Network Working Group                                           J. Abley
Request for Comments: 5095                                       Afilias
Updates: 2460, 4294                                            P. Savola
Category: Standards Track                                      CSC/FUNET
                                                        G. Neville-Neil
                                                Neville-Neil Consulting
                                                          December 2007


            Deprecation of Type 0 Routing Headers in IPv6

Status of This Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Abstract

  The functionality provided by IPv6's Type 0 Routing Header can be
  exploited in order to achieve traffic amplification over a remote
  path for the purposes of generating denial-of-service traffic.  This
  document updates the IPv6 specification to deprecate the use of IPv6
  Type 0 Routing Headers, in light of this security concern.

Table of Contents

  1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . 2
  2.  Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 3
  3.  Deprecation of RH0  . . . . . . . . . . . . . . . . . . . . . . 3
  4.  Operations  . . . . . . . . . . . . . . . . . . . . . . . . . . 3
    4.1.  Ingress Filtering . . . . . . . . . . . . . . . . . . . . . 3
    4.2.  Firewall Policy . . . . . . . . . . . . . . . . . . . . . . 3
  5.  Security Considerations . . . . . . . . . . . . . . . . . . . . 4
  6.  IANA Considerations . . . . . . . . . . . . . . . . . . . . . . 4
  7.  Acknowledgements  . . . . . . . . . . . . . . . . . . . . . . . 4
  8.  References  . . . . . . . . . . . . . . . . . . . . . . . . . . 5
    8.1.  Normative References  . . . . . . . . . . . . . . . . . . . 5
    8.2.  Informative References  . . . . . . . . . . . . . . . . . . 5










Abley, et al.               Standards Track                     [Page 1]

RFC 5095                   Deprecation of RH0              December 2007


1.  Introduction

  [RFC2460] defines an IPv6 extension header called "Routing Header",
  identified by a Next Header value of 43 in the immediately preceding
  header.  A particular Routing Header subtype denoted as "Type 0" is
  also defined.  Type 0 Routing Headers are referred to as "RH0" in
  this document.

  A single RH0 may contain multiple intermediate node addresses, and
  the same address may be included more than once in the same RH0.
  This allows a packet to be constructed such that it will oscillate
  between two RH0-processing hosts or routers many times.  This allows
  a stream of packets from an attacker to be amplified along the path
  between two remote routers, which could be used to cause congestion
  along arbitrary remote paths and hence act as a denial-of-service
  mechanism.  An 88-fold amplification has been demonstrated using this
  technique [CanSecWest07].

  This attack is particularly serious in that it affects the entire
  path between the two exploited nodes, not only the nodes themselves
  or their local networks.  Analogous functionality may be found in the
  IPv4 source route option, but the opportunities for abuse are greater
  with RH0 due to the ability to specify many more intermediate node
  addresses in each packet.

  The severity of this threat is considered to be sufficient to warrant
  deprecation of RH0 entirely.  A side effect is that this also
  eliminates benign RH0 use-cases; however, such applications may be
  facilitated by future Routing Header specifications.

  Potential problems with RH0 were identified in 2001 [Security].  In
  2002 a proposal was made to restrict Routing Header processing in
  hosts [Hosts].  These efforts resulted in the modification of the
  Mobile IPv6 specification to use the type 2 Routing Header instead of
  RH0 [RFC3775].  Vishwas Manral identified various risks associated
  with RH0 in 2006 including the amplification attack; several of these
  vulnerabilities (together with other issues) were later documented in
  [RFC4942].

  A treatment of the operational security implications of RH0 was
  presented by Philippe Biondi and Arnaud Ebalard at the CanSecWest
  conference in Vancouver, 2007 [CanSecWest07].  This presentation
  resulted in widespread publicity for the risks associated with RH0.

  This document updates [RFC2460] and [RFC4294].






Abley, et al.               Standards Track                     [Page 2]

RFC 5095                   Deprecation of RH0              December 2007


2.  Definitions

  RH0 in this document denotes the IPv6 Extension Header type 43
  ("Routing Header") variant 0 ("Type 0 Routing Header"), as defined in
  [RFC2460].

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in [RFC2119].

3.  Deprecation of RH0

  An IPv6 node that receives a packet with a destination address
  assigned to it and that contains an RH0 extension header MUST NOT
  execute the algorithm specified in the latter part of Section 4.4 of
  [RFC2460] for RH0.  Instead, such packets MUST be processed according
  to the behaviour specified in Section 4.4 of [RFC2460] for a datagram
  that includes an unrecognised Routing Type value, namely:

     If Segments Left is zero, the node must ignore the Routing header
     and proceed to process the next header in the packet, whose type
     is identified by the Next Header field in the Routing header.

     If Segments Left is non-zero, the node must discard the packet and
     send an ICMP Parameter Problem, Code 0, message to the packet's
     Source Address, pointing to the unrecognized Routing Type.

  IPv6 implementations are no longer required to implement RH0 in any
  way.

4.  Operations

4.1.  Ingress Filtering

  It is to be expected that it will take some time before all IPv6
  nodes are updated to remove support for RH0.  Some of the uses of RH0
  described in [CanSecWest07] can be mitigated using ingress filtering,
  as recommended in [RFC2827] and [RFC3704].

  A site security policy intended to protect against attacks using RH0
  SHOULD include the implementation of ingress filtering at the site
  border.

4.2.  Firewall Policy

  Blocking all IPv6 packets that carry Routing Headers (rather than
  specifically blocking Type 0 and permitting other types) has very
  serious implications for the future development of IPv6.  If even a



Abley, et al.               Standards Track                     [Page 3]

RFC 5095                   Deprecation of RH0              December 2007


  small percentage of deployed firewalls block other types of Routing
  Headers by default, it will become impossible in practice to extend
  IPv6 Routing Headers.  For example, Mobile IPv6 [RFC3775] relies upon
  a Type 2 Routing Header; wide-scale, indiscriminate blocking of
  Routing Headers will make Mobile IPv6 undeployable.

  Firewall policy intended to protect against packets containing RH0
  MUST NOT simply filter all traffic with a Routing Header; it must be
  possible to disable forwarding of Type 0 traffic without blocking
  other types of Routing Headers.  In addition, the default
  configuration MUST permit forwarding of traffic using a Routing
  Header other than 0.

5.  Security Considerations

  The purpose of this document is to deprecate a feature of IPv6 that
  has been shown to have undesirable security implications.  Specific
  examples of vulnerabilities that are facilitated by the availability
  of RH0 can be found in [CanSecWest07].  In particular, RH0 provides a
  mechanism for traffic amplification, which might be used as a denial-
  of-service attack.  A description of this functionality can be found
  in Section 1.

6.  IANA Considerations

  The IANA registry "Internet Protocol Version 6 (IPv6) Parameters"
  should be updated to reflect that variant 0 of IPv6 header-type 43
  ("Routing Header") is deprecated.

7.  Acknowledgements

  This document benefits from the contributions of many IPV6 and V6OPS
  working group participants, including Jari Arkko, Arnaud Ebalard, Tim
  Enos, Brian Haberman, Jun-ichiro itojun Hagino, Bob Hinden, Thomas
  Narten, Jinmei Tatuya, David Malone, Jeroen Massar, Dave Thaler, and
  Guillaume Valadon.















Abley, et al.               Standards Track                     [Page 4]

RFC 5095                   Deprecation of RH0              December 2007


8.  References

8.1.  Normative References

  [RFC2119]       Bradner, S., "Key words for use in RFCs to Indicate
                  Requirement Levels", BCP 14, RFC 2119, March 1997.

  [RFC2460]       Deering, S. and R. Hinden, "Internet Protocol,
                  Version 6 (IPv6) Specification", RFC 2460,
                  December 1998.

  [RFC4294]       Loughney, J., "IPv6 Node Requirements", RFC 4294,
                  April 2006.

8.2.  Informative References

  [CanSecWest07]  Biondi, P. and A. Ebalard, "IPv6 Routing Header
                  Security", CanSecWest Security Conference 2007,
                  April 2007.
                  http://www.secdev.org/conf/IPv6_RH_security-csw07.pdf

  [Hosts]         Savola, P., "Note about Routing Header Processing on
                  IPv6 Hosts", Work in Progress, February 2002.

  [RFC2827]       Ferguson, P. and D. Senie, "Network Ingress
                  Filtering: Defeating Denial of Service Attacks which
                  employ IP Source Address Spoofing", BCP 38, RFC 2827,
                  May 2000.

  [RFC3704]       Baker, F. and P. Savola, "Ingress Filtering for
                  Multihomed Networks", BCP 84, RFC 3704, March 2004.

  [RFC3775]       Johnson, D., Perkins, C., and J. Arkko, "Mobility
                  Support in IPv6", RFC 3775, June 2004.

  [RFC4942]       Davies, E., Krishnan, S., and P. Savola, "IPv6
                  Transition/Co-existence Security Considerations",
                  RFC 4942, September 2007.

  [Security]      Savola, P., "Security of IPv6 Routing Header and Home
                  Address Options", Work in Progress, March 2002.










Abley, et al.               Standards Track                     [Page 5]

RFC 5095                   Deprecation of RH0              December 2007


Authors' Addresses

  Joe Abley
  Afilias Canada Corp.
  Suite 204, 4141 Yonge Street
  Toronto, ON  M2P 2A8
  Canada

  Phone: +1 416 673 4176
  EMail: [email protected]


  Pekka Savola
  CSC/FUNET
  Espoo,
  Finland

  EMail: [email protected]


  George Neville-Neil
  Neville-Neil Consulting
  2261 Market St. #239
  San Francisco, CA  94114
  USA

  EMail: [email protected]
























Abley, et al.               Standards Track                     [Page 6]

RFC 5095                   Deprecation of RH0              December 2007


Full Copyright Statement

  Copyright (C) The IETF Trust (2007).

  This document is subject to the rights, licenses and restrictions
  contained in BCP 78, and except as set forth therein, the authors
  retain all their rights.

  This document and the information contained herein are provided on an
  "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
  OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
  THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
  OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
  THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
  WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

  The IETF takes no position regarding the validity or scope of any
  Intellectual Property Rights or other rights that might be claimed to
  pertain to the implementation or use of the technology described in
  this document or the extent to which any license under such rights
  might or might not be available; nor does it represent that it has
  made any independent effort to identify any such rights.  Information
  on the procedures with respect to rights in RFC documents can be
  found in BCP 78 and BCP 79.

  Copies of IPR disclosures made to the IETF Secretariat and any
  assurances of licenses to be made available, or the result of an
  attempt made to obtain a general license or permission for the use of
  such proprietary rights by implementers or users of this
  specification can be obtained from the IETF on-line IPR repository at
  http://www.ietf.org/ipr.

  The IETF invites any interested party to bring to its attention any
  copyrights, patents or patent applications, or other proprietary
  rights that may cover technology that may be required to implement
  this standard.  Please address the information to the IETF at
  [email protected].












Abley, et al.               Standards Track                     [Page 7]