Network Working Group                                         R. Stewart
Request for Comments: 5352                                        Q. Xie
Category: Experimental                                The Resource Group
                                                            M. Stillman
                                                                  Nokia
                                                              M. Tuexen
                                     Muenster Univ. of Applied Sciences
                                                         September 2008


               Aggregate Server Access Protocol (ASAP)

Status of This Memo

  This memo defines an Experimental Protocol for the Internet
  community.  It does not specify an Internet standard of any kind.
  Discussion and suggestions for improvement are requested.
  Distribution of this memo is unlimited.

Abstract

  Aggregate Server Access Protocol (ASAP; RFC 5352), in conjunction
  with the Endpoint Handlespace Redundancy Protocol (ENRP; RFC 5353),
  provides a high-availability data transfer mechanism over IP
  networks.  ASAP uses a handle-based addressing model that isolates a
  logical communication endpoint from its IP address(es), thus
  effectively eliminating the binding between the communication
  endpoint and its physical IP address(es), which normally constitutes
  a single point of failure.

  In addition, ASAP defines each logical communication destination as a
  pool, providing full transparent support for server pooling and load
  sharing.  It also allows dynamic system scalability -- members of a
  server pool can be added or removed at any time without interrupting
  the service.

  ASAP is designed to take full advantage of the network level
  redundancy provided by the Stream Transmission Control Protocol
  (SCTP; RFC 4960).  Each transport protocol, other than SCTP, MUST
  have an accompanying transport mapping document.  It should be noted
  that ASAP messages passed between Pool Elements (PEs) and ENRP
  servers MUST use the SCTP transport protocol.

  The high-availability server pooling is gained by combining two
  protocols, namely ASAP and ENRP, in which ASAP provides the user
  interface for Pool Handle to address translation, load sharing
  management, and fault management, while ENRP defines the high-
  availability Pool Handle translation service.



Stewart, et al.               Experimental                      [Page 1]

RFC 5352            Aggregate Server Access Protocol      September 2008


Table of Contents

  1. Introduction ....................................................4
     1.1. Definitions ................................................4
     1.2. Conventions ................................................5
     1.3. Organization of This Document ..............................6
     1.4. Scope of ASAP ..............................................6
          1.4.1. Extent of the Handlespace ...........................6
  2. Message Definitions .............................................6
     2.1. ASAP Parameter Formats .....................................7
     2.2. ASAP Messages ..............................................7
          2.2.1. ASAP_REGISTRATION Message ...........................7
          2.2.2. ASAP_DEREGISTRATION Message .........................8
          2.2.3. ASAP_REGISTRATION_RESPONSE Message ..................9
          2.2.4. ASAP_DEREGISTRATION_RESPONSE Message ...............10
          2.2.5. ASAP_HANDLE_RESOLUTION Message .....................10
          2.2.6. ASAP_HANDLE_RESOLUTION_RESPONSE Message ............11
          2.2.7. ASAP_ENDPOINT_KEEP_ALIVE Message ...................13
          2.2.8. ASAP_ENDPOINT_KEEP_ALIVE_ACK Message ...............14
          2.2.9. ASAP_ENDPOINT_UNREACHABLE Message ..................14
          2.2.10. ASAP_SERVER_ANNOUNCE Message ......................15
          2.2.11. ASAP_COOKIE Message ...............................16
          2.2.12. ASAP_COOKIE_ECHO Message ..........................16
          2.2.13. ASAP_BUSINESS_CARD Message ........................17
          2.2.14. ASAP_ERROR Message ................................17
  3. Procedures .....................................................18
     3.1. Registration ..............................................18
     3.2. De-Registration ...........................................21
     3.3. Handle Resolution .........................................23
     3.4. Endpoint Keep Alive .......................................25
     3.5. Unreachable Endpoints .....................................26
     3.6. ENRP Server Hunt Procedures ...............................27
     3.7. Handling ASAP Endpoint to ENRP Server
          Communication Failures ....................................28
          3.7.1. SCTP Send Failure ..................................28
          3.7.2. T1-ENRPrequest Timer Expiration ....................29
          3.7.3. Registration Failure ...............................29
     3.8. Cookie Handling Procedures ................................29
     3.9. Business Card Handling Procedures .........................30
  4. Roles of Endpoints .............................................31
  5. SCTP Considerations ............................................31
  6. The ASAP Interfaces ............................................31
     6.1. Registration.Request Primitive ............................32
     6.2. Deregistration.Request Primitive ..........................32
     6.3. CachePopulateRequest Primitive ............................33
     6.4. CachePurgeRequest Primitive ...............................33
     6.5. DataSendRequest Primitive .................................33
          6.5.1. Sending to a Pool Handle ...........................34



Stewart, et al.               Experimental                      [Page 2]

RFC 5352            Aggregate Server Access Protocol      September 2008


          6.5.2. Pool Element Selection .............................35
                 6.5.2.1. Round-Robin Policy ........................35
          6.5.3. Sending to a Pool Element Handle ...................35
          6.5.4. Send by Transport Address ..........................37
          6.5.5. Message Delivery Options ...........................37
     6.6. Data.Received Notification ................................38
     6.7. Error.Report Notification .................................39
     6.8. Examples ..................................................39
          6.8.1. Send to a New Pool .................................39
          6.8.2. Send to a Cached Pool Handle .......................40
     6.9. PE Send Failure ...........................................41
          6.9.1. Translation.Request Primitive ......................41
          6.9.2. Transport.Failure Primitive ........................42
  7. Timers, Variables, and Thresholds ..............................42
     7.1. Timers ....................................................42
     7.2. Variables .................................................42
     7.3. Thresholds ................................................43
  8. IANA Considerations ............................................43
     8.1. A New Table for ASAP Message Types ........................43
     8.2. Port Numbers ..............................................44
     8.3. SCTP Payload Protocol Identifier ..........................44
     8.4. Multicast Addresses .......................................44
  9. Security Considerations ........................................44
     9.1. Summary of RSerPool Security Threats ......................45
     9.2. Implementing Security Mechanisms ..........................46
     9.3. Chain of Trust ............................................49
  10. Acknowledgments ...............................................50
  11. References ....................................................50
     11.1. Normative References .....................................50
     11.2. Informative References ...................................51





















Stewart, et al.               Experimental                      [Page 3]

RFC 5352            Aggregate Server Access Protocol      September 2008


1.  Introduction

  The Aggregate Server Access Protocol (ASAP), when used in conjunction
  with Endpoint Name Resolution Protocol [RFC5353], provides a high-
  availability data-transfer mechanism over IP networks.  ASAP uses a
  handle-based addressing model that isolates a logical communication
  endpoint from its IP address(es), thus effectively eliminating the
  binding between the communication endpoint and its physical IP
  address(es), which normally constitutes a single point of failure.

  When multiple receiver instances exist under the same handle (aka a
  server pool), an ASAP Endpoint will select one Pool Element (PE),
  based on the current load sharing policy indicated by the server
  pool, and deliver its message to the selected PE.

  While delivering the message, ASAP can be used to monitor the
  reachability of the selected PE.  If it is found unreachable, before
  notifying the message sender (an ASAP User) of the failure, ASAP can
  automatically select another PE (if one exists) under that pool and
  attempt to deliver the message to that PE.  In other words, ASAP is
  capable of transparent failover amongst PE instances within a server
  pool.

  ASAP depends on ENRP, which provides a high-availability Pool
  Handlespace.  ASAP is responsible for the abstraction of the
  underlying transport technologies, load distribution management,
  fault management, as well as presentation to the upper layer (aka an
  ASAP User) via a unified primitive interface.

  When SCTP [RFC4960] is used as the transport layer protocol, ASAP can
  seamlessly incorporate the link-layer redundancy provided by SCTP.

  This document defines the ASAP portion of the high-availability
  server pool.

1.1.  Definitions

  This document uses the following terms:

  ASAP User:  Either a PE or Pool User (PU) that uses ASAP.

  Business Card:  When presented by a PU or PE, it specifies the pool
     the sender belongs to and provides a list of alternate PEs in case
     of failovers.







Stewart, et al.               Experimental                      [Page 4]

RFC 5352            Aggregate Server Access Protocol      September 2008


  Operational Scope:  The part of the network visible to pool users by
     a specific instance of the reliable server pooling protocols.

  Pool (or Server Pool):  A collection of servers providing the same
     application functionality.

  Pool Handle:  A logical pointer to a pool.  Each server pool will be
     identifiable in the operational scope of the system by a unique
     Pool Handle.

  Pool Element:  A server entity having registered to a pool.

  Pool User:  A server pool user.

  Pool Element Handle (or Endpoint Handle):  A logical pointer to a
     particular Pool Element in a pool, consisting of the Pool Handle
     and a destination transport address of the Pool Element.

  Handlespace:  A cohesive structure of Pool Handles and relations that
     may be queried by an internal or external agent.

  Home ENRP Server:  The ENRP server to which a PE or PU currently
     sends all namespace service requests.  A PE must only have one
     Home ENRP server at any given time, and both the PE and its Home
     ENRP server MUST know and keep track of this relationship.  A PU
     should select one of the available ENRP servers as its Home ENRP
     server, but the collective ENRP servers may change this by the
     sending of an ASAP_ENDPOINT_KEEP_ALIVE message.

  ENRP Client Channel:  The communication channel through which an ASAP
     User sends all namespace service requests.  The client channel is
     usually defined by the transport address of the Home ENRP server
     and a well-known port number.  The channel MAY make use of
     multicast or a named list of ENRP servers.

  Network Byte Order:  Most significant byte first, aka Big Endian.

  Transport Address:  A transport address is traditionally defined by
     Network Layer address, Transport Layer protocol and Transport
     Layer port number.  In the case of SCTP running over IP, a
     transport address is defined by the combination of an IP address
     and an SCTP port number (where SCTP is the Transport protocol).

1.2.  Conventions

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in [RFC2119].



Stewart, et al.               Experimental                      [Page 5]

RFC 5352            Aggregate Server Access Protocol      September 2008


1.3.  Organization of This Document

  Section 2 details the ASAP message formats.  In Section 3, we provide
  detailed ASAP procedures for the ASAP implementer.  Section 4
  summarizes which messages need to be supported by which nodes, and
  Section 5 describes the usage of SCTP.  In Section 6, details of the
  ASAP interface are given, focusing on the communication primitives
  between ASAP, the applications above ASAP, and ASAP itself, and the
  communications primitives between ASAP and SCTP (or other transport
  layers).  Also included in this discussion are relevant timers and
  configurable parameters, as appropriate.  Section 7 provides
  threshold and protocol variables.

  It should be noted that variables, timers, and constants are used in
  the text when necessary.  The complete list can be found in
  Section 7.

1.4.  Scope of ASAP

  The requirements for high availability and scalability do not imply
  requirements on shared state and data.  ASAP does not provide
  transaction failover.  If a host or application fails during the
  processing of a transaction, this transaction may be lost.  Some
  services MAY provide a way to handle the failure, but this is not
  guaranteed.  ASAP MAY provide hooks to assist an application in
  building a mechanism to share state but ASAP in itself does NOT share
  any state.

1.4.1.  Extent of the Handlespace

  The scope of ASAP/ENRP is NOT Internet-wide.  The handlespace is
  neither hierarchical nor arbitrarily large like DNS.  A flat peer-to-
  peer model is detailed.  Pools of servers will exist in different
  administrative domains.  For example, suppose the use of ASAP and
  ENRP is wanted.  First, the PU may use DNS to contact an ENRP server.
  Suppose a PU in North America wishes to contact a server pool in
  Japan instead of North America.  The PU would use DNS to get the list
  of IP addresses of the Japanese server pool; that is, the ENRP client
  channel in Japan.  From there, the PU would query the Home ENRP
  server it established and then directly contact the PE(s) of
  interest.

2.  Message Definitions

  All messages, as well as their fields described below, shall be in
  network byte order during transmission.  For fields with a length
  bigger than 4 bytes, a number in a pair of parentheses may follow the
  field name to indicate the length of the field in number of bytes.



Stewart, et al.               Experimental                      [Page 6]

RFC 5352            Aggregate Server Access Protocol      September 2008


2.1.  ASAP Parameter Formats

  The basic message format and all parameter formats can be found in
  [RFC5354].  Note also that *all* ASAP messages exchanged between an
  ENRP server and a PE MUST use SCTP as transport, while ASAP messages
  exchanged between an ENRP server and a PU MUST use either SCTP or TCP
  as transport.  PE to PU data traffic MAY use any transport protocol
  specified by the PE during registration.

2.2.  ASAP Messages

  This section details the individual messages used by ASAP.  These
  messages are composed of a standard message format found in Section 4
  of [RFC5354].  The parameter descriptions can be found in [RFC5354].

  The following ASAP message types are defined in this section:

  Type       Message Name
  -----      -------------------------
  0x00       - (Reserved by IETF)
  0x01       - ASAP_REGISTRATION
  0x02       - ASAP_DEREGISTRATION
  0x03       - ASAP_REGISTRATION_RESPONSE
  0x04       - ASAP_DEREGISTRATION_RESPONSE
  0x05       - ASAP_HANDLE_RESOLUTION
  0x06       - ASAP_HANDLE_RESOLUTION_RESPONSE
  0x07       - ASAP_ENDPOINT_KEEP_ALIVE
  0x08       - ASAP_ENDPOINT_KEEP_ALIVE_ACK
  0x09       - ASAP_ENDPOINT_UNREACHABLE
  0x0a       - ASAP_SERVER_ANNOUNCE
  0x0b       - ASAP_COOKIE
  0x0c       - ASAP_COOKIE_ECHO
  0x0d       - ASAP_BUSINESS_CARD
  0x0e       - ASAP_ERROR
  others     - (Reserved by IETF)

                                Figure 1

2.2.1.  ASAP_REGISTRATION Message

  The ASAP_REGISTRATION message is sent by a PE to its Home ENRP server
  to either create a new pool or to add itself to an existing pool.
  The PE sending the ASAP_REGISTRATION message MUST fill in the Pool
  Handle parameter and the Pool Element parameter.  The Pool Handle
  parameter specifies the name to be registered.  The Pool Element
  parameter MUST be filled in by the registrant, as outlined in
  Section 3.1.  Note that the PE sending the registration message MUST




Stewart, et al.               Experimental                      [Page 7]

RFC 5352            Aggregate Server Access Protocol      September 2008


  send the message using an SCTP association.  Furthermore, the IP
  address(es) of the PE that is registered within the Pool Element
  parameter MUST be a subset of the IP address(es) used in the SCTP
  association, regardless of the registered transport protocol.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |   Type = 0x01 |0|0|0|0|0|0|0|0|        Message Length         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  :                     Pool Handle Parameter                     :
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  :                     Pool Element Parameter                    :
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Pool Handle Parameter:

  See [RFC5354].

  Pool Element Parameter:

  See [RFC5354].

2.2.2.  ASAP_DEREGISTRATION Message

  The ASAP_DEREGISTRATION message is sent by a PE to its Home ENRP
  server to remove itself from a pool to which it registered.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |   Type = 0x02 |0|0|0|0|0|0|0|0|        Message Length         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  :                     Pool Handle Parameter                     :
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  :                    PE Identifier Parameter                    :
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+++

  Pool Handle Parameter:

  See [RFC5354].

  PE Identifier Parameter:

  See [RFC5354].






Stewart, et al.               Experimental                      [Page 8]

RFC 5352            Aggregate Server Access Protocol      September 2008


  The PE sending the ASAP_DEREGISTRATION MUST fill in the Pool Handle
  and the PE identifier parameter in order to allow the ENRP server to
  verify the identity of the endpoint.  Note that de-registration is
  NOT allowed by proxy; in other words, a PE may only de-register
  itself.

2.2.3.  ASAP_REGISTRATION_RESPONSE Message

  The ASAP_REGISTRATION_RESPONSE message is sent in response by the
  Home ENRP server to the PE that sent an ASAP_REGISTRATION message.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |   Type = 0x03 |0|0|0|0|0|0|0|R|        Message Length         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  :                     Pool Handle Parameter                     :
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  :                    PE Identifier Parameter                    :
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  :                   Operational Error (optional)                :
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  R (Reject) Flag:

  When set to '1', this flag indicates that the ENRP server sending
  this message has rejected the registration.  Otherwise, when this
  flag is set to '0', this indicates the registration has been granted.

  Pool Handle Parameter:

  See [RFC5354].

  PE Identifier Parameter:

  See [RFC5354].

  Operational Error Parameter (optional):

  See [RFC5354].

  This parameter is included if an error or some atypical events
  occurred during the registration process.  When the R flag is set to
  '1', this parameter, if present, indicates the cause of the
  rejection.  When the R flag is set to '0', this parameter, if
  present, serves as a warning to the registering PE, informing it that





Stewart, et al.               Experimental                      [Page 9]

RFC 5352            Aggregate Server Access Protocol      September 2008


  some of its registration values may have been modified by the ENRP
  server.  If the registration was successful and there is no warning,
  this parameter is not included.

2.2.4.  ASAP_DEREGISTRATION_RESPONSE Message

  The ASAP_DEREGISTRATION_RESPONSE message is returned by the Home ENRP
  server to a PE in response to an ASAP_DEREGISTRATION message or due
  to the expiration of the registration life of the PE in the pool.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |   Type = 0x04 |0|0|0|0|0|0|0|0|        Message Length         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  :                     Pool Handle Parameter                     :
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  :                    PE Identifier Parameter                    :
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  :                   Operational Error (optional)                :
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Pool Handle Parameter:

  See [RFC5354].

  PE Identifier Parameter:

  See [RFC5354].

  Operational Error:

  See [RFC5354].

  This parameter is included if an error or some atypical events
  occurred during the de-registration process.  If the de-registration
  was successful this parameter is not included.

2.2.5.  ASAP_HANDLE_RESOLUTION Message

  The ASAP_HANDLE_RESOLUTION message is sent by either a PE or PU to
  its Home ENRP server to resolve a Pool Handle into a list of Pool
  Elements that are members of the pool indicated by the Pool Handle.








Stewart, et al.               Experimental                     [Page 10]

RFC 5352            Aggregate Server Access Protocol      September 2008


   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |   Type = 0x05 |0|0|0|0|0|0|0|S|        Message Length         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  :                     Pool Handle Parameter                     :
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  The 'S' bit:

  The 'S' bit, if set to '1', requests the Home ENRP server to send
  updates to this Pool dynamically when the Pool changes for the
  lifetime of the SCTP association.  Dynamic updates to the pool will
  consist of additional ASAP_HANDLE_RESOLUTION_RESPONSE messages,
  without the user needing to send in an ASAP_HANDLE_RESOLUTION.

  If the 'S' bit is set to '0', no Dynamic updates are requested.

  Note that if a new Home ENRP server is adopted, any 'dynamic update
  request' will need to be re-sent to the new Home ENPR server if the
  endpoint would like to continue to receive updates.  In other words,
  the ENRP servers do NOT share state regarding which of its PU's are
  requesting automatic update of state.  Thus, upon change of Home ENRP
  server, the PU will need to re-send an ASAP_HANDLE_RESOLUTION message
  with the 'S' bit set to '1'.  Note also, that the 'S' bit will only
  cause Dynamic update of a Pool when the Pool exists.  If a negative
  response is returned, no further updates to the Pool (when it is
  created) will occur.

  Pool Handle Parameter:

  See [RFC5354].

2.2.6.  ASAP_HANDLE_RESOLUTION_RESPONSE Message

  The ASAP_HANDLE_RESOLUTION_RESPONSE message is sent in response by
  the Home ENRP server of the PU or PE that sent an
  ASAP_HANDLE_RESOLUTION message or is sent periodically upon Pool
  changes if the PU has requested Dynamic updates.












Stewart, et al.               Experimental                     [Page 11]

RFC 5352            Aggregate Server Access Protocol      September 2008


   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |   Type = 0x06 |0|0|0|0|0|0|0|A|        Message Length         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  :                     Pool Handle Parameter                     :
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  :             Overall PE Selection Policy (optional)            :
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  :               Pool Element Parameter 1 (optional)             :
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  :                              ...                              :
  :                                                               :
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  :               Pool Element Parameter N (optional)             :
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  :                   Operational Error (optional)                :
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  'A' bit:

  This bit is set to '1' if the ENRP server accepts the request to send
  automatic updates (i.e., the 'S' bit was set on the request).  If
  this bit is set to '0', either the ENRP server does NOT support
  automatic updates, it has resource issues and cannot supply this
  feature, or the user did not request it.

  Pool Handle Parameter:

  See [RFC5354].

  Overall PE Selection Policy (optional):

  See [RFC5354].

  This parameter can be present when the response is positive.  If
  present, it indicates the overall pool member selection policy of the
  pool.  If not present, a Round-Robin overall pool member selection
  policy is assumed.  This parameter is not present when the response
  is negative.

  Note, any load policy parameter within a Pool Element parameter (if
  present) MUST be ignored, and MUST NOT be used to determine the
  overall pool member selection policy.

  Pool Element Parameters (optional):

  See [RFC5354].



Stewart, et al.               Experimental                     [Page 12]

RFC 5352            Aggregate Server Access Protocol      September 2008


  When the response is positive, an array of PE parameters are
  included, indicating the current information about the PEs in the
  named pool.  At least one PE parameter MUST be present.  When the
  response is negative, no PE parameters are included.

  Operational Error (optional):

  See [RFC5354].

  The presence of this parameter indicates that the response is
  negative (the handle resolution request was rejected by the ENRP
  server).  The cause code in this parameter (if present) will indicate
  the reason the handle resolution request was rejected (e.g., the
  requested Pool Handle was not found).  The absence of this parameter
  indicates that the response is positive.

2.2.7.  ASAP_ENDPOINT_KEEP_ALIVE Message

  The ASAP_ENDPOINT_KEEP_ALIVE message is sent by an ENRP server to a
  PE.  The ASAP_ENDPOINT_KEEP_ALIVE message is used to verify that the
  PE is reachable and requires the PE to adopt the sending server as
  its new Home ENRP server if the 'H' bit is set to '1'.  Regardless of
  the setting of the 'H' bit, an ASAP Endpoint MUST respond with an
  ASAP_ENDPOINT_KEEP_ALIVE_ACK to any ASAP_ENDPOINT_KEEP_ALIVE messages
  that arrive.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |   Type = 0x07 |0|0|0|0|0|0|0|H|        Message Length         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                       Server Identifier                       |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  :                     Pool Handle Parameter                     :
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  H (Home ENRP server) Flag:

  When set to '1', indicates that the ENRP server that sends this
  message wants to be the Home ENRP server of the receiver of this
  message.

  Server Identifier: 32 bits (unsigned integer)

  This is the ID of the ENRP server, as discussed in [RFC5353].






Stewart, et al.               Experimental                     [Page 13]

RFC 5352            Aggregate Server Access Protocol      September 2008


  Pool Handle Parameter:

  See [RFC5354].

2.2.8.  ASAP_ENDPOINT_KEEP_ALIVE_ACK Message

  The ASAP_ENDPOINT_KEEP_ALIVE_ACK message is sent by a PE in response
  to an ASAP_ENDPOINT_KEEP_ALIVE message sent by an ENRP server.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |   Type = 0x08 |0|0|0|0|0|0|0|0|        Message Length         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  :                     Pool Handle Parameter                     :
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  :                    PE Identifier Parameter                    :
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Pool Handle Parameter:

  See [RFC5354].

  PE Identifier Parameter:

  See [RFC5354].

2.2.9.  ASAP_ENDPOINT_UNREACHABLE Message

  The ASAP_ENDPOINT_UNREACHABLE message is sent by either a PE or PU to
  its Home ENRP server to report an unreachable PE.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |   Type = 0x09 |0|0|0|0|0|0|0|0|        Message Length         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  :                     Pool Handle Parameter                     :
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  :                    PE Identifier Parameter                    :
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Pool Handle Parameter:

  See [RFC5354].






Stewart, et al.               Experimental                     [Page 14]

RFC 5352            Aggregate Server Access Protocol      September 2008


  PE Identifier Parameter:

  See [RFC5354].

2.2.10.  ASAP_SERVER_ANNOUNCE Message

  The ASAP_SERVER_ANNOUNCE message is sent by an ENRP server such that
  PUs and PEs know the transport information necessary to connect to
  the ENRP server.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |   Type = 0x0a |0|0|0|0|0|0|0|0|        Message Length         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                       Server Identifier                       |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  :                       Transport Param #1                      :
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  :                       Transport Param #2                      :
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  :                                                               :
  :                             .....                             :
  :                                                               :
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  :                       Transport Param #n                      :
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Server Identifier: 32 bits (unsigned integer)

  This is the ID of the ENRP server, as discussed in [RFC5353].

  Transport Parameters (optional):

  See [RFC5354] for the SCTP and TCP Transport parameters.

  Only SCTP and TCP Transport parameters are allowed for use within the
  SERVER_ANNOUNCE message.













Stewart, et al.               Experimental                     [Page 15]

RFC 5352            Aggregate Server Access Protocol      September 2008


2.2.11.  ASAP_COOKIE Message

  The ASAP_COOKIE message is sent by a PE to a PU, allowing the PE to
  convey information it wishes to share using a control channel.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |   Type = 0x0b |0|0|0|0|0|0|0|0|        Message Length         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  :                         Cookie Parameter                      :
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Cookie Parameter :

  See [RFC5354].

2.2.12.  ASAP_COOKIE_ECHO Message

  The ASAP_COOKIE_ECHO message is sent by a PU to a new PE when it
  detects a failure with the current PE to aid in failover.  The Cookie
  Parameter sent by the PE is the latest one received from the failed
  PE.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |   Type = 0x0c |0|0|0|0|0|0|0|0|        Message Length         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  :                         Cookie Parameter                      :
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Cookie Parameter:

  See [RFC5354].
















Stewart, et al.               Experimental                     [Page 16]

RFC 5352            Aggregate Server Access Protocol      September 2008


2.2.13.  ASAP_BUSINESS_CARD Message

  The ASAP_BUSINESS_CARD message is sent by a PU to a PE or from a PE
  to a PU using a control channel to convey the pool handle and a
  preferred failover ordering.


   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |   Type = 0x0d |0|0|0|0|0|0|0|0|        Message Length         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  :                     Pool Handle Parameter                     :
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  :                   Pool Element Parameter-1                    :
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  :                              ..                               :
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  :                   Pool Element Parameter-N                    :
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Pool Handle Parameter:

  See [RFC5354].

  Pool Element Parameters:

  See [RFC5354].

2.2.14.  ASAP_ERROR Message

  The ASAP_ERROR message is sent in response by an ASAP Endpoint
  receiving an unknown message or an unknown parameter to the sending
  ASAP Endpoint to report the problem or issue.


  0                   1                   2                   3
  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |   Type = 0x0e |0|0|0|0|0|0|0|0|        Message Length         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  :                 Operational Error Parameter                   :
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Operational Error Parameter:

  See [RFC5354].




Stewart, et al.               Experimental                     [Page 17]

RFC 5352            Aggregate Server Access Protocol      September 2008


  When an ASAP Endpoint receives an ASAP message with an unknown
  message type or a message of known type that contains an unknown
  parameter, it SHOULD handle the unknown message or the unknown
  parameter according to the unrecognized message and parameter
  handling rules, defined in Section 3.

  According to the rules, if an error report to the message sender is
  needed, the ASAP endpoint that discovered the error SHOULD send back
  an ASAP_ERROR message that includes an Operational Error parameter
  with the proper cause code, cause length, and case-specific
  information.

3.  Procedures

  This section will focus on the methods and procedures used by an
  internal ASAP Endpoint.  Appropriate timers and recovery actions for
  failure detection and management are also discussed.  Also, please
  note that ASAP messages sent between a PE and PU are identified by an
  SCTP Payload Protocol Identifier (PPID).

3.1.  Registration

  When a PE wishes to initiate or join a server pool, it MUST use the
  procedures outlined in this section for registration.  Often, the
  registration will be triggered by a user request primitive (discussed
  in Section 6.1).  The PE MUST register using an SCTP association
  established between itself and the Home ENRP server.  If the PE has
  not established its Home ENRP server, it MUST follow the procedures
  specified in Section 3.6.

  Once the PE's ASAP Endpoint has established its Home ENRP server, the
  following procedures MUST be followed to register:

  R1)  The PE's SCTP endpoint used to communicate with the Home ENRP
     server MUST be bound to all IP addresses that will be used by the
     PE (regardless of which transport protocol will be used to service
     user requests to the PE).

  R2)  The PE's ASAP Endpoint MUST formulate an ASAP_REGISTRATION
     message, as defined in Section 2.2.1.  In formulating the message,
     the PE MUST:

     R2.1)  Fill in the Pool Handle parameter to specify which server
        pool the ASAP Endpoint wishes to join.

     R2.2)  Fill in the PE identifier using a good-quality randomly
        generated number ([RFC4086] provides some information on
        randomness guidelines).



Stewart, et al.               Experimental                     [Page 18]

RFC 5352            Aggregate Server Access Protocol      September 2008


     R2.3)  Fill in the Registration Lifetime parameter with the number
        of seconds that this registration is valid for.  Note that a PE
        that wishes to continue service MUST re-register before the
        registration expires.

     R2.4)  Fill in a User Transport parameter to specify the type of
        transport and the data/control channel usage the PE is willing
        to support.  Note, in joining an existing server pool, the PE
        MUST follow the overall transport type and overall data/control
        channel usage of the pool.  Otherwise, the registration may be
        rejected by the ENRP server.

     R2.5)  Fill in the preferred Pool Member Selection Policy
        parameter.

  R3)  Send the ASAP_REGISTRATION message to the Home ENRP server using
     SCTP.

  R4)  Start a T2-registration timer.

  Note: the PE does not need to fill in the optional ASAP transport
  parameter.  The ASAP transport parameter will be filled in and used
  by the Home ENRP server.

  If the T2-registration timer expires before receiving an
  ASAP_REGISTRATION_RESPONSE message, or a SEND.FAILURE notification is
  received from the SCTP layer, the PE shall start the Server Hunt
  procedure (see Section 3.6) in an attempt to get service from a
  different ENRP server.  After establishing a new Home ENRP server,
  the PE SHOULD restart the registration procedure.

  At the reception of the registration response, the PE MUST stop the
  T2-registration timer.  If the response indicates success, the PE is
  registered and will be considered an available member of the server
  pool.  If the registration response indicates a failure, the PE must
  either re-attempt registration after correcting the error or return a
  failure indication to the PE's upper layer.  The PE MUST NOT re-
  attempt registration without correcting the error condition.

  At any time, a registered PE MAY wish to re-register to either update
  its member selection Policy Value or registration expiration time.
  When re-registering, the PE MUST use the same PE identifier.

  After successful registration, the PE MUST start a T4-reregistration
  timer.  At its expiration, a re-registration SHOULD be made starting
  at step R1, including (at completion) restarting the T4-
  reregistration timer.




Stewart, et al.               Experimental                     [Page 19]

RFC 5352            Aggregate Server Access Protocol      September 2008


  Note that an implementation SHOULD keep a record of the number of
  registration (and re-registration) attempts it makes in a local
  variable that gets set to zero before the initial registration
  attempt to the Home ENRP server or after a successful re-
  registration.  If repeated registration timeouts or failures occurs
  and the local count exceeds the Threshold 'MAX-REG-ATTEMPT', the
  implementation SHOULD report the error to its upper layer and stop
  attempting registration.

  The ENRP server handles the ASAP_REGISTRATION message according to
  the following rules:

  1.  If the named pool does not exist in the handlespace, the ENRP
      server MUST create a new pool with that handle in the handlespace
      and add the PE to the pool as its first PE.

      When a new pool is created, the overall member selection policy
      of the pool MUST be set to the policy type indicated by the first
      PE, the overall pool transport type MUST be set to the transport
      type indicated by the PE, and the overall pool data/control
      channel configuration MUST be set to what is indicated in the
      Transport Use field of the User Transport parameter by the
      registering PE.

  2.  If the named pool already exists in the handlespace, but the
      requesting PE is not currently a member of the pool, the ENRP
      server will add the PE as a new member to the pool.

      However, before adding the PE to the pool, the server MUST check
      if the policy type, transport type, and transport usage indicated
      by the registering PE is consistent with those of the pool.  If
      different, the ENRP server MUST reject the registration.

  3.  If the named pool already exists in the handlespace *and* the
      requesting PE is already a member of the pool, the ENRP server
      SHOULD consider this as a re-registration case.  The ENRP server
      MUST perform the same tests on policy, transport type, and
      transport use, as described above.  If the re-registration is
      accepted after the test, the ENRP server SHOULD replace the
      attributes of the existing PE with the information carried in the
      received ASAP_REGISTRATION message.

  4.  After accepting the registration, the ENRP server MUST assign
      itself the owner of this PE.  If this is a re-registration, the
      ENRP server MUST take over ownership of this PE, regardless of
      whether the PE was previously owned by this server or by another





Stewart, et al.               Experimental                     [Page 20]

RFC 5352            Aggregate Server Access Protocol      September 2008


      server.  The ENRP server MUST also record the SCTP transport
      address from which it received the ASAP_REGISTRATION in the ASAP
      Transport parameter TLV inside the PE parameter of this PE.

  5.  The ENRP server may reject the registration due to other reasons
      such as invalid values, lack of resource, authentication failure,
      etc.

  In all above cases, the ENRP server MUST reply to the requesting PE
  with an ASAP_REGISTRATION_RESPONSE message.  If the registration is
  accepted, the ENRP server MUST set the R flag in the
  ASAP_REGISTRATION_RESPONSE to '0'.  If the registration is rejected,
  the ENRP server MUST indicate the rejection by setting the R flag in
  the ASAP_REGISTRATION_RESPONSE to '1'.

  If the registration is rejected, the ENRP server SHOULD include the
  proper error cause(s) in the ASAP_REGISTRATION_RESPONSE message.

  If the registration is granted (either a new registration or a re-
  registration case), the ENRP server MUST assign itself to be the Home
  ENRP server of the PE, i.e., to "own" the PE.

     Implementation note: For better performance, the ENRP server may
     find it both efficient and convenient to internally maintain two
     separate PE lists or tables -- one is for the PEs that are owned
     by the ENRP server and the other is for all the PEs owned by their
     peer(s).

  Moreover, if the registration is granted, the ENRP server MUST take
  the handlespace update action to inform its peers about the change
  just made.  If the registration is denied, no message will be sent to
  its peers.

3.2.  De-Registration

  In the event a PE wishes to de-register from its server pool
  (normally, via an upper-layer request, see Section 6.2), it SHOULD
  use the following procedure.  It should be noted that an alternate
  method of de-registration is to NOT re-register and to allow the
  registration life of the PE to expire.  In this case, an
  ASAP_DEREGISTRATION_RESPONSE message is sent to the PE's ASAP
  Endpoint to indicate the removal of the PE from the pool it
  registered.

  When de-registering, the PE SHOULD use the SCTP association that was
  used for registration with its Home ENRP server.  To de-register, the
  PE's ASAP Endpoint MUST take the following actions:




Stewart, et al.               Experimental                     [Page 21]

RFC 5352            Aggregate Server Access Protocol      September 2008


  D1)  Fill in the Pool Handle parameter of the ASAP_DEREGISTRATION
     message (Section 2.2.2) using the same Pool Handle parameter sent
     during registration.

  D2)  Fill in the PE Identifier parameter of the ASAP_DEREGISTRATION
     message.  The identifier MUST be the same as used during
     registration.  The use of the same Pool Handle and Pool Identifier
     parameters used in registration allows the identity of the PE ASAP
     Endpoint to be verified before de-registration can occur.

  D3)  Send the ASAP_DEREGISTRATION message to the Home ENRP server
     using the PE's SCTP association.

  D4)  Start a T3-Deregistration timer.

  If the T3-Deregistration timer expires before receiving either an
  ASAP_REGISTRATION_RESPONSE message, or a SEND.FAILURE notification
  from the PE's SCTP endpoint, the PE's ASAP Endpoint shall start the
  ENRP Server Hunt procedure (see Section 3.6) in an attempt to get
  service from another ENRP server.  After establishing a new Home ENRP
  server, the ASAP Endpoint SHOULD restart the de-registration
  procedure.

  At the reception of the ASAP_DEREGISTRATION_RESPONSE, the PE's ASAP
  endpoint MUST stop the T3-Deregistration timer.

  It should be noted that after a successful de-registration, the PE
  MAY still receive requests for some period of time.  The PE MAY wish
  to remain active and service these requests or to exit and ignore
  these requests.

  Upon receiving the message, the ENRP server SHALL remove the PE from
  its handlespace.  Moreover, if the PE is the last one of the named
  pool, the ENRP server will remove the pool from the handlespace as
  well.

  If the ENRP server fails to find any record of the PE in its
  handlespace, it SHOULD consider the de-registration granted and
  completed, and send an ASAP_DEREGISTRATION_RESPONSE message to the
  PE.

  The ENRP server may reject the de-registration request for various
  reasons, such as invalid parameters, authentication failure, etc.

  In response, the ENRP server MUST send an
  ASAP_DEREGISTRATION_RESPONSE message to the PE.  If the de-
  registration is rejected, the ENRP server MUST indicate the rejection
  by including the proper Operational Error parameter.



Stewart, et al.               Experimental                     [Page 22]

RFC 5352            Aggregate Server Access Protocol      September 2008


  It should be noted that de-registration does not stop the PE from
  sending or receiving application messages.

  Once the de-registration request is granted *and* the PE removed from
  its local copy of the handlespace, the ENRP server MUST take the
  handlespace update action to inform its peers about the change just
  made.  Otherwise, the ENRP server MUST NOT inform its peers.

3.3.  Handle Resolution

  At any time, a PE or PU may wish to resolve a handle.  This usually
  will occur when an ASAP Endpoint sends a Pool Handle (Section 6.5.1)
  to its Home ENRP server or requests a cache population (Section 6.3).
  It may also occur for other reasons (e.g., the internal ASAP PE
  wishes to know its peers to send a message to all of them).  When an
  ASAP Endpoint (PE or PU) wishes to resolve a pool handle to a list of
  accessible transport addresses of the member PEs of the pool, it MUST
  take the following actions:

  NR1)  Fill in an ASAP_HANDLE_RESOLUTION message (Section 2.2.5) with
     the Pool Handle to be resolved.

  NR2)  If the endpoint does not have a Home ENRP server, start the
     ENRP Server Hunt procedures specified in Section 3.6 to obtain
     one.  Otherwise, proceed to step NR3.

  NR3)  If a PE, send the ASAP_HANDLE_RESOLUTION message to the Home
     ENRP server using SCTP; if a PU, send the ASAP_HANDLE_RESOLUTION
     message to the Home ENRP server using either TCP or SCTP.  If sent
     from a PE, the SCTP association used for registration SHOULD be
     used.

  NR4)  Start a T1-ENRPrequest timer.

  If the T1-ENRPrequest timer expires before receiving a response
  message, the ASAP Endpoint SHOULD take the steps described in
  Section 3.7.2.  If a SEND.FAILURE notification is received from the
  SCTP or TCP layer, the ASAP Endpoint SHOULD start the Server Hunt
  procedure (see Section 3.6) in an attempt to get service from a
  different ENRP server.  After establishing a new Home ENRP server,
  the ASAP Endpoint SHOULD restart the handle resolution procedure.

  At the reception of the ASAP_HANDLE_RESOLUTION_RESPONSE message, the
  ASAP Endpoint MUST stop its T1-ENRPrequest timer.  After stopping the
  T1-ENRPrequest timer, the ASAP Endpoint SHOULD process the message as
  appropriate (e.g., populate a local cache, give the response to the
  ASAP User, and/or use the response to send the ASAP User's message).




Stewart, et al.               Experimental                     [Page 23]

RFC 5352            Aggregate Server Access Protocol      September 2008


  Note that some ASAP Endpoints MAY use a cache to minimize the number
  of handle resolutions sent.  If a cache is used, it SHOULD:

  C1)  Be consulted before sending a handle resolution.

  C2)  Have a stale timeout timer associated with each cache entry.  If
     the cache entry is determined to be stale upon a cache hit, a
     handle resolution message SHOULD be sent so the cache can be
     updated.

  C3)  In the case of a stale cache entry, the implementation may, in
     parallel, update the cache and answer the request, or it may block
     the user and wait for an updated cache before proceeding with the
     users request.

  C4)  If the cache entry is NOT stale, the endpoint SHOULD NOT send a
     handle resolution request but instead SHOULD use the entry from
     the cache.

  It should be noted that the impact of using a cache depends on the
  policy and the requirements of the application.  For some
  applications, cache-usage can increase the performance of the system;
  for some, it can decrease it.

  An ENRP server SHOULD be prepared to receive ASAP_HANDLE_RESOLUTION
  requests from PUs, either over an SCTP association on the well-known
  SCTP port, or over a TCP connection on the well-known TCP port.

  Upon reception of the ASAP_HANDLE_RESOLUTION message, the ENRP server
  MUST first look up the pool handle in its handlespace.  If the pool
  exists, the Home ENRP server MUST compose and send back an
  ASAP_HANDLE_RESOLUTION_RESPONSE message to the requesting PU.

  In the response message, the ENRP server SHOULD list all the PEs
  currently registered in this pool, in a list of PE parameters.  The
  ENRP server MUST also include a pool member selection policy
  parameter to indicate the overall member selection policy for the
  pool, if the current pool member selection policy is not Round-Robin.

  If the named pool does not exist in the handlespace, the ENRP server
  MUST reject the handle resolution request by responding with an
  ASAP_HANDLE_RESOLUTION_RESPONSE message carrying an Unknown Pool
  Handle error.








Stewart, et al.               Experimental                     [Page 24]

RFC 5352            Aggregate Server Access Protocol      September 2008


3.4.  Endpoint Keep Alive

  The ASAP_ENDPOINT_KEEP_ALIVE message is sent by an ENRP server to a
  PE in order to verify it is reachable.  If the transport level
  heartbeat mechanism is insufficient, this message can be used in a
  heartbeat mechanism for the ASAP level whose goal is determining the
  health status of the ASAP level in a timely fashion.  (The transport
  level heartbeat mechanism may be insufficient due to either the
  timeouts or the heartbeat interval being set too long, or, that the
  transport level heartbeat mechanism's coverage is limited only to the
  transport level at the two ends.)  Additionally, the
  ASAP_ENDPOINT_KEEP_ALIVE message has value in the reliability of
  fault detection if the SCTP stack is in the kernel.  In such a case,
  while the SCTP-level heartbeat monitors the end-to-end connectivity
  between the two SCTP stacks, the ASAP-level heartbeat monitors the
  end-to-end liveliness of the ASAP layer above it.

  The use of the ASAP_ENDPOINT_KEEP_ALIVE message (Section 2.2.7) and
  the ASAP_ENDPOINT_KEEP_ALIVE_ACK (Section 2.2.8) is described below.
  Upon reception of an ASAP_ENDPOINT_KEEP_ALIVE message, the following
  actions MUST be taken:

  KA1)  The PE must verify that the Pool Handle is correct and matches
     the Pool Handle sent in its earlier ASAP_REGISTRATION message.  If
     the Pool Handle does not match, the PE MUST silently discard the
     message.

  KA2)  Send an ASAP_ENDPOINT_KEEP_ALIVE_ACK (Section 2.2.8) as
     follows:

     KA2.1)  Fill in the Pool Handle parameter with the PE's Pool
        Handle.

     KA2.2)  Fill in the PE Identifier parameter using the PE
        identifier used by this PE for registration.

     KA2.3)  Send the ASAP_ENDPOINT_KEEP_ALIVE_ACK message via the
        appropriate SCTP association for the ENRP server that sent the
        ASAP_ENDPOINT_KEEP_ALIVE message.

     KA2.4)  If the H flag in the received ASAP_ENDPOINT_KEEP_ALIVE
        message is set, and the Server Identifier in the message is NOT
        the identity of your Home ENRP server (or it is not set, e.g.,
        you have a no Home ENRP server) adopt the sender of the
        ASAP_ENDPOINT_KEEP_ALIVE message as the new Home ENRP server.






Stewart, et al.               Experimental                     [Page 25]

RFC 5352            Aggregate Server Access Protocol      September 2008


3.5.  Unreachable Endpoints

  Occasionally, an ASAP Endpoint may realize a PE is unreachable.  This
  may occur by a specific SCTP error realized by the ASAP endpoint or
  via an ASAP User report via the Transport.Failure Primitive
  (Section 6.9.2).  In either case, the ASAP Endpoint SHOULD report the
  unavailability of the PE by sending an ASAP_ENDPOINT_UNREACHABLE
  message to any ENRP server.  Before sending the
  ASAP_ENDPOINT_UNREACHABLE message, the ASAP Endpoint should fill in
  the Pool Handle parameter and PE Identifier parameter of the
  unreachable endpoint.  If the sender is a PE, the message MUST be
  sent via SCTP.  It should be noted that an ASAP Endpoint MUST report
  no more than once each time it encounters such an event.
  Additionally, when processing a Transport.Failure Primitive
  (Section 6.9.2), the ASAP Endpoint MUST NOT send an
  ASAP_ENDPOINT_UNREACHABLE message unless the user has made a previous
  request to send data to the PE specified by the primitive.

  Upon the reception of an ASAP_ENDPOINT_UNREACHABLE message, an ENRP
  server MUST immediately send a point-to-point
  ASAP_ENDPOINT_KEEP_ALIVE message to the PE in question (the H flag in
  the message SHOULD be set to '0', in this case).  If this
  ASAP_ENDPOINT_KEEP_ALIVE fails (e.g., it results in an SCTP
  SEND.FAILURE notification), the ENRP server MUST consider the PE as
  truly unreachable and MUST remove the PE from its handlespace.

  If the ASAP_ENDPOINT_KEEP_ALIVE message is transmitted successfully
  to the PE, the ENRP server MUST retain the PE in its handlespace.
  Moreover, the server SHOULD keep a counter to record how many
  ASAP_ENDPOINT_UNREACHABLE messages it has received reporting
  reachability problem relating to this PE.  If the counter exceeds the
  protocol threshold MAX-BAD-PE-REPORT, the ENRP server SHOULD remove
  the PE from its handlespace.

  Optionally, an ENRP server may also periodically send point-to-point
  ASAP_ENDPOINT_KEEP_ALIVE (with the H flag set to '0') messages to
  each of the PEs owned by the ENRP server in order to check their
  reachability status.  If the sending of ASAP_ENDPOINT_KEEP_ALIVE to a
  PE fails, the ENRP server MUST consider the PE as unreachable and
  MUST remove the PE from its handlespace.  Note, if an ENRP server
  owns a large number of PEs, the implementation should pay attention
  not to flood the network with bursts of ASAP_ENDPOINT_KEEP_ALIVE
  messages.  Instead, the implementation MUST distribute the
  ASAP_ENDPOINT_KEEP_ALIVE message traffic over a time period.  This
  can be achieved by varying the time between two
  ASAP_ENDPOINT_KEEP_ALIVE messages to the same PE randomly by plus/
  minus 50 percent.




Stewart, et al.               Experimental                     [Page 26]

RFC 5352            Aggregate Server Access Protocol      September 2008


3.6.  ENRP Server Hunt Procedures

  Each PU and PE manages a list of transport addresses of ENRP servers
  it knows about.

  If multicast capabilities are used within the operational scope, an
  ENRP server MUST send periodically every (N+1)*T6-Serverannounce an
  ASAP_SERVER_ANNOUNCE message (Section 2.2.10), which includes all the
  transport addresses available for ASAP communication on the multicast
  ENRP client channel, where N is the number of ENRP servers the server
  has found via receiving ASAP_SERVER_ANNOUNCE messages.  This should
  result in a message rate of approximately 1 ASAP_SERVER_ANNOUNCE per
  T6-Serverannounce.

  If an ASAP_SERVER_ANNOUNCE message is received by a PU or PE, it
  SHOULD insert all new included transport addresses into its list of
  ENRP server addresses and start a T7-ENRPoutdate timer for each
  address.  For all already-known, included transport addresses, the
  T7-ENRPoutdate timer MUST be restarted for each address.  If no
  transport parameters are included in the ASAP_SERVER_ANNOUNCE
  message, the SCTP transport protocol is assumed to be used and the
  source IP address and the IANA-registered ASAP port number is used
  for communication with the ENRP server.  If a T7-ENRPoutdate timer
  for a transport address expires, the corresponding address is deleted
  from the managed list of transport addresses of the PU or PE.

  If multicast capabilities are not used within the operational scope,
  each PU and PE MUST have a configured list of transport addresses of
  ENRP servers.

  At its startup, or when it fails to communicate with its Home ENRP
  server (i.e., timed out on an ENRP request), a PE or PU MUST
  establish a new Home ENRP server (i.e., set up a TCP connection or
  SCTP association with a different ENRP server).

  To establish a Home ENRP server, the following rules MUST be
  followed:

  SH1)  The PE or PU SHOULD try to establish an association or
     connection, with no more than three ENRP servers.  An ASAP
     Endpoint MUST NOT establish more than three associations or
     connections.

  SH2)  The ASAP Endpoint shall start a T5-Serverhunt timer.







Stewart, et al.               Experimental                     [Page 27]

RFC 5352            Aggregate Server Access Protocol      September 2008


  SH3)  If the ASAP Endpoint establishes an association or connection
     it MUST stop its T5-Serverhunt timer.  The ASAP Endpoint SHOULD
     also reset the T5-Serverhunt timer to its initial value and then
     proceed to step SH6.

  SH4)  If an association or connection establishment fails, the ASAP
     Endpoint SHOULD try to establish an association or connection
     using a different transport address.

  SH5)  If the T5-Serverhunt timer expires, the following should be
     performed:

     SH5.1)  The ASAP Endpoint MUST double the value of the T5-
        Serverhunt timer.  Note that this doubling is capped at the
        value RETRAN.max.

     SH5.2)  The ASAP Endpoint SHOULD stop the establishment of
        associations and connections with the transport addresses
        selected in step SH1.

     SH5.2)  The ASAP Endpoint SHOULD repeat trying to establish an
        association or connection by proceeding to step SH1.  It SHOULD
        attempt to select a different set of transport addresses with
        which to connect.

  SH6)  The PE or PU shall pick one of the ENRP servers with which it
     was able to establish an association or connection, and send all
     subsequent ENRP request messages to this new Home ENRP server.

3.7.  Handling ASAP Endpoint to ENRP Server Communication Failures

  Three types of failure may occur when the ASAP Endpoint at either the
  PE or PU tries to communicate with an ENRP server:

  A) SCTP send failure

  B) T1-ENRPrequest timer expiration

  C) Registration failure

3.7.1.  SCTP Send Failure

  This communication failure indicates that the SCTP layer was unable
  to deliver a message sent to an ENRP server.  In other words, the
  ENRP server is unreachable.






Stewart, et al.               Experimental                     [Page 28]

RFC 5352            Aggregate Server Access Protocol      September 2008


  In such a case, the ASAP Endpoint MUST NOT re-send the undeliverable
  message.  Instead, it SHOULD discard the message and start the ENRP
  Server Hunt procedure as described in Section 3.6.  After finding a
  new Home ENRP server, the ASAP Endpoint should re-send the request.

  Note that an ASAP Endpoint MAY also choose to NOT discard the
  message, but to queue it for retransmission after a new Home ENRP
  server is found.  If an ASAP Endpoint does choose to discard the
  message, after a new Home ENRP server is found, the ASAP Endpoint
  MUST be capable of reconstructing the original request.

3.7.2.  T1-ENRPrequest Timer Expiration

  When the T1-ENRPrequest timer expires, the ASAP Endpoint should re-
  send the original request to the ENRP server and restart the T1-
  ENRPrequest timer.  In parallel, the ASAP Endpoint should begin the
  ENRP server hunt procedures described in Section 3.6.

  This should be repeated up to MAX-REQUEST-RETRANSMIT times.  After
  that, an Error.Report notification should be generated to inform the
  ASAP User, and the ENRP request message associated with the T1-
  ENRPrequest timer should be discarded.  It should be noted that if an
  alternate ENRP server responds, the ASAP Endpoint SHOULD adopt the
  responding ENRP server as its new Home ENRP server and re-send the
  request to the new Home ENRP server.

3.7.3.  Registration Failure

  Registration failure is discussed in Section 3.1.

3.8.  Cookie Handling Procedures

  Whenever a PE wants, and a control channel exists, it can send an
  ASAP_COOKIE message to a PU via the control channel.  The PU's ASAP
  endpoint stores the Cookie parameter and discards an older cookie if
  it is previously stored.

  Note: A control channel is a communication channel between a PU and
  PE that does not carry data passed to the user.  This is accomplished
  with SCTP by using a PPID to separate the ASAP messages (Cookie and
  Business Card) from normal data messages.

  If the PU's ASAP Endpoint detects a failure and initiates a failover
  to a different PE, it SHOULD send the latest received cookie
  parameter in an ASAP_COOKIE_ECHO message to the new PE as the first
  message on the control channel.  Upper layers may be involved in the
  failover procedure.




Stewart, et al.               Experimental                     [Page 29]

RFC 5352            Aggregate Server Access Protocol      September 2008


  The cookie handling procedure can be used for state sharing.
  Therefore, a cookie should be signed by the sending PE ASAP Endpoint
  and the cookie should be verified by the receiving PE's ASAP
  Endpoint.  The details of the verification procedure are out of scope
  for this document.  It is only important that the PU always stores
  the last received Cookie parameter and sends that back unmodified in
  case of a PE failure.

3.9.  Business Card Handling Procedures

  When communication begins between a PU and a PE, either of which
  could be part of a PU/PE combination (i.e., a message is sent between
  the entities), a PE should always send an ASAP_BUSINESS_CARD message
  to a PU.  A PU should send an ASAP_BUSINESS_CARD message to a PE only
  if it is part of a PU/PE combination.  An ASAP_BUSINESS_CARD message
  MUST ONLY be sent if a control channel exists between a PU and PE.
  After communication has been established between a PE and PU, a new
  ASAP_BUSINESS_CARD message may be sent at any time by either entity
  to update its failover order.

  The ASAP_BUSINESS_CARD message serves two purposes.  First, it lists
  the pool handle.  For a PU that is part of a PU/PE combination that
  is contacting a PE, this is essential so that the PE learns the pool
  handle of the PU/PE combination requesting service.  Secondly, the
  ASAP_BUSINESS_CARD message tells the receiving entity a failover
  order that is recommended to follow.  This should facilitate
  rendezvous between entities that have been working together, as well
  as to control the load redistribution upon the failure of any PE.

  Upon receipt of an ASAP_BUSINESS_CARD message (see Section 2.2.13),
  the receiving ASAP Endpoint SHOULD:

  BC1)  Unpack the message, and if no entry exists in the translation
     cache of the receiving ASAP Endpoint for the pool handle listed
     within the ASAP_BUSINESS_CARD message, perform an
     ASAP_HANDLE_RESOLUTION for that pool handle.  If the translation
     cache does hold an entry for the pool handle, then it may be
     necessary to update the peer endpoint.

  BC2)  Unpack the message and populate a preferred list for failover
     order.  If the peer's PE should fail, this preferred list will be
     used to guide the ASAP Endpoint in the selection of an alternate
     PE.








Stewart, et al.               Experimental                     [Page 30]

RFC 5352            Aggregate Server Access Protocol      September 2008


4.  Roles of Endpoints

  A PU MUST implement the handling of ASAP_HANDLE_RESOLUTION and
  ASAP_HANDLE_RESOLUTION_RESPONSE messages.  Furthermore, it MUST
  support the handling of ASAP_ERROR messages.  It MAY implement the
  handling of ASAP_COOKIE, ASAP_COOKIE_ECHO, and ASAP_BUSINESS_CARD
  messages.  It MAY also implement the handling of ASAP_SERVER_ANNOUNCE
  messages.

  A PE MUST implement the handling of ASAP_REGISTRATION,
  ASAP_DEREGISTRATION, ASAP_REGISTRATION_RESPONSE, and
  ASAP_DEREGISTRATION_RESPONSE messages.  Furthermore, it MUST support
  the handling of ASAP_ENDPOINT_KEEP_ALIVE,
  ASAP_ENDPOINT_KEEP_ALIVE_ACK, ASAP_ENDPOINT_UNREACHABLE, and
  ASAP_ERROR messages.  It SHOULD support the handling of ASAP_COOKIE,
  ASAP_COOKIE_ECHO, and ASAP_BUSINESS_CARD messages.  Furthermore, it
  MAY support the handling of ASAP_SERVER_ANNOUNCE messages.

  An ENRP server MUST implement the handling of ASAP_REGISTRATION,
  ASAP_DEREGISTRATION, ASAP_REGISTRATION_RESPONSE, and
  ASAP_DEREGISTRATION_RESPONSE messages.  Furthermore, it MUST support
  the handling of ASAP_ENDPOINT_KEEP_ALIVE,
  ASAP_ENDPOINT_KEEP_ALIVE_ACK, ASAP_ENDPOINT_UNREACHABLE, and
  ASAP_ERROR messages.  Furthermore, it MAY support the handling of
  ASAP_SERVER_ANNOUNCE messages.

  If a node acts as a PU and a PE, it MUST fulfill both roles.

5.  SCTP Considerations

  Each ASAP message is considered as an SCTP user message.  The PPID
  registered for ASAP SHOULD be used.  The SCTP port used at the ENRP
  server might be preconfigured or announced in the
  ASAP_SERVER_ANNOUNCE message or the well-known ASAP port.

  ASAP messages belonging to the control channel MUST be sent using the
  PPID registered for ASAP.  Messages belonging to the data channel
  MUST NOT use the PPID registered for ASAP.

6.  The ASAP Interfaces

  This chapter will focus primarily on the primitives and notifications
  that form the interface between the ASAP User and ASAP and that
  between ASAP and its lower-layer transport protocol (e.g., SCTP).







Stewart, et al.               Experimental                     [Page 31]

RFC 5352            Aggregate Server Access Protocol      September 2008


  Note, the following primitive and notification descriptions are shown
  for illustrative purposes.  We believe that including these
  descriptions in this document is important to the understanding of
  the operation of many aspects of ASAP; but an ASAP implementation is
  not required to use the exact syntax described in this section.

  An ASAP User passes primitives to the ASAP sub-layer to request
  certain actions.  Upon the completion of those actions or upon the
  detection of certain events, the ASAP layer will notify the ASAP
  User.

6.1.  Registration.Request Primitive

        Format: registration.request(Pool Handle,
                                     User Transport parameter(s))

  The Pool Handle parameter contains a NULL terminated ASCII string of
  fixed length.  The optional User Transport parameter(s) indicates
  specific transport parameters and types with which to register.  If
  this optional parameter is left off, then the SCTP endpoint used to
  communicate with the ENRP server is used as the default User
  Transport parameter.  Note that any IP address contained within a
  User Transport parameter MUST be a bound IP address in the SCTP
  endpoint used to communicate with the ENRP server.

  The ASAP User invokes this primitive to add itself to the
  handlespace, thus becoming a Pool Element of a pool.  The ASAP User
  must register itself with the ENRP server by using this primitive
  before other ASAP Users using the handlespace can send message(s) to
  this ASAP User by Pool Handle or by PE handle (see Sections 6.5.1 and
  6.5.3).

  In response to the registration primitive, the ASAP Endpoint will
  send an ASAP_REGISTRATION message to the Home ENRP server (see
  Sections 2.2.1 and 3.1), and start a T2-registration timer.

6.2.  Deregistration.Request Primitive

        Format: deregistration.request(Pool Handle)

  The ASAP PE invokes this primitive to remove itself from the Server
  Pool.  This should be used as a part of the graceful shutdown process
  by the application.

  An ASAP_DEREGISTRATION message will be sent by the ASAP Endpoint to
  the Home ENRP server (see Sections 2.2.2 and 3.2).





Stewart, et al.               Experimental                     [Page 32]

RFC 5352            Aggregate Server Access Protocol      September 2008


6.3.  CachePopulateRequest Primitive

         Format: cache_populate_request([Pool-Handle |
                                       Pool-Element-Handle])

  If the address type is a Pool Handle and a local handle translation
  cache exists, the ASAP Endpoint should initiate a mapping information
  query by sending an ASAP_HANDLE_RESOLUTION message on the Pool handle
  and updating its local cache when the response comes back from the
  ENRP server.

  If a Pool-Element-Handle is passed, then the Pool Handle is unpacked
  from the Pool-Element-Handle and the ASAP_HANDLE_RESOLUTION message
  is sent to the ENRP server for resolution.  When the response message
  returns from the ENRP server, the local cache is updated.

  Note that if the ASAP service does NOT support a local cache, this
  primitive performs NO action.

6.4.  CachePurgeRequest Primitive

     Format: cache_purge_request([Pool-Handle | Pool-Element-Handle])

  If the user passes a Pool Handle and local handle translation cache
  exists, the ASAP Endpoint should remove the mapping information on
  the Pool Handle from its local cache.  If the user passes a Pool-
  Element-Handle, then the Pool Handle within is used for the
  cache_purge_request.

  Note that if the ASAP service does NOT support a local cache, this
  primitive performs NO action.

6.5.  DataSendRequest Primitive

        Format: data_send_request(destinationAddress, typeOfAddress,
                                  message, sizeOfMessage, Options);

  This primitive requests ASAP to send a message to some specified Pool
  or Pool Element within the current Operational scope.

  Depending on the address type used for the send request, the sender's
  ASAP Endpoint may perform address translation and Pool Element
  selection before sending the message out.  This MAY also dictate the
  creation of a local transport endpoint in order to meet the required
  transport type.

  The data_send_request primitive can take different forms of address
  types, as described in the following sections.



Stewart, et al.               Experimental                     [Page 33]

RFC 5352            Aggregate Server Access Protocol      September 2008


6.5.1.  Sending to a Pool Handle

  In this case, the destinationAddress and typeOfAddress together
  indicate a pool handle.

  This is the simplest form of send_data_request primitive.  By
  default, this directs ASAP to send the message to one of the Pool
  Elements in the specified pool.

  Before sending the message out to the pool, the sender's ASAP
  endpoint MUST first perform a pool handle to address translation.  It
  may also need to perform Pool Element selection if multiple Pool
  Elements exist in the pool.

  If the sender's ASAP implementation does not support a local cache of
  the mapping information, or if it does not have the mapping
  information on the pool in its local cache, it will transmit an
  ASAP_HANDLE_RESOLUTION message (see Sections 2.2.5 and 3.3) to the
  current Home ENRP server and MUST hold the outbound message in queue
  while awaiting the response from the ENRP server (any further send
  request to this pool before the ENRP server responds SHOULD also be
  queued).

  Once the necessary mapping information arrives from the ENRP server,
  the sender's ASAP will:

  A) map the pool handle into a list of transport addresses of the
     destination PE(s);

  B) if multiple PEs exist in the pool, choose one of them and transmit
     the message to it.  In that case, the choice of the PE is made by
     the ASAP Endpoint of the sender based on the server pooling
     policy, as discussed in Section 6.5.2;

  C) optionally create any transport endpoint that may be needed to
     communicate with the PE selected;

  D) if no transport association or connection exists towards the
     destination PE, establish any needed transport state;

  E) send out the queued message(s) to the appropriate transport
     connection using the appropriate send mechanism (e.g., for SCTP,
     the SEND primitive in [RFC4960] would be used); and,

  F) if the local cache is implemented, append/update the local cache
     with the mapping information received in the ENRP server's
     response.  Also, record the local transport information (e.g., the
     SCTP association id) if any new transport state was created.



Stewart, et al.               Experimental                     [Page 34]

RFC 5352            Aggregate Server Access Protocol      September 2008


  For more on the ENRP server request procedures see [RFC5353].

  Optionally, the ASAP Endpoint of the sender may return a Pool Element
  handle of the selected PE to the application after sending the
  message.  This PE handle can then be used for future transmissions to
  that same PE (see Section 6.5.3).

  Section 3.7 defines the failover procedures for cases where the
  selected PE is found unreachable.

6.5.2.  Pool Element Selection

  Each time an ASAP User sends a message to a pool that contains more
  than one PE, the sender's ASAP Endpoint must select one of the PEs in
  the pool as the receiver of the current message.  The selection is
  made according to the current server pooling policy of the pool to
  which the message is sent.

  Note, no selection is needed if the ASAP_SEND_TOALL option is set
  (see Section 6.5.5).

  Together with the server pooling policy, each PE can also specify a
  Policy Value for itself at the registration time.  The meaning of the
  Policy Value depends on the current server pooling policy of the
  group.  A PE can also change its Policy Value whenever it desires, by
  re-registering itself with the handlespace with a new Policy Value.
  Re-registration shall be done by simply sending another
  ASAP_REGISTRATION to its Home ENRP server (see Section 2.2.1).

  One basic policy is defined in this document; others can be found in
  [RFC5356]

6.5.2.1.  Round-Robin Policy

  When an ASAP Endpoint sends messages by Pool Handle and Round-Robin
  is the current policy of that Pool, the ASAP Endpoint of the sender
  will select the receiver for each outbound message by Round-Robining
  through all the registered PEs in that Pool, in an attempt to achieve
  an even distribution of outbound messages.  Note that in a large
  server pool, the ENRP server might not send back all PEs to the ASAP
  client.  In this case, the client or PU will be performing a Round-
  Robin policy on a subset of the entire Pool.

6.5.3.  Sending to a Pool Element Handle

  In this case, the destinationAddress and typeOfAddress together
  indicate an ASAP Pool Element handle.




Stewart, et al.               Experimental                     [Page 35]

RFC 5352            Aggregate Server Access Protocol      September 2008


  This requests that the ASAP Endpoint deliver the message to the PE
  identified by the Pool Element handle.

  The Pool Element handle should contain the Pool Handle and a
  destination transport address of the destination PE or the Pool
  Handle and the transport type.  Other implementation dependent
  elements may also be cached in a Pool Element handle.

  The ASAP Endpoint shall use the transport address and transport type
  to identify the endpoint with which to communicate.  If no
  communication state exists with the peer endpoint (and is required by
  the transport protocol), the ASAP Endpoint MAY set up the needed
  state and then invoke the SEND primitive for the particular transport
  protocol to send the message to the PE.

  In addition, if a local translation cache is supported, the endpoint
  will:

  A) send out the message to the transport address (or association id)
     designated by the PE handle.

  B) determine if the Pool Handle is in the local cache.

     If it is *not*, the endpoint will:


     i) ask the Home ENRP server for handle resolution on the pool
        handle by sending an ASAP_HANDLE_RESOLUTION message (see
        Section 2.2.5), and

     ii)  use the response to update the local cache.

        If the pool handle is in the cache, the endpoint will only
        update the pool handle if the cache is stale.  A stale cache is
        indicated by it being older than the protocol parameter
        'stale.cache.value' (see Section 7.2).

  Sections 3.5 and 6.9 define the failover procedures for cases where
  the PE pointed to by the Pool Element handle is found to be
  unreachable.

  Optionally, the ASAP Endpoint may return the actual Pool Element
  handle to which the message was sent (this may be different from the
  Pool Element handle specified when the primitive is invoked, due to
  the possibility of automatic failover).






Stewart, et al.               Experimental                     [Page 36]

RFC 5352            Aggregate Server Access Protocol      September 2008


6.5.4.  Send by Transport Address

  In this case, the destinationAddress and typeOfAddress together
  indicate a transport address and transport type.

  This directs the sender's ASAP Endpoint to send the message out to
  the specified transport address.

  No endpoint failover is supported when this form of send request is
  used.  This form of send request effectively bypasses the ASAP
  endpoint.

6.5.5.  Message Delivery Options

  The Options parameter passed in the various forms of the above
  data_send_request primitive gives directions to the sender's ASAP
  endpoint on special handling of the message delivery.

  The value of the Options parameter is generated by bit-wise "OR"ing
  of the following pre-defined constants:

  ASAP_USE_DEFAULT: 0x0000  Use default setting.

  ASAP_SEND_FAILOVER: 0x0001  Enables PE failover on this message.  In
     the case where the first selected PE or the PE pointed to by the
     PE handle is found unreachable, the sender's ASAP Endpoint SHOULD
     re-select an alternate PE from the same pool if one exists, and
     silently re-send the message to this newly selected endpoint.

     Note that this is a best-effort service.  Applications should be
     aware that messages can be lost during the failover process, even
     if the underlying transport supports retrieval of unacknowledged
     data (e.g., SCTP).  (Example: messages acknowledged by the SCTP
     layer at a PE, but not yet read by the PE when a PE failure
     occurs.)  In the case where the underlying transport does not
     support such retrieval (e.g., TCP), any data already submitted by
     ASAP to the transport layer may be lost upon failover.

  ASAP_SEND_NO_FAILOVER: 0x0002  This option prohibits the sender's
     ASAP Endpoint from re-sending the message to any alternate PE in
     case that the first selected PE, or the PE pointed to by the PE
     handle, is found to be unreachable.  Instead, the sender's ASAP
     Endpoint shall notify its upper layer about the unreachability
     with an Error.Report and return any unsent data.

  ASAP_SEND_TO_LAST: 0x0004  This option requests that the sender's
     ASAP Endpoint send the message to the same PE in the pool to which
     the previous message destined to this pool was sent.



Stewart, et al.               Experimental                     [Page 37]

RFC 5352            Aggregate Server Access Protocol      September 2008


  ASAP_SEND_TO_ALL: 0x0008  When sending by Pool Handle, this option
     directs the sender's ASAP endpoint to send a copy of the message
     to all the PEs, except for the sender itself if the sender is a PE
     in that pool.

  ASAP_SEND_TO_SELF: 0x0010  This option only applies in combination
     with the ASAP_SEND_TO_ALL option.  It permits the sender's ASAP
     Endpoint to also deliver a copy of the message to itself if the
     sender is a PE of the pool (i.e., loop-back).

  ASAP_SCTP_UNORDER: 0x1000  This option requests that the transport
     layer send the current message using un-ordered delivery (note the
     underlying transport must support un-ordered delivery for this
     option to be effective).

6.6.  Data.Received Notification

        Format: data.received(messageReceived, sizeOfMessage,
                              senderAddress, typeOfAddress)

  When a new user message is received, the ASAP Endpoint of the
  receiver uses this notification to pass the message to its upper
  layer.

  Along with the message being passed, the ASAP Endpoint of the
  receiver should also indicate to its upper layer the message senders
  address.  The sender's address can be in the form of either an SCTP
  association id, TCP transport address, UDP transport address, or an
  ASAP Pool Element handle.

  A) If the handle translation local cache is implemented at the
     receiver's ASAP Endpoint, a reverse mapping from the sender's IP
     address to the pool handle should be performed, and if the mapping
     is successful, the sender's ASAP Pool Element handle should be
     constructed and passed in the senderAddress field.

  B) If there is no local cache or the reverse mapping is not
     successful, the SCTP association id or other transport specific
     identification (if SCTP is not being used) should be passed in the
     senderAddress field.











Stewart, et al.               Experimental                     [Page 38]

RFC 5352            Aggregate Server Access Protocol      September 2008


6.7.  Error.Report Notification

        Format: error.report(destinationAddress, typeOfAddress,
                             failedMessage, sizeOfMessage)

  An error.report should be generated to notify the ASAP User about
  failed message delivery as well as other abnormalities.

  The destinationAddress and typeOfAddress together indicate to whom
  the message was originally sent.  The address type can be either an
  ASAP Pool Element handle, association id, or a transport address.

  The original message (or the first portion of it if the message is
  too big) and its size should be passed in the failedMessage and
  sizeOfMessage fields, respectively.

6.8.  Examples

  These examples assume an underlying SCTP transport between the PE and
  PU.  Other transports are possible, but SCTP is utilized in the
  examples for illustrative purposes.  Note that all communication
  between the PU and ENRP server and the PE and ENRP servers would be
  using SCTP.

6.8.1.  Send to a New Pool

  This example shows the event sequence when a Pool User sends the
  message "hello" to a pool that is not in the local translation cache
  (assuming local caching is supported).

    ENRP Server                       PU         new-handle:PEx

      |                                |                 |
      |                              +---+               |
      |                              | 1 |               |
      |2. ASAP_HANDLE_RESOLUTION     +---+               |
      |<-------------------------------|                 |
      |                              +---+               |
      |                              | 3 |               |
      |4. ASAP_HANDLE_RESOLUTION_RSP +---+               |
      |------------------------------->|                 |
      |                              +---+               |
      |                              | 5 |               |
      |                              +---+  6. "hello1"  |
      |                                |---------------->|
      |                                |                 |





Stewart, et al.               Experimental                     [Page 39]

RFC 5352            Aggregate Server Access Protocol      September 2008


  1) The user at PU invokes:

     data_send_request("new-handle", handle-type, "hello1", 6, 0);

     The ASAP Endpoint, in response, looks up the pool "new-handle" in
     its local cache, but fails to find it.


  2) The ASAP Endpoint of the PU queues the message and sends an
     ASAP_HANDLE_RESOLUTION request to the ENRP server asking for all
     information about pool "new-handle".

  3) A T1-ENRPrequest timer is started while the ASAP Endpoint is
     waiting for the response from the ENRP server.

  4) The ENRP server responds to the query with an
     ASAP_HANDLE_RESOLUTION_RESPONSE message that contains all the
     information about pool "new-handle".

  5) ASAP at PU cancels the T1-ENRPrequest timer and populate its local
     cache with information on pool "new-handle".

  6) Based on the server pooling policy of pool "new-handle", ASAP at
     PU selects the destination PE (PEx), sets up, if necessary, an
     SCTP association towards PEx (explicitly or implicitly), and sends
     out the queued "hello1" user message.

6.8.2.  Send to a Cached Pool Handle

  This shows the event sequence when the ASAP User PU sends another
  message to the pool "new-handle" after what happened in
  Section 6.8.1.


    ENRP Server                       PU         new-handle:PEx

      |                                |                 |
      |                              +---+               |
      |                              | 1 |               |
      |                              +---+  2. "hello2"  |
      |                                |---------------->|
      |                                |                 |









Stewart, et al.               Experimental                     [Page 40]

RFC 5352            Aggregate Server Access Protocol      September 2008


  1) The user at PU invokes:

     data_send_request("new-handle", handle-type, "hello2", 6, 0);

     The ASAP Endpoint, in response, looks up the pool "new-handle" in
     its local cache and finds the mapping information.

  2) Based on the server pooling policy of "new-handle", ASAP at PU
     selects the PE (assuming EPx is selected again), and sends out
     "hello2" message (assuming the SCTP association is already set
     up).

6.9.  PE Send Failure

  When the ASAP Endpoint in a PE or PU attempts to send a message to a
  PE and fails, the failed sender will report the event as described in
  Section 3.5.

  Additional primitives are also defined in this section to support
  those user applications that do not wish to use ASAP as the actual
  transport.

6.9.1.  Translation.Request Primitive

          Format: translation.request(Pool-Handle)

  If the address type is a Pool Handle and a local handle translation
  cache exists, the ASAP Endpoint should look within its translation
  cache and return the current known transport types, ports, and
  addresses to the caller.

  If the Pool Handle does not exist in the local handle cache or no
  handle cache exists, the ASAP Endpoint will send an
  ASAP_HANDLE_RESOLUTION request using the Pool Handle.  Upon
  completion of the handle resolution, the ASAP Endpoint should
  populate the local handle cache (if a local handle cache is
  supported) and return the transport types, ports, and addresses to
  the caller.













Stewart, et al.               Experimental                     [Page 41]

RFC 5352            Aggregate Server Access Protocol      September 2008


6.9.2.  Transport.Failure Primitive

      Format: transport.failure(Pool-Handle, Transport-address)

  If an external user encounters a failure in sending to a PE and is
  *not* using ASAP, it can use this primitive to report the failure to
  the ASAP endpoint.  ASAP will send an ASAP_ENDPOINT_UNREACHABLE to
  the "Home" ENRP server in response to this primitive.  Note ASAP
  SHOULD NOT send an ASAP_ENDPOINT_UNREACHABLE *unless* the user has
  actually made a previous request to send data to the PE.

7.  Timers, Variables, and Thresholds

  The following is a summary of the timers, variables, and pre-set
  protocol constants used in ASAP.

7.1.  Timers

  T1-ENRPrequest -  A timer started when a request is sent by ASAP to
     the ENRP server (providing application information is queued).
     Normally set to 15 seconds.

  T2-registration -  A timer started when sending an ASAP_REGISTRATION
     request to the Home ENRP server, normally set to 30 seconds.

  T3-deregistration -  A timer started when sending a de-registration
     request to the Home ENRP server, normally set to 30 seconds.

  T4-reregistration -  This timer is started after successful
     registration into the ENRP handlespace and is used to cause a re-
     registration at a periodic interval.  This timer is normally set
     to 10 minutes or 20 seconds less than the Lifetime parameter used
     in the registration request (whichever is less).

  T5-Serverhunt -  This timer is used during the ENRP Server Hunt
     procedure and is normally set to 10 seconds.

  T6-Serverannounce -  This timer gives the time between the sending of
     consecutive ASAP_SERVER_ANNOUNCE messages.  It is normally set to
     1 second.

  T7-ENRPoutdate -  This timer gives the time a server announcement is
     valid.  It is normally set to 5 seconds.

7.2.  Variables

  stale_cache_value -  A threshold variable that indicates how long a
     cache entry is valid for.



Stewart, et al.               Experimental                     [Page 42]

RFC 5352            Aggregate Server Access Protocol      September 2008


7.3.  Thresholds

  MAX-REG-ATTEMPT -  The maximum number of registration attempts to be
     made before a server hunt is issued.  The default value of this is
     set to 2.

  MAX-REQUEST-RETRANSMIT -  The maximum number of attempts to be made
     when requesting information from the local ENRP server before a
     server hunt is issued.  The default value for this is 2.

  RETRAN-MAX -  This value represents the maximum time between
     registration attempts and puts a ceiling on how far the
     registration timer will back off.  The default value for this is
     normally set to 60 seconds.

8.  IANA Considerations

  This document (RFC 5352) is the reference for all registrations
  described in this section.  All registrations have been listed on the
  Reliable Server Pooling (RSerPool) Parameters page.

8.1.  A New Table for ASAP Message Types

  ASAP Message Types are maintained by IANA.  Fourteen initial values
  have been assigned by IANA as described in Figure 1.  IANA created a
  new table, "ASAP Message Types":

  Type       Message Name                     Reference
  -----      -------------------------        ---------
  0x00       (Reserved by IETF)               RFC 5352
  0x01       ASAP_REGISTRATION                RFC 5352
  0x02       ASAP_DEREGISTRATION              RFC 5352
  0x03       ASAP_REGISTRATION_RESPONSE       RFC 5352
  0x04       ASAP_DEREGISTRATION_RESPONSE     RFC 5352
  0x05       ASAP_HANDLE_RESOLUTION           RFC 5352
  0x06       ASAP_HANDLE_RESOLUTION_RESPONSE  RFC 5352
  0x07       ASAP_ENDPOINT_KEEP_ALIVE         RFC 5352
  0x08       ASAP_ENDPOINT_KEEP_ALIVE_ACK     RFC 5352
  0x09       ASAP_ENDPOINT_UNREACHABLE        RFC 5352
  0x0a       ASAP_SERVER_ANNOUNCE             RFC 5352
  0x0b       ASAP_COOKIE                      RFC 5352
  0x0c       ASAP_COOKIE_ECHO                 RFC 5352
  0x0d       ASAP_BUSINESS_CARD               RFC 5352
  0x0e       ASAP_ERROR                       RFC 5352
  0x0b-0xff  (Available for Assignment)       RFC 5352






Stewart, et al.               Experimental                     [Page 43]

RFC 5352            Aggregate Server Access Protocol      September 2008


  Requests to register an ASAP Message Type in this table should be
  sent to IANA.  The number must be unique.  The "Specification
  Required" policy of [RFC5226] MUST be applied.

8.2.  Port Numbers

  The references for the already assigned port numbers

     asap-tcp 3863/tcp

     asap-udp 3863/udp

     asap-sctp 3863/sctp

     asap-tcp-tls 3864/tcp

     asap-sctp-tls 3864/sctp

  have been updated to RFC 5352.

8.3.  SCTP Payload Protocol Identifier

  The reference for the already assigned ASAP payload protocol
  identifier 11 has been updated to RFC 5352.

8.4.  Multicast Addresses

  IANA has assigned an IPv4 multicast address (224.0.1.185) and an IPv6
  multicast address (FF0X:0:0:0:0:0:0:133).  The IPv4 address is part
  of the Internetwork Control Block (224.0.1/24).

9.  Security Considerations

  We present a summary of the of the threats to the RSerPool
  architecture and describe security requirements in response in order
  to mitigate the threats.  Next, we present the security mechanisms,
  based on TLS, that are implementation requirements in response to the
  threats.  Finally, we present a chain-of-trust argument that examines
  critical data paths in RSerPool and shows how these paths are
  protected by the TLS implementation.











Stewart, et al.               Experimental                     [Page 44]

RFC 5352            Aggregate Server Access Protocol      September 2008


9.1.  Summary of RSerPool Security Threats

  "Threats Introduced by Reliable Server Pooling (RSerPool) and
  Requirements for Security in Response to Threats" [RFC5355] describes
  the threats to the RSerPool architecture in detail and lists the
  security requirements in response to each threat.  From the threats
  described in this document, the security services required for the
  RSerPool protocol are enumerated below.

  Threat 1) PE registration/de-registration flooding or spoofing.
  -----------
  Security mechanism in response: ENRP server authenticates the PE.

  Threat 2) PE registers with a malicious ENRP server.
  -----------
  Security mechanism in response: PE authenticates the ENRP server.

  Threats 1 and 2, taken together, result in mutual authentication of
  the ENRP server and the PE.

  Threat 3) Malicious ENRP server joins the ENRP server pool.
  -----------
  Security mechanism in response: ENRP servers mutually authenticate.

  Threat 4) A PU communicates with a malicious ENRP server for handle
  resolution.
  -----------
  Security mechanism in response: The PU authenticates the ENRP server.

  Threat 5) Replay attack.
  -----------
  Security mechanism in response: Security protocol that has protection
  from replay attacks.

  Threat 6) Corrupted data that causes a PU to have misinformation
  concerning a pool handle resolution.
  -----------
  Security mechanism in response: Security protocol that supports
  integrity protection.

  Threat 7) Eavesdropper snooping on handlespace information.
  -----------
  Security mechanism in response: Security protocol that supports data
  confidentiality.







Stewart, et al.               Experimental                     [Page 45]

RFC 5352            Aggregate Server Access Protocol      September 2008


  Threat 8) Flood of ASAP_ENDPOINT_UNREACHABLE messages from the PU to
  ENRP server.
  -----------
  Security mechanism in response: ASAP must control the number of ASAP
  Endpoint unreachable messages transmitted from the PU to the ENRP
  server.

  Threat 9) Flood of ASAP_ENDPOINT_KEEP_ALIVE messages to the PE from
  the ENRP server.
  -----------
  Security mechanism in response: ENRP server must control the number
  of ASAP_ENDPOINT_KEEP_ALIVE messages to the PE.

  To summarize, the threats 1-7 require security mechanisms that
  support authentication, integrity, data confidentiality, and
  protection from replay attacks.

  For RSerPool we need to authenticate the following:

     PU <----  ENRP server (PU authenticates the ENRP server)
     PE <----> ENRP server (mutual authentication)
     ENRP server <-----> ENRP server (mutual authentication)

9.2.  Implementing Security Mechanisms

  We do not define any new security mechanisms specifically for
  responding to threats 1-7.  Rather, we use an existing IETF security
  protocol, specifically [RFC3237], to provide the security services
  required.  TLS supports all these requirements and MUST be
  implemented.  The TLS_RSA_WITH_AES_128_CBC_SHA ciphersuite MUST be
  supported, at a minimum, by implementers of TLS for RSerPool.  For
  purposes of backwards compatibility, ENRP SHOULD support
  TLS_RSA_WITH_3DES_EDE_CBC_SHA.  Implementers MAY also support any
  other IETF-approved ciphersuites.

  ENRP servers, PEs, and PUs MUST implement TLS.  ENRP servers and PEs
  MUST support mutual authentication using PSK (pre-shared-key).  ENRP
  servers MUST support mutual authentication among themselves using
  PSK.  PUs MUST authenticate ENRP servers using certificates.

  TLS with PSK is mandatory to implement as the authentication
  mechanism for ENRP to ENRP authentication and PE to ENRP
  authentication.  For PSK, having a pre-shared-key constitutes
  authorization.  The network administrators of a pool need to decide
  which nodes are authorized to participate in the pool.  The
  justification for PSK is that we assume that one administrative
  domain will control and manage the server pool.  This allows for PSK
  to be implemented and managed by a central security administrator.



Stewart, et al.               Experimental                     [Page 46]

RFC 5352            Aggregate Server Access Protocol      September 2008


  TLS with certificates is mandatory to implement as the authentication
  mechanism for PUs to the ENRP server.  PUs MUST authenticate ENRP
  servers using certificates.  ENRP servers MUST possess a site
  certificate whose subject corresponds to their canonical hostname.
  PUs MAY have certificates of their own for mutual authentication with
  TLS, but no provisions are set forth in this document for their use.
  All RSerPool Elements that support TLS MUST have a mechanism for
  validating certificates received during TLS negotiation; this entails
  possession of one or more root certificates issued by certificate
  authorities (preferably, well-known distributors of site certificates
  comparable to those that issue root certificates for web browsers).

  In order to prevent man-in-the-middle attacks, the client MUST verify
  the server's identity (as presented in the server's Certificate
  message).  The client's understanding of the server's identity
  (typically, the identity used to establish the transport connection)
  is called the "reference identity".  The client determines the type
  (e.g., DNS name or IP address) of the reference identity and performs
  a comparison between the reference identity and each subjectAltName
  value of the corresponding type until a match is produced.  Once a
  match is produced, the server's identity has been verified, and the
  server identity check is complete.  Different subjectAltName types
  are matched in different ways.  The client may map the reference
  identity to a different type prior to performing a comparison.
  Mappings may be performed for all available subjectAltName types to
  which the reference identity can be mapped; however, the reference
  identity should only be mapped to types for which the mapping is
  either inherently secure (e.g., extracting the DNS name from a URI to
  compare with a subjectAltName of type dNSName) or for which the
  mapping is performed in a secure manner (e.g., using DNS Security
  (DNSSEC), or using user- or admin-configured host-to-address/
  address-to-host lookup tables).

  If the server identity check fails, user-oriented clients SHOULD
  either notify the user or close the transport connection and indicate
  that the server's identity is suspect.  Automated clients SHOULD
  close the transport connection and then return or log an error
  indicating that the server's identity is suspect, or both.  Beyond
  the server identity check described in this section, clients should
  be prepared to do further checking to ensure that the server is
  authorized to provide the service it is requested to provide.  The
  client may need to make use of local policy information in making
  this determination.

  If the reference identity is an internationalized domain name,
  conforming implementations MUST convert it to the ASCII Compatible
  Encoding (ACE) format, as specified in Section 4 of [RFC3490], before
  comparison with subjectAltName values of type dNSName.  Specifically,



Stewart, et al.               Experimental                     [Page 47]

RFC 5352            Aggregate Server Access Protocol      September 2008


  conforming implementations MUST perform the conversion operation
  specified in Section 4 of [RFC3490] as follows: * in step 1, the
  domain name SHALL be considered a "stored string"; * in step 3, set
  the flag called "UseSTD3ASCIIRules"; * in step 4, process each label
  with the "ToASCII" operation; and * in step 5, change all label
  separators to U+002E (full stop).

  After performing the "to-ASCII" conversion, the DNS labels and names
  MUST be compared for equality, according to the rules specified in
  Section 3 of RFC 3490.  The '*' (ASCII 42) wildcard character is
  allowed in subjectAltName values of type dNSName, and then, only as
  the left-most (least significant) DNS label in that value.  This
  wildcard matches any left-most DNS label in the server name.  That
  is, the subject *.example.com matches the server names a.example.com
  and b.example.com, but does not match example.com or a.b.example.com.

  When the reference identity is an IP address, the identity MUST be
  converted to the "network byte order" octet string representation in
  [RFC0791] and [RFC2460].  For IP version 4, as specified in RFC 791,
  the octet string will contain exactly four octets.  For IP version 6,
  as specified in RFC 2460, the octet string will contain exactly
  sixteen octets.  This octet string is then compared against
  subjectAltName values of type iPAddress.  A match occurs if the
  reference identity octet string and value octet strings are
  identical.

  After a TLS layer is established in a session, both parties are to
  independently decide whether or not to continue based on local policy
  and the security level achieved.  If either party decides that the
  security level is inadequate for it to continue, it SHOULD remove the
  TLS layer immediately after the TLS (re)negotiation has completed
  (see RFC 4511)[RFC4511].  Implementations may re-evaluate the
  security level at any time and, upon finding it inadequate, should
  remove the TLS layer.

  Implementations MUST support TLS with SCTP, as described in [RFC3436]
  or TLS over TCP, as described in [RFC5246].  When using TLS/SCTP we
  must ensure that RSerPool does not use any features of SCTP that are
  not available to a TLS/SCTP user.  This is not a difficult technical
  problem, but simply a requirement.  When describing an API of the
  RSerPool lower layer, we also have to take into account the
  differences between TLS and SCTP.

  Threat 8 requires the ASAP protocol to limit the number of
  ASAP_ENDPOINT_UNREACHABLE messages (see Section 3.5) to the ENRP
  server.





Stewart, et al.               Experimental                     [Page 48]

RFC 5352            Aggregate Server Access Protocol      September 2008


  Threat 9 requires the ENRP protocol to limit the number of
  ASAP_ENDPOINT_KEEP_ALIVE messages from the ENRP server to the PE (see
  [RFC5353]).

  There is no security mechanism defined for the multicast
  announcements.  Therefore, a receiver of such an announcement cannot
  consider the source address of such a message to be a trustworthy
  address of an ENRP server.  A receiver must also be prepared to
  receive a large number of multicast announcements from attackers.

9.3.  Chain of Trust

  Security is mandatory to implement in RSerPool and is based on TLS
  implementation in all three architecture components that comprise
  RSerPool -- namely PU, PE, and ENRP server.  We define an ENRP server
  that uses TLS for all communication and authenticates ENRP peers and
  PE registrants to be a secured ENRP server.

  Here is a description of all possible data paths and a description of
  the security.

  PU <---> secured ENRP server (authentication of ENRP server;
           queries over TLS)
  PE <---> secured ENRP server (mutual authentication;
           registration/de-registration over TLS)
  secured ENRP server <---> secured ENRP server (mutual authentication;
           database updates using TLS)

  If all components of the system authenticate and communicate using
  TLS, the chain of trust is sound.  The root of the trust chain is the
  ENRP server.  If that is secured using TLS, then security will be
  enforced for all ENRP and PE components that try to connect to it.

  Summary of interaction between secured and unsecured components: If
  the PE does not use TLS and tries to register with a secure ENRP
  server, it will receive an error message response indicated as an
  error due to security considerations and the registration will be
  rejected.  If an ENRP server that does not use TLS tries to update
  the database of a secure ENRP server, then the update will be
  rejected.  If a PU does not use TLS and communicates with a secure
  ENRP server, it will get a response with the understanding that the
  response is not secure, as the response can be tampered with in
  transit even if the ENRP database is secured.

  The final case is the PU sending a secure request to ENRP.  It might
  be that ENRP and PEs are not secured and this is an allowable
  configuration.  The intent is to secure the communication over the
  Internet between the PU and the ENRP server.



Stewart, et al.               Experimental                     [Page 49]

RFC 5352            Aggregate Server Access Protocol      September 2008


  Summary:

  RSerPool architecture components can communicate with each other to
  establish a chain of trust.  Secured PE and ENRP servers reject any
  communications with unsecured ENRP or PE servers.

  If the above is enforced, then a chain of trust is established for
  the RSerPool user.

10.  Acknowledgments

  The authors wish to thank John Loughney, Lyndon Ong, Walter Johnson,
  Thomas Dreibholz, and many others for their invaluable comments and
  feedback.

11.  References

11.1.  Normative References

  [RFC0791]  Postel, J., "Internet Protocol", STD 5, RFC 791,
             September 1981.

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119, March 1997.

  [RFC2460]  Deering, S. and R. Hinden, "Internet Protocol, Version 6
             (IPv6) Specification", RFC 2460, December 1998.

  [RFC3237]  Tuexen, M., Xie, Q., Stewart, R., Shore, M., Ong, L.,
             Loughney, J., and M. Stillman, "Requirements for Reliable
             Server Pooling", RFC 3237, January 2002.

  [RFC3436]  Jungmaier, A., Rescorla, E., and M. Tuexen, "Transport
             Layer Security over Stream Control Transmission Protocol",
             RFC 3436, December 2002.

  [RFC3490]  Faltstrom, P., Hoffman, P., and A. Costello,
             "Internationalizing Domain Names in Applications (IDNA)",
             RFC 3490, March 2003.

  [RFC5246]  Dierks, T. and E. Rescorla, "The Transport Layer Security
             (TLS) Protocol Version 1.2", RFC 5246, August 2008.

  [RFC4511]  Sermersheim, J., "Lightweight Directory Access Protocol
             (LDAP): The Protocol", RFC 4511, June 2006.

  [RFC4960]  Stewart, R., "Stream Control Transmission Protocol",
             RFC 4960, September 2007.



Stewart, et al.               Experimental                     [Page 50]

RFC 5352            Aggregate Server Access Protocol      September 2008


  [RFC5226]  Narten, T. and H. Alvestrand, "Guidelines for Writing an
             IANA Considerations Section in RFCs", BCP 26, RFC 5226,
             May 2008.

  [RFC5356]  Dreibholz, T. and M. Tuexen, "Reliable Server Pooling
             Policies", RFC 5356, September 2008.

  [RFC5354]  Stewart, R., Xie, Q., Stillman, M., and M. Tuexen,
             "Aggregate Server Access Protocol (ASAP) and Endpoint
             Handlespace Redundancy Protocol (ENRP) Parameters",
             RFC 5354, September 2008.

  [RFC5353]  Xie, Q., Stewart, R., Stillman, M., Tuexen, M., and A.
             Silverton, "Endpoint Handlespace Redundancy Protocol
             (ENRP)", RFC 5353, September 2008.

  [RFC5355]  Stillman, M., Ed., Gopal, R., Guttman, E., Holdrege, M.,
             and S. Sengodan, "Threats Introduced by Reliable Server
             Pooling (RSerPool) and Requirements for Security in
             Response to Threats", RFC 5355, September 2008.

11.2.  Informative References

  [RFC4086]  Eastlake, D., Schiller, J., and S. Crocker, "Randomness
             Requirements for Security", BCP 106, RFC 4086, June 2005.


























Stewart, et al.               Experimental                     [Page 51]

RFC 5352            Aggregate Server Access Protocol      September 2008


Authors' Addresses

  Randall R. Stewart
  The Resource Group
  1700 Pennsylvania Ave NW
  Suite 560
  Washington, D.C.,   20006
  USA

  EMail: [email protected]

  Qiaobing Xie
  The Resource Group
  1700 Pennsylvania Ave NW
  Suite 560
  Washington, D.C.,   20006
  USA

  Phone: +1 224-465-5954
  EMail: [email protected]


  Maureen Stillman
  Nokia
  1167 Peachtree Ct.
  Naperville, IL  60540
  USA

  EMail: [email protected]


  Michael Tuexen
  Muenster Univ. of Applied Sciences
  Stegerwaldstr. 39
  48565 Steinfurt
  Germany

  EMail: [email protected]













Stewart, et al.               Experimental                     [Page 52]

RFC 5352            Aggregate Server Access Protocol      September 2008


Full Copyright Statement

  Copyright (C) The IETF Trust (2008).

  This document is subject to the rights, licenses and restrictions
  contained in BCP 78, and except as set forth therein, the authors
  retain all their rights.

  This document and the information contained herein are provided on an
  "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
  OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
  THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
  OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
  THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
  WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

  The IETF takes no position regarding the validity or scope of any
  Intellectual Property Rights or other rights that might be claimed to
  pertain to the implementation or use of the technology described in
  this document or the extent to which any license under such rights
  might or might not be available; nor does it represent that it has
  made any independent effort to identify any such rights.  Information
  on the procedures with respect to rights in RFC documents can be
  found in BCP 78 and BCP 79.

  Copies of IPR disclosures made to the IETF Secretariat and any
  assurances of licenses to be made available, or the result of an
  attempt made to obtain a general license or permission for the use of
  such proprietary rights by implementers or users of this
  specification can be obtained from the IETF on-line IPR repository at
  http://www.ietf.org/ipr.

  The IETF invites any interested party to bring to its attention any
  copyrights, patents or patent applications, or other proprietary
  rights that may cover technology that may be required to implement
  this standard.  Please address the information to the IETF at
  [email protected].












Stewart, et al.               Experimental                     [Page 53]