Network Working Group                                        M. Hatanaka
Request for Comments: 5584                                  J. Matsumoto
Category: Standards Track                               Sony Corporation
                                                              July 2009

                       RTP Payload Format for
        the Adaptive TRansform Acoustic Coding (ATRAC) Family

Abstract

  This document describes an RTP payload format for efficient and
  flexible transporting of audio data encoded with the Adaptive
  TRansform Audio Coding (ATRAC) family of codecs.  Recent enhancements
  to the ATRAC family of codecs support high-quality audio coding with
  multiple channels.  The RTP payload format as presented in this
  document also includes support for data fragmentation, elementary
  redundancy measures, and a variation on scalable streaming.

Status of This Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (c) 2009 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents in effect on the date of
  publication of this document (http://trustee.ietf.org/license-info).
  Please review these documents carefully, as they describe your rights
  and restrictions with respect to this document.

  This document may contain material from IETF Documents or IETF
  Contributions published or made publicly available before November
  10, 2008.  The person(s) controlling the copyright in some of this
  material may not have granted the IETF Trust the right to allow
  modifications of such material outside the IETF Standards Process.
  Without obtaining an adequate license from the person(s) controlling
  the copyright in such materials, this document may not be modified
  outside the IETF Standards Process, and derivative works of it may
  not be created outside the IETF Standards Process, except to format
  it for publication as an RFC or to translate it into languages other
  than English.



Hatanaka & Matsumoto        Standards Track                     [Page 1]

RFC 5584          RTP Payload Format for ATRAC Family          July 2009


Table of Contents

  1. Introduction ....................................................3
  2. Conventions Used in This Document ...............................3
  3. Codec-Specific Details ..........................................3
  4. RTP Packetization and Transport of ATRAC-Family Streams .........4
     4.1. ATRAC Frames ...............................................4
     4.2. Concatenation of Frames ....................................4
     4.3. Frame Fragmentation ........................................4
     4.4. Transmission of Redundant Frames ...........................4
     4.5. Scalable Lossless Streaming (High-Speed Transfer Mode) .....5
          4.5.1. Scalable Multiplexed Streaming ......................5
          4.5.2. Scalable Multi-Session Streaming ....................5
  5. Payload Format ..................................................6
     5.1. Global Structure of Payload Format .........................6
     5.2. Usage of RTP Header Fields .................................7
     5.3. RTP Payload Structure ......................................8
          5.3.1. Usage of ATRAC Header Section .......................8
          5.3.2. Usage of ATRAC Frames Section .......................9
  6. Packetization Examples .........................................12
     6.1. Example Multi-Frame Packet ................................12
     6.2. Example Fragmented ATRAC Frame ............................13
  7. Payload Format Parameters ......................................14
     7.1. ATRAC3 Media Type Registration ............................14
     7.2. ATRAC-X Media Type Registration ...........................16
     7.3. ATRAC Advanced Lossless Media Type Registration ...........18
     7.4. Channel Mapping Configuration Table .......................20
     7.5. Mapping Media Type Parameters into SDP ....................21
          7.5.1. For Media Subtype ATRAC3 ...........................21
          7.5.2. For Media Subtype ATRAC-X ..........................21
          7.5.3. For Media Subtype ATRAC Advanced Lossless ..........22
     7.6. Offer/Answer Model Considerations .........................22
          7.6.1. For All Three Media Subtypes .......................22
          7.6.2. For Media Subtype ATRAC3 ...........................23
          7.6.3. For Media Subtype ATRAC-X ..........................23
          7.6.4. For Media Subtype ATRAC Advanced Lossless ..........23
     7.7. Usage of Declarative SDP ..................................24
     7.8. Example SDP Session Descriptions ..........................24
     7.9. Example Offer/Answer Exchange .............................26
  8. IANA Considerations ............................................28
  9. Security Considerations ........................................28
  10. Considerations on Correct Decoding ............................28
     10.1. Verification of the Packets ..............................28
     10.2. Validity Checking of the Packets .........................29
  11. References ....................................................29
     11.1. Normative References .....................................29
     11.2. Informative References ...................................30




Hatanaka & Matsumoto        Standards Track                     [Page 2]

RFC 5584          RTP Payload Format for ATRAC Family          July 2009


1.  Introduction

  The ATRAC family of perceptual audio codecs is designed to address
  numerous needs for high-quality, low-bit-rate audio transfer.  ATRAC
  technology can be found in many consumer and professional products
  and applications, including MD players, CD players, voice recorders,
  and mobile phones.

  Recent advances in ATRAC technology allow for multiple channels of
  audio to be encoded in customizable groupings.  This should allow for
  future expansions in scaled streaming to provide the greatest
  flexibility in streaming any one of the ATRAC family member codecs;
  however, this payload format does not distinguish between the codecs
  on a packet level.

  This simplified payload format contains only the basic information
  needed to disassemble a packet of ATRAC audio in order to decode it.
  There is also basic support for fragmentation and redundancy.

2.  Conventions Used in This Document

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in RFC 2119 [4].

3.  Codec-Specific Details

  Early versions of the ATRAC codec handled only two channels of audio
  at 44.1 kHz sampling frequency, with typical bit-rates between 66
  kbps and 132 kbps.  The latest version allows for a maximum of 8
  channels of audio, up to 96 kHz in sampling frequency, and a lossless
  encoding option that can be transmitted in either a scalable (also
  known as High-Speed Transfer mode) or standard (aka Standard mode)
  format.  The feasible bit-rate range has also expanded, allowing from
  a low of 8 kbps up to 1400 kbps in lossy encoding modes.

  Depending on the version of ATRAC used, the sample-frame size is
  either 512, 1024, or 2048 samples.  While the lossy and Standard mode
  lossless formats are encoded as sequential single audio frames,
  High-Speed Transfer mode lossless data comprises two layers -- a
  lossy base layer and an enhancement layer.

  Although streaming of multi-channel audio is supported depending on
  the ATRAC version used, all encoded audio for a given time period is
  contained within a single frame.  Therefore, there is no interleaving
  nor splitting of audio data on a per-channel basis with which to be
  concerned.




Hatanaka & Matsumoto        Standards Track                     [Page 3]

RFC 5584          RTP Payload Format for ATRAC Family          July 2009


4.  RTP Packetization and Transport of ATRAC-Family Streams

4.1.  ATRAC Frames

  For transportation of compressed audio data, ATRAC uses the concept
  of frames.  ATRAC frames are the smallest data unit for which timing
  information is attributed.  Frames are octet-aligned by definition.

4.2.  Concatenation of Frames

  It is often possible to carry multiple frames in one RTP packet.
  This can be useful in audio, where on a LAN with a 1500-byte MTU, an
  average of 7 complete 64 kbps ATRAC frames could be carried in a
  single RTP packet, as each ATRAC frame would be approximately 200
  bytes.  ATRAC frames may be of fixed or variable length.  To
  facilitate parsing in the case of multiple frames in one RTP packet,
  the size of each frame is made known to the receiver by carrying
  "in-band" the frame size for each contained frame in an RTP packet.
  However, to simplify the implementation of RTP receivers, it is
  required that when multiple frames are carried in an RTP packet, each
  frame MUST be complete, i.e., the number of frames in an RTP packet
  MUST be integral.

4.3.  Frame Fragmentation

  The ATRAC codec can handle very large frames.  As most IP networks
  have significantly smaller MTU sizes than the frame sizes ATRAC can
  handle, this payload format allows for the fragmentation of an ATRAC
  frame over multiple RTP packets.  However, to simplify the
  implementation of RTP receivers, an RTP packet MUST carry either one
  or more complete ATRAC frames or a single fragment of one ATRAC
  frame.  In other words, RTP packets MUST NOT contain fragments of
  multiple ATRAC frames and MUST NOT contain a mix of complete and
  fragmented frames.

4.4.  Transmission of Redundant Frames

  As RTP does not guarantee reliable transmission, receipt of data is
  not assured.  Loss of a packet can result in a "decoding gap" at the
  receiver.  One method to remedy this problem is to allow time-shifted
  copies of ATRAC frames to be sent along with current data.  For a
  modest cost in latency and implementation complexity, error
  resiliency to packet loss can be achieved.  For further details, see
  Section 5.3.2.1 and [12].







Hatanaka & Matsumoto        Standards Track                     [Page 4]

RFC 5584          RTP Payload Format for ATRAC Family          July 2009


4.5.  Scalable Lossless Streaming (High-Speed Transfer Mode)

  As ATRAC supports a variation on scalable encoding, this payload
  format provides a mechanism for transmitting essential data (also
  referred to as the base layer) with its enhancement data in two ways
  -- multiplexed through one session or separated over two sessions.

  In either method, only the base layer is essential in producing audio
  data.  The enhancement layer carries the remaining audio data needed
  to decode lossless audio data.  So in situations of limited
  bandwidth, the sender may choose not to transmit enhancement data yet
  still provide a client with enough data to generate lossily-encoded
  audio through the base layer.

4.5.1.  Scalable Multiplexed Streaming

  In multiplexed streaming, the base layer and enhancement layer are
  coupled together in each packet, utilizing only one session as
  illustrated in Figure 1.

  The packet MUST begin with the base layer, and the two layer types
  MUST interleave if both of the layers exist in a packet (only base or
  enhancement is included in a packet at the beginning of a streaming,
  or during the fragmentation).

  +----------------+  +----------------+  +----------------+
  |Base|Enhancement|--|Base|Enhancement|--|Base|Enhancement| ...
  +----------------+  +----------------+  +----------------+
          N                   N+1                 N+2        : Packet

                     Figure 1. Multiplexed Structure

4.5.2.  Scalable Multi-Session Streaming

  In multi-session streaming, the base layer and enhancement layer are
  sent over two separate sessions, allowing clients with certain
  bandwidth limitations to receive just the base layer for decoding as
  illustrated in Figure 2.

  In this case, it is REQUIRED to determine which sessions are paired
  together in receiver side.  For paired base and enhancement layer
  sessions, the CNAME bindings in the RTP Control Protocol (RTCP)
  session MUST be applied using the same CNAME to ensure correct
  mapping to the RTP source.







Hatanaka & Matsumoto        Standards Track                     [Page 5]

RFC 5584          RTP Payload Format for ATRAC Family          July 2009


  While there may be alternative methods for synchronization of the
  layers, the timestamp SHOULD be used for synchronizing the base layer
  with its enhancement.  The two sessions MUST be synchronized using
  the information in RTCP SR packets to align the RTP timestamps.

  If the enhancement layer's session data cannot arrive until the
  presentation time, the decoder MUST decode the base layer session's
  data only, ignoring the enhancement layer's data.

        Session 1:
        +------+  +------+  +------+  +------+
        | Base |--| Base |--| Base |--| Base | ...
        +------+  +------+  +------+  +------+
           N         N+1       N+2       N+3     : Packet

        Session 2:
        +-------------+  +-------------+  +-------------+
        | Enhancement |--| Enhancement |--| Enhancement | ...
        +-------------+  +-------------+  +-------------+
              N                N+1              N+2         : Packet

                Figure 2. Multi-Session Streaming

5.  Payload Format

5.1.  Global Structure of Payload Format

  The structure of ATRAC Payload is illustrated in Figure 3.  The RTP
  payload following the RTP header contains two octet-aligned data
  sections.

           +------+--------------+-----------------------------+
           |RTP   | ATRAC Header |   ATRAC Frames Section      |
           |Header| Section      | (including redundant data)  |
           +------+--------------+-----------------------------+
           < ---------------- RTP Packet Payload ------------- >

            Figure 3. Structure of RTP Payload of ATRAC Family

  The first data section is the ATRAC Header, containing just one
  header with information for the whole packet.  The second section is
  where the encoded ATRAC frames are stored.  This may contain either a
  single fragment of one ATRAC frame or one or more complete ATRAC
  frames.  The ATRAC Frames Section MUST NOT be empty.  When using the
  redundancy mechanism described in Section 5.3.2.1, the redundant
  frame data can be included in this section and timestamp MUST be set
  to the oldest redundant frame's timestamp.




Hatanaka & Matsumoto        Standards Track                     [Page 6]

RFC 5584          RTP Payload Format for ATRAC Family          July 2009


  To benefit from ATRAC's High-Speed Transfer mode lossless encoding
  capability, the RTP payload can be split across two sessions, with
  one transmitting an essential base layer and the other transmitting
  enhancement data.  However, in either case, the above structure still
  applies.

5.2.  Usage of RTP Header Fields

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |V=2|P|X|  CC   |M|     PT      |       sequence number         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                          timestamp                            |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |            synchronization source (SSRC) identifier           |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |           contributing source (CSRC) identifiers              |
  |                             .....                             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

              Figure 4. RTP Standard Header Part

  The structure of the RTP Standard Header Part is illustrated in
  Figure 4.

  Version(V): 2 bits
  Set to 2.

  Padding(P): 1 bit
  If the padding bit is set, the packet contains one or more additional
  padding octets at the end, which are not part of the payload.  The
  last octet of the padding contains a count of how many padding octets
  should be ignored, including itself.  Padding may be needed by some
  encryption algorithms with fixed block sizes or for carrying several
  RTP packets in a lower-layer protocol data unit (see [1]).

  Extension(X): 1 bit
  Defined by the RTP profile used.

  CSRC count(CC): 4 bits
  See RFC 3550 [1].

  Marker (M): 1 bit
  Set to 1 if the packet is the first packet after a silence period;
  otherwise, it MUST be set to 0.





Hatanaka & Matsumoto        Standards Track                     [Page 7]

RFC 5584          RTP Payload Format for ATRAC Family          July 2009


  Payload Type (PT): 7 bits
  The assignment of an RTP payload type for this packet format is
  outside the scope of this document; it is specified by the RTP
  profile under which this payload format is used, or signaled
  dynamically out-of-band (e.g., using the Session Description Protocol
  (SDP)).

  sequence number: 16 bits
  A sequential number for the RTP packet.  It ranges from 0 to 65535
  and repeats itself periodically.

  Timestamp: 32 bits
  A timestamp representing the sampling time of the first sample of the
  first ATRAC frame in the current RTP packet.
  When using SDP, the clock rate of the RTP timestamp MUST be expressed
  using the "rtpmap" attribute.  For ATRAC3 and ATRAC Advanced
  Lossless, the RTP timestamp rate MUST be 44100 Hz.  For ATRAC-X, the
  RTP timestamp rate is 44100 Hz or 48000 Hz, and it will be selected
  by out-of-band signaling.

  SSRC: 32 bits
  See RFC 3550 [1].

  CSRC list: 0 to 15 items, 32 bits each
  See RFC 3550 [1].

5.3.  RTP Payload Structure

5.3.1.  Usage of ATRAC Header Section

  The ATRAC header section has the fixed length of one byte as
  illustrated in Figure 5.

                    0 1 2 3 4 5 6 7
                   +-+-+-+-+-+-+-+-+
                   |C|FrgNo|NFrames|
                   +-+-+-+-+-+-+-+-+

               Figure 5. ATRAC RTP Header

  Continuation Flag (C) : 1 bit
  The packet that corresponds to the last part of the audio frame data
  in a fragmentation MUST have this bit set to 0; otherwise, it's set
  to 1.

  Fragment Number (FrgNo): 3 bits
  In the event of data fragmentation, this value is one for the first
  packet, and increases sequentially for the remaining fragmented data



Hatanaka & Matsumoto        Standards Track                     [Page 8]

RFC 5584          RTP Payload Format for ATRAC Family          July 2009


  packets.  This value MUST be zero for an unfragmented frame.  (Note:
  3 bits is sufficient to avoid Fragment Number rollover given the
  current maximum supported bit-rate in the ATRAC specification.  If
  that changes, the choice of 3 bits for the Fragment Number should be
  revisited.)

  Number of Frames (NFrames): 4 bits
  The number of audio frames in this packet are field value + 1.  This
  allows for a maximum of 16 ATRAC-encoded audio frames per packet,
  with 0 indicating one audio frame.  Each audio frame MUST be complete
  in the packet if fragmentation is not applied.  In the case of
  fragmentation, the data for only one audio frame is allowed to be
  fragmented, and this value MUST be 0.

5.3.2.  Usage of ATRAC Frames Section

  The ATRAC Frames Section contains an integer number of complete ATRAC
  frames or a single fragment of one ATRAC frame, as illustrated in
  Figure 6.  Each ATRAC frame is preceded by a one-bit flag indicating
  the layer type and a Block Length field indicating the size in bytes
  of the ATRAC frame.  If more than one ATRAC frame is present, then
  the frames are concatenated into a contiguous string of bit-flag,
  Block Length, and ATRAC frame in order of their frame number.  This
  section MUST NOT be empty.

   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |E|       Block Length          |         ATRAC frame           |...
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                  Figure 6. ATRAC Frame Section Format

  Layer Type Flag (E): 1 bit
  Set to 1 if the corresponding ATRAC frame is from an enhancement
  layer.  0 indicates a base layer encoded frame.

  Block length: 15 bits
  The byte length of encoded audio data for the following frame.  This
  is so that in the case of fragmentation, if only a subsequent packet
  is received, decoding can still occur.  15 bits allows for a maximum
  block length of 32,767 bytes.

  ATRAC frame: The encoded ATRAC audio data.








Hatanaka & Matsumoto        Standards Track                     [Page 9]

RFC 5584          RTP Payload Format for ATRAC Family          July 2009


5.3.2.1.  Support of Redundancy

  This payload format provides a rudimentary scheme to compensate for
  occasional packet loss.  As every packet's timestamp corresponds to
  the first audio frame regardless of whether or not it is redundant,
  and because we know how many frames of audio each packet
  encapsulates, if two successive packets are successfully transmitted,
  we can calculate the number of redundant frames being sent.  The
  result gives the client a sense of how the server is responding to
  RTCP reports and warns it to expand its buffer size if necessary.  As
  an example of using the Redundant Data, refer to Figures 7 and 8.

  In this example, the server has determined that for the next few
  packets, it should send the last two frames from the previous packet
  due to recent RTCP reports.  Thus, between packets N and N+1, there
  is a redundancy of two frames (of which the client may choose to
  dispose).  The benefit arises when packets N+2 and N+3 do not arrive
  at all, after which eventually packet N+4 arrives with successive
  necessary audio frame data.

  [Sender]

  |-Fr0-|-Fr1-|-Fr2-|                         Packet: N,   TS=0
        |-Fr1-|-Fr2-|-Fr3-|                   Packet: N+1, TS=1024
              |-Fr2-|-Fr3-|-Fr4-|             Packet: N+2, TS=2048
                    |-Fr3-|-Fr4-|-Fr5-|       Packet: N+3, TS=3072
                          |-Fr4-|-Fr5-|-Fr6-| Packet: N+4, TS=4096

  -----------> Packet "N+2" and "N+3" not arrived  ------------->

  [Receiver]

  |-Fr0-|-Fr1-|-Fr2-|                         Packet: N,   TS=0
        |-Fr1-|-Fr2-|-Fr3-|                   Packet: N+1, TS=1024
                          |-Fr4-|-Fr5-|-Fr6-| Packet: N+4, TS=4096

  The receiver can decode from FR4 to Fr6 by using Packet "N+4" data
  even if the packet loss of "N+2" and "N+3" has occurred.

                 Figure 7. Redundant Example











Hatanaka & Matsumoto        Standards Track                    [Page 10]

RFC 5584          RTP Payload Format for ATRAC Family          July 2009


   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |V=2|P|X|  CC   |M|     PT      |       sequence number         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |        timestamp (= start sample time of Fr1)                 |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |            synchronization source (SSRC) identifier           |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |           contributing source (CSRC) identifiers              |
  |                             .....                             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |0|  0  |   3   |0|         Block Length        |               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |         (redundant)  ATRAC frame (Fr1) data  ...              |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |0|       Block Length          |(redundant) ATRAC frame (Fr2)  |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |    (cont.)  |0|   Block Length          |  ATRAC frame (Fr3)  |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                       (cont.)                                 |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

         Figure 8. Packet Structure Example with Redundant Data
                         (Case of Packet "N+1")

5.3.2.2.  Frame Fragmentation

  Each RTP packet MUST contain either an integer number of ATRAC-
  encoded audio frames (with a maximum of 16) or one ATRAC frame
  fragment.  In the former case, as many complete ATRAC frames as can
  fit in a single path-MTU SHOULD be placed in an RTP packet.  However,
  if even a single ATRAC frame will not fit into a complete RTP packet,
  the ATRAC frame MUST be fragmented.

  The start of a fragmented frame gets placed in its own RTP packet
  with its Continuation bit (C) set to one, and its Fragment Number
  (FragNo) set to one.  As the frame must be the only one in the
  packet, the Number of Frames field is zero.  Subsequent packets are
  to contain the remaining fragmented frame data, with the Fragment
  Number increasing sequentially and the Continuation bit (C)
  consistently set to one.  As subsequent packets do not contain any
  new frames, the Number of Frames field MUST be ignored.  The last
  packet of fragmented data MUST have the Continuation bit (C) set to
  zero.






Hatanaka & Matsumoto        Standards Track                    [Page 11]

RFC 5584          RTP Payload Format for ATRAC Family          July 2009


  Packets containing related fragmented frames MUST have identical
  timestamps.  Thus, while the Continuous bit and Fragment Number
  fields indicate fragmentation and a means to reorder the packets, the
  timestamp can be used to determine which packets go together.

6.  Packetization Examples

6.1.  Example Multi-Frame Packet

  Multiple encoded audio frames are combined into one packet.  Note
  how, for this example, only base layer frames are sent redundantly,
  but are followed by interleaved base layer and enhancement layer
  frames as illustrated in Figure 9.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |V=2|P|X|  CC   |M|     PT      |       sequence number         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                          timestamp                            |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |            synchronization source (SSRC) identifier           |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |           contributing source (CSRC) identifiers              |
  |                             .....                             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |0|  0  |   5   |0|         Block Length        |               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |         (redundant)  base layer frame 1 data...               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |0|       Block Length          |(redundant) base layer frame 2 |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |    (cont.)  |0|   Block Length          |  base layer frame 3 |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | (cont.) |1|       Block Length          | enhancement frame 3 |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | (cont.) |0|       Block Length          |  base layer frame 4 |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | (cont.) |1|       Block Length          | enhancement frame 4 |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                  Figure 9. Example Multi-Frame Packet









Hatanaka & Matsumoto        Standards Track                    [Page 12]

RFC 5584          RTP Payload Format for ATRAC Family          July 2009


6.2.  Example Fragmented ATRAC Frame

  The encoded audio data frame is split over three RTP packets as
  illustrated in Figure 10.  The following points are highlighted in
  the example below:

  o  transition from one to zero of the Continuation bit (C)

  o  sequential increase in the Fragment Number

  Packet 1:
   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |V=2|P|X|  CC   |M|     PT      |       sequence number         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                          timestamp                            |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |            synchronization source (SSRC) identifier           |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |           contributing source (CSRC) identifiers              |
  |                             .....                             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |1|  1  |   0   |1|        Block Length         |               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                     enhancement data...                       |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Packet 2:
   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |V=2|P|X|  CC   |M|     PT      |       sequence number         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                          timestamp                            |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |            synchronization source (SSRC) identifier           |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |           contributing source (CSRC) identifiers              |
  |                             .....                             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |1|  2  |   0   |1|        Block Length         |               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                  ...more enhancement data...                  |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+






Hatanaka & Matsumoto        Standards Track                    [Page 13]

RFC 5584          RTP Payload Format for ATRAC Family          July 2009


  Packet 3:
   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |V=2|P|X|  CC   |M|     PT      |       sequence number         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                          timestamp                            |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |            synchronization source (SSRC) identifier           |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |           contributing source (CSRC) identifiers              |
  |                             .....                             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |0|  3  |   0   |1|        Block Length         |               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |            ...the last of the enhancement data                |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                Figure 10. Example Fragmented ATRAC Frame

7.  Payload Format Parameters

  Certain parameters will need to be defined before ATRAC-family-
  encoded content can be streamed.  Other optional parameters may also
  be defined to take advantage of specific features relevant to certain
  ATRAC versions.  Parameters for ATRAC3, ATRAC-X, and ATRAC Advanced
  Lossless are defined here as part of the media subtype registration
  process.  A mapping of these parameters into the Session Description
  Protocol (SDP) (RFC 4566) [2] is also provided for applications that
  utilize SDP.  These registrations use the template defined in RFC
  4288 [5] and follow RFC 4855 [6].

  The data format and parameters are specified for real-time transport
  in RTP.

7.1.  ATRAC3 Media Type Registration

  The media subtype for the Adaptive TRansform Codec version 3 (ATRAC3)
  uses the template defined in RFC 4855 [6].

  Note, any unknown parameter MUST be ignored by the receiver.

  Type name:  audio

  Subtype name:  ATRAC3






Hatanaka & Matsumoto        Standards Track                    [Page 14]

RFC 5584          RTP Payload Format for ATRAC Family          July 2009


  Required parameters:

  rate:  Represents the sampling frequency in Hz of the original audio
  data.  Permissible value is 44100 only.

  baseLayer:  Indicates the encoded bit-rate in kbps for the audio data
  to be streamed.  Permissible values are 66, 105, and 132.

  Optional parameters:

  ptime:  See RFC 4566 [2].

  maxptime:  See RFC 4566 [2].
  The frame length of ATRAC3 is 1024/44100 = 23.22...(ms), and
  fractional value may not be applicable for the SDP definition.

  So the value of the parameter MUST be a multiple of 24 (ms)
  considering safe transmission.

  If this parameter is not present, the sender MAY encapsulate a
  maximum of 6 encoded frames into one RTP packet, in streaming of
  ATRAC3.

  maxRedundantFrames:  The maximum number of redundant frames that may
  be sent during a session in any given packet under the redundant
  framing mechanism detailed in the document.  Allowed values are
  integers in the range of 0 to 15, inclusive.  If this parameter is
  not used, a default of 15 MUST be assumed.

  Encoding considerations:  This media type is framed and contains
  binary data.

  Security considerations:  This media type does not carry active
  content.  See Section 9 of this document.

  Interoperability considerations:  none

  Published specification:  ATRAC3 Standard Specification [9]

  Applications that use this media type:
  Audio and video streaming and conferencing tools.

  Additional information:  none
  Magic number(s):  none
  File extension(s):  'at3', 'aa3', and 'omg'
  Macintosh file type code(s):  none





Hatanaka & Matsumoto        Standards Track                    [Page 15]

RFC 5584          RTP Payload Format for ATRAC Family          July 2009


  Person and email address to contact for further information:
  Mitsuyuki Hatanaka
  Jun Matsumoto
  [email protected]

  Intended usage:  COMMON

  Restrictions on usage:  This media type depends on RTP framing, and
  hence is only defined for transfer via RTP.

  Author:
  Mitsuyuki Hatanaka
  Jun Matsumoto
  [email protected]

  Change controller:  IETF AVT WG delegated from the IESG

7.2.  ATRAC-X Media Type Registration

  The media subtype for the Adaptive TRansform Codec version X
  (ATRAC-X) uses the template defined in RFC 4855 [6].

  Note, any unknown parameter MUST be ignored by the receiver.

  Type name:  audio

  Subtype name:  ATRAC-X

  Required parameters:

  rate:  Represents the sampling frequency in Hz of the original
  audio data.  Permissible values are 44100 and 48000.

  baseLayer:  Indicates the encoded bit-rate in kbps for the audio data
  to be streamed.  Permissible values are 32, 48, 64, 96, 128, 160,
  192, 256, 320, and 352.

  channelID:  Indicates the number of channels and channel layout
  according to the table1 in Section 7.4.  Note that this layout is
  different from that proposed in RFC 3551 [3].  However, as channelID
  = 0 defines an ambiguous channel layout, the channel mapping defined
  in Section 4.1 of [3] could be used.  Permissible values are 0, 1, 2,
  3, 4, 5, 6, 7.

  Optional parameters:

  ptime:  See RFC 4566 [2].




Hatanaka & Matsumoto        Standards Track                    [Page 16]

RFC 5584          RTP Payload Format for ATRAC Family          July 2009


  maxptime:  See RFC 4566 [2].
  The frame length of ATRAC-X is 2048/44100 = 46.44...(ms) or
  2048/48000 = 42.67...(ms), but fractional value may not be applicable
  for the SDP definition.  So the value of the parameter MUST be a
  multiple of 47 (ms) or 43 (ms) considering safe transmission.

  If this parameter is not present, the sender MAY encapsulate a
  maximum of 16 encoded frames into one RTP packet, in streaming of
  ATRAC-X.

  maxRedundantFrames:  The maximum number of redundant frames that may
  be sent during a session in any given packet under the redundant
  framing mechanism detailed in the document.  Allowed values are
  integers in the range 0 to 15, inclusive.  If this parameter is not
  used, a default of 15 MUST be assumed.

  delayMode:  Indicates a desire to use low-delay features, in which
  case the decoder will process received data accordingly based on this
  value.  Permissible values are 2 and 4.

  Encoding considerations:  This media type is framed and contains
  binary data.

  Security considerations:  This media type does not carry active
  content.  See Section 9 of this document.

  Interoperability considerations:  none

  Published specification:  ATRAC-X Standard Specification [10]

  Applications that use this media type:
  Audio and video streaming and conferencing tools.

  Additional information:  none

  Magic number(s):  none
  File extension(s):  'atx', 'aa3', and 'omg'
  Macintosh file type code(s):  none

  Person and email address to contact for further information:
  Mitsuyuki Hatanaka
  Jun Matsumoto
  [email protected]

  Intended usage:  COMMON

  Restrictions on usage:  This media type depends on RTP framing, and
  hence is only defined for transfer via RTP.



Hatanaka & Matsumoto        Standards Track                    [Page 17]

RFC 5584          RTP Payload Format for ATRAC Family          July 2009


  Author:
  Mitsuyuki Hatanaka
  Jun Matsumoto
  [email protected]

  Change controller:  IETF AVT WG delegated from the IESG

7.3.  ATRAC Advanced Lossless Media Type Registration

  The media subtype for the Adaptive TRansform Codec Lossless version
  (ATRAC Advanced Lossless) uses the template defined in RFC 4855 [6].

  Note, any unknown parameter MUST be ignored by the receiver.

  Type name:  audio

  Subtype name:  ATRAC-ADVANCED-LOSSLESS

  Required parameters:

  rate:  Represents the sampling frequency in Hz of the original
  audio data.  Permissible value is 44100 only for High-Speed Transfer
  mode.  Any value of 24000, 32000, 44100, 48000, 64000, 88200, 96000,
  176400, and 192000 can be used for Standard mode.

  baseLayer:  Indicates the encoded bit-rate in kbps for the base layer
  in High-Speed Transfer mode lossless encodings.

  For Standard lossless mode, this value MUST be 0.

  The Permissible values for ATRAC3 baselayer are 66, 105, and 132.
  For ATRAC-X baselayer, they are 32, 48, 64, 96, 128, 160, 192, 256,
  320, and 352.

  blockLength:  Indicates the block length.  In High-Speed Transfer
  mode, the value of 1024 and 2048 is used for ATRAC3 based and ATRAC-X
  based ATRAC Advanced Lossless streaming, respectively.

  Any value of 512, 1024, and 2048 can be used for Standard mode.

  channelID:  Indicates the number of channels and channel layout
  according to the table1 in Section 7.4.  Note that this layout is
  different from that proposed in RFC 3551 [3].  However, as channelID
  = 0 defines an ambiguous channel layout, the channel mapping defined
  in Section 4.1 of [3] could be used in this case.  Permissible values
  are 0, 1, 2, 3, 4, 5, 6, 7.

  ptime:  See RFC 4566 [2].



Hatanaka & Matsumoto        Standards Track                    [Page 18]

RFC 5584          RTP Payload Format for ATRAC Family          July 2009


  maxptime:  See RFC 4566 [2].
  In streaming of ATRAC Advanced Lossless, multiple frames cannot be
  transmitted in a single RTP packet, as the frame size is large.  So
  it SHOULD be regarded as the time of one encoded frame in both of the
  sender and the receiver side.  The frame length of ATRAC Advanced
  Lossless is 512/44100 = 11.6...(ms), 1024/44100 = 23.22...(ms), or
  2048/44100 = 46.44...(ms), but fractional value may not be applicable
  for the SDP definition.  So the value of the parameter MUST be
  12(ms), 24(ms), or 47(ms) considering safe transmission.

  Encoding considerations:  This media type is framed and contains
  binary data.

  Security considerations:  This media type does not carry active
  content.  See Section 9 of this document.

  Interoperability considerations:  none

  Published specification:
  ATRAC Advanced Lossless Standard Specification [11]

  Applications that use this media type:
  Audio and video streaming and conferencing tools.

  Additional information:  none

  Magic number(s):  none
  File extension(s):  'aal', 'aa3', and 'omg'
  Macintosh file type code(s):  none

  Person and email address to contact for further information:

  Mitsuyuki Hatanaka
  Jun Matsumoto
  [email protected]

  Intended usage:  COMMON

  Restrictions on usage:  This media type depends on RTP framing, and
  hence is only defined for transfer via RTP.

  Author:
  Mitsuyuki Hatanaka
  Jun Matsumoto
  [email protected]

  Change controller:  IETF AVT WG delegated from the IESG




Hatanaka & Matsumoto        Standards Track                    [Page 19]

RFC 5584          RTP Payload Format for ATRAC Family          July 2009


7.4.  Channel Mapping Configuration Table

  Table 1 explains the mapping between the channelID as passed during
  SDP negotiations, and the speaker mapping the value represents.

           +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
           | channelID | Number of |  Default Speaker    |
           |           | Channels  |      Mapping        |
           +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
           |     0     |  max 64   |     undefined       |
           +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
           |     1     |     1     | front: center       |
           +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
           |     2     |     2     | front: left, right  |
           +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
           |     3     |     3     | front: left, right  |
           |           |           | front: center       |
           +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
           |     4     |     4     | front: left, right  |
           |           |           | front: center       |
           |           |           | rear: surround      |
           +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
           |     5     |    5+1    | front: left, right  |
           |           |           | front: center       |
           |           |           | rear: left, right   |
           |           |           | LFE                 |
           +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
           |     6     |    6+1    | front: left, right  |
           |           |           | front: center       |
           |           |           | rear: left, right   |
           |           |           | rear: center        |
           |           |           | LFE                 |
           +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
           |     7     |    7+1    | front: left, right  |
           |           |           | front: center       |
           |           |           | rear: left, right   |
           |           |           | side: left, right   |
           |           |           | LFE                 |
           +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                  Table 1. Channel Configuration










Hatanaka & Matsumoto        Standards Track                    [Page 20]

RFC 5584          RTP Payload Format for ATRAC Family          July 2009


7.5.  Mapping Media Type Parameters into SDP

  The information carried in the Media type specification has a
  specific mapping to fields in the Session Description Protocol (SDP)
  [2], which is commonly used to describe RTP sessions.  When SDP is
  used to specify sessions employing the ATRAC family of codecs, the
  following mapping rules according to the ATRAC codec apply.

7.5.1.  For Media Subtype ATRAC3

  o  The Media type ("audio") goes in SDP "m=" as the media name.

  o  The Media subtype (payload format name) goes in SDP "a=rtpmap" as
     the encoding name.  ATRAC3 supports only mono or stereo signals,
     so a corresponding number of channels (0 or 1) MUST also be
     specified in this attribute.

  o  The "baseLayer" parameter goes in SDP "a=fmtp".  This parameter
     MUST be present.  "maxRedundantFrames" may follow, but if no value
     is transmitted, the receiver SHOULD assume a default value of
     "15".

  o  The parameters "ptime" and "maxptime" go in the SDP "a=ptime" and
     "a=maxptime" attributes, respectively.

7.5.2.  For Media Subtype ATRAC-X

  o  The Media type ("audio") goes in SDP "m=" as the media name.

  o  The Media subtype (payload format name) goes in SDP "a=rtpmap" as
     the encoding name.  This SHOULD be followed by the "sampleRate"
     (as the RTP clock rate), and then the actual number of channels
     regardless of the channelID parameter.

  o  The parameters "ptime" and "maxptime" go in the SDP "a=ptime" and
     "a=maxptime" attributes, respectively.

  o  Any remaining parameters go in the SDP "a=fmtp" attribute by
     copying them directly from the Media type string as a semicolon-
     separated list of parameter=value pairs.  The "baseLayer"
     parameter MUST be the first entry on this line.  The "channelID"
     parameter MUST be the next entry.  The receiver MUST assume a
     default value of "15" for "maxRedundantFrames".








Hatanaka & Matsumoto        Standards Track                    [Page 21]

RFC 5584          RTP Payload Format for ATRAC Family          July 2009


7.5.3.  For Media Subtype ATRAC Advanced Lossless

  o  The Media type ("audio") goes in SDP "m=" as the media name.

  o  The Media subtype (payload format name) goes in SDP "a=rtpmap" as
     the encoding name.  This MUST be followed by the "sampleRate" (as
     the RTP clock rate), and then the actual number of channels
     regardless of the channelID parameter.

  o  The parameters "ptime" and "maxptime" go in the SDP "a=ptime" and
     "a=maxptime" attributes, respectively.

  o  Any remaining parameters go in the SDP "a=fmtp" attribute by
     copying them directly from the Media type string as a semicolon-
     separated list of parameter=value pairs.

     On this line, the parameters "baseLayer" and "blockLength" MUST be
     present in this order.

     The value of "blockLength" MUST be one of 1024 and 2048, for using
     ATRAC3 and ATRAC-X as baselayer, respectively.  If "baseLayer=0"
     (means standard mode), "blockLength" MUST be one of either 512,
     1024, or 2048.  The "channelID" parameter MUST be the next entry .
     The receiver MUST assume a default value of "15" for
     "maxRedundantFrames".

7.6.  Offer/Answer Model Considerations

  Some options for encoding and decoding ATRAC audio data will require
  either or both of the sender and receiver complying with certain
  specifications.  In order to establish an interoperable transmission
  framework, an Offer/Answer negotiation in SDP MUST observe the
  following considerations.  (See [14].)

7.6.1.  For All Three Media Subtypes

  o  Each combination of the RTP payload transport format configuration
     parameters (baseLayer and blockLength, sampleRate, channelID) is
     unique in its bit-pattern and not compatible with any other
     combination.  When creating an offer in an application desiring to
     use the more advanced features (sample rates above 44100 kHz, more
     than two channels), the offerer SHOULD also offer a payload type
     containing only the lowest set of necessary requirements.  If
     multiple configurations are of interest to the application, they
     may all be offered.






Hatanaka & Matsumoto        Standards Track                    [Page 22]

RFC 5584          RTP Payload Format for ATRAC Family          July 2009


  o  The parameters "maxptime" and "ptime" will in most cases not
     affect interoperability; however, the setting of the parameters
     can affect the performance of the application.  The SDP
     Offer/Answer handling of the "ptime" parameter is described in RFC
     3264.  The "maxptime" parameter MUST be handled in the same way.

7.6.2.  For Media Subtype ATRAC3

  o  In response to an offer, downgraded subsets of "baseLayer" are
     possible.  However, for best performance, we suggest the answer
     contain the highest possible values offered.

7.6.3.  For Media Subtype ATRAC-X

  o  In response to an offer, downgraded subsets of "sampleRate",
     "baseLayer", and "channelID" are possible.  For best performance,
     an answer MUST NOT contain any values requiring further
     capabilities than the offer contains, but it SHOULD provide values
     as close as possible to those in the offer.

  o  The "maxRedundantFrames" is a suggested minimum.  This value MAY
     be increased in an answer (with a maximum of 15), but MUST NOT be
     reduced.

  o  The optional parameter "delayMode" is non-negotiable.  If the
     Answerer cannot comply with the offered value, the session MUST be
     deemed inoperable.

7.6.4.  For Media Subtype ATRAC Advanced Lossless

  o  In response to an offer, downgraded subsets of "sampleRate",
     "baseLayer", and "channelID" are possible.  For best performance,
     an answer MUST NOT contain any values requiring further
     capabilities than the offer contains, but it SHOULD provide values
     as close as possible to those in the offer.

  o  There are no requirements when negotiating "blockLength", other
     than that both parties must be in agreement.

  o  The "maxRedundantFrames" is a suggested minimum.  This value MAY
     be increased in an answer (with a maximum of 15), but MUST NOT be
     reduced.

  o  For transmission of scalable multi-session streaming of ATRAC
     Advanced Lossless content, the attributes of media stream
     identification, group information, and decoding dependency between
     base layer stream and enhancement layer stream MUST be signaled in
     SDP by the Offer/Answer model.  In this case, the attribute of



Hatanaka & Matsumoto        Standards Track                    [Page 23]

RFC 5584          RTP Payload Format for ATRAC Family          July 2009


     "group", "mid", and "depend" followed by the appropriate parameter
     MUST be used in SDP [7] [8] in order to indicate layered coding
     dependency.  The attribute of "group" followed by "DDP" parameter
     is used for indicating the relationship between the base and the
     enhancement layer stream with decoding dependency.  Each stream is
     identified by "mid" attribute, and the dependency of enhancement
     layer stream is defined by the "depend" attribute, as the
     enhancement layer is only useful when the base layer is available.
     Examples for signaling ATRAC Advanced Lossless decoding dependency
     are described in Sections 7.8 and 7.9.

7.7.  Usage of Declarative SDP

  In declarative usage, like SDP in Real-Time Streaming Protocol (RTSP)
  [15] or Session Announcement Protocol (SAP) [16], the parameters MUST
  be interpreted as follows:

  o  The payload format configuration parameters (baseLayer,
     sampleRate, channelID) are all declarative and a participant MUST
     use the configuration(s) provided for the session.  More than one
     configuration may be provided if necessary by declaring multiple
     RTP payload types; however, the number of types SHOULD be kept
     small.

  o  Any "maxptime" and "ptime" values SHOULD be selected with care to
     ensure that the session's participants can achieve reasonable
     performance.

  o  The attribute of "mid", "group", and "depend" MUST be used for
     indicating the relationship and dependency of the base layer and
     the enhancement layer in scalable multi-session streaming of ATRAC
     ADVANCED LOSSLESS content, as described in Sections 7.6, 7.8, and
     7.9.

7.8.  Example SDP Session Descriptions

  Example usage of ATRAC-X with stereo at 44100 Hz:

  v=0
  o=atrac 2465317890 2465317890 IN IP4 service.example.com
  s=ATRAC-X Streaming
  c=IN IP4 192.0.2.1/127
  t=3409539540 3409543140
  m=audio 49120 RTP/AVP 99
  a=rtpmap:99 ATRAC-X/44100/2
  a=fmtp:99 baseLayer=128; channelID=2; delayMode=2
  a=maxptime:47




Hatanaka & Matsumoto        Standards Track                    [Page 24]

RFC 5584          RTP Payload Format for ATRAC Family          July 2009


  Example usage of ATRAC-X with 5.1 setup at 48000 Hz:

  v=0
  o=atrac 2465317890 2465317890 IN IP4 service.example.com
  s=ATRAC-X 5.1ch Streaming
  c=IN IP4 192.0.2.1/127
  t=3409539540 3409543140
  m=audio 49120 RTP/AVP 99
  a=rtpmap:99 ATRAC-X/48000/6
  a=fmtp:99 baseLayer=320; channelID=5
  a=maxptime:43

  Example usage of ATRAC-Advanced-Lossless in multiplexed
  High-Speed Transfer mode:

  v=0
  o=atrac 2465317890 2465317890 IN IP4 service.example.com
  s=AAL Multiplexed Streaming
  c=IN IP4 192.0.2.1/127
  t=3409539540 3409543140
  m=audio 49200 RTP/AVP 96
  a=rtpmap:96 ATRAC-ADVANCED-LOSSLESS/44100/2
  a=fmtp:96 baseLayer=128; blockLength=2048; channelID=2
  a=maxptime:47

  Example usage of ATRAC-Advanced-Lossless in multi-session High-Speed
  Transfer mode.  In this case, the base layer and the enhancement
  layer stream are identified by L1 and L2, respectively, and L2
  depends on L1 in decoding.

  v=0
  o=atrac 2465317890 2465317890 IN IP4 service.example.com
  s=AAL Multi Session Streaming
  c=IN IP4 192.0.2.1/127
  t=3409539540 3409543140
  a=group:DDP L1 L2
  m=audio 49200 RTP/AVP 96
  a=rtpmap:96 ATRAC-ADVANCED-LOSSLESS/44100/2
  a=fmtp:96 baseLayer=128; blockLength=2048; channelID=2
  a=maxptime:47
  a=mid:L1
  m=audio 49202 RTP/AVP 97
  a=rtpmap:97 ATRAC-ADVANCED-LOSSLESS/44100/2
  a=fmtp:97 baseLayer=0; blockLength=2048; channelID=2
  a=maxptime:47
  a=mid:L2
  a=depend:97 lay L1:96




Hatanaka & Matsumoto        Standards Track                    [Page 25]

RFC 5584          RTP Payload Format for ATRAC Family          July 2009


  Example usage of ATRAC-Advanced-Lossless in Standard mode:

  m=audio 49200 RTP/AVP 99
  a=rtpmap:99 ATRAC-ADVANCED-LOSSLESS/44100/2
  a=fmtp:99 baseLayer=0; blockLength=1024; channelID=2
  a=maxptime:24

7.9.  Example Offer/Answer Exchange

  The following Offer/Answer example shows how a desire to stream
  multi-channel content is turned down by the receiver, who answers
  with only the ability to receive stereo content:

  Offer:

  m=audio 49170 RTP/AVP 98 99
  a=rtpmap:98 ATRAC-X/44100/6
  a=fmtp:98 baseLayer=320; channelID=5
  a=rtpmap:99 ATRAC-X/44100/2
  a=fmtp:99 baseLayer=160; channelID=2

  Answer:

  m=audio 49170 RTP/AVP 99
  a=rtpmap:99 ATRAC-X/44100/2
  a=fmtp:99 baseLayer=160; channelID=2

  The following Offer/Answer example shows the receiver answering with
  a selection of supported parameters:

  Offer:

  m=audio 49170 RTP/AVP 97 98 99
  a=rtpmap:97 ATRAC-X/44100/2
  a=fmtp:97 baseLayer=128; channelID=2
  a=rtpmap:98 ATRAC-X/44100/6
  a=fmtp:98 baseLayer=128; channelID=5
  a=rtpmap:99 ATRAC-X/48000/6
  a=fmtp:99 baseLayer=320; channelID=5

  Answer:

  m=audio 49170 RTP/AVP 97 98
  a=rtpmap:97 ATRAC-X/44100/2
  a=fmtp:97 baseLayer=128; channelID=2
  a=rtpmap:98 ATRAC-X/44100/6
  a=fmtp:98 baseLayer=128; channelID=5




Hatanaka & Matsumoto        Standards Track                    [Page 26]

RFC 5584          RTP Payload Format for ATRAC Family          July 2009


  The following Offer/Answer example shows an exchange in trying to
  resolve using ATRAC-Advanced-Lossless.  The offer contains three
  options: multi-session High-Speed Transfer mode, multiplexed High-
  Speed Transfer mode, and Standard mode.

  Offer:

// Multi-session High-Speed Transfer mode, L1 and L2 correspond
  to the base layer and the enhancement layer, respectively, and L2
  depends on L1 in decoding.

  a=group:DDP L1 L2
  m=audio 49200 RTP/AVP 96
  a=rtpmap:96 ATRAC-ADVANCED-LOSSLESS/44100/2
  a=fmtp:96 baseLayer=132; blockLength=1024; channelID=2
  a=maxptime:24
  a=mid:L1

  m=audio 49202 RTP/AVP 97
  a=rtpmap:97 ATRAC-ADVANCED-LOSSLESS/44100/2
  a=fmtp:97 baseLayer=0; blockLength=2048; channelID=2
  a=maxptime:24
  a=mid:L2
  a=depend:97 lay L1:96

// Multiplexed High-Speed Transfer mode
  m=audio 49200 RTP/AVP 98
  a=rtpmap:98 ATRAC-ADVANCED-LOSSLESS/44100/2
  a=fmtp:98 baseLayer=256; blockLength=2048; channelID=2
  a=maxptime:47

// Standard mode
  m=audio 49200 RTP/AVP 99
  a=rtpmap:99 ATRAC-ADVANCED-LOSSLESS/44100/2
  a=fmtp:99 baseLayer=0; blockLength=2048; channelID=2
  a=maxptime:47

  Answer:

  a=group:DDP L1 L2
  m=audio 49200 RTP/AVP 94
  a=rtpmap:94 ATRAC-ADVANCED-LOSSLESS/44100/2
  a=fmtp:94 baseLayer=132; blockLength=1024; channelID=2
  a=maxptime:24
  a=mid:L1






Hatanaka & Matsumoto        Standards Track                    [Page 27]

RFC 5584          RTP Payload Format for ATRAC Family          July 2009


  m=audio 49202 RTP/AVP 95
  a=rtpmap:95 ATRAC-ADVANCED-LOSSLESS/44100/2
  a=fmtp:95 baseLayer=0; blockLength=2048; channelID=2
  a=maxptime:24
  a=mid:L2
  a=depend:95 lay L1:94

  Note that the names of payload format (encoding) and Media subtypes
  are case-insensitive in both places.  Similarly, parameter names are
  case-insensitive both in Media types and in the default mapping to
  the SDP a=fmtp attribute.

8.  IANA Considerations

  Three new Media subtypes, audio/ATRAC3, audio/ATRAC-X, and
  audio/ATRAC-ADVANCED-LOSSLESS, have been registered (see Section 7).

9.  Security Considerations

  The payload format as described in this document is subject to the
  security considerations defined in RFC 3550 [1] and any applicable
  profile, for example, RFC 3551 [3].  Also, the security of Media type
  registration MUST be taken into account as described in Section 5 of
  RFC 4855 [6].

  The payload for ATRAC family consists solely of compressed audio data
  to be decoded and presented as sound, and the standard specifications
  of ATRAC3, ATRAC-X, and ATRAC Advanced Lossless [9] [10] [11]
  strictly define the bit stream syntax and the buffer model in decoder
  side for each codec.  So they can not carry "active content" that
  could impose malicious side effects upon the receiver, and they do
  not cause any problem of illegal resource consumption in receiver
  side, as far as the bit streams are conforming to their standard
  specifications.

  This payload format does not implement any security mechanisms of its
  own.  Confidentiality, integrity protection, and authentication have
  to be provided by a mechanism external to this payload format, e.g.,
  SRTP RFC 3711 [13].

10.  Considerations on Correct Decoding

10.1.  Verification of the Packets

  Verification of the received encoded audio packets MUST be performed
  so as to ensure correct decoding of the packets.  As a most primitive
  implementation, the comparison of the packet size and payload length
  can be taken into account.  If the UDP packet length is longer than



Hatanaka & Matsumoto        Standards Track                    [Page 28]

RFC 5584          RTP Payload Format for ATRAC Family          July 2009


  the RTP packet length, the packet can be accepted, but the extra
  bytes MUST be ignored.  In case of receiving a shorter UDP packet or
  improperly encoded packets, the packets MUST be discarded.

10.2.  Validity Checking of the Packets

  Also, validity checking of the received audio packets MUST be
  performed.  It can be carried out by the decoding process, as the
  ATRAC format is designed so that the validity of data frames can be
  determined by decoding the algorithm.  The required decoder response
  to a malformed frame is to discard the malformed data and conceal the
  errors in the audio output until a valid frame is detected and
  decoded.  This is expected to prevent crashes and other abnormal
  decoder behavior in response to errors or attacks.

11.  References

11.1.  Normative References

  [1]   Schulzrinne, H., Casner, S., Frederick, R., and V. Jacobson,
        "RTP: A Transport Protocol for Real-Time Applications", STD 64,
        RFC 3550, July 2003.

  [2]   Handley, M., Jacobson, V., and C. Perkins, "SDP: Session
        Description Protocol", RFC 4566, July 2006.

  [3]   Schulzrinne, H. and S. Casner, "RTP Profile for Audio and Video
        Conferences with Minimal Control", STD 65, RFC 3551, July 2003.

  [4]   Bradner, S., "Key words for use in RFCs to Indicate Requirement
        Levels", BCP 14, RFC 2119, March 1997.

  [5]   Freed, N. and J. Klensin, "Media Type Specifications and
        Registration Procedures", BCP 13, RFC 4288, December 2005.

  [6]   Casner, S., "Media Type Registration of RTP Payload Formats",
        RFC 4855, February 2007.

  [7]   Camarillo, G., Eriksson, G., Holler, J., and H. Schulzrinne,
        "Grouping of Media Lines in the Session Description Protocol
        (SDP)", RFC 3388, December 2002.

  [8]   Schierl, T., and S. Wenger, "Signaling Media Decoding
        Dependency in the Session Description Protocol (SDP)", RFC
        5583, July 2009.

  [9]   ATRAC3 Standard Specification ver.1.1, Sony Corporation, 2003.




Hatanaka & Matsumoto        Standards Track                    [Page 29]

RFC 5584          RTP Payload Format for ATRAC Family          July 2009


  [10]  ATRAC-X Standard Specification ver.1.2, Sony Corporation, 2004.

  [11]  ATRAC Advanced Lossless Standard Specification ver.1.1, Sony
        Corporation, 2007.

11.2.  Informative References

  [12]  Perkins, C., Kouvelas, I., Hodson, O., Hardman, V., Handley,
        M., Bolot, J., Vega-Garcia, A., and S. Fosse-Parisis, "RTP
        Payload for Redundant Audio Data", RFC 2198, September 1997.

  [13]  Baugher, M., McGrew, D., Naslund, M., Carrara, E., and K.
        Norrman, "The Secure Real-time Transport Protocol (SRTP)", RFC
        3711, March 2004.

  [14]  Rosenberg, J. and H. Schulzrinne, "An Offer/Answer Model with
        Session Description Protocol (SDP)", RFC 3264, June 2002.

  [15]  Schulzrinne, H., Rao, A., and R. Lanphier, "Real Time Streaming
        Protocol (RTSP)", RFC 2326, April 1998.

  [16]  Handley, M., Perkins, C., and E. Whelan, "Session Announcement
        Protocol", RFC 2974, October 2000.

Authors' Addresses

  Mitsuyuki Hatanaka
  Sony Corporation, Japan
  1-7-1 Konan
  Minato-ku
  Tokyo  108-0075
  Japan

  EMail: [email protected]


  Jun Matsumoto
  Sony Corporation, Japan
  1-7-1 Konan
  Minato-ku
  Tokyo  108-0075
  Japan

  EMail: [email protected]







Hatanaka & Matsumoto        Standards Track                    [Page 30]