Network Working Group                                      D. Harrington
Request for Comments: 5591                     Huawei Technologies (USA)
Category: Standards Track                                    W. Hardaker
                                              Cobham Analytic Solutions
                                                              June 2009


                   Transport Security Model for the
              Simple Network Management Protocol (SNMP)

Status of This Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (c) 2009 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents in effect on the date of
  publication of this document (http://trustee.ietf.org/license-info).
  Please review these documents carefully, as they describe your rights
  and restrictions with respect to this document.

  This document may contain material from IETF Documents or IETF
  Contributions published or made publicly available before November
  10, 2008.  The person(s) controlling the copyright in some of this
  material may not have granted the IETF Trust the right to allow
  modifications of such material outside the IETF Standards Process.
  Without obtaining an adequate license from the person(s) controlling
  the copyright in such materials, this document may not be modified
  outside the IETF Standards Process, and derivative works of it may
  not be created outside the IETF Standards Process, except to format
  it for publication as an RFC or to translate it into languages other
  than English.











Harrington & Hardaker       Standards Track                     [Page 1]

RFC 5591           Transport Security Model for SNMP           June 2009


Abstract

  This memo describes a Transport Security Model for the Simple Network
  Management Protocol (SNMP).

  This memo also defines a portion of the Management Information Base
  (MIB) for monitoring and managing the Transport Security Model for
  SNMP.

Table of Contents

  1. Introduction ....................................................3
     1.1. The Internet-Standard Management Framework .................3
     1.2. Conventions ................................................3
     1.3. Modularity .................................................4
     1.4. Motivation .................................................5
     1.5. Constraints ................................................5
  2. How the Transport Security Model Fits in the Architecture .......6
     2.1. Security Capabilities of this Model ........................6
          2.1.1. Threats .............................................6
          2.1.2. Security Levels .....................................7
     2.2. Transport Sessions .........................................7
     2.3. Coexistence ................................................7
          2.3.1. Coexistence with Message Processing Models ..........7
          2.3.2. Coexistence with Other Security Models ..............8
          2.3.3. Coexistence with Transport Models ...................8
  3. Cached Information and References ...............................8
     3.1. Transport Security Model Cached Information ................9
          3.1.1. securityStateReference ..............................9
          3.1.2. tmStateReference ....................................9
          3.1.3. Prefixes and securityNames ..........................9
  4. Processing an Outgoing Message .................................10
     4.1. Security Processing for an Outgoing Message ...............10
     4.2. Elements of Procedure for Outgoing Messages ...............11
  5. Processing an Incoming SNMP Message ............................12
     5.1. Security Processing for an Incoming Message ...............12
     5.2. Elements of Procedure for Incoming Messages ...............13
  6. MIB Module Overview ............................................14
     6.1. Structure of the MIB Module ...............................14
          6.1.1. The snmpTsmStats Subtree ...........................14
          6.1.2. The snmpTsmConfiguration Subtree ...................14
     6.2. Relationship to Other MIB Modules .........................14
          6.2.1. MIB Modules Required for IMPORTS ...................15
  7. MIB Module Definition ..........................................15
  8. Security Considerations ........................................20
     8.1. MIB Module Security .......................................20
  9. IANA Considerations ............................................21
  10. Acknowledgments ...............................................22



Harrington & Hardaker       Standards Track                     [Page 2]

RFC 5591           Transport Security Model for SNMP           June 2009


  11. References ....................................................22
     11.1. Normative References .....................................22
     11.2. Informative References ...................................23
  Appendix A.  Notification Tables Configuration ....................24
    A.1.  Transport Security Model Processing for Notifications .....25
  Appendix B.  Processing Differences between USM and Secure
               Transport ............................................26
    B.1.  USM and the RFC 3411 Architecture .........................26
    B.2.  Transport Subsystem and the RFC 3411 Architecture .........27

1.  Introduction

  This memo describes a Transport Security Model for the Simple Network
  Management Protocol for use with secure Transport Models in the
  Transport Subsystem [RFC5590].

  This memo also defines a portion of the Management Information Base
  (MIB) for monitoring and managing the Transport Security Model for
  SNMP.

  It is important to understand the SNMP architecture and the
  terminology of the architecture to understand where the Transport
  Security Model described in this memo fits into the architecture and
  interacts with other subsystems and models within the architecture.
  It is expected that readers will have also read and understood
  [RFC3411], [RFC3412], [RFC3413], and [RFC3418].

1.1.  The Internet-Standard Management Framework

  For a detailed overview of the documents that describe the current
  Internet-Standard Management Framework, please refer to section 7 of
  RFC 3410 [RFC3410].

  Managed objects are accessed via a virtual information store, termed
  the Management Information Base or MIB.  MIB objects are generally
  accessed through the Simple Network Management Protocol (SNMP).
  Objects in the MIB are defined using the mechanisms defined in the
  Structure of Management Information (SMI).  This memo specifies a MIB
  module that is compliant to the SMIv2, which is described in STD 58,
  RFC 2578 [RFC2578], STD 58, RFC 2579 [RFC2579] and STD 58, RFC 2580
  [RFC2580].

1.2.  Conventions

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in [RFC2119].




Harrington & Hardaker       Standards Track                     [Page 3]

RFC 5591           Transport Security Model for SNMP           June 2009


  Lowercase versions of the keywords should be read as in normal
  English.  They will usually, but not always, be used in a context
  that relates to compatibility with the RFC 3411 architecture or the
  subsystem defined here but that might have no impact on on-the-wire
  compatibility.  These terms are used as guidance for designers of
  proposed IETF models to make the designs compatible with RFC 3411
  subsystems and Abstract Service Interfaces (ASIs).  Implementers are
  free to implement differently.  Some usages of these lowercase terms
  are simply normal English usage.

  For consistency with SNMP-related specifications, this document
  favors terminology as defined in STD 62, rather than favoring
  terminology that is consistent with non-SNMP specifications that use
  different variations of the same terminology.  This is consistent
  with the IESG decision to not require the SNMPv3 terminology be
  modified to match the usage of other non-SNMP specifications when
  SNMPv3 was advanced to Full Standard.

  Authentication in this document typically refers to the English
  meaning of "serving to prove the authenticity of" the message, not
  data source authentication or peer identity authentication.

  The terms "manager" and "agent" are not used in this document
  because, in the RFC 3411 architecture, all SNMP entities have the
  capability of acting as manager, agent, or both depending on the SNMP
  applications included in the engine.  Where distinction is needed,
  the application names of command generator, command responder,
  notification originator, notification receiver, and proxy forwarder
  are used.  See "Simple Network Management Protocol (SNMP)
  Applications" [RFC3413] for further information.

  While security protocols frequently refer to a user, the terminology
  used in [RFC3411] and in this memo is "principal".  A principal is
  the "who" on whose behalf services are provided or processing takes
  place.  A principal can be, among other things, an individual acting
  in a particular role, a set of individuals each acting in a
  particular role, an application or a set of applications, or a
  combination of these within an administrative domain.

1.3.  Modularity

  The reader is expected to have read and understood the description of
  the SNMP architecture, as defined in [RFC3411], and the architecture
  extension specified in "Transport Subsystem for the Simple Network
  Management Protocol (SNMP)" [RFC5590], which enables the use of
  external "lower-layer transport" protocols to provide message





Harrington & Hardaker       Standards Track                     [Page 4]

RFC 5591           Transport Security Model for SNMP           June 2009


  security.  Transport Models are tied into the SNMP architecture
  through the Transport Subsystem.  The Transport Security Model is
  designed to work with such lower-layer, secure Transport Models.

  In keeping with the RFC 3411 design decisions to use self-contained
  documents, this memo includes the elements of procedure plus
  associated MIB objects that are needed for processing the Transport
  Security Model for SNMP.  These MIB objects SHOULD NOT be referenced
  in other documents.  This allows the Transport Security Model to be
  designed and documented as independent and self-contained, having no
  direct impact on other modules.  It also allows this module to be
  upgraded and supplemented as the need arises, and to move along the
  standards track on different time-lines from other modules.

  This modularity of specification is not meant to be interpreted as
  imposing any specific requirements on implementation.

1.4.  Motivation

  This memo describes a Security Model to make use of Transport Models
  that use lower-layer, secure transports and existing and commonly
  deployed security infrastructures.  This Security Model is designed
  to meet the security and operational needs of network administrators,
  maximize usability in operational environments to achieve high
  deployment success, and at the same time minimize implementation and
  deployment costs to minimize the time until deployment is possible.

1.5.  Constraints

  The design of this SNMP Security Model is also influenced by the
  following constraints:

  1.  In times of network stress, the security protocol and its
      underlying security mechanisms SHOULD NOT depend solely upon the
      ready availability of other network services (e.g., Network Time
      Protocol (NTP) or Authentication, Authorization, and Accounting
      (AAA) protocols).

  2.  When the network is not under stress, the Security Model and its
      underlying security mechanisms MAY depend upon the ready
      availability of other network services.

  3.  It might not be possible for the Security Model to determine when
      the network is under stress.

  4.  A Security Model SHOULD NOT require changes to the SNMP
      architecture.




Harrington & Hardaker       Standards Track                     [Page 5]

RFC 5591           Transport Security Model for SNMP           June 2009


  5.  A Security Model SHOULD NOT require changes to the underlying
      security protocol.

2.  How the Transport Security Model Fits in the Architecture

  The Transport Security Model is designed to fit into the RFC 3411
  architecture as a Security Model in the Security Subsystem and to
  utilize the services of a secure Transport Model.

  For incoming messages, a secure Transport Model will pass a
  tmStateReference cache, described in [RFC5590].  To maintain RFC 3411
  modularity, the Transport Model will not know which securityModel
  will process the incoming message; the Message Processing Model will
  determine this.  If the Transport Security Model is used with a non-
  secure Transport Model, then the cache will not exist or will not be
  populated with security parameters, which will cause the Transport
  Security Model to return an error (see Section 5.2).

  The Transport Security Model will create the securityName and
  securityLevel to be passed to applications, and will verify that the
  tmTransportSecurityLevel reported by the Transport Model is at least
  as strong as the securityLevel requested by the Message Processing
  Model.

  For outgoing messages, the Transport Security Model will create a
  tmStateReference cache (or use an existing one), and will pass the
  tmStateReference to the specified Transport Model.

2.1.  Security Capabilities of this Model

2.1.1.  Threats

  The Transport Security Model is compatible with the RFC 3411
  architecture and provides protection against the threats identified
  by the RFC 3411 architecture.  However, the Transport Security Model
  does not provide security mechanisms such as authentication and
  encryption itself.  Which threats are addressed and how they are
  mitigated depends on the Transport Model used.  To avoid creating
  potential security vulnerabilities, operators should configure their
  system so this Security Model is always used with a Transport Model
  that provides appropriate security, where "appropriate" for a
  particular deployment is an administrative decision.









Harrington & Hardaker       Standards Track                     [Page 6]

RFC 5591           Transport Security Model for SNMP           June 2009


2.1.2.  Security Levels

  The RFC 3411 architecture recognizes three levels of security:

     - without authentication and without privacy (noAuthNoPriv)

     - with authentication but without privacy (authNoPriv)

     - with authentication and with privacy (authPriv)

  The model-independent securityLevel parameter is used to request
  specific levels of security for outgoing messages and to assert that
  specific levels of security were applied during the transport and
  processing of incoming messages.

  The transport-layer algorithms used to provide security should not be
  exposed to the Transport Security Model, as the Transport Security
  Model has no mechanisms by which it can test whether an assertion
  made by a Transport Model is accurate.

  The Transport Security Model trusts that the underlying secure
  transport connection has been properly configured to support security
  characteristics at least as strong as reported in
  tmTransportSecurityLevel.

2.2.  Transport Sessions

  The Transport Security Model does not work with transport sessions
  directly.  Instead the transport-related state is associated with a
  unique combination of transportDomain, transportAddress,
  securityName, and securityLevel, and is referenced via the
  tmStateReference parameter.  How and if this is mapped to a
  particular transport or channel is the responsibility of the
  Transport Subsystem.

2.3.  Coexistence

  In the RFC 3411 architecture, a Message Processing Model determines
  which Security Model SHALL be called.  As of this writing, IANA has
  registered four Message Processing Models (SNMPv1, SNMPv2c, SNMPv2u/
  SNMPv2*, and SNMPv3) and three other Security Models (SNMPv1,
  SNMPv2c, and the User-based Security Model).

2.3.1.  Coexistence with Message Processing Models

  The SNMPv1 and SNMPv2c message processing described in BCP 74
  [RFC3584] always selects the SNMPv1(1) and SNMPv2c(2) Security
  Models.  Since there is no mechanism defined in RFC 3584 to select an



Harrington & Hardaker       Standards Track                     [Page 7]

RFC 5591           Transport Security Model for SNMP           June 2009


  alternative Security Model, SNMPv1 and SNMPv2c messages cannot use
  the Transport Security Model.  Messages might still be able to be
  conveyed over a secure transport protocol, but the Transport Security
  Model will not be invoked.

  The SNMPv2u/SNMPv2* Message Processing Model is an historic artifact
  for which there is no existing IETF specification.

  The SNMPv3 message processing defined in [RFC3412] extracts the
  securityModel from the msgSecurityModel field of an incoming
  SNMPv3Message.  When this value is transportSecurityModel(4),
  security processing is directed to the Transport Security Model.  For
  an outgoing message to be secured using the Transport Security Model,
  the application MUST specify a securityModel parameter value of
  transportSecurityModel(4) in the sendPdu Abstract Service Interface
  (ASI).

2.3.2.  Coexistence with Other Security Models

  The Transport Security Model uses its own MIB module for processing
  to maintain independence from other Security Models.  This allows the
  Transport Security Model to coexist with other Security Models, such
  as the User-based Security Model (USM) [RFC3414].

2.3.3.  Coexistence with Transport Models

  The Transport Security Model (TSM) MAY work with multiple Transport
  Models, but the RFC 3411 Abstract Service Interfaces (ASIs) do not
  carry a value for the Transport Model.  The MIB module defined in
  this memo allows an administrator to configure whether or not TSM
  prepends a Transport Model prefix to the securityName.  This will
  allow SNMP applications to consider Transport Model as a factor when
  making decisions, such as access control, notification generation,
  and proxy forwarding.

  To have SNMP properly utilize the security services coordinated by
  the Transport Security Model, this Security Model MUST only be used
  with Transport Models that know how to process a tmStateReference,
  such as the Secure Shell Transport Model [RFC5592].

3.  Cached Information and References

  When performing SNMP processing, there are two levels of state
  information that might need to be retained: the immediate state
  linking a request-response pair and a potentially longer-term state
  relating to transport and security.  "Transport Subsystem for the
  Simple Network Management Protocol (SNMP)" [RFC5590] defines general
  requirements for caches and references.



Harrington & Hardaker       Standards Track                     [Page 8]

RFC 5591           Transport Security Model for SNMP           June 2009


  This document defines additional cache requirements related to the
  Transport Security Model.

3.1.  Transport Security Model Cached Information

  The Transport Security Model has specific responsibilities regarding
  the cached information.

3.1.1.  securityStateReference

  The Transport Security Model adds the tmStateReference received from
  the processIncomingMsg ASI to the securityStateReference.  This
  tmStateReference can then be retrieved during the generateResponseMsg
  ASI so that it can be passed back to the Transport Model.

3.1.2.  tmStateReference

  For outgoing messages, the Transport Security Model uses parameters
  provided by the SNMP application to look up or create a
  tmStateReference.

  For the Transport Security Model, the security parameters used for a
  response MUST be the same as those used for the corresponding
  request.  This Security Model uses the tmStateReference stored as
  part of the securityStateReference when appropriate.  For responses
  and reports, this Security Model sets the tmSameSecurity flag to true
  in the tmStateReference before passing it to a Transport Model.

  For incoming messages, the Transport Security Model uses parameters
  provided in the tmStateReference cache to establish a securityName,
  and to verify adequate security levels.

3.1.3.  Prefixes and securityNames

  The SNMP-VIEW-BASED-ACM-MIB module [RFC3415], the SNMP-TARGET-MIB
  module [RFC3413], and other MIB modules contain objects to configure
  security parameters for use by applications such as access control,
  notification generation, and proxy forwarding.

  Transport domains and their corresponding prefixes are coordinated
  via the IANA registry "SNMP Transport Domains".

  If snmpTsmConfigurationUsePrefix is set to true, then all
  securityNames provided by, or provided to, the Transport Security
  Model MUST include a valid transport domain prefix.






Harrington & Hardaker       Standards Track                     [Page 9]

RFC 5591           Transport Security Model for SNMP           June 2009


  If snmpTsmConfigurationUsePrefix is set to false, then all
  securityNames provided by, or provided to, the Transport Security
  Model MUST NOT include a transport domain prefix.

  The tmSecurityName in the tmStateReference stored as part of the
  securityStateReference does not contain a prefix.

4.  Processing an Outgoing Message

  An error indication might return an Object Identifier (OID) and value
  for an incremented counter, a value for securityLevel, values for
  contextEngineID and contextName for the counter, and the
  securityStateReference, if this information is available at the point
  where the error is detected.

4.1.  Security Processing for an Outgoing Message

  This section describes the procedure followed by the Transport
  Security Model.

  The parameters needed for generating a message are supplied to the
  Security Model by the Message Processing Model via the
  generateRequestMsg() or the generateResponseMsg() ASI.  The Transport
  Subsystem architectural extension has added the transportDomain,
  transportAddress, and tmStateReference parameters to the original RFC
  3411 ASIs.

   statusInformation =                -- success or errorIndication
         generateRequestMsg(
         IN   messageProcessingModel  -- typically, SNMP version
         IN   globalData              -- message header, admin data
         IN   maxMessageSize          -- of the sending SNMP entity
         IN   transportDomain         -- (NEW) specified by application
         IN   transportAddress        -- (NEW) specified by application
         IN   securityModel           -- for the outgoing message
         IN   securityEngineID        -- authoritative SNMP entity
         IN   securityName            -- on behalf of this principal
         IN   securityLevel           -- Level of Security requested
         IN   scopedPDU               -- message (plaintext) payload
         OUT  securityParameters      -- filled in by Security Module
         OUT  wholeMsg                -- complete generated message
         OUT  wholeMsgLength          -- length of generated message
         OUT  tmStateReference        -- (NEW) transport info
              )

 statusInformation = -- success or errorIndication
         generateResponseMsg(
         IN   messageProcessingModel  -- typically, SNMP version



Harrington & Hardaker       Standards Track                    [Page 10]

RFC 5591           Transport Security Model for SNMP           June 2009


         IN   globalData              -- message header, admin data
         IN   maxMessageSize          -- of the sending SNMP entity
         IN   transportDomain         -- (NEW) specified by application
         IN   transportAddress        -- (NEW) specified by application
         IN   securityModel           -- for the outgoing message
         IN   securityEngineID        -- authoritative SNMP entity
         IN   securityName            -- on behalf of this principal
         IN   securityLevel           -- Level of Security requested
         IN   scopedPDU               -- message (plaintext) payload
         IN   securityStateReference  -- reference to security state
                                      -- information from original
                                      -- request
         OUT  securityParameters      -- filled in by Security Module
         OUT  wholeMsg                -- complete generated message
         OUT  wholeMsgLength          -- length of generated message
         OUT  tmStateReference        -- (NEW) transport info
              )

4.2.  Elements of Procedure for Outgoing Messages

  1.  If there is a securityStateReference (Response or Report
      message), then this Security Model uses the cached information
      rather than the information provided by the ASI.  Extract the
      tmStateReference from the securityStateReference cache.  Set the
      tmRequestedSecurityLevel to the value of the extracted
      tmTransportSecurityLevel.  Set the tmSameSecurity parameter in
      the tmStateReference cache to true.  The cachedSecurityData for
      this message can now be discarded.

  2.  If there is no securityStateReference (e.g., a Request-type or
      Notification message), then create a tmStateReference cache.  Set
      tmTransportDomain to the value of transportDomain,
      tmTransportAddress to the value of transportAddress, and
      tmRequestedSecurityLevel to the value of securityLevel.
      (Implementers might optimize by pointing to saved copies of these
      session-specific values.)  Set the transaction-specific
      tmSameSecurity parameter to false.

      If the snmpTsmConfigurationUsePrefix object is set to false, then
      set tmSecurityName to the value of securityName.

      If the snmpTsmConfigurationUsePrefix object is set to true, then
      use the transportDomain to look up the corresponding prefix.
      (Since the securityStateReference stores the tmStateReference
      with the tmSecurityName for the incoming message, and since
      tmSecurityName never has a prefix, the prefix-stripping step only
      occurs when we are not using the securityStateReference).




Harrington & Hardaker       Standards Track                    [Page 11]

RFC 5591           Transport Security Model for SNMP           June 2009


         If the prefix lookup fails for any reason, then the
         snmpTsmUnknownPrefixes counter is incremented, an error
         indication is returned to the calling module, and message
         processing stops.

         If the lookup succeeds, but there is no prefix in the
         securityName, or the prefix returned does not match the prefix
         in the securityName, or the length of the prefix is less than
         1 or greater than 4 US-ASCII alpha-numeric characters, then
         the snmpTsmInvalidPrefixes counter is incremented, an error
         indication is returned to the calling module, and message
         processing stops.

         Strip the transport-specific prefix and trailing ':' character
         (US-ASCII 0x3a) from the securityName.  Set tmSecurityName to
         the value of securityName.

  3.  Set securityParameters to a zero-length OCTET STRING ('0400').

  4.  Combine the message parts into a wholeMsg and calculate
      wholeMsgLength.

  5.  The wholeMsg, wholeMsgLength, securityParameters, and
      tmStateReference are returned to the calling Message Processing
      Model with the statusInformation set to success.

5.  Processing an Incoming SNMP Message

  An error indication might return an OID and value for an incremented
  counter, a value for securityLevel, values for contextEngineID and
  contextName for the counter, and the securityStateReference, if this
  information is available at the point where the error is detected.

5.1.  Security Processing for an Incoming Message

  This section describes the procedure followed by the Transport
  Security Model whenever it receives an incoming message from a
  Message Processing Model.  The ASI from a Message Processing Model to
  the Security Subsystem for a received message is:

  statusInformation =  -- errorIndication or success
                           -- error counter OID/value if error
  processIncomingMsg(
  IN   messageProcessingModel    -- typically, SNMP version
  IN   maxMessageSize            -- from the received message
  IN   securityParameters        -- from the received message
  IN   securityModel             -- from the received message
  IN   securityLevel             -- from the received message



Harrington & Hardaker       Standards Track                    [Page 12]

RFC 5591           Transport Security Model for SNMP           June 2009


  IN   wholeMsg                  -- as received on the wire
  IN   wholeMsgLength            -- length as received on the wire
  IN   tmStateReference          -- (NEW) from the Transport Model
  OUT  securityEngineID          -- authoritative SNMP entity
  OUT  securityName              -- identification of the principal
  OUT  scopedPDU,                -- message (plaintext) payload
  OUT  maxSizeResponseScopedPDU  -- maximum size sender can handle
  OUT  securityStateReference    -- reference to security state
   )                         -- information, needed for response

5.2.  Elements of Procedure for Incoming Messages

  1.  Set the securityEngineID to the local snmpEngineID.

  2.  If tmStateReference does not refer to a cache containing values
      for tmTransportDomain, tmTransportAddress, tmSecurityName, and
      tmTransportSecurityLevel, then the snmpTsmInvalidCaches counter
      is incremented, an error indication is returned to the calling
      module, and Security Model processing stops for this message.

  3.  Copy the tmSecurityName to securityName.

      If the snmpTsmConfigurationUsePrefix object is set to true, then
      use the tmTransportDomain to look up the corresponding prefix.

         If the prefix lookup fails for any reason, then the
         snmpTsmUnknownPrefixes counter is incremented, an error
         indication is returned to the calling module, and message
         processing stops.

         If the lookup succeeds but the prefix length is less than 1 or
         greater than 4 octets, then the snmpTsmInvalidPrefixes counter
         is incremented, an error indication is returned to the calling
         module, and message processing stops.

         Set the securityName to be the concatenation of the prefix, a
         ':' character (US-ASCII 0x3a), and the tmSecurityName.

  4.  Compare the value of tmTransportSecurityLevel in the
      tmStateReference cache to the value of the securityLevel
      parameter passed in the processIncomingMsg ASI.  If securityLevel
      specifies privacy (Priv) and tmTransportSecurityLevel specifies
      no privacy (noPriv), or if securityLevel specifies authentication
      (auth) and tmTransportSecurityLevel specifies no authentication
      (noAuth) was provided by the Transport Model, then the
      snmpTsmInadequateSecurityLevels counter is incremented, an error
      indication (unsupportedSecurityLevel) together with the OID and




Harrington & Hardaker       Standards Track                    [Page 13]

RFC 5591           Transport Security Model for SNMP           June 2009


      value of the incremented counter is returned to the calling
      module, and Transport Security Model processing stops for this
      message.

  5.  The tmStateReference is cached as cachedSecurityData so that a
      possible response to this message will use the same security
      parameters.  Then securityStateReference is set for subsequent
      references to this cached data.

  6.  The scopedPDU component is extracted from the wholeMsg.

  7.  The maxSizeResponseScopedPDU is calculated.  This is the maximum
      size allowed for a scopedPDU for a possible Response message.

  8.  The statusInformation is set to success and a return is made to
      the calling module passing back the OUT parameters as specified
      in the processIncomingMsg ASI.

6.  MIB Module Overview

  This MIB module provides objects for use only by the Transport
  Security Model.  It defines a configuration scalar and related error
  counters.

6.1.  Structure of the MIB Module

  Objects in this MIB module are arranged into subtrees.  Each subtree
  is organized as a set of related objects.  The overall structure and
  assignment of objects to their subtrees, and the intended purpose of
  each subtree, is shown below.

6.1.1.  The snmpTsmStats Subtree

  This subtree contains error counters specific to the Transport
  Security Model.

6.1.2.  The snmpTsmConfiguration Subtree

  This subtree contains a configuration object that enables
  administrators to specify if they want a transport domain prefix
  prepended to securityNames for use by applications.

6.2.  Relationship to Other MIB Modules

  Some management objects defined in other MIB modules are applicable
  to an entity implementing the Transport Security Model.  In
  particular, it is assumed that an entity implementing the Transport
  Security Model will implement the SNMP-FRAMEWORK-MIB [RFC3411], the



Harrington & Hardaker       Standards Track                    [Page 14]

RFC 5591           Transport Security Model for SNMP           June 2009


  SNMP-TARGET-MIB [RFC3413], the SNMP-VIEW-BASED-ACM-MIB [RFC3415], and
  the SNMPv2-MIB [RFC3418].  These are not needed to implement the
  SNMP-TSM-MIB.

6.2.1.  MIB Modules Required for IMPORTS

  The following MIB module imports items from [RFC2578], [RFC2579], and
  [RFC2580].

7.  MIB Module Definition

SNMP-TSM-MIB DEFINITIONS ::= BEGIN

IMPORTS
   MODULE-IDENTITY, OBJECT-TYPE,
   mib-2, Counter32
     FROM SNMPv2-SMI -- RFC2578
   MODULE-COMPLIANCE, OBJECT-GROUP
     FROM SNMPv2-CONF -- RFC2580
   TruthValue
      FROM SNMPv2-TC -- RFC2579
   ;

snmpTsmMIB MODULE-IDENTITY
   LAST-UPDATED "200906090000Z"
   ORGANIZATION "ISMS Working Group"
   CONTACT-INFO "WG-EMail:   [email protected]
                 Subscribe:  [email protected]

                 Chairs:
                   Juergen Quittek
                   NEC Europe Ltd.
                   Network Laboratories
                   Kurfuersten-Anlage 36
                   69115 Heidelberg
                   Germany
                   +49 6221 90511-15
                   [email protected]

                   Juergen Schoenwaelder
                   Jacobs University Bremen
                   Campus Ring 1
                   28725 Bremen
                   Germany
                   +49 421 200-3587
                   [email protected]





Harrington & Hardaker       Standards Track                    [Page 15]

RFC 5591           Transport Security Model for SNMP           June 2009


                 Editor:
                   David Harrington
                   Huawei Technologies USA
                   1700 Alma Dr.
                   Plano TX 75075
                   USA
                   +1 603-436-8634
                   [email protected]

                   Wes Hardaker
                   Cobham Analytic Solutions
                   P.O. Box 382
                   Davis, CA  95617
                   USA
                   +1 530 792 1913
                   [email protected]
                "
   DESCRIPTION
      "The Transport Security Model MIB.

       In keeping with the RFC 3411 design decisions to use
       self-contained documents, the RFC that contains the definition
       of this MIB module also includes the elements of procedure
       that are needed for processing the Transport Security Model
       for SNMP.  These MIB objects SHOULD NOT be modified via other
       subsystems or models defined in other documents.  This allows
       the Transport Security Model for SNMP to be designed and
       documented as independent and self-contained, having no direct
       impact on other modules, and this allows this module to be
       upgraded and supplemented as the need arises, and to move
       along the standards track on different time-lines from other
       modules.

       Copyright (c) 2009 IETF Trust and the persons
       identified as authors of the code.  All rights reserved.

       Redistribution and use in source and binary forms, with or
       without modification, are permitted provided that the
       following conditions are met:

       - Redistributions of source code must retain the above copyright
         notice, this list of conditions and the following disclaimer.

       - Redistributions in binary form must reproduce the above
         copyright notice, this list of conditions and the following
         disclaimer in the documentation and/or other materials
         provided with the distribution.




Harrington & Hardaker       Standards Track                    [Page 16]

RFC 5591           Transport Security Model for SNMP           June 2009


       - Neither the name of Internet Society, IETF or IETF Trust,
         nor the names of specific contributors, may be used to endorse
         or promote products derived from this software without
         specific prior written permission.

       THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
       CONTRIBUTORS 'AS IS' AND ANY EXPRESS OR IMPLIED WARRANTIES,
       INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
       MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
       DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR
       CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
       SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
       NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
       LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
       HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
       CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
       OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
       EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

       This version of this MIB module is part of RFC 5591;
       see the RFC itself for full legal notices."

   REVISION    "200906090000Z"
   DESCRIPTION "The initial version, published in RFC 5591."

   ::= { mib-2 190 }

-- ---------------------------------------------------------- --
-- subtrees in the SNMP-TSM-MIB
-- ---------------------------------------------------------- --

snmpTsmNotifications OBJECT IDENTIFIER ::= { snmpTsmMIB 0 }
snmpTsmMIBObjects    OBJECT IDENTIFIER ::= { snmpTsmMIB 1 }
snmpTsmConformance   OBJECT IDENTIFIER ::= { snmpTsmMIB 2 }

-- -------------------------------------------------------------
-- Objects
-- -------------------------------------------------------------

-- Statistics for the Transport Security Model

snmpTsmStats         OBJECT IDENTIFIER ::= { snmpTsmMIBObjects 1 }

snmpTsmInvalidCaches OBJECT-TYPE
   SYNTAX       Counter32
   MAX-ACCESS   read-only
   STATUS       current
   DESCRIPTION "The number of incoming messages dropped because the



Harrington & Hardaker       Standards Track                    [Page 17]

RFC 5591           Transport Security Model for SNMP           June 2009


                tmStateReference referred to an invalid cache.
               "
   ::= { snmpTsmStats 1 }

snmpTsmInadequateSecurityLevels OBJECT-TYPE
   SYNTAX       Counter32
   MAX-ACCESS   read-only
   STATUS       current
   DESCRIPTION "The number of incoming messages dropped because
                the securityLevel asserted by the Transport Model was
                less than the securityLevel requested by the
                application.
               "
   ::= { snmpTsmStats 2 }

snmpTsmUnknownPrefixes OBJECT-TYPE
   SYNTAX       Counter32
   MAX-ACCESS   read-only
   STATUS       current
   DESCRIPTION "The number of messages dropped because
                snmpTsmConfigurationUsePrefix was set to true and
                there is no known prefix for the specified transport
                domain.
               "
   ::= { snmpTsmStats 3 }

snmpTsmInvalidPrefixes OBJECT-TYPE
   SYNTAX       Counter32
   MAX-ACCESS   read-only
   STATUS       current
   DESCRIPTION "The number of messages dropped because
                the securityName associated with an outgoing message
                did not contain a valid transport domain prefix.
               "
   ::= { snmpTsmStats 4 }

-- -------------------------------------------------------------
-- Configuration
-- -------------------------------------------------------------

-- Configuration for the Transport Security Model

snmpTsmConfiguration   OBJECT IDENTIFIER ::= { snmpTsmMIBObjects 2 }

snmpTsmConfigurationUsePrefix OBJECT-TYPE
   SYNTAX      TruthValue
   MAX-ACCESS  read-write
   STATUS      current



Harrington & Hardaker       Standards Track                    [Page 18]

RFC 5591           Transport Security Model for SNMP           June 2009


   DESCRIPTION "If this object is set to true, then securityNames
                passing to and from the application are expected to
                contain a transport-domain-specific prefix.  If this
                object is set to true, then a domain-specific prefix
                will be added by the TSM to the securityName for
                incoming messages and removed from the securityName
                when processing outgoing messages.  Transport domains
                and prefixes are maintained in a registry by IANA.
                This object SHOULD persist across system reboots.
               "
   DEFVAL { false }
   ::= { snmpTsmConfiguration 1 }

-- -------------------------------------------------------------
-- snmpTsmMIB - Conformance Information
-- -------------------------------------------------------------

snmpTsmCompliances OBJECT IDENTIFIER ::= { snmpTsmConformance 1 }

snmpTsmGroups      OBJECT IDENTIFIER ::= { snmpTsmConformance 2 }

-- -------------------------------------------------------------
-- Compliance statements
-- -------------------------------------------------------------

snmpTsmCompliance MODULE-COMPLIANCE
   STATUS      current
   DESCRIPTION "The compliance statement for SNMP engines that support
                the SNMP-TSM-MIB.
               "
   MODULE
       MANDATORY-GROUPS { snmpTsmGroup }
   ::= { snmpTsmCompliances 1 }

-- -------------------------------------------------------------
-- Units of conformance
-- -------------------------------------------------------------
snmpTsmGroup OBJECT-GROUP
   OBJECTS {
       snmpTsmInvalidCaches,
       snmpTsmInadequateSecurityLevels,
       snmpTsmUnknownPrefixes,
       snmpTsmInvalidPrefixes,
       snmpTsmConfigurationUsePrefix
   }
   STATUS      current
   DESCRIPTION "A collection of objects for maintaining
                information of an SNMP engine that implements



Harrington & Hardaker       Standards Track                    [Page 19]

RFC 5591           Transport Security Model for SNMP           June 2009


                the SNMP Transport Security Model.
               "

   ::= { snmpTsmGroups 2 }

END

8.  Security Considerations

  This document describes a Security Model, compatible with the RFC
  3411 architecture, that permits SNMP to utilize security services
  provided through an SNMP Transport Model.  The Transport Security
  Model relies on Transport Models for mutual authentication, binding
  of keys, confidentiality, and integrity.

  The Transport Security Model relies on secure Transport Models to
  provide an authenticated principal identifier and an assertion of
  whether authentication and privacy are used during transport.  This
  Security Model SHOULD always be used with Transport Models that
  provide adequate security, but "adequate security" is a configuration
  and/or run-time decision of the operator or management application.
  The security threats and how these threats are mitigated should be
  covered in detail in the specifications of the Transport Models and
  the underlying secure transports.

  An authenticated principal identifier (securityName) is used in SNMP
  applications for purposes such as access control, notification
  generation, and proxy forwarding.  This Security Model supports
  multiple Transport Models.  Operators might judge some transports to
  be more secure than others, so this Security Model can be configured
  to prepend a prefix to the securityName to indicate the Transport
  Model used to authenticate the principal.  Operators can use the
  prefixed securityName when making application decisions about levels
  of access.

8.1.  MIB Module Security

  There are a number of management objects defined in this MIB module
  with a MAX-ACCESS clause of read-write and/or read-create.  Such
  objects may be considered sensitive or vulnerable in some network
  environments.  The support for SET operations in a non-secure
  environment without proper protection can have a negative effect on
  network operations.  These are the tables and objects and their
  sensitivity/vulnerability:







Harrington & Hardaker       Standards Track                    [Page 20]

RFC 5591           Transport Security Model for SNMP           June 2009


  o  The snmpTsmConfigurationUsePrefix object could be modified,
     creating a denial of service or authorizing SNMP messages that
     would not have previously been authorized by an Access Control
     Model (e.g., the View-based Access Control Model (VACM)).

  Some of the readable objects in this MIB module (i.e., objects with a
  MAX-ACCESS other than not-accessible) may be considered sensitive or
  vulnerable in some network environments.  It is thus important to
  control even GET and/or NOTIFY access to these objects and possibly
  to even encrypt the values of these objects when sending them over
  the network via SNMP.  These are the tables and objects and their
  sensitivity/vulnerability:

  o  All the counters in this module refer to configuration errors and
     do not expose sensitive information.

  SNMP versions prior to SNMPv3 did not include adequate security.
  Even if the network itself is secure (for example by using IPsec),
  even then, there is no control as to who on the secure network is
  allowed to access and GET/SET (read/change/create/delete) the objects
  in this MIB module.

  It is RECOMMENDED that implementers consider the security features as
  provided by the SNMPv3 framework (see [RFC3410], section 8),
  including full support for the USM and Transport Security Model
  cryptographic mechanisms (for authentication and privacy).

  Further, deployment of SNMP versions prior to SNMPv3 is NOT
  RECOMMENDED.  Instead, it is RECOMMENDED to deploy SNMPv3 and to
  enable cryptographic security.  It is then a customer/operator
  responsibility to ensure that the SNMP entity giving access to an
  instance of this MIB module is properly configured to give access to
  the objects only to those principals (users) that have legitimate
  rights to indeed GET or SET (change/create/delete) them.

9.  IANA Considerations

  IANA has assigned:

  1.  An SMI number (190) with a prefix of mib-2 in the MIB module
      registry for the MIB module in this document.

  2.  A value (4) to identify the Transport Security Model, in the
      Security Models registry of the SNMP Number Spaces registry.
      This results in the following table of values:






Harrington & Hardaker       Standards Track                    [Page 21]

RFC 5591           Transport Security Model for SNMP           June 2009


  Value   Description                         References
  -----   -----------                         ----------
    0     reserved for 'any'                  [RFC3411]
    1     reserved for SNMPv1                 [RFC3411]
    2     reserved for SNMPv2c                [RFC3411]
    3     User-Based Security Model (USM)     [RFC3411]
    4     Transport Security Model (TSM)      [RFC5591]

10.  Acknowledgments

  The editors would like to thank Jeffrey Hutzelman for sharing his SSH
  insights and Dave Shield for an outstanding job wordsmithing the
  existing document to improve organization and clarity.

  Additionally, helpful document reviews were received from Juergen
  Schoenwaelder.

11.  References

11.1.  Normative References

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119, March 1997.

  [RFC2578]  McCloghrie, K., Ed., Perkins, D., Ed., and J.
             Schoenwaelder, Ed., "Structure of Management Information
             Version 2 (SMIv2)", STD 58, RFC 2578, April 1999.

  [RFC2579]  McCloghrie, K., Ed., Perkins, D., Ed., and J.
             Schoenwaelder, Ed., "Textual Conventions for SMIv2",
             STD 58, RFC 2579, April 1999.

  [RFC2580]  McCloghrie, K., Perkins, D., and J. Schoenwaelder,
             "Conformance Statements for SMIv2", STD 58, RFC 2580,
             April 1999.

  [RFC3411]  Harrington, D., Presuhn, R., and B. Wijnen, "An
             Architecture for Describing Simple Network Management
             Protocol (SNMP) Management Frameworks", STD 62, RFC 3411,
             December 2002.

  [RFC3412]  Case, J., Harrington, D., Presuhn, R., and B. Wijnen,
             "Message Processing and Dispatching for the Simple Network
             Management Protocol (SNMP)", STD 62, RFC 3412,
             December 2002.






Harrington & Hardaker       Standards Track                    [Page 22]

RFC 5591           Transport Security Model for SNMP           June 2009


  [RFC3413]  Levi, D., Meyer, P., and B. Stewart, "Simple Network
             Management Protocol (SNMP) Applications", STD 62,
             RFC 3413, December 2002.

  [RFC3414]  Blumenthal, U. and B. Wijnen, "User-based Security Model
             (USM) for version 3 of the Simple Network Management
             Protocol (SNMPv3)", STD 62, RFC 3414, December 2002.

  [RFC5590]  Harrington, D. and J. Schoenwaelder, "Transport Subsystem
             for the Simple Network Management Protocol (SNMP)",
             RFC 5590, June 2009.

11.2.  Informative References

  [RFC3410]  Case, J., Mundy, R., Partain, D., and B. Stewart,
             "Introduction and Applicability Statements for Internet-
             Standard Management Framework", RFC 3410, December 2002.

  [RFC3415]  Wijnen, B., Presuhn, R., and K. McCloghrie, "View-based
             Access Control Model (VACM) for the Simple Network
             Management Protocol (SNMP)", STD 62, RFC 3415,
             December 2002.

  [RFC3418]  Presuhn, R., "Management Information Base (MIB) for the
             Simple Network Management Protocol (SNMP)", STD 62,
             RFC 3418, December 2002.

  [RFC3584]  Frye, R., Levi, D., Routhier, S., and B. Wijnen,
             "Coexistence between Version 1, Version 2, and Version 3
             of the Internet-standard Network Management Framework",
             BCP 74, RFC 3584, August 2003.

  [RFC5592]  Harrington, D., Salowey, J., and W. Hardaker, "Secure
             Shell Transport Model for the Simple Network Management
             Protocol (SNMP)", RFC 5592, June 2009.
















Harrington & Hardaker       Standards Track                    [Page 23]

RFC 5591           Transport Security Model for SNMP           June 2009


Appendix A.  Notification Tables Configuration

  The SNMP-TARGET-MIB and SNMP-NOTIFICATION-MIB [RFC3413] are used to
  configure notification originators with the destinations to which
  notifications should be sent.

  Most of the configuration is Security-Model-independent and
  Transport-Model-independent.

  The values we will use in the examples for the five model-independent
  security and transport parameters are:

     transportDomain = snmpSSHDomain

     transportAddress = 192.0.2.1:5162

     securityModel = Transport Security Model

     securityName = alice

     securityLevel = authPriv

  The following example will configure the notification originator to
  send informs to a notification receiver at 192.0.2.1:5162 using the
  securityName "alice". "alice" is the name for the recipient from the
  standpoint of the notification originator and is used for processing
  access controls before sending a notification.

  The columns marked with an "*" are the items that are Security-Model-
  specific or Transport-Model-specific.

  The configuration for the "alice" settings in the SNMP-VIEW-BASED-
  ACM-MIB objects are not shown here for brevity.  First, we configure
  which type of notification will be sent for this taglist (toCRTag).
  In this example, we choose to send an Inform.
    snmpNotifyTable row:
         snmpNotifyName                 CRNotif
         snmpNotifyTag                  toCRTag
         snmpNotifyType                 inform
         snmpNotifyStorageType          nonVolatile
         snmpNotifyColumnStatus         createAndGo

  Then we configure a transport address to which notifications
  associated with this taglist will be sent, and we specify which
  snmpTargetParamsEntry will be used (toCR) when sending to this
  transport address.





Harrington & Hardaker       Standards Track                    [Page 24]

RFC 5591           Transport Security Model for SNMP           June 2009


         snmpTargetAddrTable row:
            snmpTargetAddrName              toCRAddr
        *   snmpTargetAddrTDomain           snmpSSHDomain
        *   snmpTargetAddrTAddress          192.0.2.1:5162
            snmpTargetAddrTimeout           1500
            snmpTargetAddrRetryCount        3
            snmpTargetAddrTagList           toCRTag
            snmpTargetAddrParams            toCR   (MUST match below)
            snmpTargetAddrStorageType       nonVolatile
            snmpTargetAddrColumnStatus      createAndGo

  Then we configure which principal at the host will receive the
  notifications associated with this taglist.  Here, we choose "alice",
  who uses the Transport Security Model.
        snmpTargetParamsTable row:
            snmpTargetParamsName            toCR
            snmpTargetParamsMPModel         SNMPv3
        *   snmpTargetParamsSecurityModel   TransportSecurityModel
            snmpTargetParamsSecurityName    "alice"
            snmpTargetParamsSecurityLevel   authPriv
            snmpTargetParamsStorageType     nonVolatile
            snmpTargetParamsRowStatus       createAndGo


A.1.  Transport Security Model Processing for Notifications

  The Transport Security Model is called using the generateRequestMsg()
  ASI, with the following parameters (those with an * are from the
  above tables):

   statusInformation =                -- success or errorIndication
         generateRequestMsg(
         IN   messageProcessingModel  -- *snmpTargetParamsMPModel
         IN   globalData              -- message header, admin data
         IN   maxMessageSize          -- of the sending SNMP entity
         IN   transportDomain         -- *snmpTargetAddrTDomain
         IN   transportAddress        -- *snmpTargetAddrTAddress
         IN   securityModel           -- *snmpTargetParamsSecurityModel
         IN   securityEngineID        -- immaterial; TSM will ignore.
         IN   securityName            -- snmpTargetParamsSecurityName
         IN   securityLevel           -- *snmpTargetParamsSecurityLevel
         IN   scopedPDU               -- message (plaintext) payload
         OUT  securityParameters      -- filled in by Security Module
         OUT  wholeMsg                -- complete generated message
         OUT  wholeMsgLength          -- length of generated message
         OUT  tmStateReference        -- reference to transport info
              )




Harrington & Hardaker       Standards Track                    [Page 25]

RFC 5591           Transport Security Model for SNMP           June 2009


  The Transport Security Model will determine the Transport Model based
  on the snmpTargetAddrTDomain.  The selected Transport Model will
  select the appropriate transport connection using the
  tmStateReference cache created from the values of
  snmpTargetAddrTAddress, snmpTargetParamsSecurityName, and
  snmpTargetParamsSecurityLevel.

Appendix B.  Processing Differences between USM and Secure Transport

  USM and secure transports differ in the processing order and
  responsibilities within the RFC 3411 architecture.  While the steps
  are the same, they occur in a different order and might be done by
  different subsystems.  The following lists illustrate the difference
  in the flow and the responsibility for different processing steps for
  incoming messages when using USM and when using a secure transport.
  (These lists are simplified for illustrative purposes, and do not
  represent all details of processing.  Transport Models MUST provide
  the detailed elements of procedure.)

  With USM, SNMPv1, and SNMPv2c Security Models, security processing
  starts when the Message Processing Model decodes portions of the
  ASN.1 message to extract header fields that are used to determine
  which Security Model will process the message to perform
  authentication, decryption, timeliness checking, integrity checking,
  and translation of parameters to model-independent parameters.  By
  comparison, a secure transport performs those security functions on
  the message, before the ASN.1 is decoded.

  Step 6 cannot occur until after decryption occurs.  Steps 6 and
  beyond are the same for USM and a secure transport.

B.1.  USM and the RFC 3411 Architecture

  1) Decode the ASN.1 header (Message Processing Model).

  2) Determine the SNMP Security Model and parameters (Message
     Processing Model).

  3) Verify securityLevel (Security Model).

  4) Translate parameters to model-independent parameters (Security
     Model).

  5) Authenticate the principal, check message integrity and
     timeliness, and decrypt the message (Security Model).






Harrington & Hardaker       Standards Track                    [Page 26]

RFC 5591           Transport Security Model for SNMP           June 2009


  6) Determine the pduType in the decrypted portions (Message
     Processing Model).

  7) Pass on the decrypted portions with model-independent parameters.

B.2.  Transport Subsystem and the RFC 3411 Architecture

  1) Authenticate the principal, check integrity and timeliness of the
     message, and decrypt the message (Transport Model).

  2) Translate parameters to model-independent parameters (Transport
     Model).

  3) Decode the ASN.1 header (Message Processing Model).

  4) Determine the SNMP Security Model and parameters (Message
     Processing Model).

  5) Verify securityLevel (Security Model).

  6) Determine the pduType in the decrypted portions (Message
     Processing Model).

  7) Pass on the decrypted portions with model-independent security
     parameters.

  If a message is secured using a secure transport layer, then the
  Transport Model will provide the translation from the authenticated
  identity (e.g., an SSH user name) to a human-friendly identifier
  (tmSecurityName) in step 2.  The Security Model will provide a
  mapping from that identifier to a model-independent securityName.




















Harrington & Hardaker       Standards Track                    [Page 27]

RFC 5591           Transport Security Model for SNMP           June 2009


Authors' Addresses

  David Harrington
  Huawei Technologies (USA)
  1700 Alma Dr. Suite 100
  Plano, TX 75075
  USA

  Phone: +1 603 436 8634
  EMail: [email protected]


  Wes Hardaker
  Cobham Analytic Solutions
  P.O. Box 382
  Davis, CA  95617
  US

  Phone: +1 530 792 1913
  EMail: [email protected]































Harrington & Hardaker       Standards Track                    [Page 28]