Independent Submission                                    A. Brusilovsky
Request for Comments: 5683                                   I. Faynberg
Category: Informational                                       Z. Zeltsan
ISSN: 2070-1721                                           Alcatel-Lucent
                                                               S. Patel
                                                           Google, Inc.
                                                          February 2010


       Password-Authenticated Key (PAK) Diffie-Hellman Exchange

Abstract

  This document proposes to add mutual authentication, based on a
  human-memorizable password, to the basic, unauthenticated Diffie-
  Hellman key exchange.  The proposed algorithm is called the Password-
  Authenticated Key (PAK) exchange.  PAK allows two parties to
  authenticate themselves while performing the Diffie-Hellman exchange.

  The protocol is secure against all passive and active attacks.  In
  particular, it does not allow either type of attacker to obtain any
  information that would enable an offline dictionary attack on the
  password.  PAK provides Forward Secrecy.

Status of This Memo

  This document is not an Internet Standards Track specification; it is
  published for informational purposes.

  This is a contribution to the RFC Series, independently of any other
  RFC stream.  The RFC Editor has chosen to publish this document at
  its discretion and makes no statement about its value for
  implementation or deployment.  Documents approved for publication by
  the RFC Editor are not a candidate for any level of Internet
  Standard; see Section 2 of RFC 5741.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  http://www.rfc-editor.org/info/rfc5683.












Brusilovsky, et al.           Informational                     [Page 1]

RFC 5683               PAK Diffie-Hellman Exchange         February 2010


Copyright Notice

  Copyright (c) 2010 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (http:trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.

Table of Contents

  1. Introduction ....................................................3
  2. Conventions .....................................................3
  3. Password-Authenticated Key Exchange .............................4
  4. Selection of Parameters .........................................5
     4.1. General Considerations .....................................5
     4.2. Over-the-Air Service Provisioning (OTASP) and Wireless
          Local Area Network (WLAN) Diffie-Hellman Parameters and
          Key Expansion Functions ....................................5
  5. Security Considerations .........................................7
  6. Acknowledgments .................................................8
  7. References ......................................................8
     7.1. Normative References .......................................8
     7.2. Informative References .....................................8
























Brusilovsky, et al.           Informational                     [Page 2]

RFC 5683               PAK Diffie-Hellman Exchange         February 2010


1.  Introduction

  PAK has the following advantages:

  -  It provides a secure, authenticated key-exchange protocol.
  -  It is secure against offline dictionary attacks when passwords are
     used.
  -  It ensures Forward Secrecy.
  -  It has been proven to be as secure as the Diffie-Hellman solution.

  The PAK protocol ([BMP00], [MP05], [X.1035]) has been proven to be as
  secure as the Diffie-Hellman ([RFC2631], [DH76]) in the random oracle
  model [BR93].  That is, PAK retains its security when used with low-
  entropy passwords.  Therefore, it can be seamlessly integrated into
  existing applications, requiring secure authentication based on such
  low-entropy shared secrets.

2.  Conventions

  -  A is an identity of Alice.

  -  B is an identity of Bob.

  -  Ra is a secret random exponent selected by A.

  -  Rb is a secret random exponent selected by B.

  -  Xab denotes a value (X presumably computed by A) as derived by B.

  -  Yba denotes a value (Y presumably computed by B) as derived by A.

  -  A mod b denotes the least non-negative remainder when a is divided
     by b.

  -  Hi(u) denotes an agreed-on function (e.g., based on SHA-1,
     SHA-256, etc.) computed over a string u; the various H() act as
     independent random functions.  H1(u) and H2(u) are the key
     derivation functions.  H3(u), H4(u), and H5(u) are the hash
     functions.

  -  s|t denotes concatenation of the strings s and t.

  -  ^ denotes exponentiation.

  -  Multiplication, division, and exponentiation are performed over
     (Zp)*; in other words:





Brusilovsky, et al.           Informational                     [Page 3]

RFC 5683               PAK Diffie-Hellman Exchange         February 2010


     1) a*b always means a*b (mod p).

     2) a/b always means a * x (mod p), where x is the multiplicative
        inverse of b modulo p.

     3) a^b means a^b (mod p).

3.  Password-Authenticated Key Exchange

  Diffie-Hellman key agreement requires that both the sender and
  recipient of a message create their own secret, random numbers and
  exchange the exponentiation of their respective numbers.

  PAK has two parties, Alice (A) and Bob (B), sharing a secret password
  PW that satisfies the following conditions:

     H1(A|B|PW) != 0
     H2(A|B|PW) != 0

  The global Diffie-Hellman publicly known constants, a prime p and a
  generator g, are carefully selected so that:

  1.  A safe prime p is large enough to make the computation of
      discrete logarithms infeasible, and

  2.  Powers of g modulo p cover the entire range of p-1 integers from
      1 to p-1.  (References demonstrate working examples of
      selections).

  Initially, Alice (A) selects a secret, random exponent Ra and
  computes g^Ra; Bob (B) selects a secret, random exponent Rb and
  computes g^Rb.  For efficiency purposes, short exponents could be
  used for Ra and Rb, provided they have a certain minimum size.  Then:

  A --> B: {A, X = H1(A|B|PW)*(g^Ra)}
           (The above precondition on PW ensures that X != 0)

     Bob
       receives Q (presumably Q = X), verifies that Q != 0
         (if Q = 0, Bob aborts the procedure);
       divides Q by H1(A|B|PW) to get Xab, the recovered value of g^Ra










Brusilovsky, et al.           Informational                     [Page 4]

RFC 5683               PAK Diffie-Hellman Exchange         February 2010


  B --> A: {Y = H2(A|B|PW)*(g^Rb), S1 = H3(A|B|PW|Xab|g^Rb|(Xab)^Rb)}
           (The above precondition on PW ensures that Y != 0)

     Alice
       verifies that Y != 0;
       divides Y by H2(A|B|PW) to get Yba, the recovered value of g^Rb,
       and computes S1' = H3(A|B|PW|g^Ra|Yba|(Yba)^Ra);
       authenticates Bob by checking whether S1' = S1;
       if authenticated, then sets key K = H5(A|B|PW|g^Ra|Yba|(Yba)^Ra)


  A --> B:  S2 = H4(A|B|PW|g^Ra|Yba|(Yba)^Ra)

     Bob
       Computes S2' = H4(A|B|PW|Xab|g^Rb|(Xab)^Rb) and
       authenticates Alice by checking whether S2' = S2;
       if authenticated, then sets K = H5(A|B|PW|Xab|g^Rb|(Xab)^Rb)

  If any of the above verifications fails, the protocol halts;
  otherwise, both parties have authenticated each other and established
  the key.

4.  Selection of Parameters

  This section provides guidance on selection of the PAK parameters.
  First, it addresses general considerations, then it reports on
  specific implementations.

4.1.  General Considerations

  In general implementations, the parameters must be selected to meet
  algorithm requirements of [BMP00].

4.2.  Over-the-Air Service Provisioning (OTASP) and Wireless Local Area
     Network (WLAN) Diffie-Hellman Parameters and Key Expansion
     Functions

  [OTASP], [TIA683], and [WLAN] pre-set public parameters p and g to
  their "published" values.  This is necessary to protect against an
  attacker sending bogus p and g values, tricking the legitimate user
  to engage in improper Diffie-Hellman exponentiation and leaking some
  information about the password.

  According to [OTASP], [TIA683], and [WLAN], g shall be set to
  00001101, and p to the following 1024-bit prime number (most
  significant bit first):





Brusilovsky, et al.           Informational                     [Page 5]

RFC 5683               PAK Diffie-Hellman Exchange         February 2010


  0xFFFFFFFF  0xFFFFFFFF  0xC90FDAA2  0x2168C234  0xC4C6628B
  0x80DC1CD1  0x29024E08  0x8A67CC74  0x020BBEA6  0x3B139B22
  0x514A0879  0x8E3404DD  0xEF9519B3  0xCD3A431B  0x302B0A6D
  0xF25F1437  0x4FE1356D  0x6D51C245  0xE485B576  0x625E7EC6
  0xF44C42E9  0xA637ED6B  0x0BFF5CB6  0xF406B7ED  0xEE386BFB
  0x5A899FA5  0xAE9F2411  0x7C4B1FE6  0x49286651  0xECE65381
  0xFFFFFFFF  0xFFFFFFFF

  In addition, if short exponents [MP05] are used for Diffie-Hellman
  parameters Ra and Rb, then they should have a minimum size of 384
  bits.  The independent, random functions H1 and H2 should each output
  1152 bits, assuming prime p is 1024 bits long and session keys K are
  128 bits long.  H3, H4, and H5 each output 128 bits.  More
  information on instantiating random functions using hash functions
  can be found in [BR93].  We use the FIPS 180 SHA-1 hashing function
  [FIPS180] below to instantiate the random function as done in [WLAN];
  however, SHA-256 can also be used:

  H1(z):
  SHA-1(1|1|z) mod 2^128 | SHA-1(1|2|z) mod 2^128 |...|
  | SHA-1(1|9|z) mod 2^128

  H2(z):
  SHA-1(2|1|z) mod 2^128 | SHA-1(2|2|z) mod 2^128 |...|
  | SHA-1(2|9|z) mod 2^128

  H3(z): SHA-1(3|len(z)|z|z) mod 2^128
  H4(z): SHA-1(4|len(z)|z|z) mod 2^128
  H5(z): SHA-1(5|len(z)|z|z) mod 2^128

  In order to create 1152 output bits for H1 and H2, nine calls to
  SHA-1 are made and the 128 least significant bits of each output are
  used.  The input payload of each call to SHA-1 consists of:

  a) 32 bits of function type, which for H1 is set to 1 and for H2 is
     set to 2;
  b) a 32-bit counter value, which is incremented from 1 to 9 for each
     call to SHA-1;
  c) the argument z [for (A|B|PW)].

  The functions H3, H4, and H5 require only one call to the SHA-1
  hashing function and their respective payloads consist of:

  a) 32 bits of function type (e.g., 3 for H3);
  b) a 32-bit value for the bit length of the argument z;
  c) the actual argument repeated twice.

  Finally, the 128 least significant bits of the output are used.



Brusilovsky, et al.           Informational                     [Page 6]

RFC 5683               PAK Diffie-Hellman Exchange         February 2010


5.  Security Considerations

  Security considerations are as follows:

  -  Identifiers

     Any protocol that uses PAK must specify a method for producing a
     single representation of identity strings.

  -  Shared secret

     PAK involves the use of a shared secret.  Protection of the shared
     values and managing (limiting) their exposure over time is
     essential and can be achieved using well-known security policies
     and measures.  If a single secret is shared among more than two
     entities (e.g., Alice, Bob, and Mallory), then Mallory can
     represent himself as Alice to Bob without Bob being any the wiser.

  -  Selection of Diffie-Hellman parameters

     The parameters p and g must be carefully selected in order not to
     compromise the shared secret.  Only previously agreed-upon values
     for parameters p and g should be used in the PAK protocol.  This
     is necessary to protect against an attacker sending bogus p and g
     values and thus tricking the other communicating party in an
     improper Diffie-Hellman exponentiation.  Both parties also need to
     randomly select a new exponent each time the key-agreement
     protocol is executed.  If both parties re-use the same values,
     then Forward Secrecy property is lost.

     In addition, if short exponents Ra and Rb are used, then they
     should have a minimum size of 384 bits (assuming that 128-bit
     session keys are used).  Historically, the developers, who strived
     for 128-bit security (and thus selected 256-bit exponents), added
     128 bits to the exponents to ensure the security reduction proofs.
     This should explain how an "odd" length of 384 has been arrived
     at.

  -  Protection against attacks

     a) There is a potential attack, the so-called discrete logarithm
        attack on the multiplicative group of congruencies modulo p, in
        which an adversary can construct a table of discrete logarithms
        to be used as a "dictionary".  A sufficiently large prime, p,
        must be selected to protect against such an attack.  A proper
        1024-bit value for p and an appropriate value for g are
        published in [WLAN] and [TIA683].  For the moment, this is what
        has been implemented; however, a larger prime (i.e., one that



Brusilovsky, et al.           Informational                     [Page 7]

RFC 5683               PAK Diffie-Hellman Exchange         February 2010


        is 2048 bits long, or even larger) will definitely provide
        better protection.  It is important to note that once this is
        done, the generator must be changed too, so this task must be
        approached with extreme care.

     b) An online password attack can be launched by an attacker by
        repeatedly guessing the password and attempting to
        authenticate.  The implementers of PAK should consider
        employing mechanisms (such as lockouts) for preventing such
        attacks.

  -  Recommendations on H() functions

     The independent, random functions H1 and H2 should output 1152
     bits each, assuming prime p is 1024 bits long and session keys K
     are 128 bits long.  The random functions H3, H4, and H5 should
     output 128 bits.

  An example of secure implementation of PAK is provided in [Plan9].

6.  Acknowledgments

  The authors are grateful for the thoughtful comments received from
  Shehryar Qutub, Ray Perlner, and Yaron Sheffer.  Special thanks go to
  Alfred Hoenes, Tim Polk, and Jim Schaad for their careful reviews and
  invaluable help in preparing the final version of this document.

7.  References

7.1.  Normative References

  [X.1035]    ITU-T, "Password-authenticated key exchange (PAK)
              protocol", ITU-T Recommendation X.1035, 2007.

  [TIA683]    TIA, "Over-the-Air Service Provisioning of Mobile
              Stations in Spread Spectrum Systems", TIA-683-D, May
              2006.

7.2.  Informative References

  [Plan9]     Alcatel-Lucent, "Plan 9 from Bell Labs",
              http://netlib.bell-labs.com/plan9/.

  [BMP00]     Boyko, V., MacKenzie, P., and S. Patel, "Provably secure
              password authentication and key exchange using Diffie-
              Hellman", Proceedings of Eurocrypt 2000.





Brusilovsky, et al.           Informational                     [Page 8]

RFC 5683               PAK Diffie-Hellman Exchange         February 2010


  [BR93]      Bellare, M. and P. Rogaway, "Random Oracles are
              Practical: A Paradigm for Designing Efficient Protocols",
              Proceedings of the 5th Annual ACM Conference on Computer
              and Communications Security, 1998.

  [DH76]      Diffie, W. and M.E. Hellman, "New directions in
              cryptography", IEEE Transactions on Information Theory 22
              (1976), 644-654.

  [FIPS180]   NIST Federal Information Processing Standards,
              Publication FIPS 180-3, "Secure Hash Standard", 2008.

  [MP05]      MacKenzie, P. and S. Patel, "Hard Bits of the Discrete
              Log with Applications to Password Authentication", CT-RSA
              2005.

  [OTASP]     3GPP2, "Over-the-Air Service Provisioning of Mobile
              Stations in Spread Spectrum Systems", 3GPP2 C.S0016-C v.
              1.0 5, October 2004.

  [RFC2631]   Rescorla, E., "Diffie-Hellman Key Agreement Method", RFC
              2631, June 1999.

  [WLAN]      3GPP2, "Wireless Local Area Network (WLAN) Interworking",
              3GPP2 X.S0028-0, v.1.0, April 2005.


























Brusilovsky, et al.           Informational                     [Page 9]

RFC 5683               PAK Diffie-Hellman Exchange         February 2010


Authors' Addresses

  Alec Brusilovsky
  Alcatel-Lucent
  Room 9B-226, 1960 Lucent Lane
  Naperville, IL 60566-7217  USA
  Tel: +1 630 979 5490
  EMail: [email protected]


  Igor Faynberg
  Alcatel-Lucent
  Room 2D-144, 600 Mountain Avenue
  Murray Hill, NJ 07974  USA
  Tel: +1 908 582 2626
  EMail: [email protected]


  Sarvar Patel
  Google, Inc.
  76 Ninth Avenue
  New York, NY 10011  USA
  Tel: +1 212 565 5907
  EMail: [email protected]


  Zachary Zeltsan
  Alcatel-Lucent
  Room 2D-150, 600 Mountain Avenue
  Murray Hill, NJ 07974  USA
  Tel: +1 908 582 2359
  EMail: [email protected]



















Brusilovsky, et al.           Informational                    [Page 10]