Network Working Group                                          L. Berger
Request for Comment: 5523                           LabN Consulting, LLC
Category: Experimental                                        April 2009


               OSPFv3-Based Layer 1 VPN Auto-Discovery

Status of This Memo

  This memo defines an Experimental Protocol for the Internet
  community.  It does not specify an Internet standard of any kind.
  Discussion and suggestions for improvement are requested.
  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (c) 2009 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents in effect on the date of
  publication of this document (http://trustee.ietf.org/license-info).
  Please review these documents carefully, as they describe your rights
  and restrictions with respect to this document.

Abstract

  This document defines an OSPFv3-based (Open Shortest Path First
  version 3) Layer 1 Virtual Private Network (L1VPN) auto-discovery
  mechanism.  This document parallels the existing OSPF version 2 L1VPN
  auto-discovery mechanism.  The notable functional difference is the
  support of IPv6.



















Berger                        Experimental                      [Page 1]

RFC 5523         OSPV3-Based Layer 1 VPN Auto-Discovery       April 2009


Table of Contents

  1. Introduction ....................................................2
     1.1. Terminology ................................................2
     1.2. Conventions Used in This Document ..........................3
     1.3. Overview ...................................................3
  2. OSPFv3 L1VPN LSA and Its TLVs ...................................5
     2.1. OSPFv3 L1VPN LSA ...........................................5
     2.2. L1VPN IPv6 INFO TLV ........................................7
  3. OSPFv3 L1VPN LSA Advertising and Processing .....................8
  4. Backward Compatibility ..........................................9
  5. Manageability Considerations ....................................9
     5.1. Coexistence with and Migration from OSPFv2 .................9
  6. Security Considerations ........................................10
  7. IANA Considerations ............................................11
  8. Acknowledgment .................................................11
  9. References .....................................................11
     9.1. Normative References ......................................11
     9.2. Informative References ....................................12

1.  Introduction

  This document defines an OSPFv3-based (Open Shortest Path First
  version 3) Layer 1 Virtual Private Network (L1VPN) auto-discovery
  mechanism.  This document parallels the existing OSPF version 2 L1VPN
  auto-discovery mechanism.  The notable functional difference is the
  support of IPv6.

1.1.  Terminology

  The reader of this document should be familiar with the terms used in
  [RFC4847] and [RFC5251].  The reader of this document should also be
  familiar with [RFC5340], [RFC5329], and [RFC5252].  In particular,
  the following terms:

     L1VPN   Layer 1 Virtual Private Network

     CE      Customer (edge) network element directly connected to the
             Provider network (terminates one or more links to one or
             more PEs); it is also connected to one or more Cs and/or
             other CEs.

     C       Customer network element that is not connected to the
             Provider network but is connected to one or more other Cs
             and/or CEs.






Berger                        Experimental                      [Page 2]

RFC 5523         OSPV3-Based Layer 1 VPN Auto-Discovery       April 2009


     PE      Provider (edge) network element directly connected to one
             or more Customer networks (terminates one or more links to
             one or more CEs associated with the same or different
             L1VPNs); it is also connected to one or more Ps and/or
             other PEs.

     P       Provider (core) network element that is not directly
             connected to any of Customer networks; P is connected to
             one or more other Ps and/or PEs.

     LSA     OSPF Link State Advertisement.

     LSDB    Link State Database: a data structure supported by an IGP
             speaker.

     PIT     Port Information Table.

     CPI     Customer Port Identifier.

     PPI     Provider Port Identifier.

1.2.  Conventions Used in This Document

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in [RFC2119].

1.3.  Overview

  The framework for Layer 1 VPNs is described in [RFC4847].  Basic mode
  operation is further defined in [RFC5251].  [RFC5251] identifies the
  information that is necessary to map customer information (port
  identifiers) to provider information (identifiers).  It also states
  that this mapping information may be provided via provisioning or via
  an auto-discovery mechanism.  [RFC5252] provides such an auto-
  discovery mechanism using Open Shortest Path First (OSPF) version 2.
  This document provides the same functionality using OSPF version 3
  and adds support for IPv6.

  Figure 1 shows the L1VPN basic service being supported using OSPF-
  based L1VPN auto-discovery.  This figure shows two PE routers
  interconnected over a GMPLS backbone.  Each PE is attached to three
  CE devices belonging to three different Layer 1 VPNs.  In this
  network, OSPF is used to provide the VPN membership, port mapping,
  and related information required to support basic mode operation.






Berger                        Experimental                      [Page 3]

RFC 5523         OSPV3-Based Layer 1 VPN Auto-Discovery       April 2009


                 PE                        PE
              +---------+             +--------------+
  +--------+  | +------+|             | +----------+ | +--------+
  |  VPN-A |  | |VPN-A ||             | |  VPN-A   | | |  VPN-A |
  |   CE1  |--| |PIT   ||  OSPF LSAs  | |  PIT     | |-|   CE2  |
  +--------+  | |      ||<----------->| |          | | +--------+
              | +------+| Distribution| +----------+ |
              |         |             |              |
  +--------+  | +------+|             | +----------+ | +--------+
  | VPN-B  |  | |VPN-B ||   -------   | |   VPN-B  | | |  VPN-B |
  |  CE1   |--| |PIT   ||--( GMPLS )--| |   PIT    | |-|   CE2  |
  +--------+  | |      ||  (Backbone) | |          | | +--------+
              | +------+|   --------  | +----------+ |
              |         |             |              |
  +--------+  | +-----+ |             | +----------+ | +--------+
  | VPN-C  |  | |VPN-C| |             | |   VPN-C  | | |  VPN-C |
  |  CE1   |--| |PIT  | |             | |   PIT    | |-|   CE2  |
  +--------+  | |     | |             | |          | | +--------+
              | +-----+ |             | +----------+ |
              +---------+             +--------------+

                Figure 1: OSPF Auto-Discovery for L1VPNs

  The approach used in this document to provide OSPFv3-based L1VPN
  auto-discovery uses a new type of Link State Advertisement (LSA),
  which is referred to as an OSPFv3 L1VPN LSA.  The OSPFv3 L1VPN LSA
  carries information in TLV (type, length, value) structures.  An
  L1VPN-specific TLV is defined below to propagate VPN membership and
  port information.  This TLV is referred to as the L1VPN Info TLV.

  The OSPFv3 L1VPN LSA may also carry Traffic Engineering (TE) TLVs;
  see [RFC3630], [RFC4203], and [RFC5329].



















Berger                        Experimental                      [Page 4]

RFC 5523         OSPV3-Based Layer 1 VPN Auto-Discovery       April 2009


2.  OSPFv3 L1VPN LSA and Its TLVs

  This section defines the OSPFv3 L1VPN LSA and its TLVs.

2.1. OSPFv3 L1VPN LSA

  The format of a OSPFv3 L1VPN LSA is as follows:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |           LS age              |          LS type              |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                       Link State ID                           |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                    Advertising Router                         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                    LS sequence number                         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |        LS checksum            |            length             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                           L1VPN Info TLV                      |
  |                             ...                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                            TE Link TLV                        |
  |                             ...                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  LS age

     As defined in [RFC5340].

  LS type

     As defined in [RFC5340].  The U-bit MUST be set to 1, and the S1
     and S2 bits MUST be set to indicate either area or Autonomous
     System (AS) scoping.  The LSA Function Code portion of this field
     MUST be set to 14, i.e., the OSPFv3 L1VPN LSA.

  Advertising Router

     As defined in [RFC5340].

  LS Sequence Number

     As defined in [RFC5340].





Berger                        Experimental                      [Page 5]

RFC 5523         OSPV3-Based Layer 1 VPN Auto-Discovery       April 2009


  LS checksum

     As defined in [RFC5340].

  Length

     As defined in [RFC5340].

  L1VPN Info TLV

     A single L1VPN Info TLV, as defined in Section 2.2 of [RFC5252] or
     Section 2.2 of this document, MUST be present.  If more than one
     L1VPN Info TLV is present, only the first TLV is processed and the
     others MUST be ignored on receipt.  If no L1VPN Info TLV is
     present, the LSA is processed (and flooded) as normal, but the
     L1VPN PIT table MUST NOT be modified in any way.

  TE Link TLV

     A single TE Link TLV MAY be included in an OSPFv3 L1VPN LSA.  When
     an L1VPN IPv4 Info TLV is present, a single TE Link TLV as defined
     in [RFC3630] and [RFC4203] MAY be included.  When an L1VPN IPv6
     Info TLV is present, a single TE Link TLV as defined in [RFC5329]
     MAY be included.



























Berger                        Experimental                      [Page 6]

RFC 5523         OSPV3-Based Layer 1 VPN Auto-Discovery       April 2009


2.2.  L1VPN IPv6 INFO TLV

  The following TLV is introduced:

  Name: L1VPN IPv6 Info
  Type: 32768
  Length: Variable

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |           L1VPN TLV Type      |         L1VPN TLV Length      |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                 L1VPN Globally Unique Identifier              |
  |                              ...                              |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                          PE TE Address                        |
  |                              ...                              |
  |                              ...                              |
  |                              ...                              |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                       Link-Local Identifier                   |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                              ...                              |
  |                 L1VPN Auto-Discovery Information              |
  +                               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                              .|           Padding             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  L1VPN TLV Type

     The type of the TLV (see above).

  TLV Length

     The length of the TLV in bytes, excluding the four (4) bytes of
     the TLV header and, if present, the length of the Padding field.

  L1VPN Globally Unique Identifier

     As defined in [RFC5251].

  PE TE Address

     This field MUST carry an address that has been advertised by the
     LSA originator per [RFC5329] and is either the Router IPv6 Address
     TLV or Local Interface IPv6 Address link sub-TLV.  It will
     typically carry the TE Router Address.



Berger                        Experimental                      [Page 7]

RFC 5523         OSPV3-Based Layer 1 VPN Auto-Discovery       April 2009


  Link-Local Identifier

     This field is used to support unnumbered links.  When an
     unnumbered PE TE link is represented, this field MUST contain a
     value advertised by the LSA originator per [RFC5340] in a Router
     LSA.  When a numbered link is represented, this field MUST be set
     to zero (0).

  L1VPN Auto-Discovery Information

     As defined in [RFC5251].

  Padding

     A field of variable length and of sufficient size to ensure that
     the TLV is aligned on a 4-byte boundary.  This field is only
     required when the L1VPN Auto-Discovery Information field is not
     4-byte aligned.  This field MUST be less than 4 bytes long, and
     MUST NOT be present when the size of L1VPN Auto-Discovery
     Information field is 4-byte aligned.

3.  OSPFv3 L1VPN LSA Advertising and Processing

  PEs advertise local <CPI, PPI> tuples in OSPFv3 L1VPN LSAs containing
  L1VPN Info TLVs.  Each PE MUST originate a separate OSPFv3 L1VPN LSA
  with area or AS flooding scope, based on configuration, for each
  local CE-PE link.  The LSA MUST be originated each time a PE restarts
  and every time there is a change in the PIT entry associated with a
  local CE-PE link.  The LSA MUST include a single L1VPN Info TLV and
  MAY include a single TE Link TLV.  The TE Link TLV carries TE
  attributes of the associated CE-PE link.  Note that because CEs are
  outside of the provider TE domain, the attributes of CE-PE links are
  not advertised via normal OSPF-TE procedures as described in
  [RFC5329].  If more than one L1VPN Info TLVs and/or TE Link TLVs are
  found in the LSA, the subsequent TLVs SHOULD be ignored by the
  receiving PEs.

  Every time a PE receives a new, removed, or modified OSPFv3 L1VPN
  LSA, the PE MUST check whether it maintains a PIT associated with the
  L1VPN specified in the L1VPN Globally Unique Identifier field.  If
  this is the case (the appropriate PIT will be found if one or more
  local CE-PE links that belong to the L1VPN are configured), the PE
  SHOULD add, remove, or modify the PIT entry associated with each of
  the advertised CE-PE links accordingly.  (An implementation MAY
  choose to not remove or modify the PIT according to local policy or
  management directives.)  Thus, in the normal steady-state case, all
  PEs associated with a particular L1VPN will have identical local PITs
  for an L1VPN.



Berger                        Experimental                      [Page 8]

RFC 5523         OSPV3-Based Layer 1 VPN Auto-Discovery       April 2009


4.  Backward Compatibility

  Neither the TLV nor the LSA introduced in this document present any
  interoperability issues.  Per [RFC5340], and due to the U-bit being
  set, OSPFv3 speakers that do not support the OSPFv3 L1VPN LSA (Ps for
  example) just participate in the LSA's flooding process but should
  ignore the LSA's contents.

5.  Manageability Considerations

  The principal concern in operating an auto-discovery mechanism for an
  L1VPN is that the PE needs to be configured with information about
  which VPNs it supports.  This information can be discovered from the
  CEs using some form of membership negotiation, but is more likely to
  be directly configured by the operator as described in [RFC4847],
  [RFC5251], and [RFC5253].  No standardized mechanisms to configure
  this information have been defined, and it is a matter for individual
  implementations with input from operator policy how a PE is told
  which L1VPNs it supports.  It is probable that configuration of this
  information is closely tied to the configuration of CE-facing ports
  on the PE, which in turn causes PITs to be established in the PE.

  Additionally, it may be of value to an operator to view the L1VPN
  membership information that has been learned by a PE.  An
  implementation may supply this information through a proprietary
  interface, or may allow it to be inspected through the OSPFv3 MIB
  module [OSPFv3-MIB] or the Traffic Engineering Database MIB
  [TED-MIB].

  Note that the operation of the control plane has no impact on IP
  network traffic because all of the user data is in Layer 1, while the
  control plane is necessarily out of band in a Data Communications
  Network (DCN).

5.1.  Coexistence with and Migration from OSPFv2

  It is expected that only a single routing protocol instance will be
  used to operate auto-discovery within an L1VPN at any time.  Thus,
  coexistence issues only apply to the migration from OSPFv2 to OSPFv3
  and can be expected to be transient.

  Migration from OSPFv2 to OSPFv3 would be a once-only event for any
  network and would probably depend on the migration of the routing
  protocol used within the network for normal GMPLS procedures.  The
  migration process would not be any different from the process used to
  migrate the normal GMPLS routing protocol.  The steps to follow are





Berger                        Experimental                      [Page 9]

RFC 5523         OSPV3-Based Layer 1 VPN Auto-Discovery       April 2009


  clearly a matter for the operator of the network and are not a matter
  for standardization, but the following sequence is provided to
  illustrate the potential actions:

  1. Assign IPv6 addresses to all control plane and data plane
     resources.

  2. Install and enable OSPFv3 on all controllers.

  3. Use OSPFv3 to advertise IPv4 and IPv6 resource identifiers.

  4. Manually verify the advertised membership and topology information
     from the OSPFv2 and OSPFv3 databases.

  5. Start a maintenance window where data continues to flow, but no
     L1VPN connections can be changed.

  6. Cut over to the OSPFv3 membership and topology information.

  7. Close the maintenance window.

  8. Turn off OSPFv2.

  9. Remove/disable the IPv4 address for all control plane and data
     plane resources.

6.  Security Considerations

  The approach presented in this document describes how PEs dynamically
  learn L1VPN specific information.  Mechanisms to deliver the VPN
  membership information to CEs are explicitly out of scope of this
  document.  Therefore, the security issues raised in this document are
  limited to within the OSPF domain.

  This defined approach reuses mechanisms defined in [RFC5340].
  Therefore, the same security approaches and considerations apply to
  this approach.  OSPF provides several security mechanisms that can be
  applied.  Specifically, OSPF supports multiple types of
  authentication, limits the frequency of LSA origination and
  acceptance, and provides techniques to avoid and limit the impact of
  database overflow.  In cases were end-to-end authentication is
  desired, OSPF's neighbor-to-neighbor authentication approach can be
  augmented with an approach similar to the experimental extension to
  OSPF, see [RFC2154], which supports the signing and authentication of
  LSAs.






Berger                        Experimental                     [Page 10]

RFC 5523         OSPV3-Based Layer 1 VPN Auto-Discovery       April 2009


7.  IANA Considerations

  IANA has assigned an OSPFv3 LSA Function Code as described in Section
  2.1 of this document.  IANA has made an assignment in the form:

      Value   OSPFv3 LSA type function Type            Reference
     -------  -----------------------------            ---------
          14  OSPFv3 L1VPN LSA                         [RFC5523]

8.  Acknowledgment

  This document was created at the request of Pasi Eronen.  Adrian
  Farrel and Acee Lindem provided valuable reviews of this document.
  Adrian also provided the text for Section 5.

9.  References

9.1.  Normative References

  [RFC2119]    Bradner, S., "Key words for use in RFCs to Indicate
               Requirement Levels", BCP 14, RFC 2119, March 1997.

  [RFC5340]    Coltun, R., Ferguson, D., Moy, J., and A. Lindem, "OSPF
               for IPv6", RFC 5340, July 2008.

  [RFC3630]    Katz, D., Kompella, K., and D. Yeung, "Traffic
               Engineering (TE) Extensions to OSPF Version 2", RFC
               3630, September 2003.

  [RFC4203]    Kompella, K., Ed., and Y. Rekhter, Ed., "OSPF Extensions
               in Support of Generalized Multi-Protocol Label Switching
               (GMPLS)", RFC 4203, October 2005.

  [RFC5251]    Fedyk, D., Ed., Rekhter, Y., Ed., Papadimitriou, D.,
               Rabbat, R., and L. Berger, "Layer 1 VPN Basic Mode", RFC
               5251, July 2008.

  [RFC5252]    Bryskin, I. and L. Berger, "OSPF-Based Layer 1 VPN
               Auto-Discovery", RFC 5252, July 2008.

  [RFC5329]    Ishiguro, K., Manral, V., Davey, A., and A. Lindem, Ed.,
               "Traffic Engineering Extensions to OSPF Version 3", RFC
               5329, September 2008.








Berger                        Experimental                     [Page 11]

RFC 5523         OSPV3-Based Layer 1 VPN Auto-Discovery       April 2009


9.2.  Informative References

  [OSPFv3-MIB] Joyal, D., Ed. and V. Manral, Ed., "Management
               Information Base for OSPFv3", Work in Progress, November
               2008.

  [RFC2154]    Murphy, S., Badger, M., and B. Wellington, "OSPF with
               Digital Signatures", RFC 2154, June 1997.

  [RFC4847]    Takeda, T., Ed., "Framework and Requirements for Layer 1
               Virtual Private Networks", RFC 4847, April 2007.

  [RFC5253]    Takeda, T., Ed., "Applicability Statement for Layer 1
               Virtual Private Network (L1VPN) Basic Mode", RFC 5253,
               July 2008.

  [TED-MIB]    Miyazawa, M., Otani, T., Nadeau, T., and K. Kumaki,
               "Traffic Engineering Database Management Information
               Base in support of MPLS-TE/GMPLS", Work in Progress,
               January 2009.

Author's Address

  Lou Berger
  LabN Consulting, LLC
  EMail: [email protected]

























Berger                        Experimental                     [Page 12]