Network Working Group                                         J. Salowey
Request for Comments: 5077                                       H. Zhou
Obsoletes: 4507                                            Cisco Systems
Category: Standards Track                                      P. Eronen
                                                                  Nokia
                                                          H. Tschofenig
                                                 Nokia Siemens Networks
                                                           January 2008


      Transport Layer Security (TLS) Session Resumption without
                          Server-Side State

Status of This Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Abstract

  This document describes a mechanism that enables the Transport Layer
  Security (TLS) server to resume sessions and avoid keeping per-client
  session state.  The TLS server encapsulates the session state into a
  ticket and forwards it to the client.  The client can subsequently
  resume a session using the obtained ticket.  This document obsoletes
  RFC 4507.






















Salowey, et al.             Standards Track                     [Page 1]

RFC 5077            Stateless TLS Session Resumption        January 2008


Table of Contents

  1.  Introduction . . . . . . . . . . . . . . . . . . . . . . . . .  3
  2.  Terminology  . . . . . . . . . . . . . . . . . . . . . . . . .  3
  3.  Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . .  3
    3.1.  Overview . . . . . . . . . . . . . . . . . . . . . . . . .  4
    3.2.  SessionTicket TLS Extension  . . . . . . . . . . . . . . .  7
    3.3.  NewSessionTicket Handshake Message . . . . . . . . . . . .  8
    3.4.  Interaction with TLS Session ID  . . . . . . . . . . . . .  9
  4.  Recommended Ticket Construction  . . . . . . . . . . . . . . . 10
  5.  Security Considerations  . . . . . . . . . . . . . . . . . . . 12
    5.1.  Invalidating Sessions  . . . . . . . . . . . . . . . . . . 12
    5.2.  Stolen Tickets . . . . . . . . . . . . . . . . . . . . . . 12
    5.3.  Forged Tickets . . . . . . . . . . . . . . . . . . . . . . 12
    5.4.  Denial of Service Attacks  . . . . . . . . . . . . . . . . 12
    5.5.  Ticket Protection Key Management . . . . . . . . . . . . . 13
    5.6.  Ticket Lifetime  . . . . . . . . . . . . . . . . . . . . . 13
    5.7.  Alternate Ticket Formats and Distribution Schemes  . . . . 13
    5.8.  Identity Privacy, Anonymity, and Unlinkability . . . . . . 14
  6.  Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . 14
  7.  IANA Considerations  . . . . . . . . . . . . . . . . . . . . . 15
  8.  References . . . . . . . . . . . . . . . . . . . . . . . . . . 15
    8.1.  Normative References . . . . . . . . . . . . . . . . . . . 15
    8.2.  Informative References . . . . . . . . . . . . . . . . . . 15
  Appendix A.  Discussion of Changes to RFC 4507 . . . . . . . . . . 17


























Salowey, et al.             Standards Track                     [Page 2]

RFC 5077            Stateless TLS Session Resumption        January 2008


1.  Introduction

  This document defines a way to resume a Transport Layer Security
  (TLS) session without requiring session-specific state at the TLS
  server.  This mechanism may be used with any TLS ciphersuite.  This
  document applies to both TLS 1.0 defined in [RFC2246], and TLS 1.1
  defined in [RFC4346].  The mechanism makes use of TLS extensions
  defined in [RFC4366] and defines a new TLS message type.

  This mechanism is useful in the following situations:

  1.  servers that handle a large number of transactions from different
      users

  2.  servers that desire to cache sessions for a long time

  3.  ability to load balance requests across servers

  4.  embedded servers with little memory

  This document obsoletes RFC 4507 [RFC4507] to correct an error in the
  encoding that caused the specification to differ from deployed
  implementations.  At the time of this writing, there are no known
  implementations that follow the encoding specified in RFC 4507.  This
  update to RFC 4507 aligns the document with currently deployed
  implementations.  More details of the change are given in Appendix A.

2.  Terminology

  Within this document, the term 'ticket' refers to a cryptographically
  protected data structure that is created and consumed by the server
  to rebuild session-specific state.

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in [RFC2119].

3.  Protocol

  This specification describes a mechanism to distribute encrypted
  session-state information to the client in the form of a ticket and a
  mechanism to present the ticket back to the server.  The ticket is
  created by a TLS server and sent to a TLS client.  The TLS client
  presents the ticket to the TLS server to resume a session.
  Implementations of this specification are expected to support both
  mechanisms.  Other specifications can take advantage of the session
  tickets, perhaps specifying alternative means for distribution or
  selection.  For example, a separate specification may describe an



Salowey, et al.             Standards Track                     [Page 3]

RFC 5077            Stateless TLS Session Resumption        January 2008


  alternate way to distribute a ticket and use the TLS extension in
  this document to resume the session.  This behavior is beyond the
  scope of the document and would need to be described in a separate
  specification.

3.1.  Overview

  The client indicates that it supports this mechanism by including a
  SessionTicket TLS extension in the ClientHello message.  The
  extension will be empty if the client does not already possess a
  ticket for the server.  The server sends an empty SessionTicket
  extension to indicate that it will send a new session ticket using
  the NewSessionTicket handshake message.  The extension is described
  in Section 3.2.

  If the server wants to use this mechanism, it stores its session
  state (such as ciphersuite and master secret) to a ticket that is
  encrypted and integrity-protected by a key known only to the server.
  The ticket is distributed to the client using the NewSessionTicket
  TLS handshake message described in Section 3.3.  This message is sent
  during the TLS handshake before the ChangeCipherSpec message, after
  the server has successfully verified the client's Finished message.

        Client                                               Server

        ClientHello
       (empty SessionTicket extension)-------->
                                                        ServerHello
                                    (empty SessionTicket extension)
                                                       Certificate*
                                                 ServerKeyExchange*
                                                CertificateRequest*
                                     <--------      ServerHelloDone
        Certificate*
        ClientKeyExchange
        CertificateVerify*
        [ChangeCipherSpec]
        Finished                     -------->
                                                   NewSessionTicket
                                                 [ChangeCipherSpec]
                                     <--------             Finished
        Application Data             <------->     Application Data

  Figure 1: Message Flow for Full Handshake Issuing New Session Ticket







Salowey, et al.             Standards Track                     [Page 4]

RFC 5077            Stateless TLS Session Resumption        January 2008


  The client caches this ticket along with the master secret and other
  parameters associated with the current session.  When the client
  wishes to resume the session, it includes the ticket in the
  SessionTicket extension within the ClientHello message.  Appendix A
  provides a detailed description of the encoding of the extension and
  changes from RFC 4507.  The server then decrypts the received ticket,
  verifies the ticket's validity, retrieves the session state from the
  contents of the ticket, and uses this state to resume the session.
  The interaction with the TLS Session ID is described in Section 3.4.
  If the server successfully verifies the client's ticket, then it may
  renew the ticket by including a NewSessionTicket handshake message
  after the ServerHello.

        Client                                                Server
        ClientHello
        (SessionTicket extension)      -------->
                                                         ServerHello
                                     (empty SessionTicket extension)
                                                    NewSessionTicket
                                                  [ChangeCipherSpec]
                                      <--------             Finished
        [ChangeCipherSpec]
        Finished                      -------->
        Application Data              <------->     Application Data

   Figure 2: Message Flow for Abbreviated Handshake Using New Session
                                 Ticket

  A recommended ticket format is given in Section 4.

  If the server cannot or does not want to honor the ticket, then it
  can initiate a full handshake with the client.

  In the case that the server does not wish to issue a new ticket at
  this time, it just completes the handshake without including a
  SessionTicket extension or NewSessionTicket handshake message.  This
  is shown below (this flow is identical to Figure 1 in RFC 4346,
  except for the SessionTicket extension in the first message):













Salowey, et al.             Standards Track                     [Page 5]

RFC 5077            Stateless TLS Session Resumption        January 2008


        Client                                               Server

        ClientHello
        (SessionTicket extension)    -------->
                                                        ServerHello
                                                       Certificate*
                                                 ServerKeyExchange*
                                                CertificateRequest*
                                     <--------      ServerHelloDone
        Certificate*
        ClientKeyExchange
        CertificateVerify*
        [ChangeCipherSpec]
        Finished                     -------->
                                                 [ChangeCipherSpec]
                                     <--------             Finished
        Application Data             <------->     Application Data

   Figure 3: Message Flow for Server Completing Full Handshake Without
                       Issuing New Session Ticket

  It is also permissible to have an exchange similar to Figure 3 using
  the abbreviated handshake defined in Figure 2 of RFC 4346, where the
  client uses the SessionTicket extension to resume the session, but
  the server does not wish to issue a new ticket, and therefore does
  not send a SessionTicket extension.

  If the server rejects the ticket, it may still wish to issue a new
  ticket after performing the full handshake as shown below (this flow
  is identical to Figure 1, except the SessionTicket extension in the
  ClientHello is not empty):




















Salowey, et al.             Standards Track                     [Page 6]

RFC 5077            Stateless TLS Session Resumption        January 2008


        Client                                               Server

        ClientHello
        (SessionTicket extension) -------->
                                                        ServerHello
                                    (empty SessionTicket extension)
                                                       Certificate*
                                                 ServerKeyExchange*
                                                CertificateRequest*
                                 <--------          ServerHelloDone
        Certificate*
        ClientKeyExchange
        CertificateVerify*
        [ChangeCipherSpec]
        Finished                 -------->
                                                   NewSessionTicket
                                                 [ChangeCipherSpec]
                                 <--------                 Finished
        Application Data         <------->         Application Data

   Figure 4: Message Flow for Server Rejecting Ticket, Performing Full
                Handshake, and Issuing New Session Ticket

3.2.  SessionTicket TLS Extension

  The SessionTicket TLS extension is based on [RFC4366].  The format of
  the ticket is an opaque structure used to carry session-specific
  state information.  This extension may be sent in the ClientHello and
  ServerHello.

  If the client possesses a ticket that it wants to use to resume a
  session, then it includes the ticket in the SessionTicket extension
  in the ClientHello.  If the client does not have a ticket and is
  prepared to receive one in the NewSessionTicket handshake message,
  then it MUST include a zero-length ticket in the SessionTicket
  extension.  If the client is not prepared to receive a ticket in the
  NewSessionTicket handshake message, then it MUST NOT include a
  SessionTicket extension unless it is sending a non-empty ticket it
  received through some other means from the server.

  The server uses a zero-length SessionTicket extension to indicate to
  the client that it will send a new session ticket using the
  NewSessionTicket handshake message described in Section 3.3.  The
  server MUST send this extension in the ServerHello if it wishes to
  issue a new ticket to the client using the NewSessionTicket handshake
  message.  The server MUST NOT send this extension if it does not
  receive one in the ClientHello.




Salowey, et al.             Standards Track                     [Page 7]

RFC 5077            Stateless TLS Session Resumption        January 2008


  If the server fails to verify the ticket, then it falls back to
  performing a full handshake.  If the ticket is accepted by the server
  but the handshake fails, the client SHOULD delete the ticket.

  The SessionTicket extension has been assigned the number 35.  The
  extension_data field of SessionTicket extension contains the ticket.

3.3.  NewSessionTicket Handshake Message

  This message is sent by the server during the TLS handshake before
  the ChangeCipherSpec message.  This message MUST be sent if the
  server included a SessionTicket extension in the ServerHello.  This
  message MUST NOT be sent if the server did not include a
  SessionTicket extension in the ServerHello.  This message is included
  in the hash used to create and verify the Finished message.  In the
  case of a full handshake, the server MUST verify the client's
  Finished message before sending the ticket.  The client MUST NOT
  treat the ticket as valid until it has verified the server's Finished
  message.  If the server determines that it does not want to include a
  ticket after it has included the SessionTicket extension in the
  ServerHello, then it sends a zero-length ticket in the
  NewSessionTicket handshake message.

  If the server successfully verifies the client's ticket, then it MAY
  renew the ticket by including a NewSessionTicket handshake message
  after the ServerHello in the abbreviated handshake.  The client
  should start using the new ticket as soon as possible after it
  verifies the server's Finished message for new connections.  Note
  that since the updated ticket is issued before the handshake
  completes, it is possible that the client may not put the new ticket
  into use before it initiates new connections.  The server MUST NOT
  assume that the client actually received the updated ticket until it
  successfully verifies the client's Finished message.

  The NewSessionTicket handshake message has been assigned the number 4
  and its definition is given at the end of this section.  The
  ticket_lifetime_hint field contains a hint from the server about how
  long the ticket should be stored.  The value indicates the lifetime
  in seconds as a 32-bit unsigned integer in network byte order
  relative to when the ticket is received.  A value of zero is reserved
  to indicate that the lifetime of the ticket is unspecified.  A client
  SHOULD delete the ticket and associated state when the time expires.
  It MAY delete the ticket earlier based on local policy.  A server MAY
  treat a ticket as valid for a shorter or longer period of time than
  what is stated in the ticket_lifetime_hint.






Salowey, et al.             Standards Track                     [Page 8]

RFC 5077            Stateless TLS Session Resumption        January 2008


     struct {
         HandshakeType msg_type;
         uint24 length;
         select (HandshakeType) {
             case hello_request:       HelloRequest;
             case client_hello:        ClientHello;
             case server_hello:        ServerHello;
             case certificate:         Certificate;
             case server_key_exchange: ServerKeyExchange;
             case certificate_request: CertificateRequest;
             case server_hello_done:   ServerHelloDone;
             case certificate_verify:  CertificateVerify;
             case client_key_exchange: ClientKeyExchange;
             case finished:            Finished;
             case session_ticket:      NewSessionTicket; /* NEW */
         } body;
     } Handshake;


     struct {
         uint32 ticket_lifetime_hint;
         opaque ticket<0..2^16-1>;
     } NewSessionTicket;

3.4.  Interaction with TLS Session ID

  If a server is planning on issuing a session ticket to a client that
  does not present one, it SHOULD include an empty Session ID in the
  ServerHello.  If the server rejects the ticket and falls back to the
  full handshake then it may include a non-empty Session ID to indicate
  its support for stateful session resumption.  If the client receives
  a session ticket from the server, then it discards any Session ID
  that was sent in the ServerHello.

  When presenting a ticket, the client MAY generate and include a
  Session ID in the TLS ClientHello.  If the server accepts the ticket
  and the Session ID is not empty, then it MUST respond with the same
  Session ID present in the ClientHello.  This allows the client to
  easily differentiate when the server is resuming a session from when
  it is falling back to a full handshake.  Since the client generates a
  Session ID, the server MUST NOT rely upon the Session ID having a
  particular value when validating the ticket.  If a ticket is
  presented by the client, the server MUST NOT attempt to use the
  Session ID in the ClientHello for stateful session resumption.
  Alternatively, the client MAY include an empty Session ID in the
  ClientHello.  In this case, the client ignores the Session ID sent in
  the ServerHello and determines if the server is resuming a session by
  the subsequent handshake messages.



Salowey, et al.             Standards Track                     [Page 9]

RFC 5077            Stateless TLS Session Resumption        January 2008


4.  Recommended Ticket Construction

  This section describes a recommended format and protection for the
  ticket.  Note that the ticket is opaque to the client, so the
  structure is not subject to interoperability concerns, and
  implementations may diverge from this format.  If implementations do
  diverge from this format, they must take security concerns seriously.
  Clients MUST NOT examine the ticket under the assumption that it
  complies with this document.

  The server uses two different keys: one 128-bit key for Advanced
  Encryption Standard (AES) [AES] in Cipher Block Chaining (CBC) mode
  [CBC] encryption and one 256-bit key for HMAC-SHA-256 [RFC4634].

  The ticket is structured as follows:

     struct {
         opaque key_name[16];
         opaque iv[16];
         opaque encrypted_state<0..2^16-1>;
         opaque mac[32];
     } ticket;

  Here, key_name serves to identify a particular set of keys used to
  protect the ticket.  It enables the server to easily recognize
  tickets it has issued.  The key_name should be randomly generated to
  avoid collisions between servers.  One possibility is to generate new
  random keys and key_name every time the server is started.

  The actual state information in encrypted_state is encrypted using
  128-bit AES in CBC mode with the given IV.  The Message
  Authentication Code (MAC) is calculated using HMAC-SHA-256 over
  key_name (16 octets) and IV (16 octets), followed by the length of
  the encrypted_state field (2 octets) and its contents (variable
  length).
















Salowey, et al.             Standards Track                    [Page 10]

RFC 5077            Stateless TLS Session Resumption        January 2008


     struct {
         ProtocolVersion protocol_version;
         CipherSuite cipher_suite;
         CompressionMethod compression_method;
         opaque master_secret[48];
         ClientIdentity client_identity;
         uint32 timestamp;
     } StatePlaintext;

     enum {
        anonymous(0),
        certificate_based(1),
        psk(2)
    } ClientAuthenticationType;

     struct {
         ClientAuthenticationType client_authentication_type;
         select (ClientAuthenticationType) {
             case anonymous: struct {};
             case certificate_based:
                 ASN.1Cert certificate_list<0..2^24-1>;
             case psk:
                 opaque psk_identity<0..2^16-1>;   /* from [RFC4279] */
         };
      } ClientIdentity;

  The structure StatePlaintext stores the TLS session state including
  the master_secret.  The timestamp within this structure allows the
  TLS server to expire tickets.  To cover the authentication and key
  exchange protocols provided by TLS, the ClientIdentity structure
  contains the authentication type of the client used in the initial
  exchange (see ClientAuthenticationType).  To offer the TLS server
  with the same capabilities for authentication and authorization, a
  certificate list is included in case of public-key-based
  authentication.  The TLS server is therefore able to inspect a number
  of different attributes within these certificates.  A specific
  implementation might choose to store a subset of this information or
  additional information.  Other authentication mechanisms, such as
  Kerberos [RFC2712], would require different client identity data.
  Other TLS extensions may require the inclusion of additional data in
  the StatePlaintext structure.










Salowey, et al.             Standards Track                    [Page 11]

RFC 5077            Stateless TLS Session Resumption        January 2008


5.  Security Considerations

  This section addresses security issues related to the usage of a
  ticket.  Tickets must be authenticated and encrypted to prevent
  modification or eavesdropping by an attacker.  Several attacks
  described below will be possible if this is not carefully done.

  Implementations should take care to ensure that the processing of
  tickets does not increase the chance of denial of service as
  described below.

5.1.  Invalidating Sessions

  The TLS specification requires that TLS sessions be invalidated when
  errors occur.  [CSSC] discusses the security implications of this in
  detail.  In the analysis within this paper, failure to invalidate
  sessions does not pose a security risk.  This is because the TLS
  handshake uses a non-reversible function to derive keys for a session
  so information about one session does not provide an advantage to
  attack the master secret or a different session.  If a session
  invalidation scheme is used, the implementation should verify the
  integrity of the ticket before using the contents to invalidate a
  session to ensure that an attacker cannot invalidate a chosen
  session.

5.2.  Stolen Tickets

  An eavesdropper or man-in-the-middle may obtain the ticket and
  attempt to use it to establish a session with the server; however,
  since the ticket is encrypted and the attacker does not know the
  secret key, a stolen ticket does not help an attacker resume a
  session.  A TLS server MUST use strong encryption and integrity
  protection for the ticket to prevent an attacker from using a brute
  force mechanism to obtain the ticket's contents.

5.3.  Forged Tickets

  A malicious user could forge or alter a ticket in order to resume a
  session, to extend its lifetime, to impersonate another user, or to
  gain additional privileges.  This attack is not possible if the
  ticket is protected using a strong integrity protection algorithm
  such as a keyed HMAC-SHA-256.

5.4.  Denial of Service Attacks

  The key_name field defined in the recommended ticket format helps the
  server efficiently reject tickets that it did not issue.  However, an
  adversary could store or generate a large number of tickets to send



Salowey, et al.             Standards Track                    [Page 12]

RFC 5077            Stateless TLS Session Resumption        January 2008


  to the TLS server for verification.  To minimize the possibility of a
  denial of service, the verification of the ticket should be
  lightweight (e.g., using efficient symmetric key cryptographic
  algorithms).

5.5.  Ticket Protection Key Management

  A full description of the management of the keys used to protect the
  ticket is beyond the scope of this document.  A list of RECOMMENDED
  practices is given below.

  o  The keys should be generated securely following the randomness
     recommendations in [RFC4086].

  o  The keys and cryptographic protection algorithms should be at
     least 128 bits in strength.  Some ciphersuites and applications
     may require cryptographic protection greater than 128 bits in
     strength.

  o  The keys should not be used for any purpose other than generating
     and verifying tickets.

  o  The keys should be changed regularly.

  o  The keys should be changed if the ticket format or cryptographic
     protection algorithms change.

5.6.  Ticket Lifetime

  The TLS server controls the lifetime of the ticket.  Servers
  determine the acceptable lifetime based on the operational and
  security requirements of the environments in which they are deployed.
  The ticket lifetime may be longer than the 24-hour lifetime
  recommended in [RFC4346].  TLS clients may be given a hint of the
  lifetime of the ticket.  Since the lifetime of a ticket may be
  unspecified, a client has its own local policy that determines when
  it discards tickets.

5.7.  Alternate Ticket Formats and Distribution Schemes

  If the ticket format or distribution scheme defined in this document
  is not used, then great care must be taken in analyzing the security
  of the solution.  In particular, if confidential information, such as
  a secret key, is transferred to the client, it MUST be done using
  secure communication so as to prevent attackers from obtaining or
  modifying the key.  Also, the ticket MUST have its integrity and
  confidentiality protected with strong cryptographic techniques to
  prevent a breach in the security of the system.



Salowey, et al.             Standards Track                    [Page 13]

RFC 5077            Stateless TLS Session Resumption        January 2008


5.8.  Identity Privacy, Anonymity, and Unlinkability

  This document mandates that the content of the ticket is
  confidentiality protected in order to avoid leakage of its content,
  such as user-relevant information.  As such, it prevents disclosure
  of potentially sensitive information carried within the ticket.

  The initial handshake exchange, which was used to obtain the ticket,
  might not provide identity confidentiality of the client based on the
  properties of TLS.  Another relevant security threat is the ability
  for an on-path adversary to observe multiple TLS handshakes where the
  same ticket is used, therefore concluding they belong to the same
  communication endpoints.  Application designers that use the ticket
  mechanism described in this document should consider that
  unlinkability [ANON] is not necessarily provided.

  While a full discussion of these topics is beyond the scope of this
  document, it should be noted that it is possible to issue a ticket
  using a TLS renegotiation handshake that occurs after a secure tunnel
  has been established by a previous handshake.  This may help address
  some privacy and unlinkability issues in some environments.

6.  Acknowledgements

  The authors would like to thank the following people for their help
  with preparing and reviewing this document: Eric Rescorla, Mohamad
  Badra, Tim Dierks, Nelson Bolyard, Nancy Cam-Winget, David McGrew,
  Rob Dugal, Russ Housley, Amir Herzberg, Bernard Aboba, and members of
  the TLS working group.

  [CSSC] describes a solution that is very similar to the one described
  in this document and gives a detailed analysis of the security
  considerations involved.  [RFC2712] describes a mechanism for using
  Kerberos [RFC4120] in TLS ciphersuites, which helped inspire the use
  of tickets to avoid server state.  [RFC4851] makes use of a similar
  mechanism to avoid maintaining server state for the cryptographic
  tunnel.  [SC97] also investigates the concept of stateless sessions.

  The authors would also like to thank Jan Nordqvist, who found the
  encoding error in RFC 4507, corrected by this document.  In addition
  Nagendra Modadugu, Wan-Teh Chang, and Michael D'Errico provided
  useful feedback during the review of this document.









Salowey, et al.             Standards Track                    [Page 14]

RFC 5077            Stateless TLS Session Resumption        January 2008


7.  IANA Considerations

  IANA has assigned a TLS extension number of 35 to the SessionTicket
  TLS extension from the TLS registry of ExtensionType values defined
  in [RFC4366].

  IANA has assigned a TLS HandshakeType number 4 to the
  NewSessionTicket handshake type from the TLS registry of
  HandshakeType values defined in [RFC4346].

  This document does not require any actions or assignments from IANA.

8.  References

8.1.  Normative References

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119, March 1997.

  [RFC2246]  Dierks, T. and C. Allen, "The TLS Protocol Version 1.0",
             RFC 2246, January 1999.

  [RFC4346]  Dierks, T. and E. Rescorla, "The Transport Layer Security
             (TLS) Protocol Version 1.1", RFC 4346, April 2006.

  [RFC4366]  Blake-Wilson, S., Nystrom, M., Hopwood, D., Mikkelsen, J.,
             and T. Wright, "Transport Layer Security (TLS)
             Extensions", RFC 4366, April 2006.

  [RFC4507]  Salowey, J., Zhou, H., Eronen, P., and H. Tschofenig,
             "Transport Layer Security (TLS) Session Resumption without
             Server-Side State", RFC 4507, May 2006.

8.2.  Informative References

  [AES]      National Institute of Standards and Technology, "Advanced
             Encryption Standard (AES)", Federal Information Processing
             Standards (FIPS) Publication 197, November 2001.

  [ANON]     Pfitzmann, A. and M. Hansen, "Anonymity, Unlinkability,
             Unobservability, Pseudonymity, and Identity Management - A
             Consolidated Proposal for Terminology", http://
             dud.inf.tu-dresden.de/literatur/
             Anon_Terminology_v0.26-1.pdf Version 0.26, December 2005.







Salowey, et al.             Standards Track                    [Page 15]

RFC 5077            Stateless TLS Session Resumption        January 2008


  [CBC]      National Institute of Standards and Technology,
             "Recommendation for Block Cipher Modes of Operation -
             Methods and Techniques", NIST Special Publication 800-38A,
             December 2001.

  [CSSC]     Shacham, H., Boneh, D., and E. Rescorla, "Client-side
             caching for TLS", Transactions on Information and System
             Security (TISSEC) , Volume 7, Issue 4, November 2004.

  [RFC2712]  Medvinsky, A. and M. Hur, "Addition of Kerberos Cipher
             Suites to Transport Layer Security (TLS)", RFC 2712,
             October 1999.

  [RFC4086]  Eastlake, D., Schiller, J., and S. Crocker, "Randomness
             Requirements for Security", BCP 106, RFC 4086, June 2005.

  [RFC4120]  Neuman, C., Yu, T., Hartman, S., and K. Raeburn, "The
             Kerberos Network Authentication Service (V5)", RFC 4120,
             July 2005.

  [RFC4279]  Eronen, P. and H. Tschofenig, "Pre-Shared Key Ciphersuites
             for Transport Layer Security (TLS)", RFC 4279,
             December 2005.

  [RFC4634]  Eastlake, D. and T. Hansen, "US Secure Hash Algorithms
             (SHA and HMAC-SHA)", RFC 4634, July 2006.

  [RFC4851]  Cam-Winget, N., McGrew, D., Salowey, J., and H. Zhou, "The
             Flexible Authentication via Secure Tunneling Extensible
             Authentication Protocol Method (EAP-FAST)", RFC 4851,
             May 2007.

  [SC97]     Aura, T. and P. Nikander, "Stateless Connections",
             Proceedings of the First International Conference on
             Information and Communication Security (ICICS '97) , 1997.
















Salowey, et al.             Standards Track                    [Page 16]

RFC 5077            Stateless TLS Session Resumption        January 2008


Appendix A.  Discussion of Changes to RFC 4507

  RFC 4507 [RFC4507] defines a mechanism to resume a TLS session
  without maintaining server side state by specifying an encrypted
  ticket that is maintained on the client.  The client presents this
  ticket to the server in a SessionTicket hello extension.  The
  encoding in RFC 4507 used the XDR style encoding specified in TLS
  [RFC4346].

  An error in the encoding caused the specification to differ from
  deployed implementations.  At the time of this writing there are no
  known implementations that follow the encoding specified in RFC 4507.
  This update to RFC 4507 aligns the document with these currently
  deployed implementations.

  Erroneous encoding in RFC 4507 resulted in two length fields; one for
  the extension contents and one for the ticket itself.  Hence, for a
  ticket that is 256 bytes long and begins with the hex value FF FF,
  the encoding of the extension would be as follows according to RFC
  4507:

       00 23          Ticket Extension type 35
       01 02          Length of extension contents
       01 00          Length of ticket
       FF FF .. ..    Actual ticket

  The update proposed in this document reflects what implementations
  actually encode, namely it removes the redundant length field.  So,
  for a ticket that is 256 bytes long and begins with the hex value FF
  FF, the encoding of the extension would be as follows according to
  this update:

       00 23          Extension type 35
       01 00          Length of extension contents (ticket)
       FF FF .. ..    Actual ticket

  A server implemented according to RFC 4507 receiving a ticket
  extension from a client conforming to this document would interpret
  the first two bytes of the ticket as the length of this ticket.  This
  will result in either an inconsistent length field or in the
  processing of a ticket missing the first two bytes.  In the first
  case, the server should reject the request based on a malformed
  length.  In the second case, the server should reject the ticket
  based on a malformed ticket, incorrect key version, or failed
  decryption.  A server implementation based on this update receiving
  an RFC 4507 extension would interpret the first length field as the





Salowey, et al.             Standards Track                    [Page 17]

RFC 5077            Stateless TLS Session Resumption        January 2008


  length of the ticket and include the second two length bytes as the
  first bytes in the ticket, resulting in the ticket being rejected
  based on a malformed ticket, incorrect key version, or failed
  decryption.

  Note that the encoding of an empty SessionTicket extension was
  ambiguous in RFC 4507.  An RFC 4507 implementation may have encoded
  it as:

       00 23      Extension type 35
       00 02      Length of extension contents
       00 00      Length of ticket

  or it may have encoded it the same way as this update:

       00 23      Extension type 35
       00 00      Length of extension contents

  A server wishing to support RFC 4507 clients should respond to an
  empty SessionTicket extension encoded the same way as it received it.

  A server implementation can construct tickets such that it can detect
  an RFC 4507 implementation, if one existed, by including a cookie at
  the beginning of the tickets that can be differentiated from a valid
  length.  For example, if an implementation constructed tickets to
  start with the hex values FF FF, then it could determine where the
  ticket begins and determine the length correctly from the type of
  length fields present.

  This document makes a few additional changes to RFC 4507 listed
  below.

  o  Clarifying that the server can allow session resumption using a
     ticket without issuing a new ticket in Section 3.1.

  o  Clarifying that the lifetime is relative to when the ticket is
     received in section 3.3.

  o  Clarifying that the NewSessionTicket handshake message is included
     in the hash generated for the Finished messages in Section 3.3.

  o  Clarifying the interaction with TLS Session ID in Section 3.4.

  o  Recommending the use of SHA-256 for the integrity protection of
     the ticket in Section 4.

  o  Clarifying that additional data can be included in the
     StatePlaintext structure in Section 4.



Salowey, et al.             Standards Track                    [Page 18]

RFC 5077            Stateless TLS Session Resumption        January 2008


Authors' Addresses

  Joseph Salowey
  Cisco Systems
  2901 3rd Ave
  Seattle, WA  98121
  US

  EMail: [email protected]


  Hao Zhou
  Cisco Systems
  4125 Highlander Parkway
  Richfield, OH  44286
  US

  EMail: [email protected]


  Pasi Eronen
  Nokia Research Center
  P.O. Box 407
  FIN-00045 Nokia Group
  Finland

  EMail: [email protected]


  Hannes Tschofenig
  Nokia Siemens Networks
  Otto-Hahn-Ring 6
  Munich, Bayern  81739
  Germany

  EMail: [email protected]















Salowey, et al.             Standards Track                    [Page 19]

RFC 5077            Stateless TLS Session Resumption        January 2008


Full Copyright Statement

  Copyright (C) The IETF Trust (2008).

  This document is subject to the rights, licenses and restrictions
  contained in BCP 78, and except as set forth therein, the authors
  retain all their rights.

  This document and the information contained herein are provided on an
  "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
  OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
  THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
  OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
  THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
  WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

  The IETF takes no position regarding the validity or scope of any
  Intellectual Property Rights or other rights that might be claimed to
  pertain to the implementation or use of the technology described in
  this document or the extent to which any license under such rights
  might or might not be available; nor does it represent that it has
  made any independent effort to identify any such rights.  Information
  on the procedures with respect to rights in RFC documents can be
  found in BCP 78 and BCP 79.

  Copies of IPR disclosures made to the IETF Secretariat and any
  assurances of licenses to be made available, or the result of an
  attempt made to obtain a general license or permission for the use of
  such proprietary rights by implementers or users of this
  specification can be obtained from the IETF on-line IPR repository at
  http://www.ietf.org/ipr.

  The IETF invites any interested party to bring to its attention any
  copyrights, patents or patent applications, or other proprietary
  rights that may cover technology that may be required to implement
  this standard.  Please address the information to the IETF at
  [email protected].












Salowey, et al.             Standards Track                    [Page 20]