Network Working Group                                              T. Li
Request for Comments: 5305                        Redback Networks, Inc.
Obsoletes: 3784                                                  H. Smit
Category: Standards Track                                   October 2008


               IS-IS Extensions for Traffic Engineering

Status of This Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Abstract

  This document describes extensions to the Intermediate System to
  Intermediate System (IS-IS) protocol to support Traffic Engineering
  (TE).  This document extends the IS-IS protocol by specifying new
  information that an Intermediate System (router) can place in Link
  State Protocol Data Units (LSP).  This information describes
  additional details regarding the state of the network that are useful
  for traffic engineering computations.


























Li & Smit                   Standards Track                     [Page 1]

RFC 5305        IS-IS Extensions for Traffic Engineering    October 2008


Table of Contents

  1. Introduction ....................................................2
     1.1. Requirements Language ......................................3
  2. Introducing Sub-TLVs ............................................3
  3. The Extended IS Reachability TLV ................................3
     3.1. Sub-TLV 3: Administrative Group (color, resource class) ....6
     3.2. Sub-TLV 6: IPv4 Interface Address ..........................6
     3.3. Sub-TLV 8: IPv4 Neighbor Address ...........................6
     3.4. Sub-TLV 9: Maximum Link Bandwidth ..........................7
     3.5. Sub-TLV 10: Maximum Reservable Link Bandwidth ..............7
     3.6. Sub-TLV 11: Unreserved Bandwidth ...........................7
     3.7. Sub-TLV 18: Traffic Engineering Default Metric .............8
  4. The Extended IP Reachability TLV ................................8
     4.1. The up/down Bit ...........................................10
     4.2. Expandability of the Extended IP Reachability TLV
          with Sub-TLVs .............................................11
     4.3. The Traffic Engineering Router ID TLV .....................11
  5. IANA Considerations ............................................12
     5.1. TLV Codepoint Allocations .................................12
     5.2. New Registries ............................................13
          5.2.1. Sub-TLVs for the Extended IS Reachability TLV ......13
          5.2.2. Sub-TLVs for the Extended IP Reachability TLV ......15
  6. Security Considerations ........................................15
  7. Acknowledgements ...............................................15
  8. References .....................................................15
     8.1. Normative References ......................................15
     8.2. Informative References ....................................15

1.  Introduction

  The IS-IS protocol is specified in ISO 10589 [ISO-10589], with
  extensions for supporting IPv4 specified in [RFC1195].  Each
  Intermediate System (IS) (router) advertises one or more IS-IS Link
  State Protocol Data Units (LSPs) with routing information.  Each LSP
  is composed of a fixed header and a number of tuples, each consisting
  of a Type, a Length, and a Value.  Such tuples are commonly known as
  TLVs, and are a good way of encoding information in a flexible and
  extensible format.

  This document contains the design of new TLVs to replace the existing
  IS Neighbor TLV and IP Reachability TLV, and to include additional
  information about the characteristics of a particular link to an IS-
  IS LSP.  The characteristics described in this document are needed
  for traffic engineering [RFC2702].  Secondary goals include
  increasing the dynamic range of the IS-IS metric and improving the
  encoding of IP prefixes.




Li & Smit                   Standards Track                     [Page 2]

RFC 5305        IS-IS Extensions for Traffic Engineering    October 2008


  The router ID is useful for traffic engineering purposes because it
  describes a single address that can always be used to reference a
  particular router.

  Mechanisms and procedures to migrate to the new TLVs are not
  discussed in this document.

  A prior version of this document was published as [RFC3784] with
  Informational status.  This version is on the standards track.

1.1.  Requirements Language

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in RFC 2119 [RFC2119].

2.  Introducing Sub-TLVs

  This document introduces a new way to encode routing information in
  IS-IS.  The new object is called a sub-TLV.  Sub-TLVs are similar to
  regular TLVs.  They use the same concepts as regular TLVs.  The
  difference is that TLVs exist inside IS-IS packets, while sub-TLVs
  exist inside TLVs.  TLVs are used to add extra information to IS-IS
  packets.  Sub-TLVs are used to add extra information to particular
  TLVs.  Each sub-TLV consists of three fields, a one-octet Type field,
  a one-octet Length field, and zero or more octets of Value.  The Type
  field indicates the type of items in the Value field.  The Length
  field indicates the length of the Value field in octets.  Each sub-
  TLV can potentially hold multiple items.  The number of items in a
  sub-TLV can be computed from the length of the whole sub-TLV, when
  the length of each item is known.  Unknown sub-TLVs are to be ignored
  and skipped upon receipt.

  The Sub-TLV type space is managed by the IETF IS-IS WG [ISIS-WG].
  New type values are allocated following review on the IETF IS-IS
  mailing list.  This will normally require publication of additional
  documentation describing how the new type is used.  In the event that
  the IS-IS working group has disbanded, the review shall be performed
  by a Designated Expert assigned by the responsible Area Director.

3.  The Extended IS Reachability TLV

  The extended IS reachability TLV is TLV type 22.

  The existing IS reachability (TLV type 2, defined in ISO 10589
  [ISO-10589]) contains information about a series of IS neighbors.
  For each neighbor, there is a structure that contains the default
  metric, the delay, the monetary cost, the reliability, and the



Li & Smit                   Standards Track                     [Page 3]

RFC 5305        IS-IS Extensions for Traffic Engineering    October 2008


  7-octet ID of the adjacent neighbor.  Of this information, the
  default metric is commonly used.  The default metric is currently one
  octet, with one bit used to indicate whether the metric is internal
  or external, and one bit that was originally unused, but which was
  later defined by [RFC5302] to be the up/down bit.  The remaining 6
  bits are used to store the actual metric, resulting in a possible
  metric range of 0-63.  This limitation is one of the restrictions
  that we would like to lift.

  The remaining three metrics (delay, monetary cost, and reliability)
  are not commonly implemented and reflect unused overhead in the TLV.
  The neighbor is identified by its system ID, typically 6 octets, plus
  one octet indicating the pseudonode number.  Thus, the existing TLV
  consumes 11 octets per neighbor, with 4 octets for metric and 7
  octets for neighbor identification.  To indicate multiple
  adjacencies, this structure is repeated within the IS reachability
  TLV.  Because the TLV is limited to 255 octets of content, a single
  TLV can describe up to 23 neighbors.  The IS reachability TLV can be
  repeated within the LSP fragments to describe further neighbors.

  The proposed extended IS reachability TLV contains a new data
  structure, consisting of:

     7 octets of system ID and pseudonode number

     3 octets of default metric

     1 octet of length of sub-TLVs

     0-244 octets of sub-TLVs, where each sub-TLV consists of a
     sequence of

        1 octet of sub-type

        1 octet of length of the Value field of the sub-TLV

        0-242 octets of value

  Thus, if no sub-TLVs are used, the new encoding requires 11 octets
  and can contain up to 23 neighbors.  Please note that while the
  encoding allows for 255 octets of sub-TLVs, the maximum value cannot
  fit in the overall IS reachability TLV.  The practical maximum is 255
  octets minus the 11 octets described above, or 244 octets.  There is
  no defined mechanism for extending the sub-TLV space.  Thus, wasting
  sub-TLV space is discouraged.






Li & Smit                   Standards Track                     [Page 4]

RFC 5305        IS-IS Extensions for Traffic Engineering    October 2008


  The metric octets are encoded as a 24-bit unsigned integer.  Note
  that the Metric field in the new extended IP reachability TLV is
  encoded as a 32-bit unsigned integer.  These different sizes were
  chosen so that it is very unlikely that the cost of an intra-area
  route has to be chopped off to fit in the Metric field of an inter-
  area route.

  To preclude overflow within a traffic engineering Shortest Path First
  (SPF) implementation, all metrics greater than or equal to
  MAX_PATH_METRIC SHALL be considered to have a metric of
  MAX_PATH_METRIC.  It is easiest to select MAX_PATH_METRIC such that
  MAX_PATH_METRIC plus a single link metric does not overflow the
  number of bits for internal metric calculation.  We assume that this
  is 32 bits.  Therefore, we have chosen MAX_PATH_METRIC to be
  4,261,412,864 (0xFE000000, 2^32 - 2^25).

  If a link is advertised with the maximum link metric (2^24 - 1), this
  link MUST NOT be considered during the normal SPF computation.  This
  will allow advertisement of a link for purposes other than building
  the normal Shortest Path Tree.  An example is a link that is
  available for traffic engineering, but not for hop-by-hop routing.

  Certain sub-TLVs are established here:

  +------------+----------------+-------------------------------------+
  | Sub-TLV    | Length         | Name                                |
  | type       | (octets)       |                                     |
  +------------+----------------+-------------------------------------+
  | 3          | 4              | Administrative group (color)        |
  |            |                |                                     |
  | 6          | 4              | IPv4 interface address              |
  |            |                |                                     |
  | 8          | 4              | IPv4 neighbor address               |
  |            |                |                                     |
  | 9          | 4              | Maximum link bandwidth              |
  |            |                |                                     |
  | 10         | 4              | Maximum reservable link bandwidth   |
  |            |                |                                     |
  | 11         | 32             | Unreserved bandwidth                |
  |            |                |                                     |
  | 18         | 3              | TE Default metric                   |
  |            |                |                                     |
  | 250-254    |                | Reserved for Cisco specific         |
  |            |                | extensions                          |
  |            |                |                                     |
  | 255        |                | Reserved for future expansion       |
  +------------+----------------+-------------------------------------+




Li & Smit                   Standards Track                     [Page 5]

RFC 5305        IS-IS Extensions for Traffic Engineering    October 2008


  Each of these sub-TLVs is described below.  Unless stated otherwise,
  multiple occurrences of the information are supported by multiple
  inclusions of the sub-TLV.

3.1.  Sub-TLV 3: Administrative Group (color, resource class)

  The administrative group sub-TLV contains a 4-octet bit mask assigned
  by the network administrator.  Each set bit corresponds to one
  administrative group assigned to the interface.

  By convention, the least significant bit is referred to as 'group 0',
  and the most significant bit is referred to as 'group 31'.

  This sub-TLV is OPTIONAL.  This sub-TLV SHOULD appear once at most in
  each extended IS reachability TLV.

3.2.  Sub-TLV 6: IPv4 Interface Address

  This sub-TLV contains a 4-octet IPv4 address for the interface
  described by the (main) TLV.  This sub-TLV can occur multiple times.

  Implementations MUST NOT inject a /32 prefix for the interface
  address into their routing or forwarding table because this can lead
  to forwarding loops when interacting with systems that do not support
  this sub-TLV.

  If a router implements the basic TLV extensions in this document, it
  MAY add or omit this sub-TLV from the description of an adjacency.
  If a router implements traffic engineering, it MUST include this sub-
  TLV.

3.3.  Sub-TLV 8: IPv4 Neighbor Address

  This sub-TLV contains a single IPv4 address for a neighboring router
  on this link.  This sub-TLV can occur multiple times.

  Implementations MUST NOT inject a /32 prefix for the neighbor address
  into their routing or forwarding table because this can lead to
  forwarding loops when interacting with systems that do not support
  this sub-TLV.

  If a router implements the basic TLV extensions in this document, it
  MAY add or omit this sub-TLV from the description of an adjacency.
  If a router implements traffic engineering, it MUST include this sub-
  TLV on point-to-point adjacencies.






Li & Smit                   Standards Track                     [Page 6]

RFC 5305        IS-IS Extensions for Traffic Engineering    October 2008


3.4.  Sub-TLV 9: Maximum Link Bandwidth

  This sub-TLV contains the maximum bandwidth that can be used on this
  link in this direction (from the system originating the LSP to its
  neighbors).  This is useful for traffic engineering.

  The maximum link bandwidth is encoded in 32 bits in IEEE floating
  point format.  The units are bytes (not bits!) per second.

  This sub-TLV is optional.  This sub-TLV SHOULD appear once at most in
  each extended IS reachability TLV.

3.5.  Sub-TLV 10: Maximum Reservable Link Bandwidth

  This sub-TLV contains the maximum amount of bandwidth that can be
  reserved in this direction on this link.  Note that for
  oversubscription purposes, this can be greater than the bandwidth of
  the link.

  The maximum reservable link bandwidth is encoded in 32 bits in IEEE
  floating point format.  The units are bytes (not bits!) per second.

  This sub-TLV is optional.  This sub-TLV SHOULD appear once at most in
  each extended IS reachability TLV.

3.6.  Sub-TLV 11: Unreserved Bandwidth

  This sub-TLV contains the amount of bandwidth reservable in this
  direction on this link.  Note that for oversubscription purposes,
  this can be greater than the bandwidth of the link.

  Because of the need for priority and preemption, each head end needs
  to know the amount of reserved bandwidth at each priority level.
  Thus, this sub-TLV contains eight 32-bit IEEE floating point numbers.
  The units are bytes (not bits!) per second.  The values correspond to
  the bandwidth that can be reserved with a setup priority of 0 through
  7, arranged in increasing order with priority 0 occurring at the
  start of the sub-TLV, and priority 7 at the end of the sub-TLV.

  For stability reasons, rapid changes in the values in this sub-TLV
  SHOULD NOT cause rapid generation of LSPs.

  This sub-TLV is optional.  This sub-TLV SHOULD appear once at most in
  each extended IS reachability TLV.







Li & Smit                   Standards Track                     [Page 7]

RFC 5305        IS-IS Extensions for Traffic Engineering    October 2008


3.7.  Sub-TLV 18: Traffic Engineering Default Metric

  This sub-TLV contains a 24-bit unsigned integer.  This metric is
  administratively assigned and can be used to present a differently
  weighted topology to traffic engineering SPF calculations.

  To preclude overflow within a traffic engineering SPF implementation,
  all metrics greater than or equal to MAX_PATH_METRIC SHALL be
  considered to have a metric of MAX_PATH_METRIC.  It is easiest to
  select MAX_PATH_METRIC such that MAX_PATH_METRIC plus a single link
  metric does not overflow the number of bits for internal metric
  calculation.  We assume that this is 32 bits.  Therefore, we have
  chosen MAX_PATH_METRIC to be 4,261,412,864 (0xFE000000, 2^32 - 2^25).

  This sub-TLV is optional.  This sub-TLV SHOULD appear once at most in
  each extended IS reachability TLV.  If a link is advertised without
  this sub-TLV, traffic engineering SPF calculations MUST use the
  normal default metric of this link, which is advertised in the fixed
  part of the extended IS reachability TLV.

4.  The Extended IP Reachability TLV

  The extended IP reachability TLV is TLV type 135.

  The existing IP reachability TLVs (TLV type 128 and TLV type 130,
  defined in [RFC1195]) carry IP prefixes in a format that is analogous
  to the IS neighbor TLV from ISO 10589 [ISO-10589].  They carry four
  metrics, of which only the default metric is commonly used.  The
  default metric has a possible range of 0-63.  We would like to remove
  this restriction.

  In addition, route redistribution (a.k.a. route leaking) has a key
  problem that was not fully addressed by the existing IP reachability
  TLVs.  [RFC1195] allows a router to advertise prefixes upwards in the
  level hierarchy.  Unfortunately, there were no mechanisms defined to
  advertise prefixes downwards in the level hierarchy.

  To address these two issues, the proposed extended IP reachability
  TLV provides for a 32-bit metric and adds one bit to indicate that a
  prefix has been redistributed 'down' in the hierarchy.











Li & Smit                   Standards Track                     [Page 8]

RFC 5305        IS-IS Extensions for Traffic Engineering    October 2008


  The proposed extended IP reachability TLV contains a new data
  structure, consisting of:

  4 octets of metric information

  1 octet of control information, consisting of

     1 bit of up/down information

     1 bit indicating the presence of sub-TLVs

     6 bits of prefix length

  0-4 octets of IPv4 prefix

  0-250 optional octets of sub-TLVs, if present consisting of

     1 octet of length of sub-TLVs

     0-249 octets of sub-TLVs, where each sub-TLV consists of a
     sequence of

        1 octet of sub-type

        1 octet of length of the Value field of the sub-TLV

        0-247 octets of value

  This data structure can be replicated within the TLV, as long as the
  maximum length of the TLV is not exceeded.





















Li & Smit                   Standards Track                     [Page 9]

RFC 5305        IS-IS Extensions for Traffic Engineering    October 2008


  The 6 bits of prefix length can have the values 0-32 and indicate the
  number of significant bits in the prefix.  The prefix is encoded in
  the minimal number of octets for the given number of significant
  bits.  This implies:

                      +------------------+--------+
                      | Significant bits | Octets |
                      +------------------+--------+
                      | 0                | 0      |
                      |                  |        |
                      | 1-8              | 1      |
                      |                  |        |
                      | 9-16             | 2      |
                      |                  |        |
                      | 17-24            | 3      |
                      |                  |        |
                      | 25-32            | 4      |
                      +------------------+--------+

  The remaining bits of prefix are transmitted as zero and ignored upon
  receipt.

  If a prefix is advertised with a metric larger then MAX_PATH_METRIC
  (0xFE000000, see paragraph 3.0), this prefix MUST NOT be considered
  during the normal SPF computation.  This allows advertisement of a
  prefix for purposes other than building the normal IP routing table.

4.1.  The up/down Bit

  If routers were allowed to redistribute IP prefixes freely in both
  directions between level 1 and level 2 without any additional
  mechanisms, those routers would not be able to determine looping of
  routing information.  A problem occurs when a router learns a prefix
  via level 2 routing and advertises that prefix down into a level 1
  area, where another router might pick up the route and advertise the
  prefix back up into the level 2 backbone.  If the original source
  withdraws the prefix, those two routers might end up having a routing
  loop between them, where part of the looped path is via level 1
  routing and the other part of the looped path is via level 2 routing.
  The solution that [RFC1195] poses is to allow only advertising
  prefixes upward in the level hierarchy, and to disallow the
  advertising of prefixes downward in the hierarchy.

  To prevent this looping of prefixes between levels, a new bit of
  information is defined in the new extended IP reachability TLV.  This
  bit is called the up/down bit.  The up/down bit SHALL be set to 0
  when a prefix is first injected into IS-IS.  If a prefix is
  advertised from a higher level to a lower level (e.g., level 2 to



Li & Smit                   Standards Track                    [Page 10]

RFC 5305        IS-IS Extensions for Traffic Engineering    October 2008


  level 1), the bit MUST be set to 1, indicating that the prefix has
  traveled down the hierarchy.  Prefixes that have the up/down bit set
  to 1 may only be advertised down the hierarchy, i.e., to lower
  levels.

  These semantics apply even if IS-IS is extended in the future to have
  additional levels.  By ensuring that prefixes follow only the IS-IS
  hierarchy, we have ensured that the information does not loop,
  thereby ensuring that there are no persistent forwarding loops.

  If a prefix is advertised from one area to another at the same level,
  then the up/down bit SHALL be set to 1.  This situation can arise
  when a router implements multiple virtual routers at the same level,
  but in different areas.

  The semantics of the up/down bit in the new extended IP reachability
  TLV are identical to the semantics of the up/down bit defined in
  [RFC5302].

4.2.  Expandability of the Extended IP Reachability TLV with Sub-TLVs

  The extended IP reachability TLV can hold sub-TLVs that apply to a
  particular prefix.  This allows for easy future extensions.  If there
  are no sub-TLVs associated with a prefix, the bit indicating the
  presence of sub-TLVs SHALL be set to 0.  If this bit is set to 1, the
  first octet after the prefix will be interpreted as the length of all
  sub-TLVs associated with this IPv4 prefix.  Please note that while
  the encoding allows for 255 octets of sub-TLVs, the maximum value
  cannot fit in the overall extended IP reachability TLV.  The
  practical maximum is 255 octets minus the 5-9 octets described above,
  or 250 octets.

  This document does not define any sub-TLVs for the extended IP
  reachability TLV.

4.3.  The Traffic Engineering Router ID TLV

  The Traffic Engineering router ID TLV is TLV type 134.

  The router ID TLV contains the 4-octet router ID of the router
  originating the LSP.  This is useful in several regards:

     For traffic engineering, it guarantees that we have a single
     stable address that can always be referenced in a path that will
     be reachable from multiple hops away, regardless of the state of
     the node's interfaces.





Li & Smit                   Standards Track                    [Page 11]

RFC 5305        IS-IS Extensions for Traffic Engineering    October 2008


     If OSPF is also active in the domain, traffic engineering can
     compute the mapping between the OSPF and IS-IS topologies.

  If a router does not implement traffic engineering, it MAY add or
  omit the Traffic Engineering router ID TLV.  If a router implements
  traffic engineering, it MUST include this TLV in its LSP.  This TLV
  SHOULD not be included more than once in an LSP.

  If a router advertises the Traffic Engineering router ID TLV in its
  LSP, and if it advertises prefixes via the Border Gateway Protocol
  (BGP) with the BGP next hop attribute set to the BGP router ID, the
  Traffic Engineering router ID SHOULD be the same as the BGP router
  ID.

  Implementations MUST NOT inject a /32 prefix for the router ID into
  their forwarding table because this can lead to forwarding loops when
  interacting with systems that do not support this TLV.

5.  IANA Considerations

  Prior IANA requests for this purpose were covered as part of
  [RFC3784].  The text of those requests is reproduced here for
  completeness and consistency.

5.1.  TLV Codepoint Allocations

  This document defines the following new IS-IS TLV types, which have
  been reflected in the ISIS TLV codepoint registry:

  +------+---------------------------------------+-----+-----+-----+
  | Type | Description                           | IIH | LSP | SNP |
  +------+---------------------------------------+-----+-----+-----+
  | 22   | The extended IS reachability TLV      | n   | y   | n   |
  |      |                                       |     |     |     |
  | 134  | The Traffic Engineering router ID TLV | n   | y   | n   |
  |      |                                       |     |     |     |
  | 135  | The extended IP reachability TLV      | n   | y   | n   |
  +------+---------------------------------------+-----+-----+-----+













Li & Smit                   Standards Track                    [Page 12]

RFC 5305        IS-IS Extensions for Traffic Engineering    October 2008


5.2.  New Registries

  IANA has created the following new registries.

5.2.1.  Sub-TLVs for the Extended IS Reachability TLV

  This registry contains codepoints for sub-TLVs of TLV 22.  The range
  of values is 0-255.  Allocations within the registry require
  documentation of the proposed use of the allocated value and approval
  by the Designated Expert assigned by the IESG (see [RFC5226]).

  Taking into consideration allocations specified in this document, the
  registry has been initialized as follows:






































Li & Smit                   Standards Track                    [Page 13]

RFC 5305        IS-IS Extensions for Traffic Engineering    October 2008


               +--------+------------------------------------+
               | Type   | Description                        |
               +--------+------------------------------------+
               | 0-2    | unassigned                         |
               |        |                                    |
               | 3      | Administrative group (color)       |
               |        |                                    |
               | 4      | Link Local/Remote Identifiers      |
               |        |                                    |
               | 5      | unassigned                         |
               |        |                                    |
               | 6      | IPv4 interface address             |
               |        |                                    |
               | 7      | unassigned                         |
               |        |                                    |
               | 8      | IPv4 neighbor address              |
               |        |                                    |
               | 9      | Maximum link bandwidth             |
               |        |                                    |
               | 10     | Maximum Reservable link bandwidth  |
               |        |                                    |
               | 11     | Unreserved bandwidth               |
               |        |                                    |
               | 12-17  | unassigned                         |
               |        |                                    |
               | 18     | TE Default metric                  |
               |        |                                    |
               | 19     | Link-attributes                    |
               |        |                                    |
               | 20     | Link Protection Type               |
               |        |                                    |
               | 21     | Interface Switching Capability     |
               |        | Descriptor                         |
               |        |                                    |
               | 22     | Bandwidth Constraints              |
               |        |                                    |
               | 23-249 | unassigned                         |
               |        |                                    |
               | 250-254| Reserved for Cisco specific        |
               |        | extensions                         |
               |        |                                    |
               | 255    | Reserved for future expansion      |
               +--------+------------------------------------+








Li & Smit                   Standards Track                    [Page 14]

RFC 5305        IS-IS Extensions for Traffic Engineering    October 2008


5.2.2.  Sub-TLVs for the Extended IP Reachability TLV

  This registry contains codepoints for sub-TLVs of TLV 135.  The range
  of values is 0-255.  Allocations within the registry require
  documentation of the use of the allocated value and approval by the
  Designated Expert assigned by the IESG (see [RFC5226]).  No
  codepoints are defined in this document.

6.  Security Considerations

  This document raises no new security issues for IS-IS; for general
  security considerations for IS-IS see [RFC5304].

7.  Acknowledgements

  The authors would like to thank Yakov Rekhter and Dave Katz for their
  comments on this work.  This work was funded in part by Procket
  Networks and Juniper Networks.

8.  References

8.1.  Normative References

  [ISO-10589] ISO, "Intermediate System to Intermediate System intra-
              domain routeing information exchange protocol for use in
              conjunction with the protocol for providing the
              connectionless-mode network service (ISO 8473)",
              International Standard 10589: 2002, Second Edition, 2002.

  [RFC2119]   Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119, March 1997.

  [RFC5302]   Li, T., Smit, H., and T. Przygienda, "Domain-Wide Prefix
              Distribution with Two-Level IS-IS", RFC 5302, October
              2008.

8.2.  Informative References

  [ISIS-WG]   IS-IS for IP Internets (isis)
              <http://www.ietf.org/html.charters/isis-charter.html>

  [RFC1195]   Callon, R., "Use of OSI IS-IS for routing in TCP/IP and
              dual environments", RFC 1195, December 1990.

  [RFC2702]   Awduche, D., Malcolm, J., Agogbua, J., O'Dell, M., and J.
              McManus, "Requirements for Traffic Engineering Over
              MPLS", RFC 2702, September 1999.




Li & Smit                   Standards Track                    [Page 15]

RFC 5305        IS-IS Extensions for Traffic Engineering    October 2008


  [RFC3784]   Smit, H. and T. Li, "Intermediate System to Intermediate
              System (IS-IS) Extensions for Traffic Engineering (TE)",
              RFC 3784, June 2004.

  [RFC5226]   Narten, T. and H. Alvestrand, "Guidelines for Writing an
              IANA Considerations Section in RFCs", BCP 26, RFC 5226,
              May 2008.

  [RFC5304]   Li, T. and R. Atkinson, "IS-IS Cryptographic
              Authentication", RFC 5304, October 2008.

Authors' Addresses

  Tony Li
  Redback Networks, Inc.
  300 Holger Way
  San Jose, CA  95134
  USA

  Phone: +1 408 750 5160
  EMail: [email protected]


  Henk Smit

  EMail: [email protected]

























Li & Smit                   Standards Track                    [Page 16]

RFC 5305        IS-IS Extensions for Traffic Engineering    October 2008


Full Copyright Statement

  Copyright (C) The IETF Trust (2008).

  This document is subject to the rights, licenses and restrictions
  contained in BCP 78, and except as set forth therein, the authors
  retain all their rights.

  This document and the information contained herein are provided on an
  "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
  OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
  THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
  OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
  THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
  WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

  The IETF takes no position regarding the validity or scope of any
  Intellectual Property Rights or other rights that might be claimed to
  pertain to the implementation or use of the technology described in
  this document or the extent to which any license under such rights
  might or might not be available; nor does it represent that it has
  made any independent effort to identify any such rights.  Information
  on the procedures with respect to rights in RFC documents can be
  found in BCP 78 and BCP 79.

  Copies of IPR disclosures made to the IETF Secretariat and any
  assurances of licenses to be made available, or the result of an
  attempt made to obtain a general license or permission for the use of
  such proprietary rights by implementers or users of this
  specification can be obtained from the IETF on-line IPR repository at
  http://www.ietf.org/ipr.

  The IETF invites any interested party to bring to its attention any
  copyrights, patents or patent applications, or other proprietary
  rights that may cover technology that may be required to implement
  this standard.  Please address the information to the IETF at
  [email protected].












Li & Smit                   Standards Track                    [Page 17]