/MPLS IP Virtual Private
                 Networks (VPNs)", RFC 4364, February 2006.

  [RFC4379]      Kompella, K. and G. Swallow, "Detecting Multi-Protocol
                 Label Switched (MPLS) Data Plane Failures", RFC 4379,
                 February 2006.

  [RFC4655]      Farrel, A., Vasseur, J.-P., and J. Ash, "A Path
                 Computation Element (PCE)-Based Architecture",
                 RFC 4655, August 2006.

  [RFC4781]      Rekhter, Y. and R. Aggarwal, "Graceful Restart
                 Mechanism for BGP with MPLS", RFC 4781, January 2007.

  [RFC5036]      Andersson, L., Ed., Minei, I., Ed., and B. Thomas,
                 Ed., "LDP Specification", RFC 5036, October 2007.

  [RFC5462]      Andersson, L. and R. Asati, "Multiprotocol Label
                 Switching (MPLS) Label Stack Entry: "EXP" Field
                 Renamed to "Traffic Class" Field", RFC 5462,
                 February 2009.

10.2.  Informative References

  [RSVP-L3VPN]   Davie, B., Le Faucheur, F., and A. Narayanan, "Support
                 for RSVP in Layer 3 VPNs", Work in Progress,
                 November 2009.

  [RFC4804]      Le Faucheur, F., Ed., "Aggregation of Resource
                 ReSerVation Protocol (RSVP) Reservations over MPLS
                 TE/DS-TE Tunnels", RFC 4804, February 2007.

  [RFC5330]      Vasseur, JP., Ed., Meyer, M., Kumaki, K., and
                 A. Bonda, "A Link-Type sub-TLV to Convey the Number of
                 Traffic Engineering Label Switched Paths Signalled
                 with Zero Reserved Bandwidth across a Link", RFC 5330,
                 October 2008.






Kumaki, et al.                Informational                    [Page 22]

RFC 5824      Supporting RSVP/RSVP-TE over BGP/MPLS IP-VPN    April 2010


  [RFC5440]      Vasseur, JP., Ed., and JL. Le Roux, Ed., "Path
                 Computation Element (PCE) Communication Protocol
                 (PCEP)", RFC 5440, March 2009.

11.  Acknowledgments

  The authors would like to express thanks to Nabil Bitar,
  David McDysan, and Daniel King for their helpful and useful comments
  and feedback.










































Kumaki, et al.                Informational                    [Page 23]

RFC 5824      Supporting RSVP/RSVP-TE over BGP/MPLS IP-VPN    April 2010


Appendix A.  Reference Model

  In this appendix, a C-RSVP path, a C-TE LSP, and a P-TE LSP are
  explained.

  All scenarios in this appendix assume the following:

  - A P-TE LSP is established between PE1 and PE2.  This LSP is used by
    the VRF instance to forward customer packets within a BGP/MPLS
    IP-VPN.

  - The service provider has ensured that enough bandwidth is available
    to meet the service requirements.

A.1.  End-to-End C-RSVP Path Model

  A C-RSVP path and a P-TE LSP are shown in Figure 7, in the context of
  a BGP/MPLS IP-VPN.  A P-TE LSP may be a non-TE LSP (i.e., LDP) in
  some cases.  In the case of a non-TE mechanism, however, it may be
  difficult to guarantee an end-to-end bandwidth, as resources are
  shared.

  CE0/CE1 requests an e2e C-RSVP path to CE3/CE2 with the bandwidth
  reservation of X.  At PE1, this reservation request received in the
  context of a VRF will get aggregated onto a pre-established P-TE LSP,
  or trigger the establishment of a new P-TE LSP.  It should be noted
  that C-RSVP sessions across different BGP/MPLS IP-VPNs can be
  aggregated onto the same P-TE LSP between the same PE pair, achieving
  further scalability.  [RFC4804] defines this scenario in more detail.

  The RSVP control messages (e.g., an RSVP PATH message and an RSVP
  RESV message) exchanged among CEs are forwarded by IP packets through
  the BGP/MPLS IP-VPN.  After CE0 and/or CE1 receive a reservation
  message from CE2 and/or CE3, CE0/CE1 establishes a C-RSVP path
  through the BGP/MPLS IP-VPN.
















Kumaki, et al.                Informational                    [Page 24]

RFC 5824      Supporting RSVP/RSVP-TE over BGP/MPLS IP-VPN    April 2010


                             C-RSVP path
               <------------------------------------------>

                              P-TE LSP
                    <--------------------------->
   .............                                     .............
   . ---   --- .   ---      ---       ---      ---   . ---   --- .
   .|CE0| |CE1|---|PE1|----|P1 |-----|P2 |----|PE2|---|CE2| |CE3|.
   . ---   --- .   ---      ---       ---      ---   . ---   --- .
   .............                                     .............
                  ^                               ^
                  |                               |
             VRF instance                    VRF instance

    <-customer->    <------BGP/MPLS IP-VPN------>     <-customer->
      network                                           network
        or                                                or
      another                                           another
  service-provider                                  service-provider
      network                                           network

                    Figure 7.  e2e C-RSVP Path Model

A.2.  End-to-End C-TE LSP Model

  A C-TE LSP and a P-TE LSP are shown in Figure 8, in the context of a
  BGP/MPLS IP-VPN.  A P-TE LSP may be a non-TE LSP (i.e., LDP) in some
  cases.  As described in the previous sub-section, it may be difficult
  to guarantee an end-to-end QoS in some cases.

  CE0/CE1 requests an e2e TE LSP path to CE3/CE2 with the bandwidth
  reservation of X.  At PE1, this reservation request received in the
  context of a VRF will get aggregated onto a pre-established P-TE LSP,
  or trigger the establishment of a new P-TE LSP.  It should be noted
  that C-TE LSPs across different BGP/MPLS IP-VPNs can be aggregated
  onto the same P-TE LSP between the same PE pair, achieving further
  scalability.

  The RSVP-TE control messages (e.g., an RSVP PATH message and an RSVP
  RESV message) exchanged among CEs are forwarded by a labeled packet
  through the BGP/MPLS IP-VPN.  After CE0 and/or CE1 receive a
  reservation message from CE2 and/or CE3, CE0/CE1 establishes a
  C-TE LSP through the BGP/MPLS IP-VPN.

  A P-TE LSP is established between PE1 and PE2.  This LSP is used by
  the VRF instance to forward customer packets within the BGP/MPLS
  IP-VPN.




Kumaki, et al.                Informational                    [Page 25]

RFC 5824      Supporting RSVP/RSVP-TE over BGP/MPLS IP-VPN    April 2010


                                C-TE LSP
       <------------------------------------------------------->

                                   or

                                C-TE LSP
              <----------------------------------------->

                                P-TE LSP
                     <--------------------------->
    .............                                     .............
    . ---   --- .   ---      ---       ---      ---   . ---   --- .
    .|CE0| |CE1|---|PE1|----|P1 |-----|P2 |----|PE2|---|CE2| |CE3|.
    . ---   --- .   ---      ---       ---      ---   . ---   --- .
    .............                                     .............
                   ^                               ^
                   |                               |
              VRF instance                    VRF instance

     <-customer->   <-------BGP/MPLS IP-VPN------->    <-customer->
       network                                           network
          or                                                or
       another                                           another
   service-provider                                  service-provider
       network                                           network

                      Figure 8.  e2e C-TE LSP Model
























Kumaki, et al.                Informational                    [Page 26]

RFC 5824      Supporting RSVP/RSVP-TE over BGP/MPLS IP-VPN    April 2010


Authors' Addresses

  Kenji Kumaki (Editor)
  KDDI Corporation
  Garden Air Tower
  Iidabashi, Chiyoda-ku
  Tokyo 102-8460, JAPAN
  EMail: [email protected]


  Raymond Zhang
  BT
  Farady Building, PP1.21
  1 Knightrider Street
  London EC4V 5BT
  UK
  EMail: [email protected]


  Yuji Kamite
  NTT Communications Corporation
  Granpark Tower
  3-4-1 Shibaura, Minato-ku
  Tokyo  108-8118
  Japan
  EMail: [email protected]

























Kumaki, et al.                Informational                    [Page 27]