Network Working Group                                         R. Housley
Request for Comments: 5649                                Vigil Security
Category: Informational                                       M. Dworkin
                                                                   NIST
                                                            August 2009


  Advanced Encryption Standard (AES) Key Wrap with Padding Algorithm

Abstract

  This document specifies a padding convention for use with the AES Key
  Wrap algorithm specified in RFC 3394.  This convention eliminates the
  requirement that the length of the key to be wrapped be a multiple of
  64 bits, allowing a key of any practical length to be wrapped.

Status of This Memo

  This memo provides information for the Internet community.  It does
  not specify an Internet standard of any kind.  Distribution of this
  memo is unlimited.

Copyright and License Notice

  Copyright (c) 2009 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (http://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the BSD License.















Housley & Dworkin            Informational                      [Page 1]

RFC 5649          AES Key Wrap with Padding Algorithm        August 2009


1.  Introduction

  Management of cryptographic keys often leads to situations where one
  symmetric key is used to encrypt and integrity-protect another key,
  which can be either a symmetric key or an asymmetric key.  The
  operation is often called key wrapping.

  This document specifies an extension of the Advanced Encryption
  Standard (AES) Key Wrap algorithm [AES-KW1, AES-KW2].  Without this
  extension, the input to the AES Key Wrap algorithm, called the key
  data, must be a sequence of two or more 64-bit blocks.

  The AES Key Wrap with Padding algorithm can be used to wrap a key of
  any practical size with an AES key.  The AES key-encryption key (KEK)
  must be 128, 192, or 256 bits.  The input key data may be as short as
  one octet, which will result in an output of two 64-bit blocks (or 16
  octets).  Although the AES Key Wrap algorithm does not place a
  maximum bound on the size of the key data that can be wrapped, this
  extension does so.  The use of a 32-bit fixed field to carry the
  octet length of the key data bounds the size of the input at 2^32
  octets.  Most systems will have other factors that limit the
  practical size of key data to much less than 2^32 octets.

  A message length indicator (MLI) is defined as part of an
  "Alternative Initial Value" in keeping with the statement in Section
  2.2.3.2 of [AES-KW1], which says:

     Also, if the key data is not just an AES key, it may not always be
     a multiple of 64 bits.  Alternative definitions of the initial
     value can be used to address such problems.

2.  Notation and Definitions

  The following notation is used in the algorithm descriptions:

     MSB(j, W)   Return the most significant j bits of W
     LSB(j, W)   Return the least significant j bits of W
     ENC(K, B)   AES Encrypt the 128-bit block B using key K
     DEC(K, B)   AES Decrypt the 128-bit block B using key K
     V1 | V2     Concatenate V1 and V2
     K           The key-encryption key
     m           The number of octets in the key data
     n           The number of 64-bit blocks in the padded key data
     Q[i]        The ith plaintext octet in the key data
     P[i]        The ith 64-bit plaintext block in the padded key data
     C[i]        The ith 64-bit ciphertext data block
     A           The 64-bit integrity check register




Housley & Dworkin            Informational                      [Page 2]

RFC 5649          AES Key Wrap with Padding Algorithm        August 2009


3.  Alternative Initial Value

  The Alternative Initial Value (AIV) required by this specification is
  a 32-bit constant concatenated to a 32-bit MLI.  The constant is (in
  hexadecimal) A65959A6 and occupies the high-order half of the AIV.
  Note that this differs from the high order 32 bits of the default IV
  in Section 2.2.3.1 of [AES-KW1], so there is no ambiguity between the
  two.  The 32-bit MLI, which occupies the low-order half of the AIV,
  is an unsigned binary integer equal to the octet length of the
  plaintext key data, in network order -- that is, with the most
  significant octet first.  When the MLI is not a multiple of 8, the
  key data is padded on the right with the least number of octets
  sufficient to make the resulting octet length a multiple of 8.  The
  value of each padding octet shall be 0 (eight binary zeros).

  Notice that for a given number of 64-bit plaintext blocks, there are
  only eight values of MLI that can have that outcome.  For example,
  the only MLI values that are valid with four 64-bit plaintext blocks
  are 32 (with no padding octets), 31 (with one padding octet), 30, 29,
  28, 27, 26, and 25 (with seven padding octets).  When the unwrapping
  process specified below yields n 64-bit blocks of output data and an
  AIV, the eight valid values for the MLI are 8*n, (8*n)-1, ..., and
  (8*n)-7.  Therefore, integrity checking of the AIV, which is
  contained in a 64-bit register called A, requires the following
  steps:

  1) Check that MSB(32,A) = A65959A6.

  2) Check that 8*(n-1) < LSB(32,A) <= 8*n.  If so, let
     MLI = LSB(32,A).

  3) Let b = (8*n)-MLI, and then check that the rightmost b octets of
     the output data are zero.

  If all three checks pass, then the AIV is valid.  If any of the
  checks fail, then the AIV is invalid and the unwrapping operation
  must return an error.

4.  Specification of the AES Key Wrap with Padding Algorithm

  The AES Key Wrap with Padding algorithm consists of a wrapping
  process and an unwrapping process, both based on the AES codebook
  [AES].  It provides an extension to the AES Key Wrap algorithm
  [AES-KW1, AES-KW2] that eliminates the requirement that the length of
  the key to be wrapped be a multiple of 64 bits.  The next two
  sections specify the wrapping and unwrapping processes, called the





Housley & Dworkin            Informational                      [Page 3]

RFC 5649          AES Key Wrap with Padding Algorithm        August 2009


  extended key wrapping process and the extended key unwrapping
  process, respectively.  These names distinguish these processes from
  the ones specified in [AES-KW1] and [AES-KW2].

4.1.  Extended Key Wrapping Process

  The inputs to the extended key wrapping process are the KEK and the
  plaintext to be wrapped.  The plaintext consists of between one and
  2^32 octets, containing the key data being wrapped.  The key wrapping
  process is described below.

  Inputs:  Plaintext, m octets {Q[1], Q[2], ..., Q[m]}, and
           Key, K (the KEK).
  Outputs: Ciphertext, (n+1) 64-bit values {C[0], C[1], ..., C[n]}.

  1) Append padding

     If m is not a multiple of 8, pad the plaintext octet string on the
     right with octets {Q[m+1], ..., Q[r]} of zeros, where r is the
     smallest multiple of 8 that is greater than m.  If m is a multiple
     of 8, then there is no padding, and r = m.

     Set n = r/8, which is the same as CEILING(m/8).

     For i = 1, ..., n
        j = 8*(i-1)
        P[i] = Q[j+1] | Q[j+2] | ... | Q[j+8].

  2) Wrapping

     If the padded plaintext contains exactly eight octets, then
     prepend the AIV as defined in Section 3 above to P[1] and encrypt
     the resulting 128-bit block using AES in ECB mode [Modes] with key
     K (the KEK).  In this case, the output is two 64-bit blocks C[0]
     and C[1]:

        C[0] | C[1] = ENC(K, A | P[1]).

     Otherwise, apply the wrapping process specified in Section 2.2.1
     of [AES-KW2] to the padded plaintext {P[1], ..., P[n]} with K (the
     KEK) and the AIV as defined in Section 3 above as the initial
     value.  The result is n+1 64-bit blocks {C[0], C[1], ..., C[n]}.









Housley & Dworkin            Informational                      [Page 4]

RFC 5649          AES Key Wrap with Padding Algorithm        August 2009


4.2.  Extended Key Unwrapping Process

  The inputs to the extended key unwrapping process are the KEK and
  (n+1) 64-bit ciphertext blocks consisting of a previously wrapped
  key.  If the ciphertext is a validly wrapped key, then the unwrapping
  process returns n 64-bit blocks of padded plaintext, which are then
  mapped in this extension to m octets of decrypted key data, as
  indicated by the MLI embedded in the AIV.

  Inputs:  Ciphertext, (n+1) 64-bit blocks {C[0], C[1], ..., C[n]}, and
           Key, K (the KEK).
  Outputs: Plaintext, m octets {Q[1], Q[2], ..., Q[m]}, or an error.

  1) Key unwrapping

     When n is one (n=1), the ciphertext contains exactly two 64-bit
     blocks (C[0] and C[1]), and they are decrypted as a single AES
     block using AES in ECB mode [Modes] with K (the KEK) to recover
     the AIV and the padded plaintext key:

        A | P[1] = DEC(K, C[0] | C[1]).

     Otherwise, apply Steps 1 and 2 of the unwrapping process specified
     in Section 2.2.2 of [AES-KW2] to the n+1 64-bit ciphertext blocks,
     {C[0], C[1], ..., C[n]}, and to the KEK, K.  Define the padded
     plaintext blocks, {P[1], ..., P[n]}, as specified in Step 3 of
     that process, with A[0] as the A value.  Note that checking "If
     A[0] is an appropriate value" is slightly delayed to Step 2 below
     since the padded plaintext is needed to perform this verification
     when the AIV is used.

  2) AIV verification

     Perform the three checks described in Section 3 above on the
     padded plaintext and the A value.  If any of the checks fail, then
     return an error.

  3) Remove padding

     Let m = the MLI value extracted from A.

     Let P = P[1] | P[2] | ... | P[n].

     For i = 1, ... , m
      Q[i] = LSB(8, MSB(8*i, P))






Housley & Dworkin            Informational                      [Page 5]

RFC 5649          AES Key Wrap with Padding Algorithm        August 2009


5.  Algorithm Identifiers

  Some security protocols employ ASN.1 [X.680] and employ algorithm
  identifiers to name cryptographic algorithms.  To support these
  protocols, the AES Key Wrap with Padding algorithm has been assigned
  the following algorithm identifiers, one for each AES KEK size.  The
  AES Key Wrap (without padding) algorithm identifiers are also
  included here for convenience.

     aes OBJECT IDENTIFIER ::= { joint-iso-itu-t(2) country(16)
               us(840) organization(1) gov(101) csor(3)
               nistAlgorithm(4) 1 }

     id-aes128-wrap     OBJECT IDENTIFIER ::= { aes 5 }
     id-aes128-wrap-pad OBJECT IDENTIFIER ::= { aes 8 }

     id-aes192-wrap     OBJECT IDENTIFIER ::= { aes 25 }
     id-aes192-wrap-pad OBJECT IDENTIFIER ::= { aes 28 }

     id-aes256-wrap     OBJECT IDENTIFIER ::= { aes 45 }
     id-aes256-wrap-pad OBJECT IDENTIFIER ::= { aes 48 }

  In all cases, the AlgorithmIdentifier parameter field MUST be absent.

6.  Padded Key Wrap Examples

  The examples in this section were generated using the index-based
  implementation of the AES Key Wrap algorithm along with the padding
  approach specified in Section 4 of this document.  All values are
  shown in hexadecimal.

  The first example wraps 20 octets of key data with a 192-bit KEK.

     KEK   :  5840df6e29b02af1 ab493b705bf16ea1 ae8338f4dcc176a8

     Key   :  c37b7e6492584340 bed1220780894115 5068f738

     Wrap  :  138bdeaa9b8fa7fc 61f97742e72248ee 5ae6ae5360d1ae6a
           :  5f54f373fa543b6a

  The second example wraps 7 octets of key data with a 192-bit KEK.

     KEK   :  5840df6e29b02af1 ab493b705bf16ea1 ae8338f4dcc176a8

     Key   :  466f7250617369

     Wrap  :  afbeb0f07dfbf541 9200f2ccb50bb24f




Housley & Dworkin            Informational                      [Page 6]

RFC 5649          AES Key Wrap with Padding Algorithm        August 2009


7.  Security Considerations

  Implementations must protect the key-encryption key (KEK).
  Compromise of the KEK may result in the disclosure of all keys that
  have been wrapped with the KEK, which may lead to the compromise of
  all traffic protected with those wrapped keys.

  The KEK must be at least as good as the keying material it is
  protecting.

  If the KEK and wrapped key are associated with different
  cryptographic algorithms, the effective security provided to data
  protected with the wrapped key is determined by the weaker of the two
  algorithms.  If, for example, data is encrypted with 128-bit AES and
  that AES key is wrapped with a 256-bit AES key, then at most 128 bits
  of protection is provided to the data.  If, for another example, a
  128-bit AES key is used to wrap a 4096-bit RSA private key, then at
  most 128 bits of protection is provided to any data that depends on
  that private key.  Thus, implementers must ensure that key-encryption
  algorithms are at least as strong as other cryptographic algorithms
  employed in an overall system.

  The AES Key Wrap and the AES Key Wrap with Padding algorithms use
  different constants in the initial value.  The use of different
  values ensures that the recipient of padded key data cannot
  successfully unwrap it as unpadded key data, or vice versa.  This
  remains true when the key data is wrapped using the AES Key Wrap with
  Padding algorithm but no padding is needed.

  The AES Key Wrap with Padding algorithm provides almost the same
  amount of integrity protection as the AES Key Wrap algorithm.

  A previous padding technique was specified for wrapping Hashed
  Message Authentication Code (HMAC) keys with AES [OLD-KW].  The
  technique in this document is more general; the technique in this
  document is not limited to wrapping HMAC keys.

  In the design of some high assurance cryptographic modules, it is
  desirable to segregate cryptographic keying material from other data.
  The use of a specific cryptographic mechanism solely for the
  protection of cryptographic keying material can assist in this goal.
  The AES Key Wrap and the AES Key Wrap with Padding are such
  mechanisms.  System designers should not use these algorithms to
  encrypt anything other than cryptographic keying material.







Housley & Dworkin            Informational                      [Page 7]

RFC 5649          AES Key Wrap with Padding Algorithm        August 2009


8.  References

8.1.  Normative References

  [AES]     National Institute of Standards and Technology, FIPS Pub
            197: Advanced Encryption Standard (AES), 26 November 2001.

  [AES-KW1] National Institute of Standards and Technology, AES Key
            Wrap Specification, 17 November 2001.
            http://csrc.nist.gov/groups/ST/toolkit/documents/kms/
            AES_key_wrap.pdf

  [AES-KW2] Schaad, J. and R. Housley, "Advanced Encryption Standard
            (AES) Key Wrap Algorithm", RFC 3394, September 2002.

  [Modes]   Dworkin, M., "Recommendation for Block Cipher Modes of
            Operation -- Methods and Techniques",  NIST Special
            Publication 800-38A, 2001.

  [X.680]   ITU-T Recommendation X.680 (2002) | ISO/IEC 8824-1:2002,
            Information technology - Abstract Syntax Notation One
            (ASN.1):  Specification of basic notation.

8.2.  Informative References

  [AES-CMS] Schaad, J., "Use of the Advanced Encryption Standard (AES)
            Encryption Algorithm in Cryptographic Message Syntax
            (CMS)", RFC 3565, July 2003.

  [CMS-ASN] Schaad, J. and P. Hoffman, "New ASN.1 Modules for CMS and
            S/MIME", Work in Progress, August 2009.

  [OLD-KW]  Schaad, J. and R. Housley, "Wrapping a Hashed Message
            Authentication Code (HMAC) key with a Triple-Data
            Encryption Standard (DES) Key or an Advanced Encryption
            Standard (AES) Key", RFC 3537, May 2003.

  [X.681]   ITU-T Recommendation X.681 (2002) | ISO/IEC 8824-2:2002,
            Information Technology - Abstract Syntax Notation One:
            Information Object Specification.

  [X.682]   ITU-T Recommendation X.682 (2002) | ISO/IEC 8824-3:2002,
            Information Technology - Abstract Syntax Notation One:
            Constraint Specification.

  [X.683]   ITU-T Recommendation X.683 (2002) | ISO/IEC 8824-4:2002,
            Information Technology - Abstract Syntax Notation One:
            Parameterization of ASN.1 Specifications.



Housley & Dworkin            Informational                      [Page 8]

RFC 5649          AES Key Wrap with Padding Algorithm        August 2009


9.  Acknowledgments

  Paul Timmel should be credited with the MLI and padding technique
  described in this document.















































Housley & Dworkin            Informational                      [Page 9]

RFC 5649          AES Key Wrap with Padding Algorithm        August 2009


Appendix A.  ASN.1 Modules

  This appendix includes two ASN.1 modules.  The first one makes use of
  the 1988 syntax, and the second one makes use of the 2002 ASN.1
  syntax.

  Appendix A.1 provides the normative ASN.1 definitions for the
  algorithm identifiers included in this specification using ASN.1 as
  defined in [X.680] using the 1988 ASN.1 syntax.

  Appendix A.2 provides informative ASN.1 definitions for the algorithm
  identifiers included in this specification using ASN.1 as defined in
  [X.680], [X.681], [X.682], and [X.683] using the 2002 ASN.1 syntax.
  This appendix contains the same information as Appendix A.1; however,
  Appendix A.1 takes precedence in case of conflict.  The content
  encryption and key wrap algorithm objects are defined in [CMS-ASN].

  The id-aes128-wrap, id-aes192-wrap, and id-aes256-wrap algorithm
  identifiers are defined in [AES-CMS].

A.1.  1988 ASN.1 Module

  AESKeyWrapWithPad-88 { iso(1) member-body(2) us(840) rsadsi(113549)
    pkcs(1) pkcs-9(9) smime(16) modules(0) 47 }

  DEFINITIONS IMPLICIT TAGS ::=

  BEGIN

  -- EXPORTS ALL --

  -- IMPORTS NONE --

  -- AES information object identifiers --

  aes OBJECT IDENTIFIER ::= {
    joint-iso-itu-t(2) country(16) us(840) organization(1) gov(101)
    csor(3) nistAlgorithms(4) 1 }

  -- AES Key Wrap With Padding Algorithm Identifiers are to be used
  -- with the Parameter field absent

  id-aes128-wrap-pad OBJECT IDENTIFIER ::= { aes 8 }
  id-aes192-wrap-pad OBJECT IDENTIFIER ::= { aes 28 }
  id-aes256-wrap-pad OBJECT IDENTIFIER ::= { aes 48 }

  END




Housley & Dworkin            Informational                     [Page 10]

RFC 5649          AES Key Wrap with Padding Algorithm        August 2009


A.2.  2002 ASN.1 Module

  AESKeyWrapWithPad-02 { iso(1) member-body(2) us(840) rsadsi(113549)
    pkcs(1) pkcs-9(9) smime(16) modules(0) 48 }

  DEFINITIONS IMPLICIT TAGS ::=

  BEGIN

  -- EXPORTS ALL --

  IMPORTS
    AlgorithmIdentifier{}, CONTENT-ENCRYPTION, KEY-WRAP, SMIME-CAPS
    FROM AlgorithmInformation-2009  -- [CMS-ASN]
      { iso(1) identified-organization(3) dod(6) internet(1)
        security(5) mechanisms(5) pkix(7) id-mod(0)
        id-mod-algorithmInformation-02(58) };

  AES-ContentEncryption CONTENT-ENCRYPTION ::= {
    cea-aes128-wrap-pad |
    cea-aes192-wrap-pad |
    cea-aes256-wrap-pad,
    ... }

  AES-KeyWrap KEY-WRAP ::= {
    kwa-aes128-wrap-pad |
    kwa-aes192-wrap-pad |
    kwa-aes256-wrap-pad,
    ... }

  SMimeCaps SMIME-CAPS ::= {
    cea-aes128-wrap-pad.&smimeCaps |
    cea-aes192-wrap-pad.&smimeCaps |
    cea-aes256-wrap-pad.&smimeCaps |
    kwa-aes128-wrap-pad.&smimeCaps |
    kwa-aes192-wrap-pad.&smimeCaps |
    kwa-aes256-wrap-pad.&smimeCaps,
    ... }

  -- AES object identifier

  aes OBJECT IDENTIFIER ::= {
    joint-iso-itu-t(2) country(16) us(840) organization(1)
    gov(101) csor(3) nistAlgorithms(4) 1 }







Housley & Dworkin            Informational                     [Page 11]

RFC 5649          AES Key Wrap with Padding Algorithm        August 2009


  -- Content Encryption Algorithms

  cea-aes128-wrap-pad CONTENT-ENCRYPTION ::= {
    IDENTIFIER id-aes128-wrap-pad
    PARAMS ARE absent
    SMIME-CAPS { IDENTIFIED BY id-aes128-wrap-pad } }

  cea-aes192-wrap-pad CONTENT-ENCRYPTION ::= {
    IDENTIFIER id-aes192-wrap-pad
    PARAMS ARE absent
    SMIME-CAPS { IDENTIFIED BY id-aes192-wrap-pad } }

  cea-aes256-wrap-pad CONTENT-ENCRYPTION ::= {
    IDENTIFIER id-aes256-wrap-pad
    PARAMS ARE absent
    SMIME-CAPS { IDENTIFIED BY id-aes256-wrap-pad } }

  -- Key Wrap Algorithms

  kwa-aes128-wrap-pad KEY-WRAP ::= {
    IDENTIFIER id-aes128-wrap-pad
    PARAMS ARE absent
    SMIME-CAPS { IDENTIFIED BY id-aes128-wrap-pad } }

  id-aes128-wrap-pad OBJECT IDENTIFIER ::= { aes 8 }

  kwa-aes192-wrap-pad KEY-WRAP ::= {
    IDENTIFIER id-aes192-wrap-pad
    PARAMS ARE absent
    SMIME-CAPS { IDENTIFIED BY id-aes192-wrap-pad } }

  id-aes192-wrap-pad OBJECT IDENTIFIER ::= { aes 28 }

  kwa-aes256-wrap-pad KEY-WRAP ::= {
    IDENTIFIER id-aes256-wrap-pad
    PARAMS ARE absent
    SMIME-CAPS { IDENTIFIED BY id-aes256-wrap-pad } }

  id-aes256-wrap-pad OBJECT IDENTIFIER ::= { aes 48 }

  END










Housley & Dworkin            Informational                     [Page 12]

RFC 5649          AES Key Wrap with Padding Algorithm        August 2009


Authors' Addresses

  Russell Housley
  Vigil Security, LLC
  918 Spring Knoll Drive
  Herndon, VA 20170
  USA

  EMail: [email protected]


  Morris Dworkin
  National Institute of Standards and Technology
  100 Bureau Drive, Mail Stop 8930
  Gaithersburg, MD 20899-8930
  USA

  EMail: [email protected]

































Housley & Dworkin            Informational                     [Page 13]