Network Working Group                                          T. Dierks
Request for Comments: 5246                                   Independent
Obsoletes: 3268, 4346, 4366                                  E. Rescorla
Updates: 4492                                                 RTFM, Inc.
Category: Standards Track                                    August 2008


             The Transport Layer Security (TLS) Protocol
                             Version 1.2

Status of This Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Abstract

  This document specifies Version 1.2 of the Transport Layer Security
  (TLS) protocol.  The TLS protocol provides communications security
  over the Internet.  The protocol allows client/server applications to
  communicate in a way that is designed to prevent eavesdropping,
  tampering, or message forgery.

Table of Contents

  1. Introduction ....................................................4
     1.1. Requirements Terminology ...................................5
     1.2. Major Differences from TLS 1.1 .............................5
  2. Goals ...........................................................6
  3. Goals of This Document ..........................................7
  4. Presentation Language ...........................................7
     4.1. Basic Block Size ...........................................7
     4.2. Miscellaneous ..............................................8
     4.3. Vectors ....................................................8
     4.4. Numbers ....................................................9
     4.5. Enumerateds ................................................9
     4.6. Constructed Types .........................................10
          4.6.1. Variants ...........................................10
     4.7. Cryptographic Attributes ..................................12
     4.8. Constants .................................................14
  5. HMAC and the Pseudorandom Function .............................14
  6. The TLS Record Protocol ........................................15
     6.1. Connection States .........................................16
     6.2. Record Layer ..............................................19
          6.2.1. Fragmentation ......................................19



Dierks & Rescorla           Standards Track                     [Page 1]

RFC 5246                          TLS                        August 2008


          6.2.2. Record Compression and Decompression ...............20
          6.2.3. Record Payload Protection ..........................21
                 6.2.3.1. Null or Standard Stream Cipher ............22
                 6.2.3.2. CBC Block Cipher ..........................22
                 6.2.3.3. AEAD Ciphers ..............................24
     6.3. Key Calculation ...........................................25
  7. The TLS Handshaking Protocols ..................................26
     7.1. Change Cipher Spec Protocol ...............................27
     7.2. Alert Protocol ............................................28
          7.2.1. Closure Alerts .....................................29
          7.2.2. Error Alerts .......................................30
     7.3. Handshake Protocol Overview ...............................33
     7.4. Handshake Protocol ........................................37
          7.4.1. Hello Messages .....................................38
                 7.4.1.1. Hello Request .............................38
                 7.4.1.2. Client Hello ..............................39
                 7.4.1.3. Server Hello ..............................42
                 7.4.1.4. Hello Extensions ..........................44
                          7.4.1.4.1. Signature Algorithms ...........45
          7.4.2. Server Certificate .................................47
          7.4.3. Server Key Exchange Message ........................50
          7.4.4. Certificate Request ................................53
          7.4.5. Server Hello Done ..................................55
          7.4.6. Client Certificate .................................55
          7.4.7. Client Key Exchange Message ........................57
                 7.4.7.1. RSA-Encrypted Premaster Secret Message ....58
                 7.4.7.2. Client Diffie-Hellman Public Value ........61
          7.4.8. Certificate Verify .................................62
          7.4.9. Finished ...........................................63
  8. Cryptographic Computations .....................................64
     8.1. Computing the Master Secret ...............................64
          8.1.1. RSA ................................................65
          8.1.2. Diffie-Hellman .....................................65
  9. Mandatory Cipher Suites ........................................65
  10. Application Data Protocol .....................................65
  11. Security Considerations .......................................65
  12. IANA Considerations ...........................................65
  Appendix A. Protocol Data Structures and Constant Values ..........68
     A.1. Record Layer ..............................................68
     A.2. Change Cipher Specs Message ...............................69
     A.3. Alert Messages ............................................69
     A.4. Handshake Protocol ........................................70
          A.4.1. Hello Messages .....................................71
          A.4.2. Server Authentication and Key Exchange Messages ....72
          A.4.3. Client Authentication and Key Exchange Messages ....74
          A.4.4. Handshake Finalization Message .....................74
     A.5. The Cipher Suite ..........................................75
     A.6. The Security Parameters ...................................77



Dierks & Rescorla           Standards Track                     [Page 2]

RFC 5246                          TLS                        August 2008


     A.7. Changes to RFC 4492 .......................................78
  Appendix B. Glossary ..............................................78
  Appendix C. Cipher Suite Definitions ..............................83
  Appendix D. Implementation Notes ..................................85
     D.1. Random Number Generation and Seeding ......................85
     D.2. Certificates and Authentication ...........................85
     D.3. Cipher Suites .............................................85
     D.4. Implementation Pitfalls ...................................85
  Appendix E. Backward Compatibility ................................87
     E.1. Compatibility with TLS 1.0/1.1 and SSL 3.0 ................87
     E.2. Compatibility with SSL 2.0 ................................88
     E.3. Avoiding Man-in-the-Middle Version Rollback ...............90
  Appendix F. Security Analysis .....................................91
     F.1. Handshake Protocol ........................................91
          F.1.1. Authentication and Key Exchange ....................91
                 F.1.1.1. Anonymous Key Exchange ....................91
                 F.1.1.2. RSA Key Exchange and Authentication .......92
                 F.1.1.3. Diffie-Hellman Key Exchange with
                          Authentication ............................92
          F.1.2. Version Rollback Attacks ...........................93
          F.1.3. Detecting Attacks Against the Handshake Protocol ...94
          F.1.4. Resuming Sessions ..................................94
     F.2. Protecting Application Data ...............................94
     F.3. Explicit IVs ..............................................95
     F.4. Security of Composite Cipher Modes ........................95
     F.5. Denial of Service .........................................96
     F.6. Final Notes ...............................................96
  Normative References ..............................................97
  Informative References ............................................98
  Working Group Information ........................................101
  Contributors .....................................................101




















Dierks & Rescorla           Standards Track                     [Page 3]

RFC 5246                          TLS                        August 2008


1.  Introduction

  The primary goal of the TLS protocol is to provide privacy and data
  integrity between two communicating applications.  The protocol is
  composed of two layers: the TLS Record Protocol and the TLS Handshake
  Protocol.  At the lowest level, layered on top of some reliable
  transport protocol (e.g., TCP [TCP]), is the TLS Record Protocol.
  The TLS Record Protocol provides connection security that has two
  basic properties:

  -  The connection is private.  Symmetric cryptography is used for
     data encryption (e.g., AES [AES], RC4 [SCH], etc.).  The keys for
     this symmetric encryption are generated uniquely for each
     connection and are based on a secret negotiated by another
     protocol (such as the TLS Handshake Protocol).  The Record
     Protocol can also be used without encryption.

  -  The connection is reliable.  Message transport includes a message
     integrity check using a keyed MAC.  Secure hash functions (e.g.,
     SHA-1, etc.) are used for MAC computations.  The Record Protocol
     can operate without a MAC, but is generally only used in this mode
     while another protocol is using the Record Protocol as a transport
     for negotiating security parameters.

  The TLS Record Protocol is used for encapsulation of various higher-
  level protocols.  One such encapsulated protocol, the TLS Handshake
  Protocol, allows the server and client to authenticate each other and
  to negotiate an encryption algorithm and cryptographic keys before
  the application protocol transmits or receives its first byte of
  data.  The TLS Handshake Protocol provides connection security that
  has three basic properties:

  -  The peer's identity can be authenticated using asymmetric, or
     public key, cryptography (e.g., RSA [RSA], DSA [DSS], etc.).  This
     authentication can be made optional, but is generally required for
     at least one of the peers.

  -  The negotiation of a shared secret is secure: the negotiated
     secret is unavailable to eavesdroppers, and for any authenticated
     connection the secret cannot be obtained, even by an attacker who
     can place himself in the middle of the connection.

  -  The negotiation is reliable: no attacker can modify the
     negotiation communication without being detected by the parties to
     the communication.






Dierks & Rescorla           Standards Track                     [Page 4]

RFC 5246                          TLS                        August 2008


  One advantage of TLS is that it is application protocol independent.
  Higher-level protocols can layer on top of the TLS protocol
  transparently.  The TLS standard, however, does not specify how
  protocols add security with TLS; the decisions on how to initiate TLS
  handshaking and how to interpret the authentication certificates
  exchanged are left to the judgment of the designers and implementors
  of protocols that run on top of TLS.

1.1.  Requirements Terminology

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in RFC 2119 [REQ].

1.2.  Major Differences from TLS 1.1

  This document is a revision of the TLS 1.1 [TLS1.1] protocol which
  contains improved flexibility, particularly for negotiation of
  cryptographic algorithms.  The major changes are:

  -  The MD5/SHA-1 combination in the pseudorandom function (PRF) has
     been replaced with cipher-suite-specified PRFs.  All cipher suites
     in this document use P_SHA256.

  -  The MD5/SHA-1 combination in the digitally-signed element has been
     replaced with a single hash.  Signed elements now include a field
     that explicitly specifies the hash algorithm used.

  -  Substantial cleanup to the client's and server's ability to
     specify which hash and signature algorithms they will accept.
     Note that this also relaxes some of the constraints on signature
     and hash algorithms from previous versions of TLS.

  -  Addition of support for authenticated encryption with additional
     data modes.

  -  TLS Extensions definition and AES Cipher Suites were merged in
     from external [TLSEXT] and [TLSAES].

  -  Tighter checking of EncryptedPreMasterSecret version numbers.

  -  Tightened up a number of requirements.

  -  Verify_data length now depends on the cipher suite (default is
     still 12).

  -  Cleaned up description of Bleichenbacher/Klima attack defenses.




Dierks & Rescorla           Standards Track                     [Page 5]

RFC 5246                          TLS                        August 2008


  -  Alerts MUST now be sent in many cases.

  -  After a certificate_request, if no certificates are available,
     clients now MUST send an empty certificate list.

  -  TLS_RSA_WITH_AES_128_CBC_SHA is now the mandatory to implement
     cipher suite.

  -  Added HMAC-SHA256 cipher suites.

  -  Removed IDEA and DES cipher suites.  They are now deprecated and
     will be documented in a separate document.

  -  Support for the SSLv2 backward-compatible hello is now a MAY, not
     a SHOULD, with sending it a SHOULD NOT.  Support will probably
     become a SHOULD NOT in the future.

  -  Added limited "fall-through" to the presentation language to allow
     multiple case arms to have the same encoding.

  -  Added an Implementation Pitfalls sections

  -  The usual clarifications and editorial work.

2.  Goals

  The goals of the TLS protocol, in order of priority, are as follows:

  1. Cryptographic security: TLS should be used to establish a secure
     connection between two parties.

  2. Interoperability: Independent programmers should be able to
     develop applications utilizing TLS that can successfully exchange
     cryptographic parameters without knowledge of one another's code.

  3. Extensibility: TLS seeks to provide a framework into which new
     public key and bulk encryption methods can be incorporated as
     necessary.  This will also accomplish two sub-goals: preventing
     the need to create a new protocol (and risking the introduction of
     possible new weaknesses) and avoiding the need to implement an
     entire new security library.

  4. Relative efficiency: Cryptographic operations tend to be highly
     CPU intensive, particularly public key operations.  For this
     reason, the TLS protocol has incorporated an optional session
     caching scheme to reduce the number of connections that need to be
     established from scratch.  Additionally, care has been taken to
     reduce network activity.



Dierks & Rescorla           Standards Track                     [Page 6]

RFC 5246                          TLS                        August 2008


3.  Goals of This Document

  This document and the TLS protocol itself are based on the SSL 3.0
  Protocol Specification as published by Netscape.  The differences
  between this protocol and SSL 3.0 are not dramatic, but they are
  significant enough that the various versions of TLS and SSL 3.0 do
  not interoperate (although each protocol incorporates a mechanism by
  which an implementation can back down to prior versions).  This
  document is intended primarily for readers who will be implementing
  the protocol and for those doing cryptographic analysis of it.  The
  specification has been written with this in mind, and it is intended
  to reflect the needs of those two groups.  For that reason, many of
  the algorithm-dependent data structures and rules are included in the
  body of the text (as opposed to in an appendix), providing easier
  access to them.

  This document is not intended to supply any details of service
  definition or of interface definition, although it does cover select
  areas of policy as they are required for the maintenance of solid
  security.

4.  Presentation Language

  This document deals with the formatting of data in an external
  representation.  The following very basic and somewhat casually
  defined presentation syntax will be used.  The syntax draws from
  several sources in its structure.  Although it resembles the
  programming language "C" in its syntax and XDR [XDR] in both its
  syntax and intent, it would be risky to draw too many parallels.  The
  purpose of this presentation language is to document TLS only; it has
  no general application beyond that particular goal.

4.1.  Basic Block Size

  The representation of all data items is explicitly specified.  The
  basic data block size is one byte (i.e., 8 bits).  Multiple byte data
  items are concatenations of bytes, from left to right, from top to
  bottom.  From the byte stream, a multi-byte item (a numeric in the
  example) is formed (using C notation) by:

     value = (byte[0] << 8*(n-1)) | (byte[1] << 8*(n-2)) |
             ... | byte[n-1];

  This byte ordering for multi-byte values is the commonplace network
  byte order or big-endian format.






Dierks & Rescorla           Standards Track                     [Page 7]

RFC 5246                          TLS                        August 2008


4.2.  Miscellaneous

  Comments begin with "/*" and end with "*/".

  Optional components are denoted by enclosing them in "[[ ]]" double
  brackets.

  Single-byte entities containing uninterpreted data are of type
  opaque.

4.3.  Vectors

  A vector (single-dimensioned array) is a stream of homogeneous data
  elements.  The size of the vector may be specified at documentation
  time or left unspecified until runtime.  In either case, the length
  declares the number of bytes, not the number of elements, in the
  vector.  The syntax for specifying a new type, T', that is a fixed-
  length vector of type T is

     T T'[n];

  Here, T' occupies n bytes in the data stream, where n is a multiple
  of the size of T.  The length of the vector is not included in the
  encoded stream.

  In the following example, Datum is defined to be three consecutive
  bytes that the protocol does not interpret, while Data is three
  consecutive Datum, consuming a total of nine bytes.

     opaque Datum[3];      /* three uninterpreted bytes */
     Datum Data[9];        /* 3 consecutive 3 byte vectors */

  Variable-length vectors are defined by specifying a subrange of legal
  lengths, inclusively, using the notation <floor..ceiling>.  When
  these are encoded, the actual length precedes the vector's contents
  in the byte stream.  The length will be in the form of a number
  consuming as many bytes as required to hold the vector's specified
  maximum (ceiling) length.  A variable-length vector with an actual
  length field of zero is referred to as an empty vector.

     T T'<floor..ceiling>;

  In the following example, mandatory is a vector that must contain
  between 300 and 400 bytes of type opaque.  It can never be empty.
  The actual length field consumes two bytes, a uint16, which is
  sufficient to represent the value 400 (see Section 4.4).  On the
  other hand, longer can represent up to 800 bytes of data, or 400
  uint16 elements, and it may be empty.  Its encoding will include a



Dierks & Rescorla           Standards Track                     [Page 8]

RFC 5246                          TLS                        August 2008


  two-byte actual length field prepended to the vector.  The length of
  an encoded vector must be an even multiple of the length of a single
  element (for example, a 17-byte vector of uint16 would be illegal).

     opaque mandatory<300..400>;
           /* length field is 2 bytes, cannot be empty */
     uint16 longer<0..800>;
           /* zero to 400 16-bit unsigned integers */

4.4.  Numbers

  The basic numeric data type is an unsigned byte (uint8).  All larger
  numeric data types are formed from fixed-length series of bytes
  concatenated as described in Section 4.1 and are also unsigned.  The
  following numeric types are predefined.

     uint8 uint16[2];
     uint8 uint24[3];
     uint8 uint32[4];
     uint8 uint64[8];

  All values, here and elsewhere in the specification, are stored in
  network byte (big-endian) order; the uint32 represented by the hex
  bytes 01 02 03 04 is equivalent to the decimal value 16909060.

  Note that in some cases (e.g., DH parameters) it is necessary to
  represent integers as opaque vectors.  In such cases, they are
  represented as unsigned integers (i.e., leading zero octets are not
  required even if the most significant bit is set).

4.5.  Enumerateds

  An additional sparse data type is available called enum.  A field of
  type enum can only assume the values declared in the definition.
  Each definition is a different type.  Only enumerateds of the same
  type may be assigned or compared.  Every element of an enumerated
  must be assigned a value, as demonstrated in the following example.
  Since the elements of the enumerated are not ordered, they can be
  assigned any unique value, in any order.

     enum { e1(v1), e2(v2), ... , en(vn) [[, (n)]] } Te;

  An enumerated occupies as much space in the byte stream as would its
  maximal defined ordinal value.  The following definition would cause
  one byte to be used to carry fields of type Color.

     enum { red(3), blue(5), white(7) } Color;




Dierks & Rescorla           Standards Track                     [Page 9]

RFC 5246                          TLS                        August 2008


  One may optionally specify a value without its associated tag to
  force the width definition without defining a superfluous element.

  In the following example, Taste will consume two bytes in the data
  stream but can only assume the values 1, 2, or 4.

     enum { sweet(1), sour(2), bitter(4), (32000) } Taste;

  The names of the elements of an enumeration are scoped within the
  defined type.  In the first example, a fully qualified reference to
  the second element of the enumeration would be Color.blue.  Such
  qualification is not required if the target of the assignment is well
  specified.

     Color color = Color.blue;     /* overspecified, legal */
     Color color = blue;           /* correct, type implicit */

  For enumerateds that are never converted to external representation,
  the numerical information may be omitted.

     enum { low, medium, high } Amount;

4.6.  Constructed Types

  Structure types may be constructed from primitive types for
  convenience.  Each specification declares a new, unique type.  The
  syntax for definition is much like that of C.

     struct {
         T1 f1;
         T2 f2;
         ...
         Tn fn;
     } [[T]];

  The fields within a structure may be qualified using the type's name,
  with a syntax much like that available for enumerateds.  For example,
  T.f2 refers to the second field of the previous declaration.
  Structure definitions may be embedded.

4.6.1.  Variants

  Defined structures may have variants based on some knowledge that is
  available within the environment.  The selector must be an enumerated
  type that defines the possible variants the structure defines.  There
  must be a case arm for every element of the enumeration declared in
  the select.  Case arms have limited fall-through: if two case arms
  follow in immediate succession with no fields in between, then they



Dierks & Rescorla           Standards Track                    [Page 10]

RFC 5246                          TLS                        August 2008


  both contain the same fields.  Thus, in the example below, "orange"
  and "banana" both contain V2.  Note that this is a new piece of
  syntax in TLS 1.2.

  The body of the variant structure may be given a label for reference.
  The mechanism by which the variant is selected at runtime is not
  prescribed by the presentation language.

     struct {
         T1 f1;
         T2 f2;
         ....
         Tn fn;
          select (E) {
              case e1: Te1;
              case e2: Te2;
              case e3: case e4: Te3;
              ....
              case en: Ten;
          } [[fv]];
     } [[Tv]];

  For example:

     enum { apple, orange, banana } VariantTag;

     struct {
         uint16 number;
         opaque string<0..10>; /* variable length */
     } V1;

     struct {
         uint32 number;
         opaque string[10];    /* fixed length */
     } V2;

     struct {
         select (VariantTag) { /* value of selector is implicit */
             case apple:
               V1;   /* VariantBody, tag = apple */
             case orange:
             case banana:
               V2;   /* VariantBody, tag = orange or banana */
         } variant_body;       /* optional label on variant */
     } VariantRecord;






Dierks & Rescorla           Standards Track                    [Page 11]

RFC 5246                          TLS                        August 2008


4.7.  Cryptographic Attributes

  The five cryptographic operations -- digital signing, stream cipher
  encryption, block cipher encryption, authenticated encryption with
  additional data (AEAD) encryption, and public key encryption -- are
  designated digitally-signed, stream-ciphered, block-ciphered, aead-
  ciphered, and public-key-encrypted, respectively.  A field's
  cryptographic processing is specified by prepending an appropriate
  key word designation before the field's type specification.
  Cryptographic keys are implied by the current session state (see
  Section 6.1).

  A digitally-signed element is encoded as a struct DigitallySigned:

     struct {
        SignatureAndHashAlgorithm algorithm;
        opaque signature<0..2^16-1>;
     } DigitallySigned;

  The algorithm field specifies the algorithm used (see Section
  7.4.1.4.1 for the definition of this field).  Note that the
  introduction of the algorithm field is a change from previous
  versions.  The signature is a digital signature using those
  algorithms over the contents of the element.  The contents themselves
  do not appear on the wire but are simply calculated.  The length of
  the signature is specified by the signing algorithm and key.

  In RSA signing, the opaque vector contains the signature generated
  using the RSASSA-PKCS1-v1_5 signature scheme defined in [PKCS1].  As
  discussed in [PKCS1], the DigestInfo MUST be DER-encoded [X680]
  [X690].  For hash algorithms without parameters (which includes
  SHA-1), the DigestInfo.AlgorithmIdentifier.parameters field MUST be
  NULL, but implementations MUST accept both without parameters and
  with NULL parameters.  Note that earlier versions of TLS used a
  different RSA signature scheme that did not include a DigestInfo
  encoding.

  In DSA, the 20 bytes of the SHA-1 hash are run directly through the
  Digital Signing Algorithm with no additional hashing.  This produces
  two values, r and s.  The DSA signature is an opaque vector, as
  above, the contents of which are the DER encoding of:

     Dss-Sig-Value ::= SEQUENCE {
         r INTEGER,
         s INTEGER
     }





Dierks & Rescorla           Standards Track                    [Page 12]

RFC 5246                          TLS                        August 2008


  Note: In current terminology, DSA refers to the Digital Signature
  Algorithm and DSS refers to the NIST standard.  In the original SSL
  and TLS specs, "DSS" was used universally.  This document uses "DSA"
  to refer to the algorithm, "DSS" to refer to the standard, and it
  uses "DSS" in the code point definitions for historical continuity.

  In stream cipher encryption, the plaintext is exclusive-ORed with an
  identical amount of output generated from a cryptographically secure
  keyed pseudorandom number generator.

  In block cipher encryption, every block of plaintext encrypts to a
  block of ciphertext.  All block cipher encryption is done in CBC
  (Cipher Block Chaining) mode, and all items that are block-ciphered
  will be an exact multiple of the cipher block length.

  In AEAD encryption, the plaintext is simultaneously encrypted and
  integrity protected.  The input may be of any length, and aead-
  ciphered output is generally larger than the input in order to
  accommodate the integrity check value.

  In public key encryption, a public key algorithm is used to encrypt
  data in such a way that it can be decrypted only with the matching
  private key.  A public-key-encrypted element is encoded as an opaque
  vector <0..2^16-1>, where the length is specified by the encryption
  algorithm and key.

  RSA encryption is done using the RSAES-PKCS1-v1_5 encryption scheme
  defined in [PKCS1].

  In the following example

     stream-ciphered struct {
         uint8 field1;
         uint8 field2;
         digitally-signed opaque {
           uint8 field3<0..255>;
           uint8 field4;
         };
     } UserType;

  The contents of the inner struct (field3 and field4) are used as
  input for the signature/hash algorithm, and then the entire structure
  is encrypted with a stream cipher.  The length of this structure, in
  bytes, would be equal to two bytes for field1 and field2, plus two
  bytes for the signature and hash algorithm, plus two bytes for the
  length of the signature, plus the length of the output of the signing





Dierks & Rescorla           Standards Track                    [Page 13]

RFC 5246                          TLS                        August 2008


  algorithm.  The length of the signature is known because the
  algorithm and key used for the signing are known prior to encoding or
  decoding this structure.

4.8.  Constants

  Typed constants can be defined for purposes of specification by
  declaring a symbol of the desired type and assigning values to it.

  Under-specified types (opaque, variable-length vectors, and
  structures that contain opaque) cannot be assigned values.  No fields
  of a multi-element structure or vector may be elided.

  For example:

     struct {
         uint8 f1;
         uint8 f2;
     } Example1;

     Example1 ex1 = {1, 4};  /* assigns f1 = 1, f2 = 4 */

5.  HMAC and the Pseudorandom Function

  The TLS record layer uses a keyed Message Authentication Code (MAC)
  to protect message integrity.  The cipher suites defined in this
  document use a construction known as HMAC, described in [HMAC], which
  is based on a hash function.  Other cipher suites MAY define their
  own MAC constructions, if needed.

  In addition, a construction is required to do expansion of secrets
  into blocks of data for the purposes of key generation or validation.
  This pseudorandom function (PRF) takes as input a secret, a seed, and
  an identifying label and produces an output of arbitrary length.

  In this section, we define one PRF, based on HMAC.  This PRF with the
  SHA-256 hash function is used for all cipher suites defined in this
  document and in TLS documents published prior to this document when
  TLS 1.2 is negotiated.  New cipher suites MUST explicitly specify a
  PRF and, in general, SHOULD use the TLS PRF with SHA-256 or a
  stronger standard hash function.

  First, we define a data expansion function, P_hash(secret, data),
  that uses a single hash function to expand a secret and seed into an
  arbitrary quantity of output:






Dierks & Rescorla           Standards Track                    [Page 14]

RFC 5246                          TLS                        August 2008


     P_hash(secret, seed) = HMAC_hash(secret, A(1) + seed) +
                            HMAC_hash(secret, A(2) + seed) +
                            HMAC_hash(secret, A(3) + seed) + ...

  where + indicates concatenation.

  A() is defined as:

     A(0) = seed
     A(i) = HMAC_hash(secret, A(i-1))

  P_hash can be iterated as many times as necessary to produce the
  required quantity of data.  For example, if P_SHA256 is being used to
  create 80 bytes of data, it will have to be iterated three times
  (through A(3)), creating 96 bytes of output data; the last 16 bytes
  of the final iteration will then be discarded, leaving 80 bytes of
  output data.

  TLS's PRF is created by applying P_hash to the secret as:

     PRF(secret, label, seed) = P_<hash>(secret, label + seed)

  The label is an ASCII string.  It should be included in the exact
  form it is given without a length byte or trailing null character.
  For example, the label "slithy toves" would be processed by hashing
  the following bytes:

     73 6C 69 74 68 79 20 74 6F 76 65 73

6.  The TLS Record Protocol

  The TLS Record Protocol is a layered protocol.  At each layer,
  messages may include fields for length, description, and content.
  The Record Protocol takes messages to be transmitted, fragments the
  data into manageable blocks, optionally compresses the data, applies
  a MAC, encrypts, and transmits the result.  Received data is
  decrypted, verified, decompressed, reassembled, and then delivered to
  higher-level clients.

  Four protocols that use the record protocol are described in this
  document: the handshake protocol, the alert protocol, the change
  cipher spec protocol, and the application data protocol.  In order to
  allow extension of the TLS protocol, additional record content types
  can be supported by the record protocol.  New record content type
  values are assigned by IANA in the TLS Content Type Registry as
  described in Section 12.





Dierks & Rescorla           Standards Track                    [Page 15]

RFC 5246                          TLS                        August 2008


  Implementations MUST NOT send record types not defined in this
  document unless negotiated by some extension.  If a TLS
  implementation receives an unexpected record type, it MUST send an
  unexpected_message alert.

  Any protocol designed for use over TLS must be carefully designed to
  deal with all possible attacks against it.  As a practical matter,
  this means that the protocol designer must be aware of what security
  properties TLS does and does not provide and cannot safely rely on
  the latter.

  Note in particular that type and length of a record are not protected
  by encryption.  If this information is itself sensitive, application
  designers may wish to take steps (padding, cover traffic) to minimize
  information leakage.

6.1.  Connection States

  A TLS connection state is the operating environment of the TLS Record
  Protocol.  It specifies a compression algorithm, an encryption
  algorithm, and a MAC algorithm.  In addition, the parameters for
  these algorithms are known: the MAC key and the bulk encryption keys
  for the connection in both the read and the write directions.
  Logically, there are always four connection states outstanding: the
  current read and write states, and the pending read and write states.
  All records are processed under the current read and write states.
  The security parameters for the pending states can be set by the TLS
  Handshake Protocol, and the ChangeCipherSpec can selectively make
  either of the pending states current, in which case the appropriate
  current state is disposed of and replaced with the pending state; the
  pending state is then reinitialized to an empty state.  It is illegal
  to make a state that has not been initialized with security
  parameters a current state.  The initial current state always
  specifies that no encryption, compression, or MAC will be used.

  The security parameters for a TLS Connection read and write state are
  set by providing the following values:

  connection end
     Whether this entity is considered the "client" or the "server" in
     this connection.

  PRF algorithm
     An algorithm used to generate keys from the master secret (see
     Sections 5 and 6.3).






Dierks & Rescorla           Standards Track                    [Page 16]

RFC 5246                          TLS                        August 2008


  bulk encryption algorithm
     An algorithm to be used for bulk encryption.  This specification
     includes the key size of this algorithm, whether it is a block,
     stream, or AEAD cipher, the block size of the cipher (if
     appropriate), and the lengths of explicit and implicit
     initialization vectors (or nonces).

  MAC algorithm
     An algorithm to be used for message authentication.  This
     specification includes the size of the value returned by the MAC
     algorithm.

  compression algorithm
     An algorithm to be used for data compression.  This specification
     must include all information the algorithm requires to do
     compression.

  master secret
     A 48-byte secret shared between the two peers in the connection.

  client random
     A 32-byte value provided by the client.

  server random
     A 32-byte value provided by the server.

     These parameters are defined in the presentation language as:

     enum { server, client } ConnectionEnd;

     enum { tls_prf_sha256 } PRFAlgorithm;

     enum { null, rc4, 3des, aes }
       BulkCipherAlgorithm;

     enum { stream, block, aead } CipherType;

     enum { null, hmac_md5, hmac_sha1, hmac_sha256,
          hmac_sha384, hmac_sha512} MACAlgorithm;

     enum { null(0), (255) } CompressionMethod;

     /* The algorithms specified in CompressionMethod, PRFAlgorithm,
        BulkCipherAlgorithm, and MACAlgorithm may be added to. */







Dierks & Rescorla           Standards Track                    [Page 17]

RFC 5246                          TLS                        August 2008


     struct {
         ConnectionEnd          entity;
         PRFAlgorithm           prf_algorithm;
         BulkCipherAlgorithm    bulk_cipher_algorithm;
         CipherType             cipher_type;
         uint8                  enc_key_length;
         uint8                  block_length;
         uint8                  fixed_iv_length;
         uint8                  record_iv_length;
         MACAlgorithm           mac_algorithm;
         uint8                  mac_length;
         uint8                  mac_key_length;
         CompressionMethod      compression_algorithm;
         opaque                 master_secret[48];
         opaque                 client_random[32];
         opaque                 server_random[32];
     } SecurityParameters;

  The record layer will use the security parameters to generate the
  following six items (some of which are not required by all ciphers,
  and are thus empty):

     client write MAC key
     server write MAC key
     client write encryption key
     server write encryption key
     client write IV
     server write IV

  The client write parameters are used by the server when receiving and
  processing records and vice versa.  The algorithm used for generating
  these items from the security parameters is described in Section 6.3.

  Once the security parameters have been set and the keys have been
  generated, the connection states can be instantiated by making them
  the current states.  These current states MUST be updated for each
  record processed.  Each connection state includes the following
  elements:

  compression state
     The current state of the compression algorithm.

  cipher state
     The current state of the encryption algorithm.  This will consist
     of the scheduled key for that connection.  For stream ciphers,
     this will also contain whatever state information is necessary to
     allow the stream to continue to encrypt or decrypt data.




Dierks & Rescorla           Standards Track                    [Page 18]

RFC 5246                          TLS                        August 2008


  MAC key
     The MAC key for this connection, as generated above.

  sequence number
     Each connection state contains a sequence number, which is
     maintained separately for read and write states.  The sequence
     number MUST be set to zero whenever a connection state is made the
     active state.  Sequence numbers are of type uint64 and may not
     exceed 2^64-1.  Sequence numbers do not wrap.  If a TLS
     implementation would need to wrap a sequence number, it must
     renegotiate instead.  A sequence number is incremented after each
     record: specifically, the first record transmitted under a
     particular connection state MUST use sequence number 0.

6.2.  Record Layer

  The TLS record layer receives uninterpreted data from higher layers
  in non-empty blocks of arbitrary size.

6.2.1.  Fragmentation

  The record layer fragments information blocks into TLSPlaintext
  records carrying data in chunks of 2^14 bytes or less.  Client
  message boundaries are not preserved in the record layer (i.e.,
  multiple client messages of the same ContentType MAY be coalesced
  into a single TLSPlaintext record, or a single message MAY be
  fragmented across several records).

     struct {
         uint8 major;
         uint8 minor;
     } ProtocolVersion;

     enum {
         change_cipher_spec(20), alert(21), handshake(22),
         application_data(23), (255)
     } ContentType;

     struct {
         ContentType type;
         ProtocolVersion version;
         uint16 length;
         opaque fragment[TLSPlaintext.length];
     } TLSPlaintext;

  type
     The higher-level protocol used to process the enclosed fragment.




Dierks & Rescorla           Standards Track                    [Page 19]

RFC 5246                          TLS                        August 2008


  version
     The version of the protocol being employed.  This document
     describes TLS Version 1.2, which uses the version { 3, 3 }.  The
     version value 3.3 is historical, deriving from the use of {3, 1}
     for TLS 1.0.  (See Appendix A.1.)  Note that a client that
     supports multiple versions of TLS may not know what version will
     be employed before it receives the ServerHello.  See Appendix E
     for discussion about what record layer version number should be
     employed for ClientHello.

  length
     The length (in bytes) of the following TLSPlaintext.fragment.  The
     length MUST NOT exceed 2^14.

  fragment
     The application data.  This data is transparent and treated as an
     independent block to be dealt with by the higher-level protocol
     specified by the type field.

  Implementations MUST NOT send zero-length fragments of Handshake,
  Alert, or ChangeCipherSpec content types.  Zero-length fragments of
  Application data MAY be sent as they are potentially useful as a
  traffic analysis countermeasure.

  Note: Data of different TLS record layer content types MAY be
  interleaved.  Application data is generally of lower precedence for
  transmission than other content types.  However, records MUST be
  delivered to the network in the same order as they are protected by
  the record layer.  Recipients MUST receive and process interleaved
  application layer traffic during handshakes subsequent to the first
  one on a connection.

6.2.2.  Record Compression and Decompression

  All records are compressed using the compression algorithm defined in
  the current session state.  There is always an active compression
  algorithm; however, initially it is defined as
  CompressionMethod.null.  The compression algorithm translates a
  TLSPlaintext structure into a TLSCompressed structure.  Compression
  functions are initialized with default state information whenever a
  connection state is made active.  [RFC3749] describes compression
  algorithms for TLS.

  Compression must be lossless and may not increase the content length
  by more than 1024 bytes.  If the decompression function encounters a
  TLSCompressed.fragment that would decompress to a length in excess of
  2^14 bytes, it MUST report a fatal decompression failure error.




Dierks & Rescorla           Standards Track                    [Page 20]

RFC 5246                          TLS                        August 2008


     struct {
         ContentType type;       /* same as TLSPlaintext.type */
         ProtocolVersion version;/* same as TLSPlaintext.version */
         uint16 length;
         opaque fragment[TLSCompressed.length];
     } TLSCompressed;

  length
     The length (in bytes) of the following TLSCompressed.fragment.
     The length MUST NOT exceed 2^14 + 1024.

  fragment
     The compressed form of TLSPlaintext.fragment.

     Note: A CompressionMethod.null operation is an identity operation;
     no fields are altered.

     Implementation note: Decompression functions are responsible for
     ensuring that messages cannot cause internal buffer overflows.

6.2.3.  Record Payload Protection

     The encryption and MAC functions translate a TLSCompressed
     structure into a TLSCiphertext.  The decryption functions reverse
     the process.  The MAC of the record also includes a sequence
     number so that missing, extra, or repeated messages are
     detectable.

     struct {
         ContentType type;
         ProtocolVersion version;
         uint16 length;
         select (SecurityParameters.cipher_type) {
             case stream: GenericStreamCipher;
             case block:  GenericBlockCipher;
             case aead:   GenericAEADCipher;
         } fragment;
     } TLSCiphertext;

  type
     The type field is identical to TLSCompressed.type.

  version
     The version field is identical to TLSCompressed.version.

  length
     The length (in bytes) of the following TLSCiphertext.fragment.
     The length MUST NOT exceed 2^14 + 2048.



Dierks & Rescorla           Standards Track                    [Page 21]

RFC 5246                          TLS                        August 2008


  fragment
     The encrypted form of TLSCompressed.fragment, with the MAC.

6.2.3.1.  Null or Standard Stream Cipher

  Stream ciphers (including BulkCipherAlgorithm.null; see Appendix A.6)
  convert TLSCompressed.fragment structures to and from stream
  TLSCiphertext.fragment structures.

     stream-ciphered struct {
         opaque content[TLSCompressed.length];
         opaque MAC[SecurityParameters.mac_length];
     } GenericStreamCipher;

  The MAC is generated as:

     MAC(MAC_write_key, seq_num +
                           TLSCompressed.type +
                           TLSCompressed.version +
                           TLSCompressed.length +
                           TLSCompressed.fragment);

  where "+" denotes concatenation.

  seq_num
     The sequence number for this record.

  MAC
     The MAC algorithm specified by SecurityParameters.mac_algorithm.

  Note that the MAC is computed before encryption.  The stream cipher
  encrypts the entire block, including the MAC.  For stream ciphers
  that do not use a synchronization vector (such as RC4), the stream
  cipher state from the end of one record is simply used on the
  subsequent packet.  If the cipher suite is TLS_NULL_WITH_NULL_NULL,
  encryption consists of the identity operation (i.e., the data is not
  encrypted, and the MAC size is zero, implying that no MAC is used).
  For both null and stream ciphers, TLSCiphertext.length is
  TLSCompressed.length plus SecurityParameters.mac_length.

6.2.3.2.  CBC Block Cipher

  For block ciphers (such as 3DES or AES), the encryption and MAC
  functions convert TLSCompressed.fragment structures to and from block
  TLSCiphertext.fragment structures.






Dierks & Rescorla           Standards Track                    [Page 22]

RFC 5246                          TLS                        August 2008


     struct {
         opaque IV[SecurityParameters.record_iv_length];
         block-ciphered struct {
             opaque content[TLSCompressed.length];
             opaque MAC[SecurityParameters.mac_length];
             uint8 padding[GenericBlockCipher.padding_length];
             uint8 padding_length;
         };
     } GenericBlockCipher;

  The MAC is generated as described in Section 6.2.3.1.

  IV
     The Initialization Vector (IV) SHOULD be chosen at random, and
     MUST be unpredictable.  Note that in versions of TLS prior to 1.1,
     there was no IV field, and the last ciphertext block of the
     previous record (the "CBC residue") was used as the IV.  This was
     changed to prevent the attacks described in [CBCATT].  For block
     ciphers, the IV length is of length
     SecurityParameters.record_iv_length, which is equal to the
     SecurityParameters.block_size.

  padding
     Padding that is added to force the length of the plaintext to be
     an integral multiple of the block cipher's block length.  The
     padding MAY be any length up to 255 bytes, as long as it results
     in the TLSCiphertext.length being an integral multiple of the
     block length.  Lengths longer than necessary might be desirable to
     frustrate attacks on a protocol that are based on analysis of the
     lengths of exchanged messages.  Each uint8 in the padding data
     vector MUST be filled with the padding length value.  The receiver
     MUST check this padding and MUST use the bad_record_mac alert to
     indicate padding errors.

  padding_length
     The padding length MUST be such that the total size of the
     GenericBlockCipher structure is a multiple of the cipher's block
     length.  Legal values range from zero to 255, inclusive.  This
     length specifies the length of the padding field exclusive of the
     padding_length field itself.

  The encrypted data length (TLSCiphertext.length) is one more than the
  sum of SecurityParameters.block_length, TLSCompressed.length,
  SecurityParameters.mac_length, and padding_length.

  Example: If the block length is 8 bytes, the content length
  (TLSCompressed.length) is 61 bytes, and the MAC length is 20 bytes,
  then the length before padding is 82 bytes (this does not include the



Dierks & Rescorla           Standards Track                    [Page 23]

RFC 5246                          TLS                        August 2008


  IV.  Thus, the padding length modulo 8 must be equal to 6 in order to
  make the total length an even multiple of 8 bytes (the block length).
  The padding length can be 6, 14, 22, and so on, through 254.  If the
  padding length were the minimum necessary, 6, the padding would be 6
  bytes, each containing the value 6.  Thus, the last 8 octets of the
  GenericBlockCipher before block encryption would be xx 06 06 06 06 06
  06 06, where xx is the last octet of the MAC.

  Note: With block ciphers in CBC mode (Cipher Block Chaining), it is
  critical that the entire plaintext of the record be known before any
  ciphertext is transmitted.  Otherwise, it is possible for the
  attacker to mount the attack described in [CBCATT].

  Implementation note: Canvel et al. [CBCTIME] have demonstrated a
  timing attack on CBC padding based on the time required to compute
  the MAC.  In order to defend against this attack, implementations
  MUST ensure that record processing time is essentially the same
  whether or not the padding is correct.  In general, the best way to
  do this is to compute the MAC even if the padding is incorrect, and
  only then reject the packet.  For instance, if the pad appears to be
  incorrect, the implementation might assume a zero-length pad and then
  compute the MAC.  This leaves a small timing channel, since MAC
  performance depends to some extent on the size of the data fragment,
  but it is not believed to be large enough to be exploitable, due to
  the large block size of existing MACs and the small size of the
  timing signal.

6.2.3.3.  AEAD Ciphers

  For AEAD [AEAD] ciphers (such as [CCM] or [GCM]), the AEAD function
  converts TLSCompressed.fragment structures to and from AEAD
  TLSCiphertext.fragment structures.

     struct {
        opaque nonce_explicit[SecurityParameters.record_iv_length];
        aead-ciphered struct {
            opaque content[TLSCompressed.length];
        };
     } GenericAEADCipher;

  AEAD ciphers take as input a single key, a nonce, a plaintext, and
  "additional data" to be included in the authentication check, as
  described in Section 2.1 of [AEAD].  The key is either the
  client_write_key or the server_write_key.  No MAC key is used.

  Each AEAD cipher suite MUST specify how the nonce supplied to the
  AEAD operation is constructed, and what is the length of the
  GenericAEADCipher.nonce_explicit part.  In many cases, it is



Dierks & Rescorla           Standards Track                    [Page 24]

RFC 5246                          TLS                        August 2008


  appropriate to use the partially implicit nonce technique described
  in Section 3.2.1 of [AEAD]; with record_iv_length being the length of
  the explicit part.  In this case, the implicit part SHOULD be derived
  from key_block as client_write_iv and server_write_iv (as described
  in Section 6.3), and the explicit part is included in
  GenericAEAEDCipher.nonce_explicit.

  The plaintext is the TLSCompressed.fragment.

  The additional authenticated data, which we denote as
  additional_data, is defined as follows:

     additional_data = seq_num + TLSCompressed.type +
                       TLSCompressed.version + TLSCompressed.length;

  where "+" denotes concatenation.

  The aead_output consists of the ciphertext output by the AEAD
  encryption operation.  The length will generally be larger than
  TLSCompressed.length, but by an amount that varies with the AEAD
  cipher.  Since the ciphers might incorporate padding, the amount of
  overhead could vary with different TLSCompressed.length values.  Each
  AEAD cipher MUST NOT produce an expansion of greater than 1024 bytes.
  Symbolically,

     AEADEncrypted = AEAD-Encrypt(write_key, nonce, plaintext,
                                  additional_data)

  In order to decrypt and verify, the cipher takes as input the key,
  nonce, the "additional_data", and the AEADEncrypted value.  The
  output is either the plaintext or an error indicating that the
  decryption failed.  There is no separate integrity check.  That is:

     TLSCompressed.fragment = AEAD-Decrypt(write_key, nonce,
                                           AEADEncrypted,
                                           additional_data)

  If the decryption fails, a fatal bad_record_mac alert MUST be
  generated.

6.3.  Key Calculation

  The Record Protocol requires an algorithm to generate keys required
  by the current connection state (see Appendix A.6) from the security
  parameters provided by the handshake protocol.






Dierks & Rescorla           Standards Track                    [Page 25]

RFC 5246                          TLS                        August 2008


  The master secret is expanded into a sequence of secure bytes, which
  is then split to a client write MAC key, a server write MAC key, a
  client write encryption key, and a server write encryption key.  Each
  of these is generated from the byte sequence in that order.  Unused
  values are empty.  Some AEAD ciphers may additionally require a
  client write IV and a server write IV (see Section 6.2.3.3).

  When keys and MAC keys are generated, the master secret is used as an
  entropy source.

  To generate the key material, compute

     key_block = PRF(SecurityParameters.master_secret,
                     "key expansion",
                     SecurityParameters.server_random +
                     SecurityParameters.client_random);

  until enough output has been generated.  Then, the key_block is
  partitioned as follows:

     client_write_MAC_key[SecurityParameters.mac_key_length]
     server_write_MAC_key[SecurityParameters.mac_key_length]
     client_write_key[SecurityParameters.enc_key_length]
     server_write_key[SecurityParameters.enc_key_length]
     client_write_IV[SecurityParameters.fixed_iv_length]
     server_write_IV[SecurityParameters.fixed_iv_length]

  Currently, the client_write_IV and server_write_IV are only generated
  for implicit nonce techniques as described in Section 3.2.1 of
  [AEAD].

  Implementation note: The currently defined cipher suite which
  requires the most material is AES_256_CBC_SHA256.  It requires 2 x 32
  byte keys and 2 x 32 byte MAC keys, for a total 128 bytes of key
  material.

7.  The TLS Handshaking Protocols

  TLS has three subprotocols that are used to allow peers to agree upon
  security parameters for the record layer, to authenticate themselves,
  to instantiate negotiated security parameters, and to report error
  conditions to each other.

  The Handshake Protocol is responsible for negotiating a session,
  which consists of the following items:






Dierks & Rescorla           Standards Track                    [Page 26]

RFC 5246                          TLS                        August 2008


  session identifier
     An arbitrary byte sequence chosen by the server to identify an
     active or resumable session state.

  peer certificate
     X509v3 [PKIX] certificate of the peer.  This element of the state
     may be null.

  compression method
     The algorithm used to compress data prior to encryption.

  cipher spec
     Specifies the pseudorandom function (PRF) used to generate keying
     material, the bulk data encryption algorithm (such as null, AES,
     etc.) and the MAC algorithm (such as HMAC-SHA1).  It also defines
     cryptographic attributes such as the mac_length.  (See Appendix
     A.6 for formal definition.)

  master secret
     48-byte secret shared between the client and server.

  is resumable
     A flag indicating whether the session can be used to initiate new
     connections.

  These items are then used to create security parameters for use by
  the record layer when protecting application data.  Many connections
  can be instantiated using the same session through the resumption
  feature of the TLS Handshake Protocol.

7.1.  Change Cipher Spec Protocol

  The change cipher spec protocol exists to signal transitions in
  ciphering strategies.  The protocol consists of a single message,
  which is encrypted and compressed under the current (not the pending)
  connection state.  The message consists of a single byte of value 1.

     struct {
         enum { change_cipher_spec(1), (255) } type;
     } ChangeCipherSpec;

  The ChangeCipherSpec message is sent by both the client and the
  server to notify the receiving party that subsequent records will be
  protected under the newly negotiated CipherSpec and keys.  Reception
  of this message causes the receiver to instruct the record layer to
  immediately copy the read pending state into the read current state.
  Immediately after sending this message, the sender MUST instruct the
  record layer to make the write pending state the write active state.



Dierks & Rescorla           Standards Track                    [Page 27]

RFC 5246                          TLS                        August 2008


  (See Section 6.1.)  The ChangeCipherSpec message is sent during the
  handshake after the security parameters have been agreed upon, but
  before the verifying Finished message is sent.

  Note: If a rehandshake occurs while data is flowing on a connection,
  the communicating parties may continue to send data using the old
  CipherSpec.  However, once the ChangeCipherSpec has been sent, the
  new CipherSpec MUST be used.  The first side to send the
  ChangeCipherSpec does not know that the other side has finished
  computing the new keying material (e.g., if it has to perform a
  time-consuming public key operation).  Thus, a small window of time,
  during which the recipient must buffer the data, MAY exist.  In
  practice, with modern machines this interval is likely to be fairly
  short.

7.2.  Alert Protocol

  One of the content types supported by the TLS record layer is the
  alert type.  Alert messages convey the severity of the message
  (warning or fatal) and a description of the alert.  Alert messages
  with a level of fatal result in the immediate termination of the
  connection.  In this case, other connections corresponding to the
  session may continue, but the session identifier MUST be invalidated,
  preventing the failed session from being used to establish new
  connections.  Like other messages, alert messages are encrypted and
  compressed, as specified by the current connection state.

     enum { warning(1), fatal(2), (255) } AlertLevel;

     enum {
         close_notify(0),
         unexpected_message(10),
         bad_record_mac(20),
         decryption_failed_RESERVED(21),
         record_overflow(22),
         decompression_failure(30),
         handshake_failure(40),
         no_certificate_RESERVED(41),
         bad_certificate(42),
         unsupported_certificate(43),
         certificate_revoked(44),
         certificate_expired(45),
         certificate_unknown(46),
         illegal_parameter(47),
         unknown_ca(48),
         access_denied(49),
         decode_error(50),
         decrypt_error(51),



Dierks & Rescorla           Standards Track                    [Page 28]

RFC 5246                          TLS                        August 2008


         export_restriction_RESERVED(60),
         protocol_version(70),
         insufficient_security(71),
         internal_error(80),
         user_canceled(90),
         no_renegotiation(100),
         unsupported_extension(110),
         (255)
     } AlertDescription;

     struct {
         AlertLevel level;
         AlertDescription description;
     } Alert;

7.2.1.  Closure Alerts

  The client and the server must share knowledge that the connection is
  ending in order to avoid a truncation attack.  Either party may
  initiate the exchange of closing messages.

  close_notify
     This message notifies the recipient that the sender will not send
     any more messages on this connection.  Note that as of TLS 1.1,
     failure to properly close a connection no longer requires that a
     session not be resumed.  This is a change from TLS 1.0 to conform
     with widespread implementation practice.

  Either party may initiate a close by sending a close_notify alert.
  Any data received after a closure alert is ignored.

  Unless some other fatal alert has been transmitted, each party is
  required to send a close_notify alert before closing the write side
  of the connection.  The other party MUST respond with a close_notify
  alert of its own and close down the connection immediately,
  discarding any pending writes.  It is not required for the initiator
  of the close to wait for the responding close_notify alert before
  closing the read side of the connection.

  If the application protocol using TLS provides that any data may be
  carried over the underlying transport after the TLS connection is
  closed, the TLS implementation must receive the responding
  close_notify alert before indicating to the application layer that
  the TLS connection has ended.  If the application protocol will not
  transfer any additional data, but will only close the underlying
  transport connection, then the implementation MAY choose to close the
  transport without waiting for the responding close_notify.  No part




Dierks & Rescorla           Standards Track                    [Page 29]

RFC 5246                          TLS                        August 2008


  of this standard should be taken to dictate the manner in which a
  usage profile for TLS manages its data transport, including when
  connections are opened or closed.

  Note: It is assumed that closing a connection reliably delivers
  pending data before destroying the transport.

7.2.2.  Error Alerts

  Error handling in the TLS Handshake protocol is very simple.  When an
  error is detected, the detecting party sends a message to the other
  party.  Upon transmission or receipt of a fatal alert message, both
  parties immediately close the connection.  Servers and clients MUST
  forget any session-identifiers, keys, and secrets associated with a
  failed connection.  Thus, any connection terminated with a fatal
  alert MUST NOT be resumed.

  Whenever an implementation encounters a condition which is defined as
  a fatal alert, it MUST send the appropriate alert prior to closing
  the connection.  For all errors where an alert level is not
  explicitly specified, the sending party MAY determine at its
  discretion whether to treat this as a fatal error or not.  If the
  implementation chooses to send an alert but intends to close the
  connection immediately afterwards, it MUST send that alert at the
  fatal alert level.

  If an alert with a level of warning is sent and received, generally
  the connection can continue normally.  If the receiving party decides
  not to proceed with the connection (e.g., after having received a
  no_renegotiation alert that it is not willing to accept), it SHOULD
  send a fatal alert to terminate the connection.  Given this, the
  sending party cannot, in general, know how the receiving party will
  behave.  Therefore, warning alerts are not very useful when the
  sending party wants to continue the connection, and thus are
  sometimes omitted.  For example, if a peer decides to accept an
  expired certificate (perhaps after confirming this with the user) and
  wants to continue the connection, it would not generally send a
  certificate_expired alert.

  The following error alerts are defined:

  unexpected_message
     An inappropriate message was received.  This alert is always fatal
     and should never be observed in communication between proper
     implementations.






Dierks & Rescorla           Standards Track                    [Page 30]

RFC 5246                          TLS                        August 2008


  bad_record_mac
     This alert is returned if a record is received with an incorrect
     MAC.  This alert also MUST be returned if an alert is sent because
     a TLSCiphertext decrypted in an invalid way: either it wasn't an
     even multiple of the block length, or its padding values, when
     checked, weren't correct.  This message is always fatal and should
     never be observed in communication between proper implementations
     (except when messages were corrupted in the network).

  decryption_failed_RESERVED
     This alert was used in some earlier versions of TLS, and may have
     permitted certain attacks against the CBC mode [CBCATT].  It MUST
     NOT be sent by compliant implementations.

  record_overflow
     A TLSCiphertext record was received that had a length more than
     2^14+2048 bytes, or a record decrypted to a TLSCompressed record
     with more than 2^14+1024 bytes.  This message is always fatal and
     should never be observed in communication between proper
     implementations (except when messages were corrupted in the
     network).

  decompression_failure
     The decompression function received improper input (e.g., data
     that would expand to excessive length).  This message is always
     fatal and should never be observed in communication between proper
     implementations.

  handshake_failure
     Reception of a handshake_failure alert message indicates that the
     sender was unable to negotiate an acceptable set of security
     parameters given the options available.  This is a fatal error.

  no_certificate_RESERVED
     This alert was used in SSLv3 but not any version of TLS.  It MUST
     NOT be sent by compliant implementations.

  bad_certificate
     A certificate was corrupt, contained signatures that did not
     verify correctly, etc.

  unsupported_certificate
     A certificate was of an unsupported type.

  certificate_revoked
     A certificate was revoked by its signer.





Dierks & Rescorla           Standards Track                    [Page 31]

RFC 5246                          TLS                        August 2008


  certificate_expired
     A certificate has expired or is not currently valid.

  certificate_unknown
     Some other (unspecified) issue arose in processing the
     certificate, rendering it unacceptable.

  illegal_parameter
     A field in the handshake was out of range or inconsistent with
     other fields.  This message is always fatal.

  unknown_ca
     A valid certificate chain or partial chain was received, but the
     certificate was not accepted because the CA certificate could not
     be located or couldn't be matched with a known, trusted CA.  This
     message is always fatal.

  access_denied
     A valid certificate was received, but when access control was
     applied, the sender decided not to proceed with negotiation.  This
     message is always fatal.

  decode_error
     A message could not be decoded because some field was out of the
     specified range or the length of the message was incorrect.  This
     message is always fatal and should never be observed in
     communication between proper implementations (except when messages
     were corrupted in the network).

  decrypt_error
     A handshake cryptographic operation failed, including being unable
     to correctly verify a signature or validate a Finished message.
     This message is always fatal.

  export_restriction_RESERVED
     This alert was used in some earlier versions of TLS.  It MUST NOT
     be sent by compliant implementations.

  protocol_version
     The protocol version the client has attempted to negotiate is
     recognized but not supported.  (For example, old protocol versions
     might be avoided for security reasons.)  This message is always
     fatal.








Dierks & Rescorla           Standards Track                    [Page 32]

RFC 5246                          TLS                        August 2008


  insufficient_security
     Returned instead of handshake_failure when a negotiation has
     failed specifically because the server requires ciphers more
     secure than those supported by the client.  This message is always
     fatal.

  internal_error
     An internal error unrelated to the peer or the correctness of the
     protocol (such as a memory allocation failure) makes it impossible
     to continue.  This message is always fatal.

  user_canceled
     This handshake is being canceled for some reason unrelated to a
     protocol failure.  If the user cancels an operation after the
     handshake is complete, just closing the connection by sending a
     close_notify is more appropriate.  This alert should be followed
     by a close_notify.  This message is generally a warning.

  no_renegotiation
     Sent by the client in response to a hello request or by the server
     in response to a client hello after initial handshaking.  Either
     of these would normally lead to renegotiation; when that is not
     appropriate, the recipient should respond with this alert.  At
     that point, the original requester can decide whether to proceed
     with the connection.  One case where this would be appropriate is
     where a server has spawned a process to satisfy a request; the
     process might receive security parameters (key length,
     authentication, etc.) at startup, and it might be difficult to
     communicate changes to these parameters after that point.  This
     message is always a warning.

  unsupported_extension
     sent by clients that receive an extended server hello containing
     an extension that they did not put in the corresponding client
     hello.  This message is always fatal.

  New Alert values are assigned by IANA as described in Section 12.

7.3.  Handshake Protocol Overview

  The cryptographic parameters of the session state are produced by the
  TLS Handshake Protocol, which operates on top of the TLS record
  layer.  When a TLS client and server first start communicating, they
  agree on a protocol version, select cryptographic algorithms,
  optionally authenticate each other, and use public-key encryption
  techniques to generate shared secrets.





Dierks & Rescorla           Standards Track                    [Page 33]

RFC 5246                          TLS                        August 2008


  The TLS Handshake Protocol involves the following steps:

  -  Exchange hello messages to agree on algorithms, exchange random
     values, and check for session resumption.

  -  Exchange the necessary cryptographic parameters to allow the
     client and server to agree on a premaster secret.

  -  Exchange certificates and cryptographic information to allow the
     client and server to authenticate themselves.

  -  Generate a master secret from the premaster secret and exchanged
     random values.

  -  Provide security parameters to the record layer.

  -  Allow the client and server to verify that their peer has
     calculated the same security parameters and that the handshake
     occurred without tampering by an attacker.

  Note that higher layers should not be overly reliant on whether TLS
  always negotiates the strongest possible connection between two
  peers.  There are a number of ways in which a man-in-the-middle
  attacker can attempt to make two entities drop down to the least
  secure method they support.  The protocol has been designed to
  minimize this risk, but there are still attacks available: for
  example, an attacker could block access to the port a secure service
  runs on, or attempt to get the peers to negotiate an unauthenticated
  connection.  The fundamental rule is that higher levels must be
  cognizant of what their security requirements are and never transmit
  information over a channel less secure than what they require.  The
  TLS protocol is secure in that any cipher suite offers its promised
  level of security: if you negotiate 3DES with a 1024-bit RSA key
  exchange with a host whose certificate you have verified, you can
  expect to be that secure.

  These goals are achieved by the handshake protocol, which can be
  summarized as follows: The client sends a ClientHello message to
  which the server must respond with a ServerHello message, or else a
  fatal error will occur and the connection will fail.  The ClientHello
  and ServerHello are used to establish security enhancement
  capabilities between client and server.  The ClientHello and
  ServerHello establish the following attributes: Protocol Version,
  Session ID, Cipher Suite, and Compression Method.  Additionally, two
  random values are generated and exchanged: ClientHello.random and
  ServerHello.random.





Dierks & Rescorla           Standards Track                    [Page 34]

RFC 5246                          TLS                        August 2008


  The actual key exchange uses up to four messages: the server
  Certificate, the ServerKeyExchange, the client Certificate, and the
  ClientKeyExchange.  New key exchange methods can be created by
  specifying a format for these messages and by defining the use of the
  messages to allow the client and server to agree upon a shared
  secret.  This secret MUST be quite long; currently defined key
  exchange methods exchange secrets that range from 46 bytes upwards.

  Following the hello messages, the server will send its certificate in
  a Certificate message if it is to be authenticated.  Additionally, a
  ServerKeyExchange message may be sent, if it is required (e.g., if
  the server has no certificate, or if its certificate is for signing
  only).  If the server is authenticated, it may request a certificate
  from the client, if that is appropriate to the cipher suite selected.
  Next, the server will send the ServerHelloDone message, indicating
  that the hello-message phase of the handshake is complete.  The
  server will then wait for a client response.  If the server has sent
  a CertificateRequest message, the client MUST send the Certificate
  message.  The ClientKeyExchange message is now sent, and the content
  of that message will depend on the public key algorithm selected
  between the ClientHello and the ServerHello.  If the client has sent
  a certificate with signing ability, a digitally-signed
  CertificateVerify message is sent to explicitly verify possession of
  the private key in the certificate.

  At this point, a ChangeCipherSpec message is sent by the client, and
  the client copies the pending Cipher Spec into the current Cipher
  Spec.  The client then immediately sends the Finished message under
  the new algorithms, keys, and secrets.  In response, the server will
  send its own ChangeCipherSpec message, transfer the pending to the
  current Cipher Spec, and send its Finished message under the new
  Cipher Spec.  At this point, the handshake is complete, and the
  client and server may begin to exchange application layer data.  (See
  flow chart below.)  Application data MUST NOT be sent prior to the
  completion of the first handshake (before a cipher suite other than
  TLS_NULL_WITH_NULL_NULL is established).















Dierks & Rescorla           Standards Track                    [Page 35]

RFC 5246                          TLS                        August 2008


     Client                                               Server

     ClientHello                  -------->
                                                     ServerHello
                                                    Certificate*
                                              ServerKeyExchange*
                                             CertificateRequest*
                                  <--------      ServerHelloDone
     Certificate*
     ClientKeyExchange
     CertificateVerify*
     [ChangeCipherSpec]
     Finished                     -------->
                                              [ChangeCipherSpec]
                                  <--------             Finished
     Application Data             <------->     Application Data

            Figure 1.  Message flow for a full handshake

  * Indicates optional or situation-dependent messages that are not
  always sent.

  Note: To help avoid pipeline stalls, ChangeCipherSpec is an
  independent TLS protocol content type, and is not actually a TLS
  handshake message.

  When the client and server decide to resume a previous session or
  duplicate an existing session (instead of negotiating new security
  parameters), the message flow is as follows:

  The client sends a ClientHello using the Session ID of the session to
  be resumed.  The server then checks its session cache for a match.
  If a match is found, and the server is willing to re-establish the
  connection under the specified session state, it will send a
  ServerHello with the same Session ID value.  At this point, both
  client and server MUST send ChangeCipherSpec messages and proceed
  directly to Finished messages.  Once the re-establishment is
  complete, the client and server MAY begin to exchange application
  layer data.  (See flow chart below.)  If a Session ID match is not
  found, the server generates a new session ID, and the TLS client and
  server perform a full handshake.










Dierks & Rescorla           Standards Track                    [Page 36]

RFC 5246                          TLS                        August 2008


     Client                                                Server

     ClientHello                   -------->
                                                      ServerHello
                                               [ChangeCipherSpec]
                                   <--------             Finished
     [ChangeCipherSpec]
     Finished                      -------->
     Application Data              <------->     Application Data

         Figure 2.  Message flow for an abbreviated handshake

  The contents and significance of each message will be presented in
  detail in the following sections.

7.4.  Handshake Protocol

  The TLS Handshake Protocol is one of the defined higher-level clients
  of the TLS Record Protocol.  This protocol is used to negotiate the
  secure attributes of a session.  Handshake messages are supplied to
  the TLS record layer, where they are encapsulated within one or more
  TLSPlaintext structures, which are processed and transmitted as
  specified by the current active session state.

     enum {
         hello_request(0), client_hello(1), server_hello(2),
         certificate(11), server_key_exchange (12),
         certificate_request(13), server_hello_done(14),
         certificate_verify(15), client_key_exchange(16),
         finished(20), (255)
     } HandshakeType;

     struct {
         HandshakeType msg_type;    /* handshake type */
         uint24 length;             /* bytes in message */
         select (HandshakeType) {
             case hello_request:       HelloRequest;
             case client_hello:        ClientHello;
             case server_hello:        ServerHello;
             case certificate:         Certificate;
             case server_key_exchange: ServerKeyExchange;
             case certificate_request: CertificateRequest;
             case server_hello_done:   ServerHelloDone;
             case certificate_verify:  CertificateVerify;
             case client_key_exchange: ClientKeyExchange;
             case finished:            Finished;
         } body;
     } Handshake;



Dierks & Rescorla           Standards Track                    [Page 37]

RFC 5246                          TLS                        August 2008


  The handshake protocol messages are presented below in the order they
  MUST be sent; sending handshake messages in an unexpected order
  results in a fatal error.  Unneeded handshake messages can be
  omitted, however.  Note one exception to the ordering: the
  Certificate message is used twice in the handshake (from server to
  client, then from client to server), but described only in its first
  position.  The one message that is not bound by these ordering rules
  is the HelloRequest message, which can be sent at any time, but which
  SHOULD be ignored by the client if it arrives in the middle of a
  handshake.

  New handshake message types are assigned by IANA as described in
  Section 12.

7.4.1.  Hello Messages

  The hello phase messages are used to exchange security enhancement
  capabilities between the client and server.  When a new session
  begins, the record layer's connection state encryption, hash, and
  compression algorithms are initialized to null.  The current
  connection state is used for renegotiation messages.

7.4.1.1.  Hello Request

  When this message will be sent:

     The HelloRequest message MAY be sent by the server at any time.

  Meaning of this message:

     HelloRequest is a simple notification that the client should begin
     the negotiation process anew.  In response, the client should send
     a ClientHello message when convenient.  This message is not
     intended to establish which side is the client or server but
     merely to initiate a new negotiation.  Servers SHOULD NOT send a
     HelloRequest immediately upon the client's initial connection.  It
     is the client's job to send a ClientHello at that time.

     This message will be ignored by the client if the client is
     currently negotiating a session.  This message MAY be ignored by
     the client if it does not wish to renegotiate a session, or the
     client may, if it wishes, respond with a no_renegotiation alert.
     Since handshake messages are intended to have transmission
     precedence over application data, it is expected that the
     negotiation will begin before no more than a few records are
     received from the client.  If the server sends a HelloRequest but
     does not receive a ClientHello in response, it may close the
     connection with a fatal alert.



Dierks & Rescorla           Standards Track                    [Page 38]

RFC 5246                          TLS                        August 2008


     After sending a HelloRequest, servers SHOULD NOT repeat the
     request until the subsequent handshake negotiation is complete.

  Structure of this message:

     struct { } HelloRequest;

  This message MUST NOT be included in the message hashes that are
  maintained throughout the handshake and used in the Finished messages
  and the certificate verify message.

7.4.1.2.  Client Hello

  When this message will be sent:

     When a client first connects to a server, it is required to send
     the ClientHello as its first message.  The client can also send a
     ClientHello in response to a HelloRequest or on its own initiative
     in order to renegotiate the security parameters in an existing
     connection.

  Structure of this message:

     The ClientHello message includes a random structure, which is used
     later in the protocol.

        struct {
            uint32 gmt_unix_time;
            opaque random_bytes[28];
        } Random;

     gmt_unix_time
        The current time and date in standard UNIX 32-bit format
        (seconds since the midnight starting Jan 1, 1970, UTC, ignoring
        leap seconds) according to the sender's internal clock.  Clocks
        are not required to be set correctly by the basic TLS protocol;
        higher-level or application protocols may define additional
        requirements.  Note that, for historical reasons, the data
        element is named using GMT, the predecessor of the current
        worldwide time base, UTC.

     random_bytes
        28 bytes generated by a secure random number generator.

  The ClientHello message includes a variable-length session
  identifier.  If not empty, the value identifies a session between the
  same client and server whose security parameters the client wishes to
  reuse.  The session identifier MAY be from an earlier connection,



Dierks & Rescorla           Standards Track                    [Page 39]

RFC 5246                          TLS                        August 2008


  this connection, or from another currently active connection.  The
  second option is useful if the client only wishes to update the
  random structures and derived values of a connection, and the third
  option makes it possible to establish several independent secure
  connections without repeating the full handshake protocol.  These
  independent connections may occur sequentially or simultaneously; a
  SessionID becomes valid when the handshake negotiating it completes
  with the exchange of Finished messages and persists until it is
  removed due to aging or because a fatal error was encountered on a
  connection associated with the session.  The actual contents of the
  SessionID are defined by the server.

     opaque SessionID<0..32>;

  Warning: Because the SessionID is transmitted without encryption or
  immediate MAC protection, servers MUST NOT place confidential
  information in session identifiers or let the contents of fake
  session identifiers cause any breach of security.  (Note that the
  content of the handshake as a whole, including the SessionID, is
  protected by the Finished messages exchanged at the end of the
  handshake.)

  The cipher suite list, passed from the client to the server in the
  ClientHello message, contains the combinations of cryptographic
  algorithms supported by the client in order of the client's
  preference (favorite choice first).  Each cipher suite defines a key
  exchange algorithm, a bulk encryption algorithm (including secret key
  length), a MAC algorithm, and a PRF.  The server will select a cipher
  suite or, if no acceptable choices are presented, return a handshake
  failure alert and close the connection.  If the list contains cipher
  suites the server does not recognize, support, or wish to use, the
  server MUST ignore those cipher suites, and process the remaining
  ones as usual.

     uint8 CipherSuite[2];    /* Cryptographic suite selector */

  The ClientHello includes a list of compression algorithms supported
  by the client, ordered according to the client's preference.

     enum { null(0), (255) } CompressionMethod;











Dierks & Rescorla           Standards Track                    [Page 40]

RFC 5246                          TLS                        August 2008


     struct {
         ProtocolVersion client_version;
         Random random;
         SessionID session_id;
         CipherSuite cipher_suites<2..2^16-2>;
         CompressionMethod compression_methods<1..2^8-1>;
         select (extensions_present) {
             case false:
                 struct {};
             case true:
                 Extension extensions<0..2^16-1>;
         };
     } ClientHello;

  TLS allows extensions to follow the compression_methods field in an
  extensions block.  The presence of extensions can be detected by
  determining whether there are bytes following the compression_methods
  at the end of the ClientHello.  Note that this method of detecting
  optional data differs from the normal TLS method of having a
  variable-length field, but it is used for compatibility with TLS
  before extensions were defined.

  client_version
     The version of the TLS protocol by which the client wishes to
     communicate during this session.  This SHOULD be the latest
     (highest valued) version supported by the client.  For this
     version of the specification, the version will be 3.3 (see
     Appendix E for details about backward compatibility).

  random
     A client-generated random structure.

  session_id
     The ID of a session the client wishes to use for this connection.
     This field is empty if no session_id is available, or if the
     client wishes to generate new security parameters.

  cipher_suites
     This is a list of the cryptographic options supported by the
     client, with the client's first preference first.  If the
     session_id field is not empty (implying a session resumption
     request), this vector MUST include at least the cipher_suite from
     that session.  Values are defined in Appendix A.5.

  compression_methods
     This is a list of the compression methods supported by the client,
     sorted by client preference.  If the session_id field is not empty
     (implying a session resumption request), it MUST include the



Dierks & Rescorla           Standards Track                    [Page 41]

RFC 5246                          TLS                        August 2008


     compression_method from that session.  This vector MUST contain,
     and all implementations MUST support, CompressionMethod.null.
     Thus, a client and server will always be able to agree on a
     compression method.

  extensions
     Clients MAY request extended functionality from servers by sending
     data in the extensions field.  The actual "Extension" format is
     defined in Section 7.4.1.4.

  In the event that a client requests additional functionality using
  extensions, and this functionality is not supplied by the server, the
  client MAY abort the handshake.  A server MUST accept ClientHello
  messages both with and without the extensions field, and (as for all
  other messages) it MUST check that the amount of data in the message
  precisely matches one of these formats; if not, then it MUST send a
  fatal "decode_error" alert.

  After sending the ClientHello message, the client waits for a
  ServerHello message.  Any handshake message returned by the server,
  except for a HelloRequest, is treated as a fatal error.

7.4.1.3.  Server Hello

  When this message will be sent:

     The server will send this message in response to a ClientHello
     message when it was able to find an acceptable set of algorithms.
     If it cannot find such a match, it will respond with a handshake
     failure alert.

  Structure of this message:

     struct {
         ProtocolVersion server_version;
         Random random;
         SessionID session_id;
         CipherSuite cipher_suite;
         CompressionMethod compression_method;
         select (extensions_present) {
             case false:
                 struct {};
             case true:
                 Extension extensions<0..2^16-1>;
         };
     } ServerHello;





Dierks & Rescorla           Standards Track                    [Page 42]

RFC 5246                          TLS                        August 2008


  The presence of extensions can be detected by determining whether
  there are bytes following the compression_method field at the end of
  the ServerHello.

  server_version
     This field will contain the lower of that suggested by the client
     in the client hello and the highest supported by the server.  For
     this version of the specification, the version is 3.3.  (See
     Appendix E for details about backward compatibility.)

  random
     This structure is generated by the server and MUST be
     independently generated from the ClientHello.random.

  session_id
     This is the identity of the session corresponding to this
     connection.  If the ClientHello.session_id was non-empty, the
     server will look in its session cache for a match.  If a match is
     found and the server is willing to establish the new connection
     using the specified session state, the server will respond with
     the same value as was supplied by the client.  This indicates a
     resumed session and dictates that the parties must proceed
     directly to the Finished messages.  Otherwise, this field will
     contain a different value identifying the new session.  The server
     may return an empty session_id to indicate that the session will
     not be cached and therefore cannot be resumed.  If a session is
     resumed, it must be resumed using the same cipher suite it was
     originally negotiated with.  Note that there is no requirement
     that the server resume any session even if it had formerly
     provided a session_id.  Clients MUST be prepared to do a full
     negotiation -- including negotiating new cipher suites -- during
     any handshake.

  cipher_suite
     The single cipher suite selected by the server from the list in
     ClientHello.cipher_suites.  For resumed sessions, this field is
     the value from the state of the session being resumed.

  compression_method
     The single compression algorithm selected by the server from the
     list in ClientHello.compression_methods.  For resumed sessions,
     this field is the value from the resumed session state.

  extensions
     A list of extensions.  Note that only extensions offered by the
     client can appear in the server's list.





Dierks & Rescorla           Standards Track                    [Page 43]

RFC 5246                          TLS                        August 2008


7.4.1.4.  Hello Extensions

  The extension format is:

     struct {
         ExtensionType extension_type;
         opaque extension_data<0..2^16-1>;
     } Extension;

     enum {
         signature_algorithms(13), (65535)
     } ExtensionType;

  Here:

  -  "extension_type" identifies the particular extension type.

  -  "extension_data" contains information specific to the particular
     extension type.

  The initial set of extensions is defined in a companion document
  [TLSEXT].  The list of extension types is maintained by IANA as
  described in Section 12.

  An extension type MUST NOT appear in the ServerHello unless the same
  extension type appeared in the corresponding ClientHello.  If a
  client receives an extension type in ServerHello that it did not
  request in the associated ClientHello, it MUST abort the handshake
  with an unsupported_extension fatal alert.

  Nonetheless, "server-oriented" extensions may be provided in the
  future within this framework.  Such an extension (say, of type x)
  would require the client to first send an extension of type x in a
  ClientHello with empty extension_data to indicate that it supports
  the extension type.  In this case, the client is offering the
  capability to understand the extension type, and the server is taking
  the client up on its offer.

  When multiple extensions of different types are present in the
  ClientHello or ServerHello messages, the extensions MAY appear in any
  order.  There MUST NOT be more than one extension of the same type.

  Finally, note that extensions can be sent both when starting a new
  session and when requesting session resumption.  Indeed, a client
  that requests session resumption does not in general know whether the
  server will accept this request, and therefore it SHOULD send the
  same extensions as it would send if it were not attempting
  resumption.



Dierks & Rescorla           Standards Track                    [Page 44]

RFC 5246                          TLS                        August 2008


  In general, the specification of each extension type needs to
  describe the effect of the extension both during full handshake and
  session resumption.  Most current TLS extensions are relevant only
  when a session is initiated: when an older session is resumed, the
  server does not process these extensions in Client Hello, and does
  not include them in Server Hello.  However, some extensions may
  specify different behavior during session resumption.

  There are subtle (and not so subtle) interactions that may occur in
  this protocol between new features and existing features which may
  result in a significant reduction in overall security.  The following
  considerations should be taken into account when designing new
  extensions:

  -  Some cases where a server does not agree to an extension are error
     conditions, and some are simply refusals to support particular
     features.  In general, error alerts should be used for the former,
     and a field in the server extension response for the latter.

  -  Extensions should, as far as possible, be designed to prevent any
     attack that forces use (or non-use) of a particular feature by
     manipulation of handshake messages.  This principle should be
     followed regardless of whether the feature is believed to cause a
     security problem.

     Often the fact that the extension fields are included in the
     inputs to the Finished message hashes will be sufficient, but
     extreme care is needed when the extension changes the meaning of
     messages sent in the handshake phase.  Designers and implementors
     should be aware of the fact that until the handshake has been
     authenticated, active attackers can modify messages and insert,
     remove, or replace extensions.

  -  It would be technically possible to use extensions to change major
     aspects of the design of TLS; for example the design of cipher
     suite negotiation.  This is not recommended; it would be more
     appropriate to define a new version of TLS -- particularly since
     the TLS handshake algorithms have specific protection against
     version rollback attacks based on the version number, and the
     possibility of version rollback should be a significant
     consideration in any major design change.

7.4.1.4.1.  Signature Algorithms

  The client uses the "signature_algorithms" extension to indicate to
  the server which signature/hash algorithm pairs may be used in
  digital signatures.  The "extension_data" field of this extension
  contains a "supported_signature_algorithms" value.



Dierks & Rescorla           Standards Track                    [Page 45]

RFC 5246                          TLS                        August 2008


     enum {
         none(0), md5(1), sha1(2), sha224(3), sha256(4), sha384(5),
         sha512(6), (255)
     } HashAlgorithm;

     enum { anonymous(0), rsa(1), dsa(2), ecdsa(3), (255) }
       SignatureAlgorithm;

     struct {
           HashAlgorithm hash;
           SignatureAlgorithm signature;
     } SignatureAndHashAlgorithm;

     SignatureAndHashAlgorithm
       supported_signature_algorithms<2..2^16-2>;

  Each SignatureAndHashAlgorithm value lists a single hash/signature
  pair that the client is willing to verify.  The values are indicated
  in descending order of preference.

  Note: Because not all signature algorithms and hash algorithms may be
  accepted by an implementation (e.g., DSA with SHA-1, but not
  SHA-256), algorithms here are listed in pairs.

  hash
     This field indicates the hash algorithm which may be used.  The
     values indicate support for unhashed data, MD5 [MD5], SHA-1,
     SHA-224, SHA-256, SHA-384, and SHA-512 [SHS], respectively.  The
     "none" value is provided for future extensibility, in case of a
     signature algorithm which does not require hashing before signing.

  signature
     This field indicates the signature algorithm that may be used.
     The values indicate anonymous signatures, RSASSA-PKCS1-v1_5
     [PKCS1] and DSA [DSS], and ECDSA [ECDSA], respectively.  The
     "anonymous" value is meaningless in this context but used in
     Section 7.4.3.  It MUST NOT appear in this extension.

  The semantics of this extension are somewhat complicated because the
  cipher suite indicates permissible signature algorithms but not hash
  algorithms.  Sections 7.4.2 and 7.4.3 describe the appropriate rules.

  If the client supports only the default hash and signature algorithms
  (listed in this section), it MAY omit the signature_algorithms
  extension.  If the client does not support the default algorithms, or
  supports other hash and signature algorithms (and it is willing to
  use them for verifying messages sent by the server, i.e., server
  certificates and server key exchange), it MUST send the



Dierks & Rescorla           Standards Track                    [Page 46]

RFC 5246                          TLS                        August 2008


  signature_algorithms extension, listing the algorithms it is willing
  to accept.

  If the client does not send the signature_algorithms extension, the
  server MUST do the following:

  -  If the negotiated key exchange algorithm is one of (RSA, DHE_RSA,
     DH_RSA, RSA_PSK, ECDH_RSA, ECDHE_RSA), behave as if client had
     sent the value {sha1,rsa}.

  -  If the negotiated key exchange algorithm is one of (DHE_DSS,
     DH_DSS), behave as if the client had sent the value {sha1,dsa}.

  -  If the negotiated key exchange algorithm is one of (ECDH_ECDSA,
     ECDHE_ECDSA), behave as if the client had sent value {sha1,ecdsa}.

  Note: this is a change from TLS 1.1 where there are no explicit
  rules, but as a practical matter one can assume that the peer
  supports MD5 and SHA-1.

  Note: this extension is not meaningful for TLS versions prior to 1.2.
  Clients MUST NOT offer it if they are offering prior versions.
  However, even if clients do offer it, the rules specified in [TLSEXT]
  require servers to ignore extensions they do not understand.

  Servers MUST NOT send this extension.  TLS servers MUST support
  receiving this extension.

  When performing session resumption, this extension is not included in
  Server Hello, and the server ignores the extension in Client Hello
  (if present).

7.4.2.  Server Certificate

  When this message will be sent:

     The server MUST send a Certificate message whenever the agreed-
     upon key exchange method uses certificates for authentication
     (this includes all key exchange methods defined in this document
     except DH_anon).  This message will always immediately follow the
     ServerHello message.

  Meaning of this message:

     This message conveys the server's certificate chain to the client.

     The certificate MUST be appropriate for the negotiated cipher
     suite's key exchange algorithm and any negotiated extensions.



Dierks & Rescorla           Standards Track                    [Page 47]

RFC 5246                          TLS                        August 2008


  Structure of this message:

     opaque ASN.1Cert<1..2^24-1>;

     struct {
         ASN.1Cert certificate_list<0..2^24-1>;
     } Certificate;

  certificate_list
     This is a sequence (chain) of certificates.  The sender's
     certificate MUST come first in the list.  Each following
     certificate MUST directly certify the one preceding it.  Because
     certificate validation requires that root keys be distributed
     independently, the self-signed certificate that specifies the root
     certificate authority MAY be omitted from the chain, under the
     assumption that the remote end must already possess it in order to
     validate it in any case.

  The same message type and structure will be used for the client's
  response to a certificate request message.  Note that a client MAY
  send no certificates if it does not have an appropriate certificate
  to send in response to the server's authentication request.

  Note: PKCS #7 [PKCS7] is not used as the format for the certificate
  vector because PKCS #6 [PKCS6] extended certificates are not used.
  Also, PKCS #7 defines a SET rather than a SEQUENCE, making the task
  of parsing the list more difficult.

  The following rules apply to the certificates sent by the server:

  -  The certificate type MUST be X.509v3, unless explicitly negotiated
     otherwise (e.g., [TLSPGP]).

  -  The end entity certificate's public key (and associated
     restrictions) MUST be compatible with the selected key exchange
     algorithm.

     Key Exchange Alg.  Certificate Key Type

     RSA                RSA public key; the certificate MUST allow the
     RSA_PSK            key to be used for encryption (the
                        keyEncipherment bit MUST be set if the key
                        usage extension is present).
                        Note: RSA_PSK is defined in [TLSPSK].







Dierks & Rescorla           Standards Track                    [Page 48]

RFC 5246                          TLS                        August 2008


     DHE_RSA            RSA public key; the certificate MUST allow the
     ECDHE_RSA          key to be used for signing (the
                        digitalSignature bit MUST be set if the key
                        usage extension is present) with the signature
                        scheme and hash algorithm that will be employed
                        in the server key exchange message.
                        Note: ECDHE_RSA is defined in [TLSECC].

     DHE_DSS            DSA public key; the certificate MUST allow the
                        key to be used for signing with the hash
                        algorithm that will be employed in the server
                        key exchange message.

     DH_DSS             Diffie-Hellman public key; the keyAgreement bit
     DH_RSA             MUST be set if the key usage extension is
                        present.

     ECDH_ECDSA         ECDH-capable public key; the public key MUST
     ECDH_RSA           use a curve and point format supported by the
                        client, as described in [TLSECC].

     ECDHE_ECDSA        ECDSA-capable public key; the certificate MUST
                        allow the key to be used for signing with the
                        hash algorithm that will be employed in the
                        server key exchange message.  The public key
                        MUST use a curve and point format supported by
                        the client, as described in  [TLSECC].

  -  The "server_name" and "trusted_ca_keys" extensions [TLSEXT] are
     used to guide certificate selection.

  If the client provided a "signature_algorithms" extension, then all
  certificates provided by the server MUST be signed by a
  hash/signature algorithm pair that appears in that extension.  Note
  that this implies that a certificate containing a key for one
  signature algorithm MAY be signed using a different signature
  algorithm (for instance, an RSA key signed with a DSA key).  This is
  a departure from TLS 1.1, which required that the algorithms be the
  same.  Note that this also implies that the DH_DSS, DH_RSA,
  ECDH_ECDSA, and ECDH_RSA key exchange algorithms do not restrict the
  algorithm used to sign the certificate.  Fixed DH certificates MAY be
  signed with any hash/signature algorithm pair appearing in the
  extension.  The names DH_DSS, DH_RSA, ECDH_ECDSA, and ECDH_RSA are
  historical.







Dierks & Rescorla           Standards Track                    [Page 49]

RFC 5246                          TLS                        August 2008


  If the server has multiple certificates, it chooses one of them based
  on the above-mentioned criteria (in addition to other criteria, such
  as transport layer endpoint, local configuration and preferences,
  etc.).  If the server has a single certificate, it SHOULD attempt to
  validate that it meets these criteria.

  Note that there are certificates that use algorithms and/or algorithm
  combinations that cannot be currently used with TLS.  For example, a
  certificate with RSASSA-PSS signature key (id-RSASSA-PSS OID in
  SubjectPublicKeyInfo) cannot be used because TLS defines no
  corresponding signature algorithm.

  As cipher suites that specify new key exchange methods are specified
  for the TLS protocol, they will imply the certificate format and the
  required encoded keying information.

7.4.3.  Server Key Exchange Message

  When this message will be sent:

     This message will be sent immediately after the server Certificate
     message (or the ServerHello message, if this is an anonymous
     negotiation).

     The ServerKeyExchange message is sent by the server only when the
     server Certificate message (if sent) does not contain enough data
     to allow the client to exchange a premaster secret.  This is true
     for the following key exchange methods:

        DHE_DSS
        DHE_RSA
        DH_anon

     It is not legal to send the ServerKeyExchange message for the
     following key exchange methods:

        RSA
        DH_DSS
        DH_RSA

     Other key exchange algorithms, such as those defined in [TLSECC],
     MUST specify whether the ServerKeyExchange message is sent or not;
     and if the message is sent, its contents.








Dierks & Rescorla           Standards Track                    [Page 50]

RFC 5246                          TLS                        August 2008


  Meaning of this message:

     This message conveys cryptographic information to allow the client
     to communicate the premaster secret: a Diffie-Hellman public key
     with which the client can complete a key exchange (with the result
     being the premaster secret) or a public key for some other
     algorithm.

  Structure of this message:

     enum { dhe_dss, dhe_rsa, dh_anon, rsa, dh_dss, dh_rsa
           /* may be extended, e.g., for ECDH -- see [TLSECC] */
          } KeyExchangeAlgorithm;

     struct {
         opaque dh_p<1..2^16-1>;
         opaque dh_g<1..2^16-1>;
         opaque dh_Ys<1..2^16-1>;
     } ServerDHParams;     /* Ephemeral DH parameters */

     dh_p
        The prime modulus used for the Diffie-Hellman operation.

     dh_g
        The generator used for the Diffie-Hellman operation.

     dh_Ys
        The server's Diffie-Hellman public value (g^X mod p).























Dierks & Rescorla           Standards Track                    [Page 51]

RFC 5246                          TLS                        August 2008


     struct {
         select (KeyExchangeAlgorithm) {
             case dh_anon:
                 ServerDHParams params;
             case dhe_dss:
             case dhe_rsa:
                 ServerDHParams params;
                 digitally-signed struct {
                     opaque client_random[32];
                     opaque server_random[32];
                     ServerDHParams params;
                 } signed_params;
             case rsa:
             case dh_dss:
             case dh_rsa:
                 struct {} ;
                /* message is omitted for rsa, dh_dss, and dh_rsa */
             /* may be extended, e.g., for ECDH -- see [TLSECC] */
         };
     } ServerKeyExchange;

     params
        The server's key exchange parameters.

     signed_params
        For non-anonymous key exchanges, a signature over the server's
        key exchange parameters.

  If the client has offered the "signature_algorithms" extension, the
  signature algorithm and hash algorithm MUST be a pair listed in that
  extension.  Note that there is a possibility for inconsistencies
  here.  For instance, the client might offer DHE_DSS key exchange but
  omit any DSA pairs from its "signature_algorithms" extension.  In
  order to negotiate correctly, the server MUST check any candidate
  cipher suites against the "signature_algorithms" extension before
  selecting them.  This is somewhat inelegant but is a compromise
  designed to minimize changes to the original cipher suite design.

  In addition, the hash and signature algorithms MUST be compatible
  with the key in the server's end-entity certificate.  RSA keys MAY be
  used with any permitted hash algorithm, subject to restrictions in
  the certificate, if any.

  Because DSA signatures do not contain any secure indication of hash
  algorithm, there is a risk of hash substitution if multiple hashes
  may be used with any key.  Currently, DSA [DSS] may only be used with
  SHA-1.  Future revisions of DSS [DSS-3] are expected to allow the use
  of other digest algorithms with DSA, as well as guidance as to which



Dierks & Rescorla           Standards Track                    [Page 52]

RFC 5246                          TLS                        August 2008


  digest algorithms should be used with each key size.  In addition,
  future revisions of [PKIX] may specify mechanisms for certificates to
  indicate which digest algorithms are to be used with DSA.

  As additional cipher suites are defined for TLS that include new key
  exchange algorithms, the server key exchange message will be sent if
  and only if the certificate type associated with the key exchange
  algorithm does not provide enough information for the client to
  exchange a premaster secret.

7.4.4.  Certificate Request

  When this message will be sent:

      A non-anonymous server can optionally request a certificate from
      the client, if appropriate for the selected cipher suite.  This
      message, if sent, will immediately follow the ServerKeyExchange
      message (if it is sent; otherwise, this message follows the
      server's Certificate message).

  Structure of this message:

     enum {
         rsa_sign(1), dss_sign(2), rsa_fixed_dh(3), dss_fixed_dh(4),
         rsa_ephemeral_dh_RESERVED(5), dss_ephemeral_dh_RESERVED(6),
         fortezza_dms_RESERVED(20), (255)
     } ClientCertificateType;

     opaque DistinguishedName<1..2^16-1>;

     struct {
         ClientCertificateType certificate_types<1..2^8-1>;
         SignatureAndHashAlgorithm
           supported_signature_algorithms<2^16-1>;
         DistinguishedName certificate_authorities<0..2^16-1>;
     } CertificateRequest;

  certificate_types
     A list of the types of certificate types that the client may
     offer.

        rsa_sign        a certificate containing an RSA key
        dss_sign        a certificate containing a DSA key
        rsa_fixed_dh    a certificate containing a static DH key.
        dss_fixed_dh    a certificate containing a static DH key






Dierks & Rescorla           Standards Track                    [Page 53]

RFC 5246                          TLS                        August 2008


  supported_signature_algorithms
     A list of the hash/signature algorithm pairs that the server is
     able to verify, listed in descending order of preference.

  certificate_authorities
     A list of the distinguished names [X501] of acceptable
     certificate_authorities, represented in DER-encoded format.  These
     distinguished names may specify a desired distinguished name for a
     root CA or for a subordinate CA; thus, this message can be used to
     describe known roots as well as a desired authorization space.  If
     the certificate_authorities list is empty, then the client MAY
     send any certificate of the appropriate ClientCertificateType,
     unless there is some external arrangement to the contrary.

  The interaction of the certificate_types and
  supported_signature_algorithms fields is somewhat complicated.
  certificate_types has been present in TLS since SSLv3, but was
  somewhat underspecified.  Much of its functionality is superseded by
  supported_signature_algorithms.  The following rules apply:

  -  Any certificates provided by the client MUST be signed using a
     hash/signature algorithm pair found in
     supported_signature_algorithms.

  -  The end-entity certificate provided by the client MUST contain a
     key that is compatible with certificate_types.  If the key is a
     signature key, it MUST be usable with some hash/signature
     algorithm pair in supported_signature_algorithms.

  -  For historical reasons, the names of some client certificate types
     include the algorithm used to sign the certificate.  For example,
     in earlier versions of TLS, rsa_fixed_dh meant a certificate
     signed with RSA and containing a static DH key.  In TLS 1.2, this
     functionality has been obsoleted by the
     supported_signature_algorithms, and the certificate type no longer
     restricts the algorithm used to sign the certificate.  For
     example, if the server sends dss_fixed_dh certificate type and
     {{sha1, dsa}, {sha1, rsa}} signature types, the client MAY reply
     with a certificate containing a static DH key, signed with RSA-
     SHA1.

  New ClientCertificateType values are assigned by IANA as described in
  Section 12.

  Note: Values listed as RESERVED may not be used.  They were used in
  SSLv3.





Dierks & Rescorla           Standards Track                    [Page 54]

RFC 5246                          TLS                        August 2008


  Note: It is a fatal handshake_failure alert for an anonymous server
  to request client authentication.

7.4.5.  Server Hello Done

  When this message will be sent:

     The ServerHelloDone message is sent by the server to indicate the
     end of the ServerHello and associated messages.  After sending
     this message, the server will wait for a client response.

  Meaning of this message:

     This message means that the server is done sending messages to
     support the key exchange, and the client can proceed with its
     phase of the key exchange.

     Upon receipt of the ServerHelloDone message, the client SHOULD
     verify that the server provided a valid certificate, if required,
     and check that the server hello parameters are acceptable.

  Structure of this message:

     struct { } ServerHelloDone;

7.4.6.  Client Certificate

  When this message will be sent:

     This is the first message the client can send after receiving a
     ServerHelloDone message.  This message is only sent if the server
     requests a certificate.  If no suitable certificate is available,
     the client MUST send a certificate message containing no
     certificates.  That is, the certificate_list structure has a
     length of zero.  If the client does not send any certificates, the
     server MAY at its discretion either continue the handshake without
     client authentication, or respond with a fatal handshake_failure
     alert.  Also, if some aspect of the certificate chain was
     unacceptable (e.g., it was not signed by a known, trusted CA), the
     server MAY at its discretion either continue the handshake
     (considering the client unauthenticated) or send a fatal alert.

     Client certificates are sent using the Certificate structure
     defined in Section 7.4.2.







Dierks & Rescorla           Standards Track                    [Page 55]

RFC 5246                          TLS                        August 2008


  Meaning of this message:

     This message conveys the client's certificate chain to the server;
     the server will use it when verifying the CertificateVerify
     message (when the client authentication is based on signing) or
     calculating the premaster secret (for non-ephemeral Diffie-
     Hellman).  The certificate MUST be appropriate for the negotiated
     cipher suite's key exchange algorithm, and any negotiated
     extensions.

  In particular:

  -  The certificate type MUST be X.509v3, unless explicitly negotiated
     otherwise (e.g., [TLSPGP]).

  -  The end-entity certificate's public key (and associated
     restrictions) has to be compatible with the certificate types
     listed in CertificateRequest:

     Client Cert. Type   Certificate Key Type

     rsa_sign            RSA public key; the certificate MUST allow the
                         key to be used for signing with the signature
                         scheme and hash algorithm that will be
                         employed in the certificate verify message.

     dss_sign            DSA public key; the certificate MUST allow the
                         key to be used for signing with the hash
                         algorithm that will be employed in the
                         certificate verify message.

     ecdsa_sign          ECDSA-capable public key; the certificate MUST
                         allow the key to be used for signing with the
                         hash algorithm that will be employed in the
                         certificate verify message; the public key
                         MUST use a curve and point format supported by
                         the server.

     rsa_fixed_dh        Diffie-Hellman public key; MUST use the same
     dss_fixed_dh        parameters as server's key.

     rsa_fixed_ecdh      ECDH-capable public key; MUST use the
     ecdsa_fixed_ecdh    same curve as the server's key, and MUST use a
                         point format supported by the server.

  -  If the certificate_authorities list in the certificate request
     message was non-empty, one of the certificates in the certificate
     chain SHOULD be issued by one of the listed CAs.



Dierks & Rescorla           Standards Track                    [Page 56]

RFC 5246                          TLS                        August 2008


  -  The certificates MUST be signed using an acceptable hash/
     signature algorithm pair, as described in Section 7.4.4.  Note
     that this relaxes the constraints on certificate-signing
     algorithms found in prior versions of TLS.

  Note that, as with the server certificate, there are certificates
  that use algorithms/algorithm combinations that cannot be currently
  used with TLS.

7.4.7.  Client Key Exchange Message

  When this message will be sent:

     This message is always sent by the client.  It MUST immediately
     follow the client certificate message, if it is sent.  Otherwise,
     it MUST be the first message sent by the client after it receives
     the ServerHelloDone message.

  Meaning of this message:

     With this message, the premaster secret is set, either by direct
     transmission of the RSA-encrypted secret or by the transmission of
     Diffie-Hellman parameters that will allow each side to agree upon
     the same premaster secret.

     When the client is using an ephemeral Diffie-Hellman exponent,
     then this message contains the client's Diffie-Hellman public
     value.  If the client is sending a certificate containing a static
     DH exponent (i.e., it is doing fixed_dh client authentication),
     then this message MUST be sent but MUST be empty.

  Structure of this message:

     The choice of messages depends on which key exchange method has
     been selected.  See Section 7.4.3 for the KeyExchangeAlgorithm
     definition.















Dierks & Rescorla           Standards Track                    [Page 57]

RFC 5246                          TLS                        August 2008


     struct {
         select (KeyExchangeAlgorithm) {
             case rsa:
                 EncryptedPreMasterSecret;
             case dhe_dss:
             case dhe_rsa:
             case dh_dss:
             case dh_rsa:
             case dh_anon:
                 ClientDiffieHellmanPublic;
         } exchange_keys;
     } ClientKeyExchange;

7.4.7.1.  RSA-Encrypted Premaster Secret Message

  Meaning of this message:

     If RSA is being used for key agreement and authentication, the
     client generates a 48-byte premaster secret, encrypts it using the
     public key from the server's certificate, and sends the result in
     an encrypted premaster secret message.  This structure is a
     variant of the ClientKeyExchange message and is not a message in
     itself.

  Structure of this message:

     struct {
         ProtocolVersion client_version;
         opaque random[46];
     } PreMasterSecret;

     client_version
        The latest (newest) version supported by the client.  This is
        used to detect version rollback attacks.

     random
        46 securely-generated random bytes.

     struct {
         public-key-encrypted PreMasterSecret pre_master_secret;
     } EncryptedPreMasterSecret;

     pre_master_secret
        This random value is generated by the client and is used to
        generate the master secret, as specified in Section 8.1.






Dierks & Rescorla           Standards Track                    [Page 58]

RFC 5246                          TLS                        August 2008


  Note: The version number in the PreMasterSecret is the version
  offered by the client in the ClientHello.client_version, not the
  version negotiated for the connection.  This feature is designed to
  prevent rollback attacks.  Unfortunately, some old implementations
  use the negotiated version instead, and therefore checking the
  version number may lead to failure to interoperate with such
  incorrect client implementations.

  Client implementations MUST always send the correct version number in
  PreMasterSecret.  If ClientHello.client_version is TLS 1.1 or higher,
  server implementations MUST check the version number as described in
  the note below.  If the version number is TLS 1.0 or earlier, server
  implementations SHOULD check the version number, but MAY have a
  configuration option to disable the check.  Note that if the check
  fails, the PreMasterSecret SHOULD be randomized as described below.

  Note: Attacks discovered by Bleichenbacher [BLEI] and Klima et al.
  [KPR03] can be used to attack a TLS server that reveals whether a
  particular message, when decrypted, is properly PKCS#1 formatted,
  contains a valid PreMasterSecret structure, or has the correct
  version number.

  As described by Klima [KPR03], these vulnerabilities can be avoided
  by treating incorrectly formatted message blocks and/or mismatched
  version numbers in a manner indistinguishable from correctly
  formatted RSA blocks.  In other words:

     1. Generate a string R of 46 random bytes

     2. Decrypt the message to recover the plaintext M

     3. If the PKCS#1 padding is not correct, or the length of message
        M is not exactly 48 bytes:
           pre_master_secret = ClientHello.client_version || R
        else If ClientHello.client_version <= TLS 1.0, and version
        number check is explicitly disabled:
           pre_master_secret = M
        else:
           pre_master_secret = ClientHello.client_version || M[2..47]

  Note that explicitly constructing the pre_master_secret with the
  ClientHello.client_version produces an invalid master_secret if the
  client has sent the wrong version in the original pre_master_secret.

  An alternative approach is to treat a version number mismatch as a
  PKCS-1 formatting error and randomize the premaster secret
  completely:




Dierks & Rescorla           Standards Track                    [Page 59]

RFC 5246                          TLS                        August 2008


     1. Generate a string R of 48 random bytes

     2. Decrypt the message to recover the plaintext M

     3. If the PKCS#1 padding is not correct, or the length of message
        M is not exactly 48 bytes:
           pre_master_secret = R
        else If ClientHello.client_version <= TLS 1.0, and version
        number check is explicitly disabled:
           premaster secret = M
        else If M[0..1] != ClientHello.client_version:
           premaster secret = R
        else:
           premaster secret = M

  Although no practical attacks against this construction are known,
  Klima et al. [KPR03] describe some theoretical attacks, and therefore
  the first construction described is RECOMMENDED.

  In any case, a TLS server MUST NOT generate an alert if processing an
  RSA-encrypted premaster secret message fails, or the version number
  is not as expected.  Instead, it MUST continue the handshake with a
  randomly generated premaster secret.  It may be useful to log the
  real cause of failure for troubleshooting purposes; however, care
  must be taken to avoid leaking the information to an attacker
  (through, e.g., timing, log files, or other channels.)

  The RSAES-OAEP encryption scheme defined in [PKCS1] is more secure
  against the Bleichenbacher attack.  However, for maximal
  compatibility with earlier versions of TLS, this specification uses
  the RSAES-PKCS1-v1_5 scheme.  No variants of the Bleichenbacher
  attack are known to exist provided that the above recommendations are
  followed.

  Implementation note: Public-key-encrypted data is represented as an
  opaque vector <0..2^16-1> (see Section 4.7).  Thus, the RSA-encrypted
  PreMasterSecret in a ClientKeyExchange is preceded by two length
  bytes.  These bytes are redundant in the case of RSA because the
  EncryptedPreMasterSecret is the only data in the ClientKeyExchange
  and its length can therefore be unambiguously determined.  The SSLv3
  specification was not clear about the encoding of public-key-
  encrypted data, and therefore many SSLv3 implementations do not
  include the length bytes -- they encode the RSA-encrypted data
  directly in the ClientKeyExchange message.

  This specification requires correct encoding of the
  EncryptedPreMasterSecret complete with length bytes.  The resulting
  PDU is incompatible with many SSLv3 implementations.  Implementors



Dierks & Rescorla           Standards Track                    [Page 60]

RFC 5246                          TLS                        August 2008


  upgrading from SSLv3 MUST modify their implementations to generate
  and accept the correct encoding.  Implementors who wish to be
  compatible with both SSLv3 and TLS should make their implementation's
  behavior dependent on the protocol version.

  Implementation note: It is now known that remote timing-based attacks
  on TLS are possible, at least when the client and server are on the
  same LAN.  Accordingly, implementations that use static RSA keys MUST
  use RSA blinding or some other anti-timing technique, as described in
  [TIMING].

7.4.7.2.  Client Diffie-Hellman Public Value

  Meaning of this message:

     This structure conveys the client's Diffie-Hellman public value
     (Yc) if it was not already included in the client's certificate.
     The encoding used for Yc is determined by the enumerated
     PublicValueEncoding.  This structure is a variant of the client
     key exchange message, and not a message in itself.

  Structure of this message:

     enum { implicit, explicit } PublicValueEncoding;

     implicit
        If the client has sent a certificate which contains a suitable
        Diffie-Hellman key (for fixed_dh client authentication), then
        Yc is implicit and does not need to be sent again.  In this
        case, the client key exchange message will be sent, but it MUST
        be empty.

     explicit
        Yc needs to be sent.

     struct {
         select (PublicValueEncoding) {
             case implicit: struct { };
             case explicit: opaque dh_Yc<1..2^16-1>;
         } dh_public;
     } ClientDiffieHellmanPublic;

     dh_Yc
        The client's Diffie-Hellman public value (Yc).







Dierks & Rescorla           Standards Track                    [Page 61]

RFC 5246                          TLS                        August 2008


7.4.8.  Certificate Verify

  When this message will be sent:

     This message is used to provide explicit verification of a client
     certificate.  This message is only sent following a client
     certificate that has signing capability (i.e., all certificates
     except those containing fixed Diffie-Hellman parameters).  When
     sent, it MUST immediately follow the client key exchange message.

  Structure of this message:

     struct {
          digitally-signed struct {
              opaque handshake_messages[handshake_messages_length];
          }
     } CertificateVerify;

     Here handshake_messages refers to all handshake messages sent or
     received, starting at client hello and up to, but not including,
     this message, including the type and length fields of the
     handshake messages.  This is the concatenation of all the
     Handshake structures (as defined in Section 7.4) exchanged thus
     far.  Note that this requires both sides to either buffer the
     messages or compute running hashes for all potential hash
     algorithms up to the time of the CertificateVerify computation.
     Servers can minimize this computation cost by offering a
     restricted set of digest algorithms in the CertificateRequest
     message.

     The hash and signature algorithms used in the signature MUST be
     one of those present in the supported_signature_algorithms field
     of the CertificateRequest message.  In addition, the hash and
     signature algorithms MUST be compatible with the key in the
     client's end-entity certificate.  RSA keys MAY be used with any
     permitted hash algorithm, subject to restrictions in the
     certificate, if any.

     Because DSA signatures do not contain any secure indication of
     hash algorithm, there is a risk of hash substitution if multiple
     hashes may be used with any key.  Currently, DSA [DSS] may only be
     used with SHA-1.  Future revisions of DSS [DSS-3] are expected to
     allow the use of other digest algorithms with DSA, as well as
     guidance as to which digest algorithms should be used with each
     key size.  In addition, future revisions of [PKIX] may specify
     mechanisms for certificates to indicate which digest algorithms
     are to be used with DSA.




Dierks & Rescorla           Standards Track                    [Page 62]

RFC 5246                          TLS                        August 2008


7.4.9.  Finished

  When this message will be sent:

     A Finished message is always sent immediately after a change
     cipher spec message to verify that the key exchange and
     authentication processes were successful.  It is essential that a
     change cipher spec message be received between the other handshake
     messages and the Finished message.

  Meaning of this message:

     The Finished message is the first one protected with the just
     negotiated algorithms, keys, and secrets.  Recipients of Finished
     messages MUST verify that the contents are correct.  Once a side
     has sent its Finished message and received and validated the
     Finished message from its peer, it may begin to send and receive
     application data over the connection.

  Structure of this message:

     struct {
         opaque verify_data[verify_data_length];
     } Finished;

     verify_data
        PRF(master_secret, finished_label, Hash(handshake_messages))
           [0..verify_data_length-1];

     finished_label
        For Finished messages sent by the client, the string
        "client finished".  For Finished messages sent by the server,
        the string "server finished".

     Hash denotes a Hash of the handshake messages.  For the PRF
     defined in Section 5, the Hash MUST be the Hash used as the basis
     for the PRF.  Any cipher suite which defines a different PRF MUST
     also define the Hash to use in the Finished computation.

     In previous versions of TLS, the verify_data was always 12 octets
     long.  In the current version of TLS, it depends on the cipher
     suite.  Any cipher suite which does not explicitly specify
     verify_data_length has a verify_data_length equal to 12.  This
     includes all existing cipher suites.  Note that this
     representation has the same encoding as with previous versions.
     Future cipher suites MAY specify other lengths but such length
     MUST be at least 12 bytes.




Dierks & Rescorla           Standards Track                    [Page 63]

RFC 5246                          TLS                        August 2008


     handshake_messages
        All of the data from all messages in this handshake (not
        including any HelloRequest messages) up to, but not including,
        this message.  This is only data visible at the handshake layer
        and does not include record layer headers.  This is the
        concatenation of all the Handshake structures as defined in
        Section 7.4, exchanged thus far.

  It is a fatal error if a Finished message is not preceded by a
  ChangeCipherSpec message at the appropriate point in the handshake.

  The value handshake_messages includes all handshake messages starting
  at ClientHello up to, but not including, this Finished message.  This
  may be different from handshake_messages in Section 7.4.8 because it
  would include the CertificateVerify message (if sent).  Also, the
  handshake_messages for the Finished message sent by the client will
  be different from that for the Finished message sent by the server,
  because the one that is sent second will include the prior one.

  Note: ChangeCipherSpec messages, alerts, and any other record types
  are not handshake messages and are not included in the hash
  computations.  Also, HelloRequest messages are omitted from handshake
  hashes.

8.  Cryptographic Computations

  In order to begin connection protection, the TLS Record Protocol
  requires specification of a suite of algorithms, a master secret, and
  the client and server random values.  The authentication, encryption,
  and MAC algorithms are determined by the cipher_suite selected by the
  server and revealed in the ServerHello message.  The compression
  algorithm is negotiated in the hello messages, and the random values
  are exchanged in the hello messages.  All that remains is to
  calculate the master secret.

8.1.  Computing the Master Secret

  For all key exchange methods, the same algorithm is used to convert
  the pre_master_secret into the master_secret.  The pre_master_secret
  should be deleted from memory once the master_secret has been
  computed.

     master_secret = PRF(pre_master_secret, "master secret",
                         ClientHello.random + ServerHello.random)
                         [0..47];

  The master secret is always exactly 48 bytes in length.  The length
  of the premaster secret will vary depending on key exchange method.



Dierks & Rescorla           Standards Track                    [Page 64]

RFC 5246                          TLS                        August 2008


8.1.1.  RSA

  When RSA is used for server authentication and key exchange, a 48-
  byte pre_master_secret is generated by the client, encrypted under
  the server's public key, and sent to the server.  The server uses its
  private key to decrypt the pre_master_secret.  Both parties then
  convert the pre_master_secret into the master_secret, as specified
  above.

8.1.2.  Diffie-Hellman

  A conventional Diffie-Hellman computation is performed.  The
  negotiated key (Z) is used as the pre_master_secret, and is converted
  into the master_secret, as specified above.  Leading bytes of Z that
  contain all zero bits are stripped before it is used as the
  pre_master_secret.

  Note: Diffie-Hellman parameters are specified by the server and may
  be either ephemeral or contained within the server's certificate.

9.  Mandatory Cipher Suites

  In the absence of an application profile standard specifying
  otherwise, a TLS-compliant application MUST implement the cipher
  suite TLS_RSA_WITH_AES_128_CBC_SHA (see Appendix A.5 for the
  definition).

10.  Application Data Protocol

  Application data messages are carried by the record layer and are
  fragmented, compressed, and encrypted based on the current connection
  state.  The messages are treated as transparent data to the record
  layer.

11.  Security Considerations

  Security issues are discussed throughout this memo, especially in
  Appendices D, E, and F.

12.  IANA Considerations

  This document uses several registries that were originally created in
  [TLS1.1].  IANA has updated these to reference this document.  The
  registries and their allocation policies (unchanged from [TLS1.1])
  are listed below.






Dierks & Rescorla           Standards Track                    [Page 65]

RFC 5246                          TLS                        August 2008


  -  TLS ClientCertificateType Identifiers Registry: Future values in
     the range 0-63 (decimal) inclusive are assigned via Standards
     Action [RFC2434].  Values in the range 64-223 (decimal) inclusive
     are assigned via Specification Required [RFC2434].  Values from
     224-255 (decimal) inclusive are reserved for Private Use
     [RFC2434].

  -  TLS Cipher Suite Registry: Future values with the first byte in
     the range 0-191 (decimal) inclusive are assigned via Standards
     Action [RFC2434].  Values with the first byte in the range 192-254
     (decimal) are assigned via Specification Required [RFC2434].
     Values with the first byte 255 (decimal) are reserved for Private
     Use [RFC2434].

  -  This document defines several new HMAC-SHA256-based cipher suites,
     whose values (in Appendix A.5) have been allocated from the TLS
     Cipher Suite registry.

  -  TLS ContentType Registry: Future values are allocated via
     Standards Action [RFC2434].

  -  TLS Alert Registry: Future values are allocated via Standards
     Action [RFC2434].

  -  TLS HandshakeType Registry: Future values are allocated via
     Standards Action [RFC2434].

  This document also uses a registry originally created in [RFC4366].
  IANA has updated it to reference this document.  The registry and its
  allocation policy (unchanged from [RFC4366]) is listed below:

  -  TLS ExtensionType Registry: Future values are allocated via IETF
     Consensus [RFC2434].  IANA has updated this registry to include
     the signature_algorithms extension and its corresponding value
     (see Section 7.4.1.4).

  In addition, this document defines two new registries to be
  maintained by IANA:

  -  TLS SignatureAlgorithm Registry: The registry has been initially
     populated with the values described in Section 7.4.1.4.1.  Future
     values in the range 0-63 (decimal) inclusive are assigned via
     Standards Action [RFC2434].  Values in the range 64-223 (decimal)
     inclusive are assigned via Specification Required [RFC2434].
     Values from 224-255 (decimal) inclusive are reserved for Private
     Use [RFC2434].





Dierks & Rescorla           Standards Track                    [Page 66]

RFC 5246                          TLS                        August 2008


  -  TLS HashAlgorithm Registry: The registry has been initially
     populated with the values described in Section 7.4.1.4.1.  Future
     values in the range 0-63 (decimal) inclusive are assigned via
     Standards Action [RFC2434].  Values in the range 64-223 (decimal)
     inclusive are assigned via Specification Required [RFC2434].
     Values from 224-255 (decimal) inclusive are reserved for Private
     Use [RFC2434].

     This document also uses the TLS Compression Method Identifiers
     Registry, defined in [RFC3749].  IANA has allocated value 0 for
     the "null" compression method.








































Dierks & Rescorla           Standards Track                    [Page 67]

RFC 5246                          TLS                        August 2008


Appendix A.  Protocol Data Structures and Constant Values

  This section describes protocol types and constants.

A.1.  Record Layer

  struct {
      uint8 major;
      uint8 minor;
  } ProtocolVersion;

  ProtocolVersion version = { 3, 3 };     /* TLS v1.2*/

  enum {
      change_cipher_spec(20), alert(21), handshake(22),
      application_data(23), (255)
  } ContentType;

  struct {
      ContentType type;
      ProtocolVersion version;
      uint16 length;
      opaque fragment[TLSPlaintext.length];
  } TLSPlaintext;

  struct {
      ContentType type;
      ProtocolVersion version;
      uint16 length;
      opaque fragment[TLSCompressed.length];
  } TLSCompressed;

  struct {
      ContentType type;
      ProtocolVersion version;
      uint16 length;
      select (SecurityParameters.cipher_type) {
          case stream: GenericStreamCipher;
          case block:  GenericBlockCipher;
          case aead:   GenericAEADCipher;
      } fragment;
  } TLSCiphertext;

  stream-ciphered struct {
      opaque content[TLSCompressed.length];
      opaque MAC[SecurityParameters.mac_length];
  } GenericStreamCipher;




Dierks & Rescorla           Standards Track                    [Page 68]

RFC 5246                          TLS                        August 2008


  struct {
      opaque IV[SecurityParameters.record_iv_length];
      block-ciphered struct {
          opaque content[TLSCompressed.length];
          opaque MAC[SecurityParameters.mac_length];
          uint8 padding[GenericBlockCipher.padding_length];
          uint8 padding_length;
      };
  } GenericBlockCipher;

  struct {
     opaque nonce_explicit[SecurityParameters.record_iv_length];
     aead-ciphered struct {
         opaque content[TLSCompressed.length];
     };
  } GenericAEADCipher;

A.2.  Change Cipher Specs Message

  struct {
      enum { change_cipher_spec(1), (255) } type;
  } ChangeCipherSpec;

A.3.  Alert Messages

  enum { warning(1), fatal(2), (255) } AlertLevel;

  enum {
      close_notify(0),
      unexpected_message(10),
      bad_record_mac(20),
      decryption_failed_RESERVED(21),
      record_overflow(22),
      decompression_failure(30),
      handshake_failure(40),
      no_certificate_RESERVED(41),
      bad_certificate(42),
      unsupported_certificate(43),
      certificate_revoked(44),
      certificate_expired(45),
      certificate_unknown(46),
      illegal_parameter(47),
      unknown_ca(48),
      access_denied(49),
      decode_error(50),
      decrypt_error(51),
      export_restriction_RESERVED(60),
      protocol_version(70),



Dierks & Rescorla           Standards Track                    [Page 69]

RFC 5246                          TLS                        August 2008


      insufficient_security(71),
      internal_error(80),
      user_canceled(90),
      no_renegotiation(100),
      unsupported_extension(110),           /* new */
      (255)
  } AlertDescription;

  struct {
      AlertLevel level;
      AlertDescription description;
  } Alert;

A.4.  Handshake Protocol

  enum {
      hello_request(0), client_hello(1), server_hello(2),
      certificate(11), server_key_exchange (12),
      certificate_request(13), server_hello_done(14),
      certificate_verify(15), client_key_exchange(16),
      finished(20)
      (255)
  } HandshakeType;

  struct {
      HandshakeType msg_type;
      uint24 length;
      select (HandshakeType) {
          case hello_request:       HelloRequest;
          case client_hello:        ClientHello;
          case server_hello:        ServerHello;
          case certificate:         Certificate;
          case server_key_exchange: ServerKeyExchange;
          case certificate_request: CertificateRequest;
          case server_hello_done:   ServerHelloDone;
          case certificate_verify:  CertificateVerify;
          case client_key_exchange: ClientKeyExchange;
          case finished:            Finished;
      } body;
  } Handshake;











Dierks & Rescorla           Standards Track                    [Page 70]

RFC 5246                          TLS                        August 2008


A.4.1.  Hello Messages

  struct { } HelloRequest;

  struct {
      uint32 gmt_unix_time;
      opaque random_bytes[28];
  } Random;

  opaque SessionID<0..32>;

  uint8 CipherSuite[2];

  enum { null(0), (255) } CompressionMethod;

  struct {
      ProtocolVersion client_version;
      Random random;
      SessionID session_id;
      CipherSuite cipher_suites<2..2^16-2>;
      CompressionMethod compression_methods<1..2^8-1>;
      select (extensions_present) {
          case false:
              struct {};
          case true:
              Extension extensions<0..2^16-1>;
      };
  } ClientHello;

  struct {
      ProtocolVersion server_version;
      Random random;
      SessionID session_id;
      CipherSuite cipher_suite;
      CompressionMethod compression_method;
      select (extensions_present) {
          case false:
              struct {};
          case true:
              Extension extensions<0..2^16-1>;
      };
  } ServerHello;

  struct {
      ExtensionType extension_type;
      opaque extension_data<0..2^16-1>;
  } Extension;




Dierks & Rescorla           Standards Track                    [Page 71]

RFC 5246                          TLS                        August 2008


  enum {
      signature_algorithms(13), (65535)
  } ExtensionType;

  enum{
      none(0), md5(1), sha1(2), sha224(3), sha256(4), sha384(5),
      sha512(6), (255)
  } HashAlgorithm;
  enum {
     anonymous(0), rsa(1), dsa(2), ecdsa(3), (255)
  } SignatureAlgorithm;

  struct {
        HashAlgorithm hash;
        SignatureAlgorithm signature;
  } SignatureAndHashAlgorithm;

  SignatureAndHashAlgorithm
   supported_signature_algorithms<2..2^16-1>;

A.4.2.  Server Authentication and Key Exchange Messages

  opaque ASN.1Cert<2^24-1>;

  struct {
      ASN.1Cert certificate_list<0..2^24-1>;
  } Certificate;

  enum { dhe_dss, dhe_rsa, dh_anon, rsa,dh_dss, dh_rsa
         /* may be extended, e.g., for ECDH -- see [TLSECC] */
       } KeyExchangeAlgorithm;

  struct {
      opaque dh_p<1..2^16-1>;
      opaque dh_g<1..2^16-1>;
      opaque dh_Ys<1..2^16-1>;
  } ServerDHParams;     /* Ephemeral DH parameters */














Dierks & Rescorla           Standards Track                    [Page 72]

RFC 5246                          TLS                        August 2008


  struct {
      select (KeyExchangeAlgorithm) {
          case dh_anon:
              ServerDHParams params;
          case dhe_dss:
          case dhe_rsa:
              ServerDHParams params;
              digitally-signed struct {
                  opaque client_random[32];
                  opaque server_random[32];
                  ServerDHParams params;
              } signed_params;
          case rsa:
          case dh_dss:
          case dh_rsa:
              struct {} ;
             /* message is omitted for rsa, dh_dss, and dh_rsa */
          /* may be extended, e.g., for ECDH -- see [TLSECC] */
  } ServerKeyExchange;

  enum {
      rsa_sign(1), dss_sign(2), rsa_fixed_dh(3), dss_fixed_dh(4),
      rsa_ephemeral_dh_RESERVED(5), dss_ephemeral_dh_RESERVED(6),
      fortezza_dms_RESERVED(20),
      (255)
  } ClientCertificateType;

  opaque DistinguishedName<1..2^16-1>;

  struct {
      ClientCertificateType certificate_types<1..2^8-1>;
      DistinguishedName certificate_authorities<0..2^16-1>;
  } CertificateRequest;

  struct { } ServerHelloDone;
















Dierks & Rescorla           Standards Track                    [Page 73]

RFC 5246                          TLS                        August 2008


A.4.3.  Client Authentication and Key Exchange Messages

  struct {
      select (KeyExchangeAlgorithm) {
          case rsa:
              EncryptedPreMasterSecret;
          case dhe_dss:
          case dhe_rsa:
          case dh_dss:
          case dh_rsa:
          case dh_anon:
              ClientDiffieHellmanPublic;
      } exchange_keys;
  } ClientKeyExchange;

  struct {
      ProtocolVersion client_version;
      opaque random[46];
  } PreMasterSecret;

  struct {
      public-key-encrypted PreMasterSecret pre_master_secret;
  } EncryptedPreMasterSecret;

  enum { implicit, explicit } PublicValueEncoding;

  struct {
      select (PublicValueEncoding) {
          case implicit: struct {};
          case explicit: opaque DH_Yc<1..2^16-1>;
      } dh_public;
  } ClientDiffieHellmanPublic;

  struct {
       digitally-signed struct {
           opaque handshake_messages[handshake_messages_length];
       }
  } CertificateVerify;

A.4.4.  Handshake Finalization Message

  struct {
      opaque verify_data[verify_data_length];
  } Finished;







Dierks & Rescorla           Standards Track                    [Page 74]

RFC 5246                          TLS                        August 2008


A.5.  The Cipher Suite

  The following values define the cipher suite codes used in the
  ClientHello and ServerHello messages.

  A cipher suite defines a cipher specification supported in TLS
  Version 1.2.

  TLS_NULL_WITH_NULL_NULL is specified and is the initial state of a
  TLS connection during the first handshake on that channel, but MUST
  NOT be negotiated, as it provides no more protection than an
  unsecured connection.

     CipherSuite TLS_NULL_WITH_NULL_NULL               = { 0x00,0x00 };

  The following CipherSuite definitions require that the server provide
  an RSA certificate that can be used for key exchange.  The server may
  request any signature-capable certificate in the certificate request
  message.

     CipherSuite TLS_RSA_WITH_NULL_MD5                 = { 0x00,0x01 };
     CipherSuite TLS_RSA_WITH_NULL_SHA                 = { 0x00,0x02 };
     CipherSuite TLS_RSA_WITH_NULL_SHA256              = { 0x00,0x3B };
     CipherSuite TLS_RSA_WITH_RC4_128_MD5              = { 0x00,0x04 };
     CipherSuite TLS_RSA_WITH_RC4_128_SHA              = { 0x00,0x05 };
     CipherSuite TLS_RSA_WITH_3DES_EDE_CBC_SHA         = { 0x00,0x0A };
     CipherSuite TLS_RSA_WITH_AES_128_CBC_SHA          = { 0x00,0x2F };
     CipherSuite TLS_RSA_WITH_AES_256_CBC_SHA          = { 0x00,0x35 };
     CipherSuite TLS_RSA_WITH_AES_128_CBC_SHA256       = { 0x00,0x3C };
     CipherSuite TLS_RSA_WITH_AES_256_CBC_SHA256       = { 0x00,0x3D };

  The following cipher suite definitions are used for server-
  authenticated (and optionally client-authenticated) Diffie-Hellman.
  DH denotes cipher suites in which the server's certificate contains
  the Diffie-Hellman parameters signed by the certificate authority
  (CA).  DHE denotes ephemeral Diffie-Hellman, where the Diffie-Hellman
  parameters are signed by a signature-capable certificate, which has
  been signed by the CA.  The signing algorithm used by the server is
  specified after the DHE component of the CipherSuite name.  The
  server can request any signature-capable certificate from the client
  for client authentication, or it may request a Diffie-Hellman
  certificate.  Any Diffie-Hellman certificate provided by the client
  must use the parameters (group and generator) described by the
  server.







Dierks & Rescorla           Standards Track                    [Page 75]

RFC 5246                          TLS                        August 2008


     CipherSuite TLS_DH_DSS_WITH_3DES_EDE_CBC_SHA      = { 0x00,0x0D };
     CipherSuite TLS_DH_RSA_WITH_3DES_EDE_CBC_SHA      = { 0x00,0x10 };
     CipherSuite TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA     = { 0x00,0x13 };
     CipherSuite TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA     = { 0x00,0x16 };
     CipherSuite TLS_DH_DSS_WITH_AES_128_CBC_SHA       = { 0x00,0x30 };
     CipherSuite TLS_DH_RSA_WITH_AES_128_CBC_SHA       = { 0x00,0x31 };
     CipherSuite TLS_DHE_DSS_WITH_AES_128_CBC_SHA      = { 0x00,0x32 };
     CipherSuite TLS_DHE_RSA_WITH_AES_128_CBC_SHA      = { 0x00,0x33 };
     CipherSuite TLS_DH_DSS_WITH_AES_256_CBC_SHA       = { 0x00,0x36 };
     CipherSuite TLS_DH_RSA_WITH_AES_256_CBC_SHA       = { 0x00,0x37 };
     CipherSuite TLS_DHE_DSS_WITH_AES_256_CBC_SHA      = { 0x00,0x38 };
     CipherSuite TLS_DHE_RSA_WITH_AES_256_CBC_SHA      = { 0x00,0x39 };
     CipherSuite TLS_DH_DSS_WITH_AES_128_CBC_SHA256    = { 0x00,0x3E };
     CipherSuite TLS_DH_RSA_WITH_AES_128_CBC_SHA256    = { 0x00,0x3F };
     CipherSuite TLS_DHE_DSS_WITH_AES_128_CBC_SHA256   = { 0x00,0x40 };
     CipherSuite TLS_DHE_RSA_WITH_AES_128_CBC_SHA256   = { 0x00,0x67 };
     CipherSuite TLS_DH_DSS_WITH_AES_256_CBC_SHA256    = { 0x00,0x68 };
     CipherSuite TLS_DH_RSA_WITH_AES_256_CBC_SHA256    = { 0x00,0x69 };
     CipherSuite TLS_DHE_DSS_WITH_AES_256_CBC_SHA256   = { 0x00,0x6A };
     CipherSuite TLS_DHE_RSA_WITH_AES_256_CBC_SHA256   = { 0x00,0x6B };

  The following cipher suites are used for completely anonymous
  Diffie-Hellman communications in which neither party is
  authenticated.  Note that this mode is vulnerable to man-in-the-
  middle attacks.  Using this mode therefore is of limited use: These
  cipher suites MUST NOT be used by TLS 1.2 implementations unless the
  application layer has specifically requested to allow anonymous key
  exchange.  (Anonymous key exchange may sometimes be acceptable, for
  example, to support opportunistic encryption when no set-up for
  authentication is in place, or when TLS is used as part of more
  complex security protocols that have other means to ensure
  authentication.)

     CipherSuite TLS_DH_anon_WITH_RC4_128_MD5          = { 0x00,0x18 };
     CipherSuite TLS_DH_anon_WITH_3DES_EDE_CBC_SHA     = { 0x00,0x1B };
     CipherSuite TLS_DH_anon_WITH_AES_128_CBC_SHA      = { 0x00,0x34 };
     CipherSuite TLS_DH_anon_WITH_AES_256_CBC_SHA      = { 0x00,0x3A };
     CipherSuite TLS_DH_anon_WITH_AES_128_CBC_SHA256   = { 0x00,0x6C };
     CipherSuite TLS_DH_anon_WITH_AES_256_CBC_SHA256   = { 0x00,0x6D };

  Note that using non-anonymous key exchange without actually verifying
  the key exchange is essentially equivalent to anonymous key exchange,
  and the same precautions apply.  While non-anonymous key exchange
  will generally involve a higher computational and communicational
  cost than anonymous key exchange, it may be in the interest of
  interoperability not to disable non-anonymous key exchange when the
  application layer is allowing anonymous key exchange.




Dierks & Rescorla           Standards Track                    [Page 76]

RFC 5246                          TLS                        August 2008


  New cipher suite values have been assigned by IANA as described in
  Section 12.

  Note: The cipher suite values { 0x00, 0x1C } and { 0x00, 0x1D } are
  reserved to avoid collision with Fortezza-based cipher suites in
  SSL 3.

A.6.  The Security Parameters

  These security parameters are determined by the TLS Handshake
  Protocol and provided as parameters to the TLS record layer in order
  to initialize a connection state.  SecurityParameters includes:

  enum { null(0), (255) } CompressionMethod;

  enum { server, client } ConnectionEnd;

  enum { tls_prf_sha256 } PRFAlgorithm;

  enum { null, rc4, 3des, aes } BulkCipherAlgorithm;

  enum { stream, block, aead } CipherType;

  enum { null, hmac_md5, hmac_sha1, hmac_sha256, hmac_sha384,
    hmac_sha512} MACAlgorithm;

  /* Other values may be added to the algorithms specified in
  CompressionMethod, PRFAlgorithm, BulkCipherAlgorithm, and
  MACAlgorithm. */

  struct {
      ConnectionEnd          entity;
      PRFAlgorithm           prf_algorithm;
      BulkCipherAlgorithm    bulk_cipher_algorithm;
      CipherType             cipher_type;
      uint8                  enc_key_length;
      uint8                  block_length;
      uint8                  fixed_iv_length;
      uint8                  record_iv_length;
      MACAlgorithm           mac_algorithm;
      uint8                  mac_length;
      uint8                  mac_key_length;
      CompressionMethod      compression_algorithm;
      opaque                 master_secret[48];
      opaque                 client_random[32];
      opaque                 server_random[32];
  } SecurityParameters;




Dierks & Rescorla           Standards Track                    [Page 77]

RFC 5246                          TLS                        August 2008


A.7.  Changes to RFC 4492

  RFC 4492 [TLSECC] adds Elliptic Curve cipher suites to TLS.  This
  document changes some of the structures used in that document.  This
  section details the required changes for implementors of both RFC
  4492 and TLS 1.2.  Implementors of TLS 1.2 who are not implementing
  RFC 4492 do not need to read this section.

  This document adds a "signature_algorithm" field to the digitally-
  signed element in order to identify the signature and digest
  algorithms used to create a signature.  This change applies to
  digital signatures formed using ECDSA as well, thus allowing ECDSA
  signatures to be used with digest algorithms other than SHA-1,
  provided such use is compatible with the certificate and any
  restrictions imposed by future revisions of [PKIX].

  As described in Sections 7.4.2 and 7.4.6, the restrictions on the
  signature algorithms used to sign certificates are no longer tied to
  the cipher suite (when used by the server) or the
  ClientCertificateType (when used by the client).  Thus, the
  restrictions on the algorithm used to sign certificates specified in
  Sections 2 and 3 of RFC 4492 are also relaxed.  As in this document,
  the restrictions on the keys in the end-entity certificate remain.

Appendix B.  Glossary

  Advanced Encryption Standard (AES)
     AES [AES] is a widely used symmetric encryption algorithm.  AES is
     a block cipher with a 128-, 192-, or 256-bit keys and a 16-byte
     block size.  TLS currently only supports the 128- and 256-bit key
     sizes.

  application protocol
     An application protocol is a protocol that normally layers
     directly on top of the transport layer (e.g., TCP/IP).  Examples
     include HTTP, TELNET, FTP, and SMTP.

  asymmetric cipher
     See public key cryptography.

  authenticated encryption with additional data (AEAD)
     A symmetric encryption algorithm that simultaneously provides
     confidentiality and message integrity.

  authentication
     Authentication is the ability of one entity to determine the
     identity of another entity.




Dierks & Rescorla           Standards Track                    [Page 78]

RFC 5246                          TLS                        August 2008


  block cipher
     A block cipher is an algorithm that operates on plaintext in
     groups of bits, called blocks.  64 bits was, and 128 bits is, a
     common block size.

  bulk cipher
     A symmetric encryption algorithm used to encrypt large quantities
     of data.

  cipher block chaining (CBC)
     CBC is a mode in which every plaintext block encrypted with a
     block cipher is first exclusive-ORed with the previous ciphertext
     block (or, in the case of the first block, with the initialization
     vector).  For decryption, every block is first decrypted, then
     exclusive-ORed with the previous ciphertext block (or IV).

  certificate
     As part of the X.509 protocol (a.k.a. ISO Authentication
     framework), certificates are assigned by a trusted Certificate
     Authority and provide a strong binding between a party's identity
     or some other attributes and its public key.

  client
     The application entity that initiates a TLS connection to a
     server.  This may or may not imply that the client initiated the
     underlying transport connection.  The primary operational
     difference between the server and client is that the server is
     generally authenticated, while the client is only optionally
     authenticated.

  client write key
     The key used to encrypt data written by the client.

  client write MAC key
     The secret data used to authenticate data written by the client.

  connection
     A connection is a transport (in the OSI layering model definition)
     that provides a suitable type of service.  For TLS, such
     connections are peer-to-peer relationships.  The connections are
     transient.  Every connection is associated with one session.

  Data Encryption Standard
     DES [DES] still is a very widely used symmetric encryption
     algorithm although it is considered as rather weak now.  DES is a
     block cipher with a 56-bit key and an 8-byte block size.  Note
     that in TLS, for key generation purposes, DES is treated as having
     an 8-byte key length (64 bits), but it still only provides 56 bits



Dierks & Rescorla           Standards Track                    [Page 79]

RFC 5246                          TLS                        August 2008


     of protection.  (The low bit of each key byte is presumed to be
     set to produce odd parity in that key byte.)  DES can also be
     operated in a mode [3DES] where three independent keys and three
     encryptions are used for each block of data; this uses 168 bits of
     key (24 bytes in the TLS key generation method) and provides the
     equivalent of 112 bits of security.

  Digital Signature Standard (DSS)
     A standard for digital signing, including the Digital Signing
     Algorithm, approved by the National Institute of Standards and
     Technology, defined in NIST FIPS PUB 186-2, "Digital Signature
     Standard", published January 2000 by the U.S. Department of
     Commerce [DSS].  A significant update [DSS-3] has been drafted and
     was published in March 2006.

  digital signatures
     Digital signatures utilize public key cryptography and one-way
     hash functions to produce a signature of the data that can be
     authenticated, and is difficult to forge or repudiate.

  handshake An initial negotiation between client and server that
     establishes the parameters of their transactions.

  Initialization Vector (IV)
     When a block cipher is used in CBC mode, the initialization vector
     is exclusive-ORed with the first plaintext block prior to
     encryption.

  Message Authentication Code (MAC)
     A Message Authentication Code is a one-way hash computed from a
     message and some secret data.  It is difficult to forge without
     knowing the secret data.  Its purpose is to detect if the message
     has been altered.

  master secret
     Secure secret data used for generating encryption keys, MAC
     secrets, and IVs.

  MD5
     MD5 [MD5] is a hashing function that converts an arbitrarily long
     data stream into a hash of fixed size (16 bytes).  Due to
     significant progress in cryptanalysis, at the time of publication
     of this document, MD5 no longer can be considered a 'secure'
     hashing function.







Dierks & Rescorla           Standards Track                    [Page 80]

RFC 5246                          TLS                        August 2008


  public key cryptography
     A class of cryptographic techniques employing two-key ciphers.
     Messages encrypted with the public key can only be decrypted with
     the associated private key.  Conversely, messages signed with the
     private key can be verified with the public key.

  one-way hash function
     A one-way transformation that converts an arbitrary amount of data
     into a fixed-length hash.  It is computationally hard to reverse
     the transformation or to find collisions.  MD5 and SHA are
     examples of one-way hash functions.

  RC4
     A stream cipher invented by Ron Rivest.  A compatible cipher is
     described in [SCH].

  RSA
     A very widely used public key algorithm that can be used for
     either encryption or digital signing.  [RSA]

  server
     The server is the application entity that responds to requests for
     connections from clients.  See also "client".

  session
     A TLS session is an association between a client and a server.
     Sessions are created by the handshake protocol.  Sessions define a
     set of cryptographic security parameters that can be shared among
     multiple connections.  Sessions are used to avoid the expensive
     negotiation of new security parameters for each connection.

  session identifier
     A session identifier is a value generated by a server that
     identifies a particular session.

  server write key
     The key used to encrypt data written by the server.

  server write MAC key
     The secret data used to authenticate data written by the server.

  SHA
     The Secure Hash Algorithm [SHS] is defined in FIPS PUB 180-2.  It
     produces a 20-byte output.  Note that all references to SHA
     (without a numerical suffix) actually use the modified SHA-1
     algorithm.





Dierks & Rescorla           Standards Track                    [Page 81]

RFC 5246                          TLS                        August 2008


  SHA-256
     The 256-bit Secure Hash Algorithm is defined in FIPS PUB 180-2.
     It produces a 32-byte output.

  SSL
     Netscape's Secure Socket Layer protocol [SSL3].  TLS is based on
     SSL Version 3.0.

  stream cipher
     An encryption algorithm that converts a key into a
     cryptographically strong keystream, which is then exclusive-ORed
     with the plaintext.

  symmetric cipher
     See bulk cipher.

  Transport Layer Security (TLS)
     This protocol; also, the Transport Layer Security working group of
     the Internet Engineering Task Force (IETF).  See "Working Group
     Information" at the end of this document (see page 99).































Dierks & Rescorla           Standards Track                    [Page 82]

RFC 5246                          TLS                        August 2008


Appendix C.  Cipher Suite Definitions

Cipher Suite                            Key        Cipher         Mac
                                       Exchange

TLS_NULL_WITH_NULL_NULL                 NULL         NULL         NULL
TLS_RSA_WITH_NULL_MD5                   RSA          NULL         MD5
TLS_RSA_WITH_NULL_SHA                   RSA          NULL         SHA
TLS_RSA_WITH_NULL_SHA256                RSA          NULL         SHA256
TLS_RSA_WITH_RC4_128_MD5                RSA          RC4_128      MD5
TLS_RSA_WITH_RC4_128_SHA                RSA          RC4_128      SHA
TLS_RSA_WITH_3DES_EDE_CBC_SHA           RSA          3DES_EDE_CBC SHA
TLS_RSA_WITH_AES_128_CBC_SHA            RSA          AES_128_CBC  SHA
TLS_RSA_WITH_AES_256_CBC_SHA            RSA          AES_256_CBC  SHA
TLS_RSA_WITH_AES_128_CBC_SHA256         RSA          AES_128_CBC  SHA256
TLS_RSA_WITH_AES_256_CBC_SHA256         RSA          AES_256_CBC  SHA256
TLS_DH_DSS_WITH_3DES_EDE_CBC_SHA        DH_DSS       3DES_EDE_CBC SHA
TLS_DH_RSA_WITH_3DES_EDE_CBC_SHA        DH_RSA       3DES_EDE_CBC SHA
TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA       DHE_DSS      3DES_EDE_CBC SHA
TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA       DHE_RSA      3DES_EDE_CBC SHA
TLS_DH_anon_WITH_RC4_128_MD5            DH_anon      RC4_128      MD5
TLS_DH_anon_WITH_3DES_EDE_CBC_SHA       DH_anon      3DES_EDE_CBC SHA
TLS_DH_DSS_WITH_AES_128_CBC_SHA         DH_DSS       AES_128_CBC  SHA
TLS_DH_RSA_WITH_AES_128_CBC_SHA         DH_RSA       AES_128_CBC  SHA
TLS_DHE_DSS_WITH_AES_128_CBC_SHA        DHE_DSS      AES_128_CBC  SHA
TLS_DHE_RSA_WITH_AES_128_CBC_SHA        DHE_RSA      AES_128_CBC  SHA
TLS_DH_anon_WITH_AES_128_CBC_SHA        DH_anon      AES_128_CBC  SHA
TLS_DH_DSS_WITH_AES_256_CBC_SHA         DH_DSS       AES_256_CBC  SHA
TLS_DH_RSA_WITH_AES_256_CBC_SHA         DH_RSA       AES_256_CBC  SHA
TLS_DHE_DSS_WITH_AES_256_CBC_SHA        DHE_DSS      AES_256_CBC  SHA
TLS_DHE_RSA_WITH_AES_256_CBC_SHA        DHE_RSA      AES_256_CBC  SHA
TLS_DH_anon_WITH_AES_256_CBC_SHA        DH_anon      AES_256_CBC  SHA
TLS_DH_DSS_WITH_AES_128_CBC_SHA256      DH_DSS       AES_128_CBC  SHA256
TLS_DH_RSA_WITH_AES_128_CBC_SHA256      DH_RSA       AES_128_CBC  SHA256
TLS_DHE_DSS_WITH_AES_128_CBC_SHA256     DHE_DSS      AES_128_CBC  SHA256
TLS_DHE_RSA_WITH_AES_128_CBC_SHA256     DHE_RSA      AES_128_CBC  SHA256
TLS_DH_anon_WITH_AES_128_CBC_SHA256     DH_anon      AES_128_CBC  SHA256
TLS_DH_DSS_WITH_AES_256_CBC_SHA256      DH_DSS       AES_256_CBC  SHA256
TLS_DH_RSA_WITH_AES_256_CBC_SHA256      DH_RSA       AES_256_CBC  SHA256
TLS_DHE_DSS_WITH_AES_256_CBC_SHA256     DHE_DSS      AES_256_CBC  SHA256
TLS_DHE_RSA_WITH_AES_256_CBC_SHA256     DHE_RSA      AES_256_CBC  SHA256
TLS_DH_anon_WITH_AES_256_CBC_SHA256     DH_anon      AES_256_CBC  SHA256









Dierks & Rescorla           Standards Track                    [Page 83]

RFC 5246                          TLS                        August 2008


                       Key      IV   Block
Cipher        Type    Material  Size  Size
------------  ------  --------  ----  -----
NULL          Stream      0       0    N/A
RC4_128       Stream     16       0    N/A
3DES_EDE_CBC  Block      24       8      8
AES_128_CBC   Block      16      16     16
AES_256_CBC   Block      32      16     16


MAC       Algorithm    mac_length  mac_key_length
--------  -----------  ----------  --------------
NULL      N/A              0             0
MD5       HMAC-MD5        16            16
SHA       HMAC-SHA1       20            20
SHA256    HMAC-SHA256     32            32

  Type
     Indicates whether this is a stream cipher or a block cipher
     running in CBC mode.

  Key Material
     The number of bytes from the key_block that are used for
     generating the write keys.

  IV Size
     The amount of data needed to be generated for the initialization
     vector.  Zero for stream ciphers; equal to the block size for
     block ciphers (this is equal to
     SecurityParameters.record_iv_length).

  Block Size
     The amount of data a block cipher enciphers in one chunk; a block
     cipher running in CBC mode can only encrypt an even multiple of
     its block size.
















Dierks & Rescorla           Standards Track                    [Page 84]

RFC 5246                          TLS                        August 2008


Appendix D.  Implementation Notes

  The TLS protocol cannot prevent many common security mistakes.  This
  section provides several recommendations to assist implementors.

D.1.  Random Number Generation and Seeding

  TLS requires a cryptographically secure pseudorandom number generator
  (PRNG).  Care must be taken in designing and seeding PRNGs.  PRNGs
  based on secure hash operations, most notably SHA-1, are acceptable,
  but cannot provide more security than the size of the random number
  generator state.

  To estimate the amount of seed material being produced, add the
  number of bits of unpredictable information in each seed byte.  For
  example, keystroke timing values taken from a PC compatible's 18.2 Hz
  timer provide 1 or 2 secure bits each, even though the total size of
  the counter value is 16 bits or more.  Seeding a 128-bit PRNG would
  thus require approximately 100 such timer values.

  [RANDOM] provides guidance on the generation of random values.

D.2.  Certificates and Authentication

  Implementations are responsible for verifying the integrity of
  certificates and should generally support certificate revocation
  messages.  Certificates should always be verified to ensure proper
  signing by a trusted Certificate Authority (CA).  The selection and
  addition of trusted CAs should be done very carefully.  Users should
  be able to view information about the certificate and root CA.

D.3.  Cipher Suites

  TLS supports a range of key sizes and security levels, including some
  that provide no or minimal security.  A proper implementation will
  probably not support many cipher suites.  For instance, anonymous
  Diffie-Hellman is strongly discouraged because it cannot prevent man-
  in-the-middle attacks.  Applications should also enforce minimum and
  maximum key sizes.  For example, certificate chains containing 512-
  bit RSA keys or signatures are not appropriate for high-security
  applications.

D.4.  Implementation Pitfalls

  Implementation experience has shown that certain parts of earlier TLS
  specifications are not easy to understand, and have been a source of
  interoperability and security problems.  Many of these areas have




Dierks & Rescorla           Standards Track                    [Page 85]

RFC 5246                          TLS                        August 2008


  been clarified in this document, but this appendix contains a short
  list of the most important things that require special attention from
  implementors.

  TLS protocol issues:

  -  Do you correctly handle handshake messages that are fragmented to
     multiple TLS records (see Section 6.2.1)? Including corner cases
     like a ClientHello that is split to several small fragments? Do
     you fragment handshake messages that exceed the maximum fragment
     size? In particular, the certificate and certificate request
     handshake messages can be large enough to require fragmentation.

  -  Do you ignore the TLS record layer version number in all TLS
     records before ServerHello (see Appendix E.1)?

  -  Do you handle TLS extensions in ClientHello correctly, including
     omitting the extensions field completely?

  -  Do you support renegotiation, both client and server initiated?
     While renegotiation is an optional feature, supporting it is
     highly recommended.

  -  When the server has requested a client certificate, but no
     suitable certificate is available, do you correctly send an empty
     Certificate message, instead of omitting the whole message (see
     Section 7.4.6)?

  Cryptographic details:

  -  In the RSA-encrypted Premaster Secret, do you correctly send and
     verify the version number? When an error is encountered, do you
     continue the handshake to avoid the Bleichenbacher attack (see
     Section 7.4.7.1)?

  -  What countermeasures do you use to prevent timing attacks against
     RSA decryption and signing operations (see Section 7.4.7.1)?

  -  When verifying RSA signatures, do you accept both NULL and missing
     parameters (see Section 4.7)? Do you verify that the RSA padding
     doesn't have additional data after the hash value?  [FI06]

  -  When using Diffie-Hellman key exchange, do you correctly strip
     leading zero bytes from the negotiated key (see Section 8.1.2)?

  -  Does your TLS client check that the Diffie-Hellman parameters sent
     by the server are acceptable (see Section F.1.1.3)?




Dierks & Rescorla           Standards Track                    [Page 86]

RFC 5246                          TLS                        August 2008


  -  How do you generate unpredictable IVs for CBC mode ciphers (see
     Section 6.2.3.2)?

  -  Do you accept long CBC mode padding (up to 255 bytes; see Section
     6.2.3.2)?

  -  How do you address CBC mode timing attacks (Section 6.2.3.2)?

  -  Do you use a strong and, most importantly, properly seeded random
     number generator (see Appendix D.1) for generating the premaster
     secret (for RSA key exchange), Diffie-Hellman private values, the
     DSA "k" parameter, and other security-critical values?

Appendix E.  Backward Compatibility

E.1.  Compatibility with TLS 1.0/1.1 and SSL 3.0

  Since there are various versions of TLS (1.0, 1.1, 1.2, and any
  future versions) and SSL (2.0 and 3.0), means are needed to negotiate
  the specific protocol version to use.  The TLS protocol provides a
  built-in mechanism for version negotiation so as not to bother other
  protocol components with the complexities of version selection.

  TLS versions 1.0, 1.1, and 1.2, and SSL 3.0 are very similar, and use
  compatible ClientHello messages; thus, supporting all of them is
  relatively easy.  Similarly, servers can easily handle clients trying
  to use future versions of TLS as long as the ClientHello format
  remains compatible, and the client supports the highest protocol
  version available in the server.

  A TLS 1.2 client who wishes to negotiate with such older servers will
  send a normal TLS 1.2 ClientHello, containing { 3, 3 } (TLS 1.2) in
  ClientHello.client_version.  If the server does not support this
  version, it will respond with a ServerHello containing an older
  version number.  If the client agrees to use this version, the
  negotiation will proceed as appropriate for the negotiated protocol.

  If the version chosen by the server is not supported by the client
  (or not acceptable), the client MUST send a "protocol_version" alert
  message and close the connection.

  If a TLS server receives a ClientHello containing a version number
  greater than the highest version supported by the server, it MUST
  reply according to the highest version supported by the server.

  A TLS server can also receive a ClientHello containing a version
  number smaller than the highest supported version.  If the server
  wishes to negotiate with old clients, it will proceed as appropriate



Dierks & Rescorla           Standards Track                    [Page 87]

RFC 5246                          TLS                        August 2008


  for the highest version supported by the server that is not greater
  than ClientHello.client_version.  For example, if the server supports
  TLS 1.0, 1.1, and 1.2, and client_version is TLS 1.0, the server will
  proceed with a TLS 1.0 ServerHello.  If server supports (or is
  willing to use) only versions greater than client_version, it MUST
  send a "protocol_version" alert message and close the connection.

  Whenever a client already knows the highest protocol version known to
  a server (for example, when resuming a session), it SHOULD initiate
  the connection in that native protocol.

  Note: some server implementations are known to implement version
  negotiation incorrectly.  For example, there are buggy TLS 1.0
  servers that simply close the connection when the client offers a
  version newer than TLS 1.0.  Also, it is known that some servers will
  refuse the connection if any TLS extensions are included in
  ClientHello.  Interoperability with such buggy servers is a complex
  topic beyond the scope of this document, and may require multiple
  connection attempts by the client.

  Earlier versions of the TLS specification were not fully clear on
  what the record layer version number (TLSPlaintext.version) should
  contain when sending ClientHello (i.e., before it is known which
  version of the protocol will be employed).  Thus, TLS servers
  compliant with this specification MUST accept any value {03,XX} as
  the record layer version number for ClientHello.

  TLS clients that wish to negotiate with older servers MAY send any
  value {03,XX} as the record layer version number.  Typical values
  would be {03,00}, the lowest version number supported by the client,
  and the value of ClientHello.client_version.  No single value will
  guarantee interoperability with all old servers, but this is a
  complex topic beyond the scope of this document.

E.2.  Compatibility with SSL 2.0

  TLS 1.2 clients that wish to support SSL 2.0 servers MUST send
  version 2.0 CLIENT-HELLO messages defined in [SSL2].  The message
  MUST contain the same version number as would be used for ordinary
  ClientHello, and MUST encode the supported TLS cipher suites in the
  CIPHER-SPECS-DATA field as described below.

  Warning: The ability to send version 2.0 CLIENT-HELLO messages will
  be phased out with all due haste, since the newer ClientHello format
  provides better mechanisms for moving to newer versions and
  negotiating extensions.  TLS 1.2 clients SHOULD NOT support SSL 2.0.





Dierks & Rescorla           Standards Track                    [Page 88]

RFC 5246                          TLS                        August 2008


  However, even TLS servers that do not support SSL 2.0 MAY accept
  version 2.0 CLIENT-HELLO messages.  The message is presented below in
  sufficient detail for TLS server implementors; the true definition is
  still assumed to be [SSL2].

  For negotiation purposes, 2.0 CLIENT-HELLO is interpreted the same
  way as a ClientHello with a "null" compression method and no
  extensions.  Note that this message MUST be sent directly on the
  wire, not wrapped as a TLS record.  For the purposes of calculating
  Finished and CertificateVerify, the msg_length field is not
  considered to be a part of the handshake message.

     uint8 V2CipherSpec[3];
     struct {
         uint16 msg_length;
         uint8 msg_type;
         Version version;
         uint16 cipher_spec_length;
         uint16 session_id_length;
         uint16 challenge_length;
         V2CipherSpec cipher_specs[V2ClientHello.cipher_spec_length];
         opaque session_id[V2ClientHello.session_id_length];
         opaque challenge[V2ClientHello.challenge_length;
     } V2ClientHello;

  msg_length
     The highest bit MUST be 1; the remaining bits contain the length
     of the following data in bytes.

  msg_type
     This field, in conjunction with the version field, identifies a
     version 2 ClientHello message.  The value MUST be 1.

  version
     Equal to ClientHello.client_version.

  cipher_spec_length
     This field is the total length of the field cipher_specs.  It
     cannot be zero and MUST be a multiple of the V2CipherSpec length
     (3).

  session_id_length
     This field MUST have a value of zero for a client that claims to
     support TLS 1.2.







Dierks & Rescorla           Standards Track                    [Page 89]

RFC 5246                          TLS                        August 2008


  challenge_length
     The length in bytes of the client's challenge to the server to
     authenticate itself.  Historically, permissible values are between
     16 and 32 bytes inclusive.  When using the SSLv2 backward-
     compatible handshake the client SHOULD use a 32-byte challenge.

  cipher_specs
     This is a list of all CipherSpecs the client is willing and able
     to use.  In addition to the 2.0 cipher specs defined in [SSL2],
     this includes the TLS cipher suites normally sent in
     ClientHello.cipher_suites, with each cipher suite prefixed by a
     zero byte.  For example, the TLS cipher suite {0x00,0x0A} would be
     sent as {0x00,0x00,0x0A}.

  session_id
     This field MUST be empty.

  challenge
     Corresponds to ClientHello.random.  If the challenge length is
     less than 32, the TLS server will pad the data with leading (note:
     not trailing) zero bytes to make it 32 bytes long.

  Note: Requests to resume a TLS session MUST use a TLS client hello.

E.3.  Avoiding Man-in-the-Middle Version Rollback

  When TLS clients fall back to Version 2.0 compatibility mode, they
  MUST use special PKCS#1 block formatting.  This is done so that TLS
  servers will reject Version 2.0 sessions with TLS-capable clients.

  When a client negotiates SSL 2.0 but also supports TLS, it MUST set
  the right-hand (least-significant) 8 random bytes of the PKCS padding
  (not including the terminal null of the padding) for the RSA
  encryption of the ENCRYPTED-KEY-DATA field of the CLIENT-MASTER-KEY
  to 0x03 (the other padding bytes are random).

  When a TLS-capable server negotiates SSL 2.0 it SHOULD, after
  decrypting the ENCRYPTED-KEY-DATA field, check that these 8 padding
  bytes are 0x03.  If they are not, the server SHOULD generate a random
  value for SECRET-KEY-DATA, and continue the handshake (which will
  eventually fail since the keys will not match).  Note that reporting
  the error situation to the client could make the server vulnerable to
  attacks described in [BLEI].








Dierks & Rescorla           Standards Track                    [Page 90]

RFC 5246                          TLS                        August 2008


Appendix F.  Security Analysis

  The TLS protocol is designed to establish a secure connection between
  a client and a server communicating over an insecure channel.  This
  document makes several traditional assumptions, including that
  attackers have substantial computational resources and cannot obtain
  secret information from sources outside the protocol.  Attackers are
  assumed to have the ability to capture, modify, delete, replay, and
  otherwise tamper with messages sent over the communication channel.
  This appendix outlines how TLS has been designed to resist a variety
  of attacks.

F.1.  Handshake Protocol

  The handshake protocol is responsible for selecting a cipher spec and
  generating a master secret, which together comprise the primary
  cryptographic parameters associated with a secure session.  The
  handshake protocol can also optionally authenticate parties who have
  certificates signed by a trusted certificate authority.

F.1.1.  Authentication and Key Exchange

  TLS supports three authentication modes: authentication of both
  parties, server authentication with an unauthenticated client, and
  total anonymity.  Whenever the server is authenticated, the channel
  is secure against man-in-the-middle attacks, but completely anonymous
  sessions are inherently vulnerable to such attacks.  Anonymous
  servers cannot authenticate clients.  If the server is authenticated,
  its certificate message must provide a valid certificate chain
  leading to an acceptable certificate authority.  Similarly,
  authenticated clients must supply an acceptable certificate to the
  server.  Each party is responsible for verifying that the other's
  certificate is valid and has not expired or been revoked.

  The general goal of the key exchange process is to create a
  pre_master_secret known to the communicating parties and not to
  attackers.  The pre_master_secret will be used to generate the
  master_secret (see Section 8.1).  The master_secret is required to
  generate the Finished messages, encryption keys, and MAC keys (see
  Sections 7.4.9 and 6.3).  By sending a correct Finished message,
  parties thus prove that they know the correct pre_master_secret.

F.1.1.1.  Anonymous Key Exchange

  Completely anonymous sessions can be established using Diffie-Hellman
  for key exchange.  The server's public parameters are contained in
  the server key exchange message, and the client's are sent in the




Dierks & Rescorla           Standards Track                    [Page 91]

RFC 5246                          TLS                        August 2008


  client key exchange message.  Eavesdroppers who do not know the
  private values should not be able to find the Diffie-Hellman result
  (i.e., the pre_master_secret).

  Warning: Completely anonymous connections only provide protection
  against passive eavesdropping.  Unless an independent tamper-proof
  channel is used to verify that the Finished messages were not
  replaced by an attacker, server authentication is required in
  environments where active man-in-the-middle attacks are a concern.

F.1.1.2.  RSA Key Exchange and Authentication

  With RSA, key exchange and server authentication are combined.  The
  public key is contained in the server's certificate.  Note that
  compromise of the server's static RSA key results in a loss of
  confidentiality for all sessions protected under that static key.
  TLS users desiring Perfect Forward Secrecy should use DHE cipher
  suites.  The damage done by exposure of a private key can be limited
  by changing one's private key (and certificate) frequently.

  After verifying the server's certificate, the client encrypts a
  pre_master_secret with the server's public key.  By successfully
  decoding the pre_master_secret and producing a correct Finished
  message, the server demonstrates that it knows the private key
  corresponding to the server certificate.

  When RSA is used for key exchange, clients are authenticated using
  the certificate verify message (see Section 7.4.8).  The client signs
  a value derived from all preceding handshake messages.  These
  handshake messages include the server certificate, which binds the
  signature to the server, and ServerHello.random, which binds the
  signature to the current handshake process.

F.1.1.3.  Diffie-Hellman Key Exchange with Authentication

  When Diffie-Hellman key exchange is used, the server can either
  supply a certificate containing fixed Diffie-Hellman parameters or
  use the server key exchange message to send a set of temporary
  Diffie-Hellman parameters signed with a DSA or RSA certificate.
  Temporary parameters are hashed with the hello.random values before
  signing to ensure that attackers do not replay old parameters.  In
  either case, the client can verify the certificate or signature to
  ensure that the parameters belong to the server.

  If the client has a certificate containing fixed Diffie-Hellman
  parameters, its certificate contains the information required to
  complete the key exchange.  Note that in this case the client and
  server will generate the same Diffie-Hellman result (i.e.,



Dierks & Rescorla           Standards Track                    [Page 92]

RFC 5246                          TLS                        August 2008


  pre_master_secret) every time they communicate.  To prevent the
  pre_master_secret from staying in memory any longer than necessary,
  it should be converted into the master_secret as soon as possible.
  Client Diffie-Hellman parameters must be compatible with those
  supplied by the server for the key exchange to work.

  If the client has a standard DSA or RSA certificate or is
  unauthenticated, it sends a set of temporary parameters to the server
  in the client key exchange message, then optionally uses a
  certificate verify message to authenticate itself.

  If the same DH keypair is to be used for multiple handshakes, either
  because the client or server has a certificate containing a fixed DH
  keypair or because the server is reusing DH keys, care must be taken
  to prevent small subgroup attacks.  Implementations SHOULD follow the
  guidelines found in [SUBGROUP].

  Small subgroup attacks are most easily avoided by using one of the
  DHE cipher suites and generating a fresh DH private key (X) for each
  handshake.  If a suitable base (such as 2) is chosen, g^X mod p can
  be computed very quickly; therefore, the performance cost is
  minimized.  Additionally, using a fresh key for each handshake
  provides Perfect Forward Secrecy.  Implementations SHOULD generate a
  new X for each handshake when using DHE cipher suites.

  Because TLS allows the server to provide arbitrary DH groups, the
  client should verify that the DH group is of suitable size as defined
  by local policy.  The client SHOULD also verify that the DH public
  exponent appears to be of adequate size.  [KEYSIZ] provides a useful
  guide to the strength of various group sizes.  The server MAY choose
  to assist the client by providing a known group, such as those
  defined in [IKEALG] or [MODP].  These can be verified by simple
  comparison.

F.1.2.  Version Rollback Attacks

  Because TLS includes substantial improvements over SSL Version 2.0,
  attackers may try to make TLS-capable clients and servers fall back
  to Version 2.0.  This attack can occur if (and only if) two TLS-
  capable parties use an SSL 2.0 handshake.

  Although the solution using non-random PKCS #1 block type 2 message
  padding is inelegant, it provides a reasonably secure way for Version
  3.0 servers to detect the attack.  This solution is not secure
  against attackers who can brute-force the key and substitute a new
  ENCRYPTED-KEY-DATA message containing the same key (but with normal
  padding) before the application-specified wait threshold has expired.
  Altering the padding of the least-significant 8 bytes of the PKCS



Dierks & Rescorla           Standards Track                    [Page 93]

RFC 5246                          TLS                        August 2008


  padding does not impact security for the size of the signed hashes
  and RSA key lengths used in the protocol, since this is essentially
  equivalent to increasing the input block size by 8 bytes.

F.1.3.  Detecting Attacks Against the Handshake Protocol

  An attacker might try to influence the handshake exchange to make the
  parties select different encryption algorithms than they would
  normally choose.

  For this attack, an attacker must actively change one or more
  handshake messages.  If this occurs, the client and server will
  compute different values for the handshake message hashes.  As a
  result, the parties will not accept each others' Finished messages.
  Without the master_secret, the attacker cannot repair the Finished
  messages, so the attack will be discovered.

F.1.4.  Resuming Sessions

  When a connection is established by resuming a session, new
  ClientHello.random and ServerHello.random values are hashed with the
  session's master_secret.  Provided that the master_secret has not
  been compromised and that the secure hash operations used to produce
  the encryption keys and MAC keys are secure, the connection should be
  secure and effectively independent from previous connections.
  Attackers cannot use known encryption keys or MAC secrets to
  compromise the master_secret without breaking the secure hash
  operations.

  Sessions cannot be resumed unless both the client and server agree.
  If either party suspects that the session may have been compromised,
  or that certificates may have expired or been revoked, it should
  force a full handshake.  An upper limit of 24 hours is suggested for
  session ID lifetimes, since an attacker who obtains a master_secret
  may be able to impersonate the compromised party until the
  corresponding session ID is retired.  Applications that may be run in
  relatively insecure environments should not write session IDs to
  stable storage.

F.2.  Protecting Application Data

  The master_secret is hashed with the ClientHello.random and
  ServerHello.random to produce unique data encryption keys and MAC
  secrets for each connection.

  Outgoing data is protected with a MAC before transmission.  To
  prevent message replay or modification attacks, the MAC is computed
  from the MAC key, the sequence number, the message length, the



Dierks & Rescorla           Standards Track                    [Page 94]

RFC 5246                          TLS                        August 2008


  message contents, and two fixed character strings.  The message type
  field is necessary to ensure that messages intended for one TLS
  record layer client are not redirected to another.  The sequence
  number ensures that attempts to delete or reorder messages will be
  detected.  Since sequence numbers are 64 bits long, they should never
  overflow.  Messages from one party cannot be inserted into the
  other's output, since they use independent MAC keys.  Similarly, the
  server write and client write keys are independent, so stream cipher
  keys are used only once.

  If an attacker does break an encryption key, all messages encrypted
  with it can be read.  Similarly, compromise of a MAC key can make
  message-modification attacks possible.  Because MACs are also
  encrypted, message-alteration attacks generally require breaking the
  encryption algorithm as well as the MAC.

  Note: MAC keys may be larger than encryption keys, so messages can
  remain tamper resistant even if encryption keys are broken.

F.3.  Explicit IVs

  [CBCATT] describes a chosen plaintext attack on TLS that depends on
  knowing the IV for a record.  Previous versions of TLS [TLS1.0] used
  the CBC residue of the previous record as the IV and therefore
  enabled this attack.  This version uses an explicit IV in order to
  protect against this attack.

F.4.  Security of Composite Cipher Modes

  TLS secures transmitted application data via the use of symmetric
  encryption and authentication functions defined in the negotiated
  cipher suite.  The objective is to protect both the integrity and
  confidentiality of the transmitted data from malicious actions by
  active attackers in the network.  It turns out that the order in
  which encryption and authentication functions are applied to the data
  plays an important role for achieving this goal [ENCAUTH].

  The most robust method, called encrypt-then-authenticate, first
  applies encryption to the data and then applies a MAC to the
  ciphertext.  This method ensures that the integrity and
  confidentiality goals are obtained with ANY pair of encryption and
  MAC functions, provided that the former is secure against chosen
  plaintext attacks and that the MAC is secure against chosen-message
  attacks.  TLS uses another method, called authenticate-then-encrypt,
  in which first a MAC is computed on the plaintext and then the
  concatenation of plaintext and MAC is encrypted.  This method has
  been proven secure for CERTAIN combinations of encryption functions
  and MAC functions, but it is not guaranteed to be secure in general.



Dierks & Rescorla           Standards Track                    [Page 95]

RFC 5246                          TLS                        August 2008


  In particular, it has been shown that there exist perfectly secure
  encryption functions (secure even in the information-theoretic sense)
  that combined with any secure MAC function, fail to provide the
  confidentiality goal against an active attack.  Therefore, new cipher
  suites and operation modes adopted into TLS need to be analyzed under
  the authenticate-then-encrypt method to verify that they achieve the
  stated integrity and confidentiality goals.

  Currently, the security of the authenticate-then-encrypt method has
  been proven for some important cases.  One is the case of stream
  ciphers in which a computationally unpredictable pad of the length of
  the message, plus the length of the MAC tag, is produced using a
  pseudorandom generator and this pad is exclusive-ORed with the
  concatenation of plaintext and MAC tag.  The other is the case of CBC
  mode using a secure block cipher.  In this case, security can be
  shown if one applies one CBC encryption pass to the concatenation of
  plaintext and MAC and uses a new, independent, and unpredictable IV
  for each new pair of plaintext and MAC.  In versions of TLS prior to
  1.1, CBC mode was used properly EXCEPT that it used a predictable IV
  in the form of the last block of the previous ciphertext.  This made
  TLS open to chosen plaintext attacks.  This version of the protocol
  is immune to those attacks.  For exact details in the encryption
  modes proven secure, see [ENCAUTH].

F.5.  Denial of Service

  TLS is susceptible to a number of denial-of-service (DoS) attacks.
  In particular, an attacker who initiates a large number of TCP
  connections can cause a server to consume large amounts of CPU for
  doing RSA decryption.  However, because TLS is generally used over
  TCP, it is difficult for the attacker to hide his point of origin if
  proper TCP SYN randomization is used [SEQNUM] by the TCP stack.

  Because TLS runs over TCP, it is also susceptible to a number of DoS
  attacks on individual connections.  In particular, attackers can
  forge RSTs, thereby terminating connections, or forge partial TLS
  records, thereby causing the connection to stall.  These attacks
  cannot in general be defended against by a TCP-using protocol.
  Implementors or users who are concerned with this class of attack
  should use IPsec AH [AH] or ESP [ESP].

F.6.  Final Notes

  For TLS to be able to provide a secure connection, both the client
  and server systems, keys, and applications must be secure.  In
  addition, the implementation must be free of security errors.





Dierks & Rescorla           Standards Track                    [Page 96]

RFC 5246                          TLS                        August 2008


  The system is only as strong as the weakest key exchange and
  authentication algorithm supported, and only trustworthy
  cryptographic functions should be used.  Short public keys and
  anonymous servers should be used with great caution.  Implementations
  and users must be careful when deciding which certificates and
  certificate authorities are acceptable; a dishonest certificate
  authority can do tremendous damage.

Normative References

  [AES]      National Institute of Standards and Technology,
             "Specification for the Advanced Encryption Standard (AES)"
             FIPS 197.  November 26, 2001.

  [3DES]     National Institute of Standards and Technology,
             "Recommendation for the Triple Data Encryption Algorithm
             (TDEA) Block Cipher", NIST Special Publication 800-67, May
             2004.

  [DSS]      NIST FIPS PUB 186-2, "Digital Signature Standard",
             National Institute of Standards and Technology, U.S.
             Department of Commerce, 2000.

  [HMAC]     Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
             Hashing for Message Authentication", RFC 2104, February
             1997.

  [MD5]      Rivest, R., "The MD5 Message-Digest Algorithm", RFC 1321,
             April 1992.

  [PKCS1]    Jonsson, J. and B. Kaliski, "Public-Key Cryptography
             Standards (PKCS) #1: RSA Cryptography Specifications
             Version 2.1", RFC 3447, February 2003.

  [PKIX]     Housley, R., Polk, W., Ford, W., and D. Solo, "Internet
             X.509 Public Key Infrastructure Certificate and
             Certificate Revocation List (CRL) Profile", RFC 3280,
             April 2002.

  [SCH]      B. Schneier. "Applied Cryptography: Protocols, Algorithms,
             and Source Code in C, 2nd ed.", Published by John Wiley &
             Sons, Inc. 1996.

  [SHS]      NIST FIPS PUB 180-2, "Secure Hash Standard", National
             Institute of Standards and Technology, U.S. Department of
             Commerce, August 2002.





Dierks & Rescorla           Standards Track                    [Page 97]

RFC 5246                          TLS                        August 2008


  [REQ]      Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119, March 1997.

  [RFC2434]  Narten, T. and H. Alvestrand, "Guidelines for Writing an
             IANA Considerations Section in RFCs", BCP 26, RFC 2434,
             October 1998.

  [X680]     ITU-T Recommendation X.680 (2002) | ISO/IEC 8824-1:2002,
             Information technology - Abstract Syntax Notation One
             (ASN.1): Specification of basic notation.

  [X690]     ITU-T Recommendation X.690 (2002) | ISO/IEC 8825-1:2002,
             Information technology - ASN.1 encoding Rules:
             Specification of Basic Encoding Rules (BER), Canonical
             Encoding Rules (CER) and Distinguished Encoding Rules
             (DER).

Informative References

  [AEAD]     McGrew, D., "An Interface and Algorithms for Authenticated
             Encryption", RFC 5116, January 2008.

  [AH]       Kent, S., "IP Authentication Header", RFC 4302, December
             2005.

  [BLEI]     Bleichenbacher D., "Chosen Ciphertext Attacks against
             Protocols Based on RSA Encryption Standard PKCS #1" in
             Advances in Cryptology -- CRYPTO'98, LNCS vol. 1462,
             pages:  1-12, 1998.

  [CBCATT]   Moeller, B., "Security of CBC Ciphersuites in SSL/TLS:
             Problems and Countermeasures",
             http://www.openssl.org/~bodo/tls-cbc.txt.

  [CBCTIME]  Canvel, B., Hiltgen, A., Vaudenay, S., and M. Vuagnoux,
             "Password Interception in a SSL/TLS Channel", Advances in
             Cryptology -- CRYPTO 2003, LNCS vol. 2729, 2003.

  [CCM]      "NIST Special Publication 800-38C: The CCM Mode for
             Authentication and Confidentiality",
             http://csrc.nist.gov/publications/nistpubs/800-38C/
             SP800-38C.pdf

  [DES]      National Institute of Standards and Technology, "Data
             Encryption Standard (DES)", FIPS PUB 46-3, October 1999.






Dierks & Rescorla           Standards Track                    [Page 98]

RFC 5246                          TLS                        August 2008


  [DSS-3]    NIST FIPS PUB 186-3 Draft, "Digital Signature Standard",
             National Institute of Standards and Technology, U.S.
             Department of Commerce, 2006.

  [ECDSA]    American National Standards Institute, "Public Key
             Cryptography for the Financial Services Industry: The
             Elliptic Curve Digital Signature Algorithm (ECDSA)", ANS
             X9.62-2005, November 2005.

  [ENCAUTH]  Krawczyk, H., "The Order of Encryption and Authentication
             for Protecting Communications (Or: How Secure is SSL?)",
             Crypto 2001.

  [ESP]      Kent, S., "IP Encapsulating Security Payload (ESP)", RFC
             4303, December 2005.

  [FI06]     Hal Finney, "Bleichenbacher's RSA signature forgery based
             on implementation error", [email protected] mailing
             list, 27 August 2006, http://www.imc.org/ietf-openpgp/
             mail-archive/msg14307.html.

  [GCM]      Dworkin, M., NIST Special Publication 800-38D,
             "Recommendation for Block Cipher Modes of Operation:
             Galois/Counter Mode (GCM) and GMAC", November 2007.

  [IKEALG]   Schiller, J., "Cryptographic Algorithms for Use in the
             Internet Key Exchange Version 2 (IKEv2)", RFC 4307,
             December 2005.

  [KEYSIZ]   Orman, H. and P. Hoffman, "Determining Strengths For
             Public Keys Used For Exchanging Symmetric Keys", BCP 86,
             RFC 3766, April 2004.

  [KPR03]    Klima, V., Pokorny, O., Rosa, T., "Attacking RSA-based
             Sessions in SSL/TLS", http://eprint.iacr.org/2003/052/,
             March 2003.

  [MODP]     Kivinen, T. and M. Kojo, "More Modular Exponential (MODP)
             Diffie-Hellman groups for Internet Key Exchange (IKE)",
             RFC 3526, May 2003.

  [PKCS6]    RSA Laboratories, "PKCS #6: RSA Extended Certificate
             Syntax Standard", version 1.5, November 1993.

  [PKCS7]    RSA Laboratories, "PKCS #7: RSA Cryptographic Message
             Syntax Standard", version 1.5, November 1993.





Dierks & Rescorla           Standards Track                    [Page 99]

RFC 5246                          TLS                        August 2008


  [RANDOM]   Eastlake, D., 3rd, Schiller, J., and S. Crocker,
             "Randomness Requirements for Security", BCP 106, RFC 4086,
             June 2005.

  [RFC3749]  Hollenbeck, S., "Transport Layer Security Protocol
             Compression Methods", RFC 3749, May 2004.

  [RFC4366]  Blake-Wilson, S., Nystrom, M., Hopwood, D., Mikkelsen, J.,
             and T. Wright, "Transport Layer Security (TLS)
             Extensions", RFC 4366, April 2006.

  [RSA]      R. Rivest, A. Shamir, and L. M. Adleman, "A Method for
             Obtaining Digital Signatures and Public-Key
             Cryptosystems", Communications of the ACM, v. 21, n. 2,
             Feb 1978, pp. 120-126.

  [SEQNUM]   Bellovin, S., "Defending Against Sequence Number Attacks",
             RFC 1948, May 1996.

  [SSL2]     Hickman, Kipp, "The SSL Protocol", Netscape Communications
             Corp., Feb 9, 1995.

  [SSL3]     A. Freier, P. Karlton, and P. Kocher, "The SSL 3.0
             Protocol", Netscape Communications Corp., Nov 18, 1996.

  [SUBGROUP] Zuccherato, R., "Methods for Avoiding the "Small-Subgroup"
             Attacks on the Diffie-Hellman Key Agreement Method for
             S/MIME", RFC 2785, March 2000.

  [TCP]      Postel, J., "Transmission Control Protocol", STD 7, RFC
             793, September 1981.

  [TIMING]   Boneh, D., Brumley, D., "Remote timing attacks are
             practical", USENIX Security Symposium 2003.

  [TLSAES]   Chown, P., "Advanced Encryption Standard (AES)
             Ciphersuites for Transport Layer Security (TLS)", RFC
             3268, June 2002.

  [TLSECC]   Blake-Wilson, S., Bolyard, N., Gupta, V., Hawk, C., and B.
             Moeller, "Elliptic Curve Cryptography (ECC) Cipher Suites
             for Transport Layer Security (TLS)", RFC 4492, May 2006.

  [TLSEXT]   Eastlake, D., 3rd, "Transport Layer Security (TLS)
             Extensions:  Extension Definitions", Work in Progress,
             February 2008.





Dierks & Rescorla           Standards Track                   [Page 100]

RFC 5246                          TLS                        August 2008


  [TLSPGP]   Mavrogiannopoulos, N., "Using OpenPGP Keys for Transport
             Layer Security (TLS) Authentication", RFC 5081, November
             2007.

  [TLSPSK]   Eronen, P., Ed., and H. Tschofenig, Ed., "Pre-Shared Key
             Ciphersuites for Transport Layer Security (TLS)", RFC
             4279, December 2005.

  [TLS1.0]   Dierks, T. and C. Allen, "The TLS Protocol Version 1.0",
             RFC 2246, January 1999.

  [TLS1.1]   Dierks, T. and E. Rescorla, "The Transport Layer Security
             (TLS) Protocol Version 1.1", RFC 4346, April 2006.

  [X501]     ITU-T Recommendation X.501: Information Technology - Open
             Systems Interconnection - The Directory: Models, 1993.

  [XDR]      Eisler, M., Ed., "XDR: External Data Representation
             Standard", STD 67, RFC 4506, May 2006.

Working Group Information

  The discussion list for the IETF TLS working group is located at the
  e-mail address <[email protected]>. Information on the group and
  information on how to subscribe to the list is at
  <https://www1.ietf.org/mailman/listinfo/tls>

  Archives of the list can be found at:
  <http://www.ietf.org/mail-archive/web/tls/current/index.html>

Contributors

  Christopher Allen (co-editor of TLS 1.0)
  Alacrity Ventures
  [email protected]

  Martin Abadi
  University of California, Santa Cruz
  [email protected]

  Steven M. Bellovin
  Columbia University
  [email protected]

  Simon Blake-Wilson
  BCI
  [email protected]




Dierks & Rescorla           Standards Track                   [Page 101]

RFC 5246                          TLS                        August 2008


  Ran Canetti
  IBM
  [email protected]

  Pete Chown
  Skygate Technology Ltd
  [email protected]

  Taher Elgamal
  [email protected]
  Securify

  Pasi Eronen
  [email protected]
  Nokia

  Anil Gangolli
  [email protected]

  Kipp Hickman

  Alfred Hoenes

  David Hopwood
  Independent Consultant
  [email protected]

  Phil Karlton (co-author of SSLv3)

  Paul Kocher (co-author of SSLv3)
  Cryptography Research
  [email protected]

  Hugo Krawczyk
  IBM
  [email protected]

  Jan Mikkelsen
  Transactionware
  [email protected]

  Magnus Nystrom
  RSA Security
  [email protected]

  Robert Relyea
  Netscape Communications
  [email protected]



Dierks & Rescorla           Standards Track                   [Page 102]

RFC 5246                          TLS                        August 2008


  Jim Roskind
  Netscape Communications
  [email protected]

  Michael Sabin

  Dan Simon
  Microsoft, Inc.
  [email protected]

  Tom Weinstein

  Tim Wright
  Vodafone
  [email protected]

Editors' Addresses

  Tim Dierks
  Independent
  EMail: [email protected]

  Eric Rescorla
  RTFM, Inc.
  EMail: [email protected]


























Dierks & Rescorla           Standards Track                   [Page 103]

RFC 5246                          TLS                        August 2008


Full Copyright Statement

  Copyright (C) The IETF Trust (2008).

  This document is subject to the rights, licenses and restrictions
  contained in BCP 78, and except as set forth therein, the authors
  retain all their rights.

  This document and the information contained herein are provided on an
  "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
  OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
  THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
  OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
  THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
  WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

  The IETF takes no position regarding the validity or scope of any
  Intellectual Property Rights or other rights that might be claimed to
  pertain to the implementation or use of the technology described in
  this document or the extent to which any license under such rights
  might or might not be available; nor does it represent that it has
  made any independent effort to identify any such rights.  Information
  on the procedures with respect to rights in RFC documents can be
  found in BCP 78 and BCP 79.

  Copies of IPR disclosures made to the IETF Secretariat and any
  assurances of licenses to be made available, or the result of an
  attempt made to obtain a general license or permission for the use of
  such proprietary rights by implementers or users of this
  specification can be obtained from the IETF on-line IPR repository at
  http://www.ietf.org/ipr.

  The IETF invites any interested party to bring to its attention any
  copyrights, patents or patent applications, or other proprietary
  rights that may cover technology that may be required to implement
  this standard.  Please address the information to the IETF at
  [email protected].












Dierks & Rescorla           Standards Track                   [Page 104]