Network Working Group                                            K. Igoe
Request for Comments: 5647                                    J. Solinas
Category: Informational                         National Security Agency
                                                            August 2009


                     AES Galois Counter Mode for
              the Secure Shell Transport Layer Protocol

Abstract

  Secure shell (SSH) is a secure remote-login protocol.  SSH provides
  for algorithms that provide authentication, key agreement,
  confidentiality, and data-integrity services.  The purpose of this
  document is to show how the AES Galois Counter Mode can be used to
  provide both confidentiality and data integrity to the SSH Transport
  Layer Protocol.

Status of This Memo

  This memo provides information for the Internet community.  It does
  not specify an Internet standard of any kind.  Distribution of this
  memo is unlimited.

Copyright Notice

  Copyright (c) 2009 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents in effect on the date of
  publication of this document (http://trustee.ietf.org/license-info).
  Please review these documents carefully, as they describe your rights
  and restrictions with respect to this document.

















Igoe & Solinas               Informational                      [Page 1]

RFC 5647                AES-GCM for Secure Shell             August 2009


Table of Contents

  1. Introduction ....................................................2
  2. Requirements Terminology ........................................2
  3. Applicability Statement .........................................3
  4. Properties of Galois Counter Mode ...............................3
     4.1. AES GCM Authenticated Encryption ...........................3
     4.2. AES GCM Authenticated Decryption ...........................3
  5. Review of Secure Shell ..........................................4
     5.1. Key Exchange ...............................................4
     5.2. Secure Shell Binary Packets ................................5
  6. AES GCM Algorithms for Secure Shell .............................6
     6.1. AEAD_AES_128_GCM ...........................................6
     6.2. AEAD_AES_256_GCM ...........................................6
     6.3. Size of the Authentication Tag .............................6
  7. Processing Binary Packets in AES-GCM Secure Shell ...............7
     7.1. IV and Counter Management ..................................7
     7.2. Formation of the Binary Packet .............................7
     7.3. Treatment of the Packet Length Field .......................8
  8. Security Considerations .........................................8
     8.1. Use of the Packet Sequence Number in the AT ................8
     8.2. Non-Encryption of Packet Length ............................8
  9. IANA Considerations .............................................9
  10. References ....................................................10
     10.1. Normative References .....................................10

1.  Introduction

  Galois Counter Mode (GCM) is a block-cipher mode of operation that
  provides both confidentiality and data-integrity services.  GCM uses
  counter mode to encrypt the data, an operation that can be
  efficiently pipelined.  Further, GCM authentication uses operations
  that are particularly well suited to efficient implementation in
  hardware, making it especially appealing for high-speed
  implementations or for implementations in an efficient and compact
  circuit.  The purpose of this document is to show how GCM with either
  AES-128 or AES-256 can be integrated into the Secure Shell Transport
  Layer Protocol [RFC4253].

2.  Requirements Terminology

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in [RFC2119].







Igoe & Solinas               Informational                      [Page 2]

RFC 5647                AES-GCM for Secure Shell             August 2009


3.  Applicability Statement

  Using AES-GCM to provide both confidentiality and data integrity is
  generally more efficient than using two separate algorithms to
  provide these security services.

4.  Properties of Galois Counter Mode

  Galois Counter Mode (GCM) is a mode of operation for block ciphers
  that provides both confidentiality and data integrity.  National
  Institute of Standards and Technology (NIST) Special Publication SP
  800 38D [GCM] gives an excellent explanation of Galois Counter Mode.
  In this document, we shall focus on AES GCM, the use of the Advanced
  Encryption Algorithm (AES) in Galois Counter Mode.  AES-GCM is an
  example of an "algorithm for authenticated encryption with associated
  data" (AEAD algorithm) as described in [RFC5116].

4.1.  AES GCM Authenticated Encryption

  An invocation of AES GCM to perform an authenticated encryption has
  the following inputs and outputs:

    GCM Authenticated Encryption

        Inputs:
           octet_string PT ;   // Plain Text, to be both
                               //    authenticated and encrypted
           octet_string AAD;   // Additional Authenticated Data,
                               //    authenticated but not encrypted
           octet_string IV;    // Initialization Vector
           octet_string BK;    // Block Cipher Key

        Outputs:
           octet_string  CT;   // Cipher Text
           octet_string  AT;   // Authentication Tag

  Note: in [RFC5116], the IV is called the nonce.

  For a given block-cipher key BK, it is critical that no IV be used
  more than once.  Section 7.1 addresses how this goal is to be
  achieved in secure shell.

4.2.  AES GCM Authenticated Decryption

  An invocation of AES GCM to perform an authenticated decryption has
  the following inputs and outputs:





Igoe & Solinas               Informational                      [Page 3]

RFC 5647                AES-GCM for Secure Shell             August 2009


    GCM Authenticated Decryption

        Inputs:
           octet_string CT ;   // Cipher text, to be both
                               //    authenticated and decrypted
           octet_string AAD;   // Additional Authenticated Data,
                               //    authenticated only
           octet_string AT;    // Authentication Tag
           octet_string IV;    // Initialization Vector
           octet_string BK;    // Block Cipher Key

        Output:
           Failure_Indicator;  // Returned if the authentication tag
                               //   is invalid
           octet_string  PT;   // Plain Text, returned if and only if
                               //    the authentication tag is valid

  AES-GCM is prohibited from returning any portion of the plaintext
  until the authentication tag has been validated.  Though this feature
  greatly simplifies the security analysis of any system using AES-GCM,
  this creates an incompatibility with the requirements of secure
  shell, as we shall see in Section 7.3.

5.  Review of Secure Shell

  The goal of secure shell is to establish two secure tunnels between a
  client and a server, one tunnel carrying client-to-server
  communications and the other carrying server-to-client
  communications.  Each tunnel is encrypted, and a message
  authentication code is used to ensure data integrity.

5.1.  Key Exchange

  These tunnels are initialized using the secure shell key exchange
  protocol as described in Section 7 of [RFC4253].  This protocol
  negotiates a mutually acceptable set of cryptographic algorithms and
  produces a secret value K and an exchange hash H that are shared by
  the client and server.  The initial value of H is saved for use as
  the session_id.

  If AES-GCM is selected as the encryption algorithm for a given
  tunnel, AES-GCM MUST also be selected as the Message Authentication
  Code (MAC) algorithm.  Conversely, if AES-GCM is selected as the MAC
  algorithm, it MUST also be selected as the encryption algorithm.

  As described in Section 7.2 of [RFC4253], a hash-based key derivation
  function (KDF) is applied to the shared secret value K to generate
  the required symmetric keys.  Each tunnel gets a distinct set of



Igoe & Solinas               Informational                      [Page 4]

RFC 5647                AES-GCM for Secure Shell             August 2009


  symmetric keys.  The keys are generated as shown in Figure 1.  The
  sizes of these keys varies depending upon which cryptographic
  algorithms are being used.

     Initial IV
        Client-to-Server     HASH( K || H ||"A"|| session_id)
        Server-to-Client     HASH( K || H ||"B"|| session_id)
     Encryption Key
        Client-to-Server     HASH( K || H ||"C"|| session_id)
        Server-to-Client     HASH( K || H ||"D"|| session_id)
     Integrity Key
        Client-to-Server     HASH( K || H ||"E"|| session_id)
        Server-to-Client     HASH( K || H ||"F"|| session_id)

            Figure 1: Key Derivation in Secure Shell

  As we shall see below, SSH AES-GCM requires a 12-octet Initial IV and
  an encryption key of either 16 or 32 octets.  Because an AEAD
  algorithm such as AES-GCM uses the encryption key to provide both
  confidentiality and data integrity, the integrity key is not used
  with AES-GCM.

  Either the server or client may at any time request that the secure
  shell session be rekeyed.  The shared secret value K, the exchange
  hash H, and all the above symmetric keys will be updated.  Only the
  session_id will remain unchanged.

5.2.  Secure Shell Binary Packets

  Upon completion of the key exchange protocol, all further secure
  shell traffic is parsed into a data structure known as a secure shell
  binary packet as shown below in Figure 2 (see also Section 6 of
  [RFC4253]).

    uint32    packet_length;  // 0 <= packet_length < 2^32
    byte      padding_length; // 4 <= padding_length < 256
    byte[n1]  payload;        // n1 = packet_length-padding_length-1
    byte[n2]  random_padding; // n2 = padding_length
    byte[m]   mac;            // m  = mac_length

        Figure 2: Structure of a Secure Shell Binary Packet

  The authentication tag produced by AES-GCM authenticated encryption
  will be placed in the MAC field at the end of the secure shell binary
  packet.






Igoe & Solinas               Informational                      [Page 5]

RFC 5647                AES-GCM for Secure Shell             August 2009


6.  AES GCM Algorithms for Secure Shell

6.1.  AEAD_AES_128_GCM

  AEAD_AES_128_GCM is specified in Section 5.1 of [RFC5116].  Due to
  the format of secure shell binary packets, the buffer sizes needed to
  implement AEAD_AES_128_GCM are smaller than those required in
  [RFC5116].  Using the notation defined in [RFC5116], the input and
  output lengths for AEAD_AES_128_GCM in secure shell are as follows:

     PARAMETER   Meaning                          Value

     K_LEN       AES key length                   16 octets
     P_MAX       maximum plaintext length         2^32 - 32 octets
     A_MAX       maximum additional               4 octets
                 authenticated data length
     N_MIN       minimum nonce (IV) length        12 octets
     N_MAX       maximum nonce (IV) length        12 octets
     C_MAX       maximum cipher length            2^32 octets

6.2.  AEAD_AES_256_GCM

  AEAD_AES_256_GCM is specified in Section 5.2 of [RFC5116].  Due to
  the format of secure shell binary packets, the buffer sizes needed
  to implement AEAD_AES_256_GCM are smaller than those required in
  [RFC5116].  Using the notation defined in [RFC5116], the input and
  output lengths for AEAD_AES_256_GCM in secure shell are as follows:

     PARAMETER   Meaning                          Value

     K_LEN       AES key length                   32 octets
     P_MAX       maximum plaintext length         2^32 - 32 octets
     A_MAX       maximum additional               4 octets
                 authenticated data length
     N_MIN       minimum nonce (IV) length        12 octets
     N_MAX       maximum nonce (IV) length        12 octets
     C_MAX       maximum cipher length            2^32 octets

6.3.  Size of the Authentication Tag

  Both AEAD_AES_128_GCM and AEAD_AES_256_GCM produce a 16-octet
  Authentication Tag ([RFC5116] calls this a "Message Authentication
  Code").  Some applications allow use of a truncated version of this
  tag.  This is not allowed in AES-GCM secure shell.  All
  implementations of AES-GCM secure shell MUST use the full 16-octet
  Authentication Tag.





Igoe & Solinas               Informational                      [Page 6]

RFC 5647                AES-GCM for Secure Shell             August 2009


7.  Processing Binary Packets in AES-GCM Secure Shell

7.1.  IV and Counter Management

  With AES-GCM, the 12-octet IV is broken into two fields: a 4-octet
  fixed field and an 8-octet invocation counter field.  The invocation
  field is treated as a 64-bit integer and is incremented after each
  invocation of AES-GCM to process a binary packet.

        uint32  fixed;                  // 4 octets
        uint64  invocation_counter;     // 8 octets

          Figure 3: Structure of an SSH AES-GCM Nonce

  AES-GCM produces a keystream in blocks of 16-octets that is used to
  encrypt the plaintext.  This keystream is produced by encrypting the
  following 16-octet data structure:

        uint32  fixed;                  // 4 octets
        uint64  invocation_counter;     // 8 octets
        uint32  block_counter;          // 4 octets

          Figure 4: Structure of an AES Input for SSH AES-GCM

  The block_counter is initially set to one (1) and incremented as each
  block of key is produced.

  The reader is reminded that SSH requires that the data to be
  encrypted MUST be padded out to a multiple of the block size
  (16-octets for AES-GCM).

7.2.  Formation of the Binary Packet

  In AES-GCM secure shell, the inputs to the authenticated encryption
  are:

    PT (Plain Text)
       byte      padding_length; // 4 <= padding_length < 256
       byte[n1]  payload;        // n1 = packet_length-padding_length-1
       byte[n2]  random_padding; // n2 = padding_length
    AAD (Additional Authenticated Data)
       uint32    packet_length;  // 0 <= packet_length < 2^32
    IV (Initialization Vector)
       As described in section 7.1.
    BK (Block Cipher Key)
       The appropriate Encryption Key formed during the Key Exchange.





Igoe & Solinas               Informational                      [Page 7]

RFC 5647                AES-GCM for Secure Shell             August 2009


  As required in [RFC4253], the random_padding MUST be at least 4
  octets in length but no more than 255 octets.  The total length of
  the PT MUST be a multiple of 16 octets (the block size of AES).  The
  binary packet is the concatenation of the 4-octet packet_length, the
  cipher text (CT), and the 16-octet authentication tag (AT).

7.3.  Treatment of the Packet Length Field

  Section 6.3 of [RFC4253] requires that the packet length, padding
  length, payload, and padding fields of each binary packet be
  encrypted.  This presents a problem for SSH AES-GCM because:

  1) The tag cannot be verified until we parse the binary packet.

  2) The packet cannot be parsed until the packet_length has been
     decrypted.

  3) The packet_length cannot be decrypted until the tag has been
     verified.

  When using AES-GCM with secure shell, the packet_length field is to
  be treated as additional authenticated data, not as plaintext.  This
  violates the requirements of [RFC4253].  The repercussions of this
  decision are discussed in the following Security Considerations
  section.

8.  Security Considerations

  The security considerations in [RFC4251] apply.

8.1.  Use of the Packet Sequence Number in the AT

  [RFC4253] requires that the formation of the AT involve the packet
  sequence_number, a 32-bit value that counts the number of binary
  packets that have been sent on a given SSH tunnel.  Since the
  sequence_number is, up to an additive constant, just the low 32 bits
  of the invocation_counter, the presence of the invocation_counter
  field in the IV ensures that the sequence_number is indeed involved
  in the formation of the integrity tag, though this involvement
  differs slightly from the requirements in Section 6.4 of [RFC4253].

8.2.  Non-Encryption of Packet Length

  As discussed in Section 7.3, there is an incompatibility between
  GCM's requirement that no plaintext be returned until the
  authentication tag has been verified, secure shell's requirement that
  the packet length be encrypted, and the necessity of decrypting the
  packet length field to locate the authentication tag.  This document



Igoe & Solinas               Informational                      [Page 8]

RFC 5647                AES-GCM for Secure Shell             August 2009


  addresses this dilemma by requiring that, in AES-GCM, the packet
  length field will not be encrypted but will instead be processed as
  additional authenticated data.

  In theory, one could argue that encryption of the entire binary
  packet means that the secure shell dataflow becomes a featureless
  octet stream.  But in practice, the secure shell dataflow will come
  in bursts, with the length of each burst strongly correlated to the
  length of the underlying binary packets.  Encryption of the packet
  length does little in and of itself to disguise the length of the
  underlying binary packets.  Secure shell provides two other
  mechanisms, random padding and SSH_MSG_IGNORE messages, that are far
  more effective than encrypting the packet length in masking any
  structure in the underlying plaintext stream that might be revealed
  by the length of the binary packets.

9.  IANA Considerations

  IANA added the following two entries to the secure shell Encryption
  Algorithm Names registry described in [RFC4250]:

                  +--------------------+-------------+
                  |                    |             |
                  | Name               |  Reference  |
                  +--------------------+-------------+
                  | AEAD_AES_128_GCM   | Section 6.1 |
                  |                    |             |
                  | AEAD_AES_256_GCM   | Section 6.2 |
                  +--------------------+-------------+

  IANA added the following two entries to the secure shell MAC
  Algorithm Names registry described in [RFC4250]:

                  +--------------------+-------------+
                  |                    |             |
                  | Name               |  Reference  |
                  +--------------------+-------------+
                  | AEAD_AES_128_GCM   | Section 6.1 |
                  |                    |             |
                  | AEAD_AES_256_GCM   | Section 6.2 |
                  +--------------------+-------------+










Igoe & Solinas               Informational                      [Page 9]

RFC 5647                AES-GCM for Secure Shell             August 2009


10.  References

10.1.  Normative References

  [GCM]      Dworkin, M, "Recommendation for Block Cipher Modes of
             Operation: Galois/Counter Mode (GCM) and GMAC", NIST
             Special Publication 800-30D, November 2007.

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119, March 1997.

  [RFC4250]  Lehtinen, S. and C. Lonvick, Ed., "The Secure Shell (SSH)
             Protocol Assigned Numbers", RFC 4250, January 2006.

  [RFC4251]  Ylonen, T. and C. Lonvick, Ed., "The Secure Shell (SSH)
             Protocol Architecture", RFC 4251, January 2006.

  [RFC4253]  Ylonen, T. and C. Lonvick, Ed., "The Secure Shell (SSH)
             Transport Layer Protocol", RFC 4253, January 2006.

  [RFC5116]  McGrew, D., "An Interface and Algorithms for Authenticated
             Encryption", RFC 5116, January 2008.

Authors' Addresses

  Kevin M. Igoe
  NSA/CSS Commercial Solutions Center
  National Security Agency
  USA

  EMail: [email protected]


  Jerome A. Solinas
  National Information Assurance Research Laboratory
  National Security Agency
  USA

  EMail: [email protected]












Igoe & Solinas               Informational                     [Page 10]