Network Working Group                                       G. Fairhurst
Request for Comments: 5163                        University of Aberdeen
Category: Standards Track                              B. Collini-Nocker
                                                 University of Salzburg
                                                             April 2008


Extension Formats for Unidirectional Lightweight Encapsulation (ULE)
             and the Generic Stream Encapsulation (GSE)

Status of This Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Abstract

  This document describes a set of Extension Headers for the
  Unidirectional Lightweight Encapsulation (ULE), RFC 4326.

  The Extension Header formats specified in this document define
  extensions appropriate to both ULE and the Generic Stream
  Encapsulation (GSE) for the second-generation framing structure
  defined by the Digital Video Broadcasting (DVB) family of
  specifications.

Table of Contents

  1. Introduction ....................................................2
  2. Conventions Used in This Document ...............................3
  3. Description of the Method .......................................4
     3.1. MPEG-2 TS-Concat Extension .................................5
     3.2. PDU-Concat Extension .......................................8
     3.3. TimeStamp Extension .......................................12
  4. IANA Considerations ............................................13
  5. Acknowledgments ................................................13
  6. Security Considerations ........................................14
  7. References .....................................................14
     7.1. Normative References ......................................14
     7.2. Informative References ....................................14
  Appendix A. The Second-Generation DVB Transmission
     Specifications .................................................16






Fairhurst & Collini-Nocker  Standards Track                     [Page 1]

RFC 5163      Extension Formats for the ULE Encapsulation     April 2008


1.  Introduction

  This document describes three Extension Headers that may be used with
  both the Unidirectional Lightweight Encapsulation (ULE) [RFC4326] and
  the Generic Stream Encapsulation (GSE) [GSE].  ULE is defined for
  links that employ the MPEG-2 Transport Stream, and supports a wide
  variety of physical-layer bearers [RFC4259].

  GSE has been designed for the Generic Mode (also known as the Generic
  Stream (GS)), offered by second-generation DVB physical layers, and
  in the first instance for DVB-S2 [ETSI-S2].  The requirements for the
  Generic Stream are described in [S2-REQ].  The important
  characteristics of this encapsulation are described in the appendix
  of this document.  GSE maintains a design philosophy that presents a
  network interface that is common to that presented by ULE and uses a
  similar construction for SubNetwork Data Units (SNDUs).

  The first Extension Header defines a method that allows one or more
  TS Packets [ISO-MPEG2] to be sent within a ULE SNDU.  This method may
  be used to provide control plane information including the
  transmission of MPEG-2 Program Specific Information (PSI) for the
  Multiplex.  In GSE, there is no native support for Transport Stream
  packets and this method is therefore suitable for providing an MPEG-2
  control plane.

  A second Extension Header allows one or more PDUs to be sent within
  the same ULE SNDU.  This method is designed for cases where a large
  number of small PDUs are directed to the same Network Point of
  Attachment (NPA) address.  The method may improve transmission
  efficiency (by removing duplicated MAC layer overhead).  It can also
  reduce processing overhead for a receiver that is not configured to
  receive the NPA address associated with an SNDU, allowing this
  receiver to then skip several PDUs in one operation.  The method is
  defined as a generic Extension Header and may be used for IPv4 or
  IPv6 packets.  If, and when, a compression format is defined for ULE
  or Ethernet, the method may also be used in combination with this
  method.

  A third Extension Header provides an optional TimeStamp value for an
  SNDU.  Examples of the use of this TimeStamp option include
  monitoring and benchmarking of ULE and GSE links.  Receivers that do
  not wish to decode (or do not support) the TimeStamp extension may
  discard the extension and process the remaining PDU or Extension
  Headers.

  The appendix includes a summary of key design issues and
  considerations relating to the GSE Specification defined by the DVB
  Technical Module [GSE].



Fairhurst & Collini-Nocker  Standards Track                     [Page 2]

RFC 5163      Extension Formats for the ULE Encapsulation     April 2008


2.  Conventions Used in This Document

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in RFC 2119 [RFC2119].

  b: bit.  For example, one byte consists of 8b.

  B: byte.  Groups of bytes are represented in Internet byte order.

  BBFrame payload: The data field part of a Baseband frame  [ETSI-S2]
  that may be used for the communication of data.  Typical BBFrames
  range in size from 3072 to 58192 bits according to the choice of
  modulation format and Forward Error Correction (FEC) in use.

  DVB: Digital Video Broadcasting.  A framework and set of associated
  standards published by the European Telecommunications Standards
  Institute (ETSI) for the transmission of video, audio, and data.

  E: A one-bit flag field defined in GSE [GSE].

  Encapsulator: A network device [RFC4259] that receives PDUs and
  formats these into Payload Units (known here as SNDUs) for output in
  DVB-S or the Generic Mode of DVB-S2.

  GS: Generic Stream.  A stream of BBFrames identified by a common
  Input Stream Identifier, and which does not use the MPEG-2 TS format
  [ETSI-S2].  It represents layer 2 of the ISO/OSI reference model.

  GSE: Generic Stream Encapsulation [GSE].  A method for encapsulating
  PDUs to form a Generic Stream, which is sent using a sequence of
  BBFrames.  This encapsulation format shares the same extension format
  and basic processing rules of ULE and uses a common IANA Registry.

  LT: A two-bit flag field defined in GSE [GSE].

  MAC: Medium Access Control [IEEE-802.3].  A link-layer protocol
  defined by the IEEE 802.3 standard.

  MPEG-2: A set of standards specified by the Motion Picture Experts
  Group (MPEG), and standardized by the International Organization for
  Standardization (ISO/IEC 113818-1) [ISO-MPEG2], and ITU-T (in H.220).

  Next-Header: A Type value indicating an Extension Header [RFC4326].







Fairhurst & Collini-Nocker  Standards Track                     [Page 3]

RFC 5163      Extension Formats for the ULE Encapsulation     April 2008


  NPA: Network Point of Attachment [RFC4326].  In this document, refers
  to a destination address (resembling an IEEE MAC address) within the
  DVB-S/S2 transmission network that is used to identify individual
  Receivers or groups of Receivers.

  PID: Packet Identifier  [ISO-MPEG2].  A 13-bit field carried in the
  header of each TS Packet.  This identifies the TS Logical Channel to
  which a TS Packet belongs [ISO-MPEG2].  The TS Packets that form the
  parts of a Table Section or other Payload Unit must all carry the
  same PID value.  The all-ones PID value indicates a Null TS Packet
  introduced to maintain a constant bit rate of a TS Multiplex.  There
  is no required relationship between the PID values used for TS
  Logical Channels transmitted using different TS Multiplexes.

  PDU: Protocol Data Unit [RFC4259].  Examples of a PDU include
  Ethernet frames, IPv4 or IPv6 datagrams, and other network packets.

  PSI: Program Specific Information [ISO-MPEG2].

  S: A one-bit flag field defined in [GSE].

  SI Table: Service Information Table [ISO-MPEG2].  In this document,
  this term describes a table that is been defined by another standards
  body to convey information about the services carried on a DVB
  Multiplex.

  SNDU: SubNetwork Data Unit [RFC4259].  In this document, this is an
  encapsulated PDU sent using ULE or GSE.

  Stream: A logical flow from an Encapsulator to a set of Receivers.

  TS: Transport Stream [ISO-MPEG2], a method of transmission at the
  MPEG-2 level using TS Packets; it represents layer 2 of the ISO/OSI
  reference model.

  ULE: Unidirectional Lightweight Encapsulation (ULE) [RFC4326].  A
  method that encapsulates PDUs into SNDUs that are sent in a series of
  TS Packets using a single TS Logical Channel.  The encapsulation
  defines an extension format and an associated IANA Registry.

3.  Description of the Method

  In ULE, a Type field value that is less than 1536 in decimal
  indicates an Extension Header.  This section describes a set of three
  extension formats for the ULE encapsulation.  [GSE] uses a Type field
  that adopts the same semantics as specified by RFC 4326.  The





Fairhurst & Collini-Nocker  Standards Track                     [Page 4]

RFC 5163      Extension Formats for the ULE Encapsulation     April 2008


  encapsulation format differs in that GSE does not include a Cyclic
  Redundancy Check (CRC) for each SNDU, has different header flags, and
  utilizes a different SNDU length calculation [GSE].

  There is a natural ordering of Extension Headers, which is determined
  by the fields upon which the Extension Header operates.  A suitable
  ordering for many applications is presented in the list below (from
  first to last header within an SNDU).  This does not imply that all
  types of Extensions should be present in a single SNDU.  The
  presented ordering may serve as a guideline for optimization of
  Receiver processing.

  +----------------------------------+-------------------------------+
  |Fields related to Extension Header| Example Extension Headers     |
  +----------------------------------+-------------------------------+
  | Link framing and transmission    | TimeStamp Extension           |
  +----------------------------------+-------------------------------+
  | Entire remaining SNDU Payload    | Encryption Extension          |
  +----------------------------------+-------------------------------+
  | Group of encapsulated PDUs       | PDU-Concat or TS-Concat       |
  +----------------------------------+-------------------------------+
  | Specific encapsulated PDU        | IEEE-defined type             |
  |                                  | Test or MAC bridging Extension|
  +----------------------------------+-------------------------------+

           Table 1: Recommended ordering of Extension Headers

3.1.  MPEG-2 TS-Concat Extension

  The MPEG-2 TS-Concat Extension Header is specified by an IANA-
  assigned H-Type value of 0x0002 in hexadecimal.  This is a Mandatory
  Extension Header.

  The extension is used to transport one or more MPEG-2 TS Packets
  within a ULE SNDU.  The number of TS Packets carried in a specific
  SNDU is determined from the size of the remainder of the payload
  following the MPEG-2 TS Extension Header.  The number of TS Packets
  contained in the SNDU is therefore (Length-N-10+D*6) / 188, where N
  is the number of bytes associated with Extension Headers that precede
  the MPEG-2 TS-Concat Extension (zero if there are none) and D is the
  value of the D-bit.

  A Receiver MUST check the validity of the Length value prior to
  processing the payload.  A valid Length corresponds to an integral
  number of TS Packets.  An invalid Length (a remainder from the
  division by 188) MUST result in the discard of all encapsulated TS
  Packets and SHOULD be recorded as TS-Concat size mismatch error.




Fairhurst & Collini-Nocker  Standards Track                     [Page 5]

RFC 5163      Extension Formats for the ULE Encapsulation     April 2008


   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |0|           Length  (15b)     |         Type = 0x0002         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |            Receiver Destination NPA Address  (6B)             |
  +                               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                               |                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               |
  |                   TS-Packet 1                                 |
  =                                                               =
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                   TS-Packet 2 (if Length > 2*188)             |
  =                                                               =
  |                              etc.                             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                             (CRC-32)                          |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

        Figure 1: ULE/SNDU Format for a TS-Packet Payload (D=0)

  Figure 1 illustrates the format of this Extension Header for ULE with
  a value D=0, which indicates the presence of an NPA address
  [RFC4326].  In this case, the valid payload Length for a ULE SNDU
  with no other extensions is (Length-10) / 188.

  The method used to define the Length in GSE differs to that of ULE.
  The equivalent case for GSE would result in a payload Length value of
  (Length-6) / 188 (Figure 2).

   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |S|E|0 0|      Length  (12b)    |         Type = 0x0002         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |            Receiver Destination NPA Address  (6B)             |
  +                               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                               |                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               |
  |                   TS-Packet 1                                 |
  =                                                               =
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                   TS-Packet 2 (if Length > 2*188)             |
  =                                                               =
  |                              etc.                             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

       Figure 2: GSE/SNDU Format for a TS-Packet Payload (LT=00)



Fairhurst & Collini-Nocker  Standards Track                     [Page 6]

RFC 5163      Extension Formats for the ULE Encapsulation     April 2008


  Fragmented GSE SNDUs are protected by a CRC-32 carried in the final
  fragment.  After reassembly, this CRC-32 is removed and the resulting
  SNDU carries a Total Length field.  The fields labeled S and E are
  defined by [GSE] and contain control flags used by the GSE link
  layer.  The Label Type (LT) field specifies the presence and format
  of the GSE label.  The LT field is only specified for the first
  fragment (or a non-fragmented) GSE SNDU (i.e., when S=1).

  In ULE, a value of D=1 is also permitted and indicates the absence of
  an NPA address (Figure 3).  A similar format is supported in GSE.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |1|           Length  (15b)     |         Type = 0x0002         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                   TS-Packet 1                                 |
  =                                                               =
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                   TS-Packet 2 (if Length > 2*188)             |
  =                                                               =
  |                              etc.                             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                             (CRC-32)                          |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

        Figure 3: ULE/SNDU Format for a TS-Packet Payload (D=1)

  The TS-Concat extension may be used to transport one or more MPEG-2
  TS Packets of arbitrary content, interpreted according to [ISO-
  MPEG2].  One expected use is for the transmission of MPEG-2 SI/PSI
  signalling [RFC4259].

  NULL TS Packets [ISO-MPEG2] SHOULD NOT be sent using this
  encapsulation.  To reduce transmission overhead and processing, an
  Encapsulator SHOULD specify a maximum period of time that it can wait
  before sending all queued TS Packets.  This is known as the TS
  Packing Threshold.  This value MUST be bounded and SHOULD be
  configurable in the Encapsulator.  A larger value can improve
  efficiency, but incurs higher jitter and could increase the
  probability of corruption.  If additional TS Packets are NOT received
  within the TS Packing Threshold, the Encapsulator MUST immediately
  send any queued TS Packets.

  The use of this format to transfer MPEG-2 clock references (e.g., a
  Network Clock Reference, NCR) over ULE/GSE framing raises timing
  considerations at the encapsulation gateway, including the need to



Fairhurst & Collini-Nocker  Standards Track                     [Page 7]

RFC 5163      Extension Formats for the ULE Encapsulation     April 2008


  update/modify the timing information prior to transmission by the
  physical layer.  These issues are not considered here, but this
  operation may be simplified in GSE by ensuring that all SNDUs that
  carry this Extension Header are placed before other data within the
  BBFrame DataField [GSE].

  This document does not specify how TS Packets are to be handled at
  the Receiver.  However, it notes:

  * A Receiver needs to consistently associate all TS Packets in a
    Stream with one TS Logical Channel (Stream).  If an Encapsulator
    transmits more than one Stream of TS Packets each encapsulated at a
    different level or with a different NPA address, a Receiver needs
    to ensure that each is independently demultiplexed as a separate
    Stream (Section 3.2 [RFC4259]).

  * If an Encapsulator transmits service information encapsulated at
    different levels or with different NPA addresses, the Receivers
    need to ensure each Stream is related to the corresponding SI table
    information (if any).  A RECOMMENDED way to reduce signaling
    interactions is to ensure each PID value uniquely identifies a
    Stream within a TS Multiplex carrying ULE and also any TS Packets
    encapsulated by a ULE/GSE Stream.

  The need for consistency in the use of PIDs and the related service
  information is described in section 4.2 of [RFC4947].

3.2.  PDU-Concat Extension

  The PDU-Concat Extension Header is specified by an IANA-assigned
  H-Type value of 0x0003 in hexadecimal.  This is a Mandatory Next-
  Header Extension.  It enables a sequence of (usually short) PDUs to
  be sent within a single SNDU Payload.

  The base header contains the Length of the entire SNDU.  This carries
  the value of the combined length of all PDUs to be encapsulated,
  including each set of encapsulation headers.  The base header MAY be
  followed by one or more additional Extension Headers that precede the
  PDU-Concat Extension Header.  These Extension Headers (e.g., a
  TimeStamp Extension) apply to the composite concatenated PDU.

  The Extension Header also contains a 16-bit ULE Type field describing
  the encapsulated PDU, PDU-Concat-Type.  Although any Type value
  specified in the ULE Next-Header Registry (including Extension Header
  Types) may be assigned to the encapsulated PDU (except the recursive
  use of a PDU-Concat type), all concatenated PDUs MUST have a common
  ULE Type (i.e., all concatenated PDUs passed by the network layer




Fairhurst & Collini-Nocker  Standards Track                     [Page 8]

RFC 5163      Extension Formats for the ULE Encapsulation     April 2008


  must be associated with the same Type value).  This simplifies the
  receiver design, and reduces the transmission overhead for common use
  cases.

  Each PDU is prefixed by its length in bytes (shown in the following
  diagrams as PDU-x-Length for the xth PDU).  Encapsulated PDUs are of
  arbitrary length (in bytes) and are not necessarily aligned to 16-bit
  or 32-bit boundaries within the SNDU (as shown in the figures 4, 5,
  and 6).  The most significant bit of the first byte is reserved, R,
  and this specification requires that this MUST be set to zero.
  Receivers MUST ignore the value of the R bit.  The length of each PDU
  MUST be less than 32758 bytes, but will generally be much smaller.

  When the SNDU header indicates the presence of an SNDU Destination
  Address field (i.e., D=0 in ULE), a Network Point of Attachment, NPA,
  field directly follows the fourth byte of the SNDU header.  NPA
  destination addresses are 6 byte numbers, normally expressed in
  hexadecimal, used to identify the Receiver(s) in a transmission
  network that should process a received SNDU.  When present, the
  Receiver MUST associate the same specified MAC/NPA address with all
  PDUs within the SNDU Payload.  This MAC/NPA address MUST also be
  forwarded with each PDU, if required by the forwarding interface.

   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |0|           Length  (15b)     |         Type = 0x0003         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |            Receiver Destination NPA Address  (6B)             |
  +                               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                               |        PDU-Concat-Type        |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |R|      PDU-1-Length  (15b)    |                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               +
  =                        PDU-1                                  =
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |R|      PDU-2-Length  (15b)    |                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               +
  =                        PDU-2                                  =
  |                                                               |
                             More PDUs as required

  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                             (CRC-32)                          |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

        Figure 4: ULE/SNDU Format for a PDU-Concat Payload (D=0)




Fairhurst & Collini-Nocker  Standards Track                     [Page 9]

RFC 5163      Extension Formats for the ULE Encapsulation     April 2008


   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |S|E|0 0|      Length  (12b)    |         Type = 0x0003         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |            Receiver Destination NPA Address  (6B)             |
  +                               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                               |        PDU-Concat-Type        |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |R|      PDU-1-Length  (15b)    |                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               +
  =                        PDU-1                                  =
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |R|      PDU-2-Length  (15b)    |                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               +
  =                        PDU-2                                  =
  |                                                               |
                             More PDUs as required

  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

       Figure 5: GSE/SNDU Format for a PDU-Concat Payload (LT=00)

  When the SNDU header indicates the absence of an SNDU Destination
  Address field (i.e., D=1 in ULE), all encapsulated PDUs MUST be
  processed as if they had been received without an NPA address.

  The value of D in the ULE header indicates whether an NPA/MAC address
  is in use [RFC4326].  A similar format is supported in GSE (using the
  LT field).





















Fairhurst & Collini-Nocker  Standards Track                    [Page 10]

RFC 5163      Extension Formats for the ULE Encapsulation     April 2008


   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |1|           Length  (15b)     |         Type = 0x0003         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |         PDU-Concat-Type       |R|      PDU-1-Length  (15b)    |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  =                        PDU-1                                  =
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |R|      PDU-2-Length  (15b)    |                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               +
  =                        PDU-2                                  =
  |                                                               |
                             More PDUs as required

  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                             (CRC-32)                          |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

        Figure 6: ULE/SNDU Format for a PDU-Concat Payload (D=1)

  To reduce transmission overhead and processing, an Encapsulator
  SHOULD specify a maximum period of time it will wait before sending a
  Concatenated PDU.  This is known as the PDU Packing Threshold.  This
  value MUST be bounded and SHOULD be configurable in the Encapsulator.
  A larger value can improve efficiency, but incurs higher jitter and
  could increase the probability of corruption.  If additional PDUs are
  NOT received within the PDU Packing Threshold, the Encapsulator MUST
  immediately send all queued PDUs.

  The Receiver processes this Extension Header by verifying that it
  supports the specified PDU-Concat Type (unsupported Types MUST be
  discarded, but the receiver SHOULD record a PDU-Type error
  [RFC4326]).  It then extracts each encapsulated PDU in turn.  The
  Receiver MUST verify the Length of each PDU.  It MUST also ensure
  that the sum of the Lengths of all processed PDUs equals the Length
  specified in the SNDU base header.  A Receiver SHOULD discard the
  whole SNDU if the total and PDU sizes are not consistent and this













Fairhurst & Collini-Nocker  Standards Track                    [Page 11]

RFC 5163      Extension Formats for the ULE Encapsulation     April 2008


  event SHOULD be recorded as a PDU-Concat size mismatch error.  A
  receiver MUST NOT forward a partial PDU with an indicated PDU-Length
  greater than the number of unprocessed bytes remaining in the SNDU
  payload field.

3.3.  TimeStamp Extension

  The TimeStamp Extension Header is an Optional Extension Header that
  permits an Encapsulator to add a TimeStamp field to an SNDU.  The
  TimeStamp Extension Header is specified by the IANA-assigned H-Type
  value of 257 decimal.  This extension is an Optional Extension Header
  ([RFC4326], Section 5).

  This extension is designed to support monitoring and measurement of
  the performance of a link to indicate the quality of an operational
  ULE link.  This may be useful for GSE links (e.g., where significant
  complexity exists in the scheduling provided by the lower layers).
  Possible uses of this extension include:

  * Validation of in-sequence ordering per Logical Channel
  * Measurement of one-way delay (when synchronized with the sender)
  * Measurement of PDU Jitter introduced by the link
  * Measurement of PDU loss (with additional information from sender)

  Figure 7 shows the format of this extension with a HLEN value of 3
  indicating a TimeStamp of length 4B with a Type field (there is no
  implied byte-alignment).

  0               7               15              23              31
  +---------------+---------------+---------------+---------------+
  |     0x03      |      0x01     |        TimeStamp HI           |
  +---------------+---------------+---------------+---------------+
  |          TimeStamp LO         |            Type               |
  +---------------+---------------+---------------+---------------+

       Figure 7: Format of the 32-bit TimeStamp Extension Header

  The extension carries a 32-bit value (TimeStamp HI plus TimeStamp
  LO).  The specified resolution is 1 microsecond.  The value therefore
  indicates the number of 1-microsecond ticks past the hour in
  Universal Time when the PDU was encapsulated.  This value may be
  earlier than the time of transmission, due for example to Packing,
  queuing, and other Encapsulator processing.  The value is right-
  justified to the 32-bit field.  Systems unable to insert TimeStamps
  at the specified resolution MUST pad the unused least-significant
  bits with a value of zero.





Fairhurst & Collini-Nocker  Standards Track                    [Page 12]

RFC 5163      Extension Formats for the ULE Encapsulation     April 2008


  The last two bytes carry a 16-bit Type field that indicates the type
  of payload carried in the SNDU or the presence of a further Next-
  Header ([RFC4326], Section 4.4).

  Receivers MAY process the TimeStamp when the PDU encapsulation is
  removed.  Receivers that do not implement, or do not wish to process,
  the TimeStamp Extension MAY skip this Extension Header.  Receivers
  MUST continue to process the remainder of the SNDU, forwarding the
  encapsulated PDU.

4.  IANA Considerations

  IANA has assigned three new Next-Header Type values from the IANA ULE
  Next-Header Registry.  These options are defined for specific use
  cases envisaged by GSE, but are compatible with ULE.

  The following assignments have been made in this document and
  registered by IANA:

      Type      Name                             Reference

      2:        TS-Concat                        Section 3.1
      3:        PDU-Concat                       Section 3.2

      Type      Name                    H-LEN    Reference

      257:      TimeStamp                3       Section 3.3

  The TS-Concat Extension is a Mandatory next-type Extension Header,
  specified in Section 3.1 of this document.  The value of this next-
  header is defined by an IANA assigned H-Type value of 0x0002.

  The PDU-Concat Extension is a Mandatory next-type Extension Header
  specified in Section 3.2 of this document.  The value of this next-
  header is defined by an IANA assigned H-Type value of 0x0003.

  The TimeStamp Extension is an Optional next-type Extension Header
  specified in Section 3.3 of this document.  The value of this next-
  header is defined by an IANA assigned H-Type value of 257 decimal.
  This documents defines the format for an HLEN value of 0x3.

5.  Acknowledgments

  The authors gratefully acknowledge the inputs, comments, and
  assistance offered by the members of the DVB-GBS ad hoc group on
  DVB-S2 encapsulation, in particular contributions on DVB-S2
  transmission aspects from Rita Rinaldo, Axel Jahn, and Ulrik De Bie.




Fairhurst & Collini-Nocker  Standards Track                    [Page 13]

RFC 5163      Extension Formats for the ULE Encapsulation     April 2008


  Juan Cantillo provided a significant contribution to the informative
  appendix.  The authors thank Christian Praehauser for his insight and
  contribution on Extension Header processing issues.

6.  Security Considerations

  Security considerations for ULE are described in [RFC4326], and
  further information on security aspects of using ULE are described in
  the security considerations of [RFC4259] and [Sec-Req].

  An attacker that is able to inject arbitrary TS Packets in a ULE or
  GSE Stream may modify layer 2 signalling information transmitted by
  the MPEG-2 TS-Concat extension.  Since this attack requires access to
  the link and/or layer 2 equipment, such an attack could also directly
  attack signalling information sent as native TS Packets (not
  encapsulated by ULE/GSE).  Security issues relating to the
  transmission and interpretation of layer 2 signalling information
  (including Address Resolution) within a TS Multiplex are described in
  [RFC4947].  The use of security mechanisms to protect the MPEG-2
  signalling information is discussed by [Sec-Req].

7.  References

7.1.  Normative References

  [RFC2119]    Bradner, S., "Key words for use in RFCs to Indicate
               Requirement Levels", BCP 14, RFC 2119, March 1997.

  [RFC4326]    Fairhurst, G. and B. Collini-Nocker, "Unidirectional
               Lightweight Encapsulation (ULE) for Transmission of IP
               Datagrams over an MPEG-2 Transport Stream (TS)", RFC
               4326, December 2005.

  [GSE]        TS 102 606 "Digital Video Broadcasting (DVB); Generic
               Stream Encapsulation (GSE) Protocol, "European
               Telecommunication Standards, Institute (ETSI), 2007.

7.2.  Informative References

  [ETSI-S2]    EN 302 307, "Digital Video Broadcasting (DVB); Second
               generation framing structure, channel coding and
               modulation systems for Broadcasting, Interactive
               Services, News Gathering and other broadband satellite
               applications", European Telecommunication Standards
               Institute (ETSI).






Fairhurst & Collini-Nocker  Standards Track                    [Page 14]

RFC 5163      Extension Formats for the ULE Encapsulation     April 2008


  [S2-REQ]     Cantillo, J. and J. Lacan, "A Design Rationale for
               Providing IP Services over DVB-S2 Links", Work in
               Progress, December 2006.

  [Sec-Req]    Cruickshank, H., Iyengar, S., and P. Pillai, "Security
               requirements for the Unidirectional Lightweight
               Encapsulation (ULE) protocol", Work in Progress,
               November 2007.

  [IEEE-802.3] "Local and metropolitan area networks - Specific
               requirements Part 3: Carrier sense multiple access with
               collision detection (CSMA/CD) access method and physical
               layer specifications", IEEE 802.3, IEEE Computer
               Society, (also ISO/IEC 8802-3), 2002.

  [ISO-MPEG2]  ISO/IEC DIS 13818-1:2000, "Information Technology;
               Generic Coding of Moving Pictures and Associated Audio
               Information Systems", International Organization for
               Standardization (ISO), 2000.

  [RFC4259]    Montpetit, M.-J., Fairhurst, G., Clausen, H., Collini-
               Nocker, B., and H. Linder, "A Framework for Transmission
               of IP Datagrams over MPEG-2 Networks", RFC 4259,
               November 2005.

  [RFC4947]    Fairhurst, G. and M. Montpetit, "Address Resolution
               Mechanisms for IP Datagrams over MPEG-2 Networks", RFC
               4947, July 2007.























Fairhurst & Collini-Nocker  Standards Track                    [Page 15]

RFC 5163      Extension Formats for the ULE Encapsulation     April 2008


Appendix A.  The Second-Generation DVB Transmission Specifications

  This section provides informative background to the network-layer
  requirements of the second-generation DVB Transmission
  Specifications.  The second-generation waveforms specified by the
  Digital Video Broadcasting project offer two main enhancements.
  First, more efficient physical-layer methods that employ higher-order
  modulation with stronger FEC and permit adaptive coding and
  modulation response to changes in traffic and propagation conditions.
  Second, at the link layer, they offer greater flexibility in framing.
  Support is provided for a range of stream formats including the
  classical Transport Stream (TS) [RFC4259].  In addition, a new method
  called Generic Stream (GS) (or the Generic Mode) is supported.  A GS
  can be packetized or continuous and is intended to provide native
  transport of other network-layer services.  One such method is that
  provided by the Generic Stream Encapsulation (GSE) [GSE].

  For example, the DVB-S2 [ETSI-S2] transmission link sequentially
  multiplexes a series of baseband frames (BBFrames).  Each BBFrame
  comprises a fixed-size 10B header and a payload.  The payload carries
  a DataField and uses padding to fill any unused space.  A stream
  comprises a sequence of BBFrames associated with an Input Stream
  Identifier (ISI) that is carried in the header of each BBFrame.  The
  simplest scheme uses a single stream (with just one ISI value), but
  multiple streams are permitted.  The BBFrames forming a stream may be
  of variable size (selected from a set of allowed sizes), and must use
  the same stream format (i.e., TS or GSE).  Each stream represents an
  independent link with independent address resolution [RFC4947].

  GSE provides functions that are equivalent to those of the
  Unidirectional Lightweight Encapsulation (ULE) [RFC4326].  It
  supports the transmission of IP packets and other network-layer
  protocols.  The network-layer interface resembles that of ULE, where
  it adopts common mechanisms for a Length field, a 16-bit Type field,
  and support for Extension Headers.  As in ULE, GSE permits multiple
  address formats, indicated by the LT field (functionally equivalent
  to the D field in ULE).  The default addressing mode uses a 6-byte
  NPA and a suppressed NPA address (functionally equivalent to D=1 in
  ULE).

  GSE also provides more flexible fragmentation at the interface to the
  physical layer (using the S and E flags).  This adapts the SNDUs to a
  variable-sized link-layer frame, and reflects the more complex
  requirements in terms of fragmentation and assembly that arise when
  using point-to-multipoint adaptive physical layers.  The integrity of
  a reassembled SNDU is validated using a CRC-32 in the last fragment
  for the corresponding PDU.




Fairhurst & Collini-Nocker  Standards Track                    [Page 16]

RFC 5163      Extension Formats for the ULE Encapsulation     April 2008


Authors' Addresses

  Godred Fairhurst
  School of Engineering,
  University of Aberdeen,
  Aberdeen, AB24 3UE
  UK

  EMail: [email protected]
  URI: http://www.erg.abdn.ac.uk/users/gorry


  Bernhard Collini-Nocker
  Department of Computer Sciences,
  University of Salzburg,
  Jakob Haringer Str. 2,
  5020 Salzburg,
  Austria

  EMail: [email protected]
  URI: http://www.cosy.sbg.ac.at






























Fairhurst & Collini-Nocker  Standards Track                    [Page 17]

RFC 5163      Extension Formats for the ULE Encapsulation     April 2008


Full Copyright Statement

  Copyright (C) The IETF Trust (2008).

  This document is subject to the rights, licenses and restrictions
  contained in BCP 78, and except as set forth therein, the authors
  retain all their rights.

  This document and the information contained herein are provided on an
  "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
  OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
  THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
  OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
  THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
  WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

  The IETF takes no position regarding the validity or scope of any
  Intellectual Property Rights or other rights that might be claimed to
  pertain to the implementation or use of the technology described in
  this document or the extent to which any license under such rights
  might or might not be available; nor does it represent that it has
  made any independent effort to identify any such rights.  Information
  on the procedures with respect to rights in RFC documents can be
  found in BCP 78 and BCP 79.

  Copies of IPR disclosures made to the IETF Secretariat and any
  assurances of licenses to be made available, or the result of an
  attempt made to obtain a general license or permission for the use of
  such proprietary rights by implementers or users of this
  specification can be obtained from the IETF on-line IPR repository at
  http://www.ietf.org/ipr.

  The IETF invites any interested party to bring to its attention any
  copyrights, patents or patent applications, or other proprietary
  rights that may cover technology that may be required to implement
  this standard.  Please address the information to the IETF at
  [email protected].












Fairhurst & Collini-Nocker  Standards Track                    [Page 18]