Network Working Group                                         F. de Bont
Request for Comments: 5691                           Philips Electronics
Updates: 3640                                                  S. Doehla
Category: Standards Track                                 Fraunhofer IIS
                                                             M. Schmidt
                                                     Dolby Laboratories
                                                       R. Sperschneider
                                                         Fraunhofer IIS
                                                           October 2009


              RTP Payload Format for Elementary Streams
                with MPEG Surround Multi-Channel Audio

Abstract

  This memo describes extensions for the RTP payload format defined in
  RFC 3640 for the transport of MPEG Surround multi-channel audio.
  Additional Media Type parameters are defined to signal backwards-
  compatible transmission inside an MPEG-4 Audio elementary stream.  In
  addition, a layered transmission scheme that doesn't use the MPEG-4
  systems framework is presented to transport an MPEG Surround
  elementary stream via RTP in parallel with an RTP stream containing
  the downmixed audio data.

Status of This Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (c) 2009 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (http://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the BSD License.




de Bont, et al.             Standards Track                     [Page 1]

RFC 5691               Transport of MPEG Surround           October 2009


Table of Contents

  1. Introduction ....................................................2
  2. Conventions .....................................................3
  3. Definitions and Abbreviations ...................................3
     3.1. Definitions ................................................3
     3.2. Abbreviations ..............................................4
  4. Transport of MPEG Surround ......................................4
     4.1. Embedded Spatial Audio Data in AAC Payloads ................4
     4.2. MPEG Surround Elementary Stream ............................5
          4.2.1. Low Bitrate MPEG Surround ...........................7
          4.2.2. High Bitrate MPEG Surround ..........................8
  5. IANA Considerations .............................................8
     5.1. Media Type Registration ....................................9
     5.2. Registration of Mode Definitions with IANA .................9
     5.3. Usage of SDP ..............................................10
  6. Security Considerations ........................................10
  7. References .....................................................11
     7.1. Normative References ......................................11
     7.2. Informative References ....................................11

1.  Introduction

  MPEG Surround (Spatial Audio Coding, SAC) [23003-1] is an
  International Standard that was finalized by MPEG in January 2007.
  It is capable of re-creating N channels based on M < N transmitted
  channels and additional control data.  In the preferred modes of
  operating the Spatial Audio Coding system, the M channels can either
  be a single mono channel or a stereo channel pair.  The control data
  represents a significantly lower data rate than the data rate
  required for transmitting all N channels, making the coding very
  efficient while at the same time ensuring compatibility with M
  channel devices.

  The MPEG Surround standard incorporates a number of tools that enable
  features that allow for broad application of the standard.  A key
  feature is the ability to scale the spatial image quality gradually
  from very low spatial overhead towards transparency.  Another key
  feature is that the decoder input can be made compatible to existing
  matrixed surround technologies.

  As an example, for 5.1 multi-channel audio, the MPEG Surround encoder
  creates a stereo (or mono) downmix signal and spatial information
  describing the full 5.1 material in a highly efficient, parameterised
  format.  The spatial information is transmitted alongside the
  downmix.





de Bont, et al.             Standards Track                     [Page 2]

RFC 5691               Transport of MPEG Surround           October 2009


  By using MPEG Surround, existing services can easily be upgraded to
  provide surround sound in a backwards-compatible fashion.  While a
  stereo decoder in an existing legacy consumer device ignores the MPEG
  Surround data and plays back the stereo signal without any quality
  degradation, an MPEG-Surround-enabled decoder will deliver high
  quality, multi-channel audio.

  The MPEG Surround decoder can operate in modes that render the multi-
  channel signal to multi-channel or stereo output, or it can operate
  in a two-channel headphone mode to produce a virtual surround output
  signal.

2.  Conventions

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in [RFC2119].

3.  Definitions and Abbreviations

3.1.  Definitions

  This memo makes use of the definitions specified in [14496-1],
  [14496-3], [23003-1], and [RFC3640].  Frequently used terms are
  summed up for convenience:

  Access Unit:  An MPEG Access Unit is the smallest data entity to
     which timing information is attributed.  In the case of audio, an
     Access Unit is the smallest individually accessible portion of
     coded audio data within an elementary stream.

  AudioSpecificConfig():  Extends the class DecoderSpecificInfo(), as
     defined in [14496-1], when the objectType indication refers to a
     stream complying with [14496-3].  AudioSpecificConfig() is used as
     the configuration structure for MPEG-4 audio as specified in
     [14496-3].  It contains the field audioObjectType, which
     distinguishes between the different audio codecs defined in
     [14496-3], general audio information (e.g., the sampling frequency
     and number of channels), and further codec-dependent information
     structures.

  SpatialSpecificConfig():  Configuration structure for MPEG Surround
     audio coding, as specified in [23003-1].  An AudioSpecificConfig()
     with an audioObjectType of value 30 contains a
     SpatialSpecificConfig() structure.






de Bont, et al.             Standards Track                     [Page 3]

RFC 5691               Transport of MPEG Surround           October 2009


3.2.  Abbreviations

    AOT:    Audio Object Type
    AAC:    Advanced Audio Coding
    ASC:    AudioSpecificConfig() structure
    AU:     Access Unit
    HE AAC: High Efficiency AAC
    PLI:    Profile and Level Indication
    SSC:    SpatialSpecificConfig() structure

4.  Transport of MPEG Surround

  From a top-level perspective, MPEG Surround data can be subdivided
  into configuration data contained in the SpatialSpecificConfig()
  (SSC) and the SpatialFrame(), which contains the MPEG Surround
  payload.  The configuration data can be signaled in-band or out-of-
  band.  In the case of in-band signaling the SSC is conveyed in a
  SacDataFrame() jointly with a SpatialFrame().  In the case of out-of-
  band signaling, the SSC is transmitted to the decoder separately,
  e.g., by Session Description Protocol (SDP) [RFC4566] means.

  SpatialFrame()s may be transmitted either embedded into the downmix
  stream (Section 4.1) or as individual elementary streams besides the
  downmix audio stream (Section 4.2).

  The buffer definition for AAC decoders limits the size of an AU, as
  specified in [14496-3].  For high-bitrate applications that exceed
  this limit, all MPEG Surround data MUST be put in a separate stream,
  as defined in Section 4.2.

4.1.  Embedded Spatial Audio Data in AAC Payloads

  [14496-3] defines the extension_payload() as a mechanism for
  transport of extension data inside AAC payloads.  Typical extension
  data include Spectral Band Replication (SBR) data and MPEG Surround
  data, i.e., a SacDataFrame() in extension_payload()s of type
  EXT_SAC_DATA. extension_payload()s reside inside the downmix AAC
  elementary stream.  The resulting single elementary stream is
  transported as specified in [RFC3640].  As AAC decoders are required
  to skip unknown extension data, MPEG Surround data can be embedded in
  backwards-compatible fashion and be transported with the mechanism
  already described in [RFC3640].

  The SacDataFrame() includes a SpatialFrame() and an optional header
  that contains an SSC.  Any SSC in a SacDataFrame() MUST be identical
  to the SSC conveyed via SDP for that stream.





de Bont, et al.             Standards Track                     [Page 4]

RFC 5691               Transport of MPEG Surround           October 2009


  No new mode is introduced for SpatialFrame()s being embedded into AAC
  payloads.  Either the mode AAC-lbr or the mode AAC-hbr SHOULD be
  used.  The additional Media Type parameters, as defined in
  Section 5.1, SHOULD be present when SpatialFrame()s are embedded into
  AAC payloads.

  For example:

  m=audio 5000 RTP/AVP 96
  a=rtpmap:96 mpeg4-generic/48000/2
  a=fmtp:96 streamType=5; profile-level-id=44; mode=AAC-hbr; config=131
    056E598; sizeLength=13; indexLength=3; indexDeltaLength=3; constant
    Duration=2048; MPS-profile-level-id=55; MPS-config=F1B4CF920442029B
    501185B6DA00;

  In this example, the stream specifies the HE AAC Profile at Level 2
  [Profile and Level Indication (PLI) 44] and the config string
  contains the hexadecimal representation of the HE AAC ASC
  [audioObjectType=2 (AAC LC); extensionAudioObjectType=5 (SBR);
  samplingFrequencyIndex=0x6 (24kHz);
  extensionSamplingFrequencyIndex=0x3 (48kHz); channelConfiguration=2
  (2.0 channels)] of the downmix AAC elementary stream that is using
  explicit backwards-compatible signaling.

  Furthermore, the stream specifies the MPEG Surround Baseline Profile
  at Level 3 (PLI55) and the MPS-config string contains the hexadecimal
  representation of the MPEG Surround ASC [audioObjectType=30 (MPEG
  Surround); samplingFrequencyIndex=0x3 (48kHz); channelConfiguration=6
  (5.1 channels); sacPayloadEmbedding=1; SSC=(48 kHz; 32 slots; 525
  tree; ResCoding=1; ResBands=[0,13,13,13])].

  Note that the a=fmtp line of the example above has been wrapped to
  fit the page; it would comprise a single line in the SDP file.

4.2.  MPEG Surround Elementary Stream

  MPEG Surround SpatialFrame()s can be present in an individual
  elementary stream.  This stream complements the stream containing the
  downmix audio data, which may be coded by an arbitrary coding scheme.
  MPEG Surround elementary streams are packetized as specified in
  [RFC3640].  The mode signaled and used for an MPEG Surround
  elementary stream MUST be either MPS-hbr or MPS-lbr.  The MPS-hbr
  mode SHALL be used when the frame size may exceed 63 bytes, e.g.,
  when high-bitrate residual coding is in use.

  The dependency relationships between the MPEG Surround elementary
  stream and the downmix stream are signaled as specified in [RFC5583].




de Bont, et al.             Standards Track                     [Page 5]

RFC 5691               Transport of MPEG Surround           October 2009


  The media clocks of the MPEG Surround elementary stream and the
  downmix stream SHALL operate in the same clock domain, i.e., the
  clocks are derived from a common clock and MUST NOT drift.  RTCP
  sender reports MUST indicate that the stream timestamps are not
  drifting, i.e., that a single sender report for each stream is
  sufficient to establish unambiguous timing.  The sampling rate of the
  MPEG Surround signal and the decoded downmix signal MUST be
  identical.

  If HE AAC is used as the coding scheme for the downmix, the RTP
  clock-rate of the downmix MAY be the sampling rate of the AAC core,
  i.e., the clock-rate of the MPEG Surround elementary stream is an
  integer multiple of the clock-rate of the downmix stream.

  Note that separate RTP streams have different random RTP timestamp
  offsets, and therefore RTCP MUST be used to synchronize the coded
  downmix audio data and the MPEG Surround elementary stream.

  For example:

  a=group:DDP L1 L2

  m=audio 5000 RTP/AVP 96
  a=rtpmap:96 mpeg4-generic/48000/2
  a=fmtp:96 streamType=5; profile-level-id=44; mode=AAC-hbr; config=2B1
    18800; sizeLength=13; indexLength=3; indexDeltaLength=3; constantDu
    ration=2048
  a=mid:L1

  m=audio 5002 RTP/AVP 97
  a=rtpmap:97 mpeg4-generic/48000/6
  a=fmtp:97 streamType=5; profile-level-id=55; mode=MPS-hbr; config=F1B
    0CF920460029B601189E79E70; sizeLength=13; indexLength=3;  indexDelt
    aLength=3; constantDuration=2048
  a=mid:L2
  a=depend:97 lay L1:96

  In this example, the first stream specifies the HE AAC Profile at
  Level 2 (PLI44) and the config string contains the hexadecimal
  representation of the HE AAC ASC [audioObjectType=2 (AAC LC);
  extensionAudioObjectType=5 (SBR); samplingFrequencyIndex=0x6 (24kHz);
  extensionSamplingFrequencyIndex=0x3 (48kHz); channelConfiguration=2
  (2.0 channels)].








de Bont, et al.             Standards Track                     [Page 6]

RFC 5691               Transport of MPEG Surround           October 2009


  The second stream specifies Baseline MPEG Surround Profile at Level 3
  (PLI55) and the config string contains the hexadecimal representation
  of the ASC [AOT=30(MPEG Surround); 48 kHz; 5.1-ch;
  sacPayloadEmbedding=0; SSC=(48 kHz; 32 slots; 525 tree; ResCoding=1;
  ResBands=[7,7,7,7])].

  Note that the a=fmtp lines of the example above have been wrapped to
  fit the page; they would each comprise a single line in the SDP file.

4.2.1.  Low Bitrate MPEG Surround

  This mode is signaled by mode=MPS-lbr.  This mode supports the
  transport of one or more complete Access Units, each consisting of a
  single MPEG Surround SpatialFrame().  The AUs can be variably sized
  and interleaved.  The maximum size of a SpatialFrame() is 63 bytes.
  Fragmentation MUST NOT be used in this mode.  Receivers MUST support
  de-interleaving.

  The payload configuration is the same as in the AAC-lbr mode.  It
  consists of the AU Header Section, followed by concatenated AUs.
  Note that Access Units are byte-aligned.  The Auxiliary Section MUST
  be empty in the MPS-lbr mode.  The 1-octet AU-header MUST provide:

  1.  the size of each AAC frame, encoded as 6 bits.

  2.  2 bits of index information for computing the sequence (and hence
      timing) of each SpatialFrame().

  The concatenated AU Header Section MUST be preceded by the 16-bit AU-
  headers-length field.

  In addition to the required Media format parameters, the following
  parameters MUST be present with fixed values: sizeLength (fixed value
  6), indexLength (fixed value 2), and indexDeltaLength (fixed value
  2).  The parameter maxDisplacement MUST be present when interleaving.
  SpatialFrame()s always have a fixed duration per AU; the fixed
  duration MUST be signaled by the Media format parameter
  constantDuration.

  The value of the "config" parameter is the hexadecimal representation
  of the ASC, as defined in [14496-3], with an AOT of 30 and the
  sacPayloadEmbedding flag set to 0.

  The "profile-level-id" parameter SHALL contain a valid PLI for MPEG
  Surround, as specified in [14496-3].






de Bont, et al.             Standards Track                     [Page 7]

RFC 5691               Transport of MPEG Surround           October 2009


4.2.2.  High Bitrate MPEG Surround

  This mode is signaled by mode=MPS-hbr.  This mode supports the
  transportation of either one fragment of an Access Unit or one
  complete AU or several complete AUs.  Each AU consists of a single
  MPEG Surround SpatialFrame().  The AUs can be variably sized and
  interleaved.  The maximum size of a SpatialFrame() is 8191 bytes.
  Receivers MUST support de-interleaving.

  The payload configuration is the same as in the AAC-hbr mode.  It
  consists of the AU Header Section, followed by either one
  SpatialFrame(), a fragment of a SpatialFrame(), or several
  concatenated SpatialFrame()s.  Note that Access Units are byte-
  aligned.  The Auxiliary Section MUST be empty in the MPS-hbr mode.
  The 2-octet AU-header MUST provide:

  1.  the size of each AAC frame, encoded as 13 bits.

  2.  3 bits of index information for computing the sequence (and hence
      timing) of each SpatialFrame(), i.e., the AU-Index or AU-Index-
      delta field.

  Each AU-Index field MUST be coded with the value 0.  The concatenated
  AU Header Section MUST be preceded by the 16-bit AU-headers-length
  field.

  In addition to the required Media format parameters, the following
  parameters MUST be present with fixed values: sizeLength (fixed value
  13), indexLength (fixed value 3), and indexDeltaLength (fixed value
  3).  The parameter maxDisplacement MUST be present when interleaving.
  SpatialFrame()s always have a fixed duration per AU; the fixed
  duration MUST be signaled by the Media format parameter
  constantDuration.

  The value of the "config" parameter is the hexadecimal representation
  of the ASC, as defined in [14496-3], with an AOT of 30 and the
  sacPayloadEmbedding flag set to 0.

  The "profile-level-id" parameter SHALL contain a valid PLI for MPEG
  Surround, as specified in [14496-3].

5.  IANA Considerations

  This memo defines additional optional format parameters to the Media
  type "audio" and its subtype "mpeg4-generic".  These parameters SHALL
  only be used in combination with the AAC-lbr or AAC-hbr modes (cf.
  Section 3.3 of [RFC3640]) of "mpeg4-generic".




de Bont, et al.             Standards Track                     [Page 8]

RFC 5691               Transport of MPEG Surround           October 2009


5.1.  Media Type Registration

  This memo defines the following additional optional parameters, which
  SHALL be used if MPEG Surround data is present inside the payload of
  an AAC elementary stream.

  MPS-profile-level-id:  A decimal representation of the MPEG Surround
     Profile and Level indication as defined in [14496-3].  This
     parameter MUST be used in the capability exchange or session
     set-up procedure to indicate the MPEG Surround Profile and Level
     that the decoder must be capable of in order to decode the stream.

  MPS-config:  A hexadecimal representation of an octet string that
     expresses the AudioSpecificConfig (ASC), as defined in [14496-3],
     for MPEG Surround.  The ASC is mapped onto the hexadecimal octet
     string in a most significant bit (MSB)-first basis.  The AOT in
     this ASC SHALL have the value 30.  The SSC inside the ASC MUST
     have the sacPayloadEmbedding flag set to 1.

5.2.  Registration of Mode Definitions with IANA

  This section of this memo requests the registration of the "MPS-hbr"
  value and the "MPS-lbr" value for the "mode" parameter of the "mpeg4-
  generic" media subtype within the media type "audio".  The "mpeg4-
  generic" media subtype is defined in [RFC3640], and [RFC3640] defines
  a repository for the "mode" parameter.  This memo registers the modes
  "MPS-hbr" and "MPS-lbr" to support MPEG Surround elementary streams.

  Media type name:

     audio

  Subtype name:

     mpeg4-generic

  Required parameters:

     The "mode" parameter is required by [RFC3640].  This memo
     specifies the additional modes "MPS-hbr" and "MPS-lbr", in
     accordance with [RFC3640].

  Optional parameters:

     For the modes "AAC-hbr" and "AAC-lbr", this memo specifies the
     additional optional parameters "MPS-profile-level-id" and "MPS-
     config".  See Section 4.1 for usage details.




de Bont, et al.             Standards Track                     [Page 9]

RFC 5691               Transport of MPEG Surround           October 2009


     Optional parameters for the modes "MPS-hbr" and "MPS-lbr" may be
     used as specified in [RFC3640].  The optional parameters "MPS-
     profile-level-id" and "MPS-config" SHALL NOT be used for the modes
     "MPS-hbr" and "MPS-lbr".

5.3.  Usage of SDP

  It is assumed that the Media format parameters are conveyed via an
  SDP message, as specified in Section 4.4 of [RFC3640].

6.  Security Considerations

  RTP packets using the payload format defined in this specification
  are subject to the security considerations discussed in the RTP
  specification [RFC3550], in the RTP payload format specification for
  MPEG-4 elementary streams [RFC3640] (which is extended with this
  memo), and in any applicable RTP profile.  The main security
  considerations for the RTP packet carrying the RTP payload format
  defined within this memo are confidentiality, integrity, and source
  authenticity.  Confidentiality is achieved by encryption of the RTP
  payload.  Integrity of the RTP packets is achieved through a suitable
  cryptographic integrity-protection mechanism.  Such a cryptographic
  system may also allow the authentication of the source of the
  payload.  A suitable security mechanism for this RTP payload format
  should provide confidentiality, integrity protection, and source
  authentication capable of at least determining if an RTP packet is
  from a member of the RTP session.

  The AAC audio codec includes an extension mechanism to transmit extra
  data within a stream that is gracefully skipped by decoders that do
  not support this extra data.  This covert channel may be used to
  transmit unauthorized data in an otherwise valid stream.

  Note that the appropriate mechanism to provide security to RTP and
  payloads following this memo may vary.  It is dependent on the
  application, the transport, and the signaling protocol employed.
  Therefore, a single mechanism is not sufficient; although, if
  suitable, usage of the Secure Real-time Transport Protocol (SRTP)
  [RFC3711] is recommended.  Other mechanisms that may be used are
  IPsec [RFC4301] and Transport Layer Security (TLS) [RFC5246] (RTP
  over TCP); other alternatives may exist.










de Bont, et al.             Standards Track                    [Page 10]

RFC 5691               Transport of MPEG Surround           October 2009


7.  References

7.1.  Normative References

  [14496-1]  MPEG, "ISO/IEC International Standard 14496-1 - Coding of
             audio-visual objects, Part 1 Systems", 2004.

  [14496-3]  MPEG, "ISO/IEC International Standard 14496-3 - Coding of
             audio-visual objects, Part 3 Audio", 2009.

  [23003-1]  MPEG, "ISO/IEC International Standard 23003-1 - MPEG
             Surround (MPEG D)", 2007.

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119, March 1997.

  [RFC3550]  Schulzrinne, H., Casner, S., Frederick, R., and V.
             Jacobson, "RTP: A Transport Protocol for Real-Time
             Applications", STD 64, RFC 3550, July 2003.

  [RFC3640]  van der Meer, J., Mackie, D., Swaminathan, V., Singer, D.,
             and P. Gentric, "RTP Payload Format for Transport of
             MPEG-4 Elementary Streams", RFC 3640, November 2003.

  [RFC4566]  Handley, M., Jacobson, V., and C. Perkins, "SDP: Session
             Description Protocol", RFC 4566, July 2006.

  [RFC5583]  Schierl, T. and S. Wenger, "Signaling Media Decoding
             Dependency in the Session Description Protocol (SDP)",
             RFC 5583, July 2009.

7.2.  Informative References

  [RFC3711]  Baugher, M., McGrew, D., Naslund, M., Carrara, E., and K.
             Norrman, "The Secure Real-time Transport Protocol (SRTP)",
             RFC 3711, March 2004.

  [RFC4301]  Kent, S. and K. Seo, "Security Architecture for the
             Internet Protocol", RFC 4301, December 2005.

  [RFC5246]  Dierks, T. and E. Rescorla, "The Transport Layer Security
             (TLS) Protocol Version 1.2", RFC 5246, August 2008.









de Bont, et al.             Standards Track                    [Page 11]

RFC 5691               Transport of MPEG Surround           October 2009


Authors' Addresses

  Frans de Bont
  Philips Electronics
  High Tech Campus 5
  5656 AE Eindhoven,
  NL

  Phone: ++31 40 2740234
  EMail: [email protected]


  Stefan Doehla
  Fraunhofer IIS
  Am Wolfmantel 33
  91058 Erlangen,
  DE

  Phone: +49 9131 776 6042
  EMail: [email protected]


  Malte Schmidt
  Dolby Laboratories
  Deutschherrnstr. 15-19
  90537 Nuernberg,
  DE

  Phone: +49 911 928 91 42
  EMail: [email protected]


  Ralph Sperschneider
  Fraunhofer IIS
  Am Wolfmantel 33
  91058 Erlangen,
  DE

  Phone: +49 9131 776 6167
  EMail: [email protected]











de Bont, et al.             Standards Track                    [Page 12]