Network Working Group                                       R. Finlayson
Request for Comments: 5219                           Live Networks, Inc.
Obsoletes: 3119                                            February 2008
Category: Standard Track


        A More Loss-Tolerant RTP Payload Format for MP3 Audio

Status of This Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Abstract

  This document describes an RTP (Real-Time Protocol) payload format
  for transporting MPEG (Moving Picture Experts Group) 1 or 2, layer
  III audio (commonly known as "MP3").  This format is an alternative
  to that described in RFC 2250, and performs better if there is packet
  loss.  This document obsoletes RFC 3119, correcting typographical
  errors in the "SDP usage" section and pseudo-code appendices.



























Finlayson                   Standards Track                     [Page 1]

RFC 5219                                                   February 2008


Table of Contents

  1. Introduction ....................................................2
  2. Terminology .....................................................3
  3. The Structure of MP3 Frames .....................................3
  4. A New Payload Format ............................................4
     4.1. ADU Frames .................................................4
     4.2. ADU Descriptors ............................................4
     4.3. Packing Rules ..............................................5
     4.4. RTP Header Fields ..........................................6
     4.5. Handling Received Data .....................................6
  5. Handling Multiple MPEG Audio Layers .............................6
  6. Frame Packetizing and Depacketizing .............................7
  7. ADU Frame Interleaving ..........................................8
  8. IANA Considerations ............................................10
  9. SDP Usage ......................................................11
  10. Security Considerations .......................................11
  11. Acknowledgements ..............................................11
  12. Normative References ..........................................12
  Appendix A. Translating between "MP3 Frames" and "ADU Frames" .....13
     A.1. Converting a Sequence of "MP3 Frames"
          to a Sequence of "ADU Frames" .............................14
     A.2. Converting a Sequence of "ADU Frames"
          to a Sequence of "MP3 Frames" .............................15
  Appendix B. Interleaving and Deinterleaving .......................18
     B.1. Interleaving a Sequence of "ADU Frames" ...................18
     B.2. Deinterleaving a Sequence of (Interleaved) "ADU Frames" ...19
  Appendix C. Changes from RFC 3119 .................................20

1.  Introduction

  While the RTP payload format defined in RFC 2250 [1] is generally
  applicable to all forms of MPEG audio or video, it is sub-optimal for
  MPEG-1 or 2, layer III audio (commonly known as "MP3").  The reason
  for this is that an MP3 frame is not a true "Application Data Unit"
  -- it contains a back-pointer to data in earlier frames, and so
  cannot be decoded independently of these earlier frames.  Because RFC
  2250 defines that packet boundaries coincide with frame boundaries,
  it handles packet loss inefficiently when carrying MP3 data.  The
  loss of an MP3 frame will render some data in previous (or future)
  frames useless, even if they are received without loss.

  In this document, we define an alternative RTP payload format for MP3
  audio.  This format uses a data-preserving rearrangement of the
  original MPEG frames, so that packet boundaries now coincide with
  true MP3 "Application Data Units", which can also (optionally) be
  rearranged in an interleaving pattern.  This new format is therefore
  more data efficient than RFC 2250 in the face of packet loss.



Finlayson                   Standards Track                     [Page 2]

RFC 5219                                                   February 2008


2.  Terminology

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED",  "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in RFC 2119 [2].

3.  The Structure of MP3 Frames

  In this section we give a brief overview of the structure of an MP3
  frame.  (For a more detailed description, see the MPEG-1 audio [3]
  and MPEG-2 audio [4] specifications.)

  Each MPEG audio frame begins with a 4-byte header.  Information
  defined by this header includes:

  -  Whether the audio is MPEG-1 or MPEG-2.
  -  Whether the audio is layer I, II, or III.  (The remainder of this
     document assumes layer III, i.e., "MP3" frames.)
  -  Whether the audio is mono or stereo.
  -  Whether or not there is a 2-byte CRC field following the header.
  -  (indirectly) The size of the frame.

  The following structures appear after the header:

  -  (optionally) A 2-byte Cyclic Redundancy Check (CRC) field
  -  A "side info" structure.  This has the following length:
     -  32 bytes for MPEG-1 stereo
     -  17 bytes for MPEG-1 mono, or for MPEG-2 stereo
     -  9 bytes for MPEG-2 mono
  -  Encoded audio data, plus optional ancillary data (filling out the
     rest of the frame)

  For the purpose of this document, the "side info" structure is the
  most important, because it defines the location and size of the
  "Application Data Unit" (ADU) that an MP3 decoder will process.  In
  particular, the "side info" structure defines:

  -  "main_data_begin": This is a back-pointer (in bytes) to the start
     of the ADU.  The back-pointer is counted from the beginning of the
     frame, and counts only encoded audio data and any ancillary data
     (i.e., ignoring any header, CRC, or "side info" fields).

  An MP3 decoder processes each ADU independently.  The ADUs will
  generally vary in length, but their average length will, of course,







Finlayson                   Standards Track                     [Page 3]

RFC 5219                                                   February 2008


  be that of the of the MP3 frames (minus the length of the header,
  CRC, and "side info" fields).  (In MPEG literature, this ADU is
  sometimes referred to as a "bit reservoir".)

4.  A New Payload Format

  As noted in [5], a payload format should be designed so that packet
  boundaries coincide with "codec frame boundaries" -- i.e., with ADUs.
  In the RFC 2250 payload format for MPEG audio [1], each RTP packet
  payload contains MP3 frames.  In this new payload format for MP3
  audio, however, each RTP packet payload contains "ADU frames", each
  preceded by an "ADU descriptor".

4.1.  ADU Frames

  An "ADU frame" is defined as:

     -  The 4-byte MPEG header (the same as the original MP3 frame,
        except that the first 11 bits are (optionally) replaced by an
        "Interleaving Sequence Number", as described in Section 7
        below)
     -  The optional 2-byte CRC field (the same as the original MP3
        frame)
     -  The "side info" structure (the same as the original MP3 frame)
     -  The complete sequence of encoded audio data (and any ancillary
        data) for the ADU (i.e., running from the start of this MP3
        frame's "main_data_begin" back-pointer, up to the start of the
        next MP3 frame's back-pointer)

  Note that there is a one-to-one mapping between MP3 frames and ADU
  frames.  Because MP3 frames are self-describing, with the bitrate
  (and sampling frequency) encoded within the 4-byte MPEG header, the
  same is true for ADU frames.  Therefore, as with MP3 streams, the
  bitrate can change within a stream and may be used for congestion
  control.

4.2.  ADU Descriptors

  Within each RTP packet payload, each "ADU frame" is preceded by a
  1- or 2-byte "ADU descriptor", which gives the size of the ADU and
  indicates whether or not this packet's data is a continuation of the
  previous packet's data.  (This occurs only when a single "ADU
  descriptor" + "ADU frame" is too large to fit within an RTP packet.)








Finlayson                   Standards Track                     [Page 4]

RFC 5219                                                   February 2008


  An ADU descriptor consists of the following fields:

  -  "C": Continuation flag (1 bit):  1, if the data following the ADU
          descriptor is a continuation of an ADU frame that was too
          large to fit within a single RTP packet; 0 otherwise.

  -  "T": Descriptor Type flag (1 bit):
          0 if this is a 1-byte ADU descriptor;
          1 if this is a 2-byte ADU descriptor.

  -  "ADU size" (6 or 14 bits):  The size (in bytes) of the ADU frame
          that will follow this ADU descriptor (i.e., NOT including the
          size of the descriptor itself).  A 2-byte ADU descriptor
          (with a 14-bit "ADU size" field) is used for ADU frame sizes
          of 64 bytes or more.  For smaller ADU frame sizes, senders
          MAY alternatively use a 1-byte ADU descriptor (with a 6-bit
          "ADU size" field).  Receivers MUST be able to accept an ADU
          descriptor of either size.

  Thus, a 1-byte ADU descriptor is formatted as follows:

         0 1 2 3 4 5 6 7
        +-+-+-+-+-+-+-+-+
        |C|0|  ADU size |
        +-+-+-+-+-+-+-+-+

  and a 2-byte ADU descriptor is formatted as follows:

         0                   1
         0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
        +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        |C|1|     ADU size (14 bits)    |
        +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

4.3.  Packing Rules

  Each RTP packet payload begins with an "ADU descriptor", followed by
  "ADU frame" data.  Normally, this "ADU descriptor" + "ADU frame" will
  fit completely within the RTP packet.  In this case, more than one
  successive "ADU descriptor" + "ADU frame" MAY be packed into a single
  RTP packet, provided that they all fit completely.

  If, however, a single "ADU descriptor" + "ADU frame" is too large to
  fit within an RTP packet, then the "ADU frame" is split across two or
  more successive RTP packets.  Each such packet begins with an ADU
  descriptor.  The first packet's descriptor has a "C" (continuation)
  flag of 0; the following packets' descriptors each have a "C" flag of
  1.  Each descriptor, in this case, has the same "ADU size" value: the



Finlayson                   Standards Track                     [Page 5]

RFC 5219                                                   February 2008


  size of the entire "ADU frame" (not just the portion that will fit
  within a single RTP packet).  Each such packet (even the last one)
  contains only one "ADU descriptor".

4.4.  RTP Header Fields

  Payload Type: The (static) payload type 14 that was defined for
     MPEG audio [6] MUST NOT be used.  Instead, a different, dynamic
     payload type MUST be used -- i.e., one within the range [96..127].

  M bit: This payload format defines no use for this bit.  Senders
     SHOULD set this bit to zero in each outgoing packet.

  Timestamp: This is a 32-bit, 90 kHz timestamp, representing the
     presentation time of the first ADU packed within the packet.

4.5.  Handling Received Data

  Note that no information is lost by converting a sequence of MP3
  frames to a corresponding sequence of "ADU frames", so a receiving
  RTP implementation can either feed the ADU frames directly to an
  appropriately modified MP3 decoder, or convert them back into a
  sequence of MP3 frames, as described in Appendix A.2 below.

5.  Handling Multiple MPEG Audio Layers

  The RTP payload format described here is intended only for MPEG-1 or
  2, layer III audio ("MP3").  In contrast, layer I and layer II frames
  are self-contained, without a back-pointer to earlier frames.
  However, it is possible (although unusual) for a sequence of audio
  frames to consist of a mixture of layer III frames, and layer I or II
  frames.  When such a sequence is transmitted, only layer III frames
  are converted to ADUs; layer I or II frames are sent 'as is' (except
  for the prepending of an "ADU descriptor").  Similarly, the receiver
  of a sequence of frames -- using this payload format -- leaves layer
  I and II frames untouched (after removing the prepended "ADU
  descriptor"), but converts layer III frames from "ADU frames" to
  regular MP3 frames.  (Recall that each frame's layer is identified
  from its 4-byte MPEG header.)

  If you are transmitting a stream consisting *only* of layer I or
  layer II frames (i.e., without any MP3 data), then there is no
  benefit to using this payload format, *unless* you are using the
  interleaving mechanism described in Section 7 below.







Finlayson                   Standards Track                     [Page 6]

RFC 5219                                                   February 2008


6.  Frame Packetizing and Depacketizing

  The transmission of a sequence of MP3 frames takes the following
  steps:

        MP3 frames
                -1-> ADU frames
                    -2-> interleaved ADU frames
                          -3-> RTP packets

  Step 1 is the conversion of a sequence of MP3 frames to a
  corresponding sequence of ADU frames, and takes place as described in
  Sections 3 and 4.1 above.  (Note also the pseudo-code in Appendix
  A.1.)

  Step 2 is the reordering of the sequence of ADU frames in an
  (optional) interleaving pattern, prior to packetization, as described
  in section 7 below.  (Note also the pseudo-code in Appendix B.1.)
  Interleaving helps reduce the effect of packet loss by distributing
  consecutive ADU frames over non-consecutive packets.  (Note that
  because of the back-pointer in MP3 frames, interleaving can be
  applied -- in general -- only to ADU frames.  Thus, interleaving was
  not possible for RFC 2250.)

  Step 3 is the packetizing of a sequence of (interleaved) ADU frames
  into RTP packets -- as described in section 4.3 above.  Each packet's
  RTP timestamp is the presentation time of the first ADU that is
  packed within it.  Note that if interleaving was done in step 2, the
  RTP timestamps on outgoing packets will not necessarily be
  monotonically nondecreasing.

  Similarly, a sequence of received RTP packets is handled as follows:

        RTP packets
              -4-> RTP packets ordered by RTP sequence number
                    -5-> interleaved ADU frames
                          -6-> ADU frames
                                -7-> MP3 frames

  Step 4 is the usual sorting of incoming RTP packets using the RTP
  sequence number.

  Step 5 is the depacketizing of ADU frames from RTP packets -- i.e.,
  the reverse of step 3.  As part of this process, a receiver uses the
  "C" (continuation) flag in the ADU descriptor to notice when an ADU
  frame is split over more than one packet (and to discard the ADU
  frame entirely if one of these packets is lost).




Finlayson                   Standards Track                     [Page 7]

RFC 5219                                                   February 2008


  Step 6 is the rearranging of the sequence of ADU frames back to its
  original order (except for ADU frames missing due to packet loss), as
  described in Section 7 below.  (Note also the pseudo-code in Appendix
  B.2.)

  Step 7 is the conversion of the sequence of ADU frames into a
  corresponding sequence of MP3 frames -- i.e., the reverse of step 1.
  (Note also the pseudo-code in Appendix A.2.)  With an appropriately
  modified MP3 decoder, an implementation may omit this step; instead,
  it could feed ADU frames directly to the (modified) MP3 decoder.

7.  ADU Frame Interleaving

  In MPEG audio frames (MPEG-1 or 2; all layers), the high-order 11
  bits of the 4-byte MPEG header ('syncword') are always all-one (i.e.,
  0xFFE).  When reordering a sequence of ADU frames for transmission,
  we reuse these 11 bits as an "Interleaving Sequence Number" (ISN).
  (Upon reception, they are replaced with 0xFFE once again.)

  The structure of the ISN is (a,b), where:

        - a == bits 0-7:      8-bit Interleave Index (within Cycle)
        - b == bits 8-10:     3-bit Interleave Cycle Count

  That is, the 4-byte MPEG header is reused as follows:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |Interleave Idx |CycCt|   The rest of the original MPEG header  |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Example: Consider the following interleave cycle (of size 8):

           1,3,5,7,0,2,4,6

  (This particular pattern has the property that any loss of up to four
  consecutive ADUs in the interleaved stream will lead to a
  deinterleaved stream with no gaps greater than one.)  This produces
  the following sequence of ISNs:

  (1,0) (3,0) (5,0) (7,0) (0,0) (2,0) (4,0) (6,0) (1,1) (3,1) (5,1)
  etc.








Finlayson                   Standards Track                     [Page 8]

RFC 5219                                                   February 2008


  So, in this example, a sequence of ADU frames

  f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 (etc.)

  would get reordered, in step 2, into:

  (1,0)f1 (3,0)f3 (5,0)f5 (7,0)f7 (0,0)f0 (2,0)f2 (4,0)f4 (6,0)f6
  (1,1)f9 (3,1)f11 (5,1)f13 (etc.)

  and the reverse reordering (along with replacement of the 0xFFE)
  would occur upon reception.

  The reason for breaking the ISN into "Interleave Cycle Count" and
  "Interleave Index" (rather than just treating it as a single 11-bit
  counter) is to give receivers a way of knowing when an ADU frame
  should be 'released' to the ADU->MP3 conversion process (step 7
  above), rather than waiting for more interleaved ADU frames to
  arrive.  For instance, in the example above, when the receiver sees a
  frame with ISN (<something>,1), it knows that it can release all
  previously seen frames with ISN (<something>,0), even if some other
  (<something>,0) frames remain missing due to packet loss.  An 8-bit
  Interleave Index allows interleave cycles of size up to 256.

  The choice of an interleaving order can be made independently of RTP
  packetization.  Thus, a simple implementation could choose an
  interleaving order first, reorder the ADU frames accordingly (step
  2), then simply pack them sequentially into RTP packets (step 3).
  However, the size of ADU frames -- and thus the number of ADU frames
  that will fit in each RTP packet -- will typically vary in size, so a
  more optimal implementation would combine steps 2 and 3, by choosing
  an interleaving order that better reflected the number of ADU frames
  packed within each RTP packet.

  Each receiving implementation of this payload format MUST recognize
  the ISN and be able to perform deinterleaving of incoming ADU frames
  (step 6).  However, a sending implementation of this payload format
  MAY choose not to perform interleaving -- i.e., by omitting step 2.
  In this case, the high-order 11 bits in each 4-byte MPEG header would
  remain at 0xFFE.  Receiving implementations would thus see a sequence
  of identical ISNs (all 0xFFE).  They would handle this in the same
  way as if the Interleave Cycle Count changed with each ADU frame, by
  simply releasing the sequence of incoming ADU frames sequentially to
  the ADU->MP3 conversion process (step 7), without reordering.  (Note
  also the pseudo-code in Appendix B.2.)







Finlayson                   Standards Track                     [Page 9]

RFC 5219                                                   February 2008


8.  IANA Considerations

  Media type name: audio

  Media subtype: mpa-robust

  Required parameters: none

  Optional parameters: none

  Encoding considerations:
        This type is defined only for transfer via RTP, as specified in
        RFC 5219.

     Security considerations:
        See the "Security Considerations" section of RFC 5219.

     Interoperability considerations:
        This encoding is incompatible with both the "audio/mpa" and
        "audio/mpeg" media types.

     Published specification:
        The ISO/IEC MPEG-1 [3] and MPEG-2 [4] audio specifications, and
        RFC 5219.

     Applications that use this media type:
        Audio streaming tools (transmitting and receiving)

     Additional information: none

     Person & email address to contact for further information:
        Ross Finlayson
        [email protected]

     Intended usage: COMMON

     Author/Change controller:
        Author: Ross Finlayson
        Change controller: IETF AVT Working Group












Finlayson                   Standards Track                    [Page 10]

RFC 5219                                                   February 2008


9.  SDP Usage

  When conveying information by SDP [7], the encoding name SHALL be
  "mpa-robust" (the same as the media subtype).  An example of the
  media representation in SDP is:

        m=audio 49000 RTP/AVP 121
        a=rtpmap:121 mpa-robust/90000

  Note that the RTP timestamp frequency MUST be 90000.

10.  Security Considerations

  If a session using this payload format is being encrypted, and
  interleaving is being used, then the sender SHOULD ensure that any
  change of encryption key coincides with a start of a new interleave
  cycle.  Apart from this, the security considerations for this payload
  format are identical to those noted for RFC 2250 [1].

11.  Acknowledgements

  The suggestion of adding an interleaving option (using the first bits
  of the MPEG 'syncword' -- which would otherwise be all-ones -- as an
  interleaving index) is due to Dave Singer and Stefan Gewinner.  In
  addition, Dave Singer provided valuable feedback that helped clarify

  and improve the description of this payload format.  Feedback from
  Chris Sloan led to the addition of an "ADU descriptor" preceding each
  ADU frame in the RTP packet.






















Finlayson                   Standards Track                    [Page 11]

RFC 5219                                                   February 2008


12. Normative References

  [1] Hoffman, D., Fernando, G., Goyal, V., and M. Civanlar, "RTP
      Payload Format for MPEG1/MPEG2 Video", RFC 2250, January 1998.

  [2] Bradner, S., "Key words for use in RFCs to Indicate Requirement
      Levels", BCP 14, RFC 2119, March 1997.

  [3] ISO/IEC International Standard 11172-3; "Coding of moving
      pictures and associated audio for digital storage media up to
      about 1,5 Mbits/s -- Part 3: Audio", 1993.

  [4] ISO/IEC International Standard 13818-3; "Generic coding of moving
      pictures and associated audio information -- Part 3: Audio",
      1998.

  [5] Handley, M. and C. Perkins, "Guidelines for Writers of RTP
      Payload Format Specifications", BCP 36, RFC 2736, December 1999.

  [6] Schulzrinne, H. and S. Casner, "RTP Profile for Audio and Video
      Conferences with Minimal Control", STD 65, RFC 3551, July 2003.

  [7] Handley, M., Jacobson, V., and C. Perkins, "SDP: Session
      Description Protocol", RFC 4566, July 2006.



























Finlayson                   Standards Track                    [Page 12]

RFC 5219                                                   February 2008


Appendix A.  Translating between "MP3 Frames" and "ADU Frames"

  The following 'pseudo code' describes how a sender using this payload
  format can translate a sequence of regular "MP3 Frames" to "ADU
  Frames", and how a receiver can perform the reverse translation: from
  "ADU Frames" to "MP3 Frames".

  We first define the following abstract data structures:

  -  "Segment": A record that represents either a "MP3 Frame" or an
     "ADU Frame".  It consists of the following fields:
     -  "header": the 4-byte MPEG header
     -  "headerSize": a constant (== 4)
     -  "sideInfo": the 'side info' structure, *including* the optional
        2-byte CRC field, if present
     -  "sideInfoSize": the size (in bytes) of the above structure
     -  "frameData": the remaining data in this frame
     -  "frameDataSize": the size (in bytes) of the above data
     -  "backpointer": the value (expressed in bytes) of the
        backpointer for this frame
     -  "aduDataSize": the size (in bytes) of the ADU associated with
        this frame.  (If the frame is already an "ADU Frame", then
        aduDataSize == frameDataSize)
     -  "mp3FrameSize": the total size (in bytes) that this frame would
        have if it were a regular "MP3 Frame".  (If it is already a
        "MP3 Frame", then mp3FrameSize == headerSize + sideInfoSize +
        frameDataSize) Note that this size can be derived completely
        from "header".

  -  "SegmentQueue": A FIFO queue of "Segments", with operations
     -  void enqueue(Segment)
     -  Segment dequeue()
     -  Boolean isEmpty()
     -  Segment head()
     -  Segment tail()
     -  Segment previous(Segment):  returns the segment prior to a
        given one
     -  Segment next(Segment): returns the segment after a given one
     -  unsigned totalDataSize(): returns the sum of the
        "frameDataSize" fields of each entry in the queue











Finlayson                   Standards Track                    [Page 13]

RFC 5219                                                   February 2008


A.1.  Converting a Sequence of "MP3 Frames" to a Sequence of
     "ADU Frames"

  SegmentQueue pendingMP3Frames; // initially empty
  while (1) {
           // Enqueue new MP3 Frames, until we have enough data to
           // generate the ADU for a frame:
           do {
                   int totalDataSizeBefore
                           = pendingMP3Frames.totalDataSize();

                   Segment newFrame = 'the next MP3 Frame';
                   pendingMP3Frames.enqueue(newFrame);

                   int totalDataSizeAfter
                           = pendingMP3Frames.totalDataSize();
           } while (totalDataSizeBefore < newFrame.backpointer ||
                     totalDataSizeAfter < newFrame.aduDataSize);

           // We now have enough data to generate the ADU for the most
           // recently enqueued frame (i.e., the tail of the queue).
           // (The earlier frames in the queue -- if any -- must be
           // discarded, as we don't have enough data to generate
           // their ADUs.)
           Segment tailFrame = pendingMP3Frames.tail();

           // Output the header and side info:
           output(tailFrame.header);
           output(tailFrame.sideInfo);

           // Go back to the frame that contains the start of our
           // ADU data:
           int offset = 0;
           Segment curFrame = tailFrame;
           int prevBytes = tailFrame.backpointer;
           while (prevBytes > 0) {
                   curFrame = pendingMP3Frames.previous(curFrame);
                   int dataHere = curFrame.frameDataSize;
                   if (dataHere < prevBytes) {
                           prevBytes -= dataHere;
                   } else {
                           offset = dataHere - prevBytes;
                           break;
                   }
           }

           // Dequeue any frames that we no longer need:
           while (pendingMP3Frames.head() != curFrame) {



Finlayson                   Standards Track                    [Page 14]

RFC 5219                                                   February 2008


                   pendingMP3Frames.dequeue();
           }

           // Output, from the remaining frames, the ADU data that
           // we want:
           int bytesToUse = tailFrame.aduDataSize;
           while (bytesToUse > 0) {
                   int dataHere = curFrame.frameDataSize - offset;
                   int bytesUsedHere
                           = dataHere < bytesToUse ? dataHere :
                           bytesToUse;

                   output("bytesUsedHere" bytes from
                          curFrame.frameData, starting from "offset");

                   bytesToUse -= bytesUsedHere;
                   offset = 0;
                   curFrame = pendingMP3Frames.next(curFrame);
           }
  }

A.2.  Converting a Sequence of "ADU Frames" to a Sequence of
     "MP3 Frames"

  SegmentQueue pendingADUFrames; // initially empty
  while (1) {
           while (needToGetAnADU()) {
                   Segment newADU = 'the next ADU Frame';
                   pendingADUFrames.enqueue(newADU);

                   insertDummyADUsIfNecessary();
           }

           generateFrameFromHeadADU();
  }

  Boolean needToGetAnADU() {
           // Checks whether we need to enqueue one or more new ADUs
           // before we have enough data to generate a frame for the
           // head ADU.
           Boolean needToEnqueue = True;

           if (!pendingADUFrames.isEmpty()) {
                   Segment curADU = pendingADUFrames.head();
                   int endOfHeadFrame = curADU.mp3FrameSize
                           - curADU.headerSize - curADU.sideInfoSize;
                   int frameOffset = 0;




Finlayson                   Standards Track                    [Page 15]

RFC 5219                                                   February 2008


                   while (1) {
                          int endOfData = frameOffset
                                  - curADU.backpointer +
                                    curADU.aduDataSize;
                          if (endOfData >= endOfHeadFrame) {
                                  // We have enough data to generate a
                                  // frame.
                                  needToEnqueue = False;
                                  break;
                          }

                          frameOffset += curADU.mp3FrameSize
                                  - curADU.headerSize
                                  - curADU.sideInfoSize;
                          if (curADU == pendingADUFrames.tail()) break;
                          curADU = pendingADUFrames.next(curADU);
                   }
           }

       return needToEnqueue;
  }

  void generateFrameFromHeadADU() {
           Segment curADU = pendingADUFrames.head();

           // Output the header and side info:
           output(curADU.header);
           output(curADU.sideInfo);

           // Begin by zeroing out the rest of the frame, in case the
           // ADU data doesn't fill it in completely:
           int endOfHeadFrame = curADU.mp3FrameSize
                   - curADU.headerSize - curADU.sideInfoSize;
           output("endOfHeadFrame" zero bytes);

           // Fill in the frame with appropriate ADU data from this and
           // subsequent ADUs:
           int frameOffset = 0;
           int toOffset = 0;

           while (toOffset < endOfHeadFrame) {
                  int startOfData = frameOffset - curADU.backpointer;
                  if (startOfData > endOfHeadFrame) {
                          break; // no more ADUs are needed
                  }
                  int endOfData = startOfData + curADU.aduDataSize;
                  if (endOfData > endOfHeadFrame) {
                          endOfData = endOfHeadFrame;



Finlayson                   Standards Track                    [Page 16]

RFC 5219                                                   February 2008


                  }

                  int fromOffset;
                  if (startOfData <= toOffset) {
                          fromOffset = toOffset - startOfData;
                          startOfData = toOffset;
                          if (endOfData < startOfData) {
                                  endOfData = startOfData;
                          }
                  } else {
                          fromOffset = 0;

                          // leave some zero bytes beforehand:
                          toOffset = startOfData;
                  }

                  int bytesUsedHere = endOfData - startOfData;
                  output(starting at offset "toOffset", "bytesUsedHere"
                          bytes from "&curADU.frameData[fromOffset]");
                  toOffset += bytesUsedHere;

                  frameOffset += curADU.mp3FrameSize
                          - curADU.headerSize - curADU.sideInfoSize;
                  curADU = pendingADUFrames.next(curADU);
           }

           pendingADUFrames.dequeue();
  }

  void insertDummyADUsIfNecessary() {
           // The tail segment (ADU) is assumed to have been recently
           // enqueued.  If its backpointer would overlap the data
           // of the previous ADU, then we need to insert one or more
           // empty, 'dummy' ADUs ahead of it.  (This situation
           // should occur only if an intermediate ADU was missing
           // -- e.g., due to packet loss.)
           while (1) {
                  Segment tailADU = pendingADUFrames.tail();
                  int prevADUend; // relative to the start
                   of the tail ADU

                  if (pendingADUFrames.head() != tailADU) {
                          // there is a previous ADU
                          Segment prevADU
                                  = pendingADUFrames.previous(tailADU);
                          prevADUend
                                  = prevADU.mp3FrameSize +
                                    prevADU.backpointer



Finlayson                   Standards Track                    [Page 17]

RFC 5219                                                   February 2008


                                    - prevADU.headerSize
                                    - prevADU.sideInfoSize;
                          if (prevADU.aduDataSize > prevADUend) {
                                  // this shouldn't happen if the
                                  // previous ADU was well-formed
                                  prevADUend = 0;
                          } else {
                                  prevADUend -= prevADU.aduDataSize;
                          }
                  } else {
                          prevADUend = 0;
                  }

                  if (tailADU.backpointer > prevADUend) {
                     // Insert a 'dummy' ADU in front of the tail.
                     // This ADU can have the same "header" (and thus,
                     // "mp3FrameSize") as the tail ADU, but should
                     // have a "backpointer" of "prevADUend", and
                     // an "aduDataSize" of zero.  The simplest
                     // way to do this is to copy the "sideInfo" from
                     // the tail ADU, replace the value of
                     // "main_data_begin" with "prevADUend", and set
                     // all of the "part2_3_length" fields to zero.
                  } else {
                          break; // no more dummy ADUs need to be
                                 // inserted
                  }
           }
  }

Appendix B.  Interleaving and Deinterleaving

  The following 'pseudo code' describes how a sender can reorder a
  sequence of "ADU Frames" according to an interleaving pattern
  (step 2), and how a receiver can perform the reverse reordering (step
  6).

B.1.  Interleaving a Sequence of "ADU Frames"

  We first define the following abstract data structures:

  -  "interleaveCycleSize": an integer in the range [1..256] --
     "interleaveCycle": an array, of size "interleaveCycleSize",
     containing some permutation of the integers from the set [0 ..
     interleaveCycleSize-1] e.g., if "interleaveCycleSize" == 8,
     "interleaveCycle" might contain: 1,3,5,7,0,2,4,6
  -  "inverseInterleaveCycle": an array containing the inverse of the
     permutation in "interleaveCycle" -- i.e., such that



Finlayson                   Standards Track                    [Page 18]

RFC 5219                                                   February 2008


     interleaveCycle[inverseInterleaveCycle[i]] == i
  -  "ii": the current Interleave Index (initially 0)
  -  "icc": the current Interleave Cycle Count (initially 0)
  -  "aduFrameBuffer": an array, of size "interleaveCycleSize", of ADU
     Frames that are awaiting packetization

  while (1) {
           int positionOfNextFrame = inverseInterleaveCycle[ii];
           aduFrameBuffer[positionOfNextFrame] = the next ADU frame;
           replace the high-order 11 bits of this frame's MPEG header
               with (ii,icc);
                   // Note: Be sure to leave the remaining 21 bits
                   // as is
           if (++ii == interleaveCycleSize) {
                   // We've finished this cycle, so pass all
                   // pending frames to the packetizing step
                   for (int i = 0; i < interleaveCycleSize; ++i) {
                        pass aduFrameBuffer[i] to the packetizing step;
                   }

                   ii = 0;
                   icc = (icc+1)%8;
           }
  }

B.2.  Deinterleaving a Sequence of (Interleaved) "ADU Frames"

  We first define the following abstract data structures:

  -  "ii": the Interleave Index from the current incoming ADU frame
  -  "icc": the Interleave Cycle Count from the current incoming ADU
     frame
  -  "iiLastSeen": the most recently seen Interleave Index (initially,
     some integer *not* in the range [0..255])
  -  "iccLastSeen": the most recently seen Interleave Cycle Count
     (initially, some integer *not* in the range [0..7])
  -  "aduFrameBuffer": an array, of size 256, of (pointers to) ADU
     Frames that have just been depacketized (initially, all entries
     are NULL)

  while (1) {
           aduFrame = the next ADU frame from the depacketizing step;
           (ii,icc) = "the high-order 11 bits of aduFrame's MPEG
           header"; "the high-order 11 bits of aduFrame's MPEG
           header" = 0xFFE;
                   // Note: Be sure to leave the remaining 21 bits
                   // as is




Finlayson                   Standards Track                    [Page 19]

RFC 5219                                                   February 2008


           if (icc != iccLastSeen || ii == iiLastSeen) {
                   // We've started a new interleave cycle
                   // (or interleaving was not used).  Release all
                   // pending ADU frames to the ADU->MP3 conversion
                   // step:
                   for (int i = 0; i < 256; ++i) {
                           if (aduFrameBuffer[i] != NULL) {
                                   release aduFrameBuffer[i];
                                   aduFrameBuffer[i] = NULL;
                           }
                   }
           }

           iiLastSeen = ii;
           iccLastSeen = icc;
           aduFrameBuffer[ii] = aduFrame;
  }

Appendix C.  Changes from RFC 3119

  The primary change from RFC 3119 is to correct the encoding name in
  the "SDP usage" section.  The correct encoding name is "mpa-robust".
  Also, the term "media type" replaces "mime type".  Finally, some
  minor bug fixes and clarifications were made to the (non-normative)
  pseudo code in Appendix A and Appendix B.


























Finlayson                   Standards Track                    [Page 20]

RFC 5219                                                   February 2008


Author's Address

  Ross Finlayson,
  Live Networks, Inc.
  650 Castro St., suite 120-196
  Mountain View, CA 94041
  USA

  EMail: [email protected]
  URI: http://www.live555.com/









































Finlayson                   Standards Track                    [Page 21]

RFC 5219                                                   February 2008


Full Copyright Statement

  Copyright (C) The IETF Trust (2008).

  This document is subject to the rights, licenses and restrictions
  contained in BCP 78, and except as set forth therein, the authors
  retain all their rights.

  This document and the information contained herein are provided on an
  "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
  OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
  THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
  OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
  THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
  WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

  The IETF takes no position regarding the validity or scope of any
  Intellectual Property Rights or other rights that might be claimed to
  pertain to the implementation or use of the technology described in
  this document or the extent to which any license under such rights
  might or might not be available; nor does it represent that it has
  made any independent effort to identify any such rights.  Information
  on the procedures with respect to rights in RFC documents can be
  found in BCP 78 and BCP 79.

  Copies of IPR disclosures made to the IETF Secretariat and any
  assurances of licenses to be made available, or the result of an
  attempt made to obtain a general license or permission for the use of
  such proprietary rights by implementers or users of this
  specification can be obtained from the IETF on-line IPR repository at
  http://www.ietf.org/ipr.

  The IETF invites any interested party to bring to its attention any
  copyrights, patents or patent applications, or other proprietary
  rights that may cover technology that may be required to implement
  this standard.  Please address the information to the IETF at
  [email protected].












Finlayson                   Standards Track                    [Page 22]