Network Working Group                                         R. Housley
Request for Comments: 5008                                Vigil Security
Category: Informational                                       J. Solinas
                                                                    NSA
                                                          September 2007


   Suite B in Secure/Multipurpose Internet Mail Extensions (S/MIME)

Status of This Memo

  This memo provides information for the Internet community.  It does
  not specify an Internet standard of any kind.  Distribution of this
  memo is unlimited.

Abstract

  This document specifies the conventions for using the United States
  National Security Agency's Suite B algorithms in Secure/Multipurpose
  Internet Mail Extensions (S/MIME) as specified in RFC 3851.

1.  Introduction

  This document specifies the conventions for using the United States
  National Security Agency's Suite B algorithms [SuiteB] in
  Secure/Multipurpose Internet Mail Extensions (S/MIME) [MSG].  S/MIME
  makes use of the Cryptographic Message Syntax (CMS) [CMS].  In
  particular, the signed-data and the enveloped-data content types are
  used.

  Since many of the Suite B algorithms enjoy uses in other environments
  as well, the majority of the conventions needed for the Suite B
  algorithms are already specified in other documents.  This document
  references the source of these conventions, and the relevant details
  are repeated to aid developers that choose to support Suite B.  In a
  few cases, additional algorithm identifiers are needed, and they are
  provided in this document.

1.1.  Terminology

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in RFC 2119 [STDWORDS].








Housley & Solinas            Informational                      [Page 1]

RFC 5008                   Suite B in S/MIME              September 2007


1.2.  ASN.1

  CMS values are generated using ASN.1 [X.208-88], the Basic Encoding
  Rules (BER) [X.209-88], and the Distinguished Encoding Rules (DER)
  [X.509-88].

1.3.  Suite B Security Levels

  Suite B offers two security levels: Level 1 and Level 2.  Security
  Level 2 offers greater cryptographic strength by using longer keys.

  For S/MIME signed messages, Suite B follows the direction set by RFC
  3278 [CMSECC], but some additional algorithm identifiers are
  assigned.  Suite B uses these algorithms:

                           Security Level 1   Security Level 2
                           ----------------   ----------------
     Message Digest:       SHA-256            SHA-384
     Signature:            ECDSA with P-256   ECDSA with P-384

  For S/MIME-encrypted messages, Suite B follows the direction set by
  RFC 3278 [CMSECC] and follows the conventions set by RFC 3565
  [CMSAES].  Again, additional algorithm identifiers are assigned.
  Suite B uses these algorithms:

                           Security Level 1   Security Level 2
                           ----------------   ----------------
     Key Agreement:        ECDH with P-256    ECDH with P-384
     Key Derivation:       SHA-256            SHA-384
     Key Wrap:             AES-128 Key Wrap   AES-256 Key Wrap
     Content Encryption:   AES-128 CBC        AES-256 CBC

2.  SHA-256 and SHA-256 Message Digest Algorithms

  This section specifies the conventions employed by implementations
  that support SHA-256 or SHA-384 [SHA2].  In Suite B, Security Level
  1, the SHA-256 message digest algorithm MUST be used.  In Suite B,
  Security Level 2, SHA-384 MUST be used.

  Within the CMS signed-data content type, message digest algorithm
  identifiers are located in the SignedData digestAlgorithms field and
  the SignerInfo digestAlgorithm field.  Also, message digest values
  are located in the Message Digest authenticated attribute.  In
  addition, message digest values are input into signature algorithms.

  The SHA-256 and SHA-384 message digest algorithms are defined in FIPS
  Pub 180-2 [SHA2, EH].  The algorithm identifier for SHA-256 is:




Housley & Solinas            Informational                      [Page 2]

RFC 5008                   Suite B in S/MIME              September 2007


     id-sha256  OBJECT IDENTIFIER  ::=  { joint-iso-itu-t(2)
         country(16) us(840) organization(1) gov(101) csor(3)
         nistalgorithm(4) hashalgs(2) 1 }

  The algorithm identifier for SHA-384 is:

     id-sha384  OBJECT IDENTIFIER  ::=  { joint-iso-itu-t(2)
         country(16) us(840) organization(1) gov(101) csor(3)
         nistalgorithm(4) hashalgs(2) 2 }

  There are two possible encodings for the AlgorithmIdentifier
  parameters field.  The two alternatives arise from the fact that when
  the 1988 syntax for AlgorithmIdentifier was translated into the 1997
  syntax, the OPTIONAL associated with the AlgorithmIdentifier
  parameters got lost.  Later, the OPTIONAL was recovered via a defect
  report, but by then many people thought that algorithm parameters
  were mandatory.  Because of this history some implementations encode
  parameters as a NULL element and others omit them entirely.  The
  correct encoding for the SHA-256 and SHA-384 message digest
  algorithms is to omit the parameters field; however, to ensure
  compatibility, implementations ought to also handle a SHA-256 and
  SHA-384 AlgorithmIdentifier parameters field, which contains a NULL.

  For both SHA-256 and SHA-384, the AlgorithmIdentifier parameters
  field is OPTIONAL, and if present, the parameters field MUST contain
  a NULL.  Implementations MUST accept SHA-256 and SHA-384
  AlgorithmIdentifiers with absent parameters.  Implementations MUST
  accept SHA-256 and SHA-384 AlgorithmIdentifiers with NULL parameters.
  Implementations SHOULD generate SHA-256 and SHA-384
  AlgorithmIdentifiers with absent parameters.

3.  ECDSA Signature Algorithm

  This section specifies the conventions employed by implementations
  that support Elliptic Curve Digital Signature Algorithm (ECDSA).  The
  direction set by RFC 3278 [CMSECC] is followed, but additional
  message digest algorithms and additional elliptic curves are
  employed.  In Suite B, Security Level 1, ECDSA MUST be used with the
  SHA-256 message digest algorithm and the P-256 elliptic curve.  In
  Suite B, Security Level 2, ECDSA MUST be used with the SHA-384
  message digest algorithm and the P-384 elliptic curve.  The P-256 and
  P-384 elliptic curves are specified in [DSS].

  Within the CMS signed-data content type, signature algorithm
  identifiers are located in the SignerInfo signatureAlgorithm field of
  SignedData.  In addition, signature algorithm identifiers are located
  in the SignerInfo signatureAlgorithm field of countersignature
  attributes.



Housley & Solinas            Informational                      [Page 3]

RFC 5008                   Suite B in S/MIME              September 2007


  Within the CMS signed-data content type, signature values are located
  in the SignerInfo signature field of SignedData.  In addition,
  signature values are located in the SignerInfo signature field of
  countersignature attributes.

  As specified in RFC 3279 [PKIX1ALG], ECDSA and Elliptic Curve
  Diffie-Hellman (ECDH) use the same algorithm identifier for subject
  public keys in certificates, and it is repeated here:

     id-ecPublicKey  OBJECT IDENTIFIER  ::=  { iso(1) member-body(2)
         us(840) ansi-x9-62(10045) keyType(2) 1 }

  This object identifier is used in public key certificates for both
  ECDSA signature keys and ECDH encryption keys.  The intended
  application for the key may be indicated in the key usage field (see
  RFC 3280 [PKIX1]).  The use of separate keys for signature and
  encryption purposes is RECOMMENDED; however, the use of a single key
  for both signature and encryption purposes is not forbidden.

  As specified in RFC 3279 [PKIX1ALG], ECDSA and ECDH use the same
  encoding for subject public keys in certificates, and it is repeated
  here:

     ECPoint  ::=  OCTET STRING

  The elliptic curve public key (an OCTET STRING) is mapped to a
  subject public key (a BIT STRING) as follows: the most significant
  bit of the OCTET STRING becomes the most significant bit of the BIT
  STRING, and the least significant bit of the OCTET STRING becomes the
  least significant bit of the BIT STRING.  Note that this octet string
  may represent an elliptic curve point in compressed or uncompressed
  form.  Implementations that support elliptic curves according to this
  specification MUST support the uncompressed form and MAY support the
  compressed form.

  ECDSA and ECDH require use of certain parameters with the public key.
  The parameters may be inherited from the certificate issuer,
  implicitly included through reference to a named curve, or explicitly
  included in the certificate.  As specified in RFC 3279 [PKIX1ALG],
  the parameter structure is:

     EcpkParameters  ::=  CHOICE {
       ecParameters  ECParameters,
       namedCurve    OBJECT IDENTIFIER,
       implicitlyCA  NULL }






Housley & Solinas            Informational                      [Page 4]

RFC 5008                   Suite B in S/MIME              September 2007


  In Suite B, the namedCurve CHOICE MUST be used.  The object
  identifier for P-256 is:

     ansip256r1  OBJECT IDENTIFIER  ::=  { iso(1) member-body(2)
         us(840) ansi-x9-62(10045) curves(3) prime(1) 7 }

  The object identifier for P-384 is:

     secp384r1  OBJECT IDENTIFIER  ::=  { iso(1)
         identified-organization(3) certicom(132) curve(0) 34 }

  The algorithm identifier used in CMS for ECDSA with SHA-256 signature
  values is:

     ecdsa-with-SHA256  OBJECT IDENTIFIER  ::=  { iso(1) member-body(2)
         us(840) ansi-X9-62(10045) signatures(4) ecdsa-with-sha2(3) 2 }

  The algorithm identifier used in CMS for ECDSA with SHA-384 signature
  values is:

     ecdsa-with-SHA384  OBJECT IDENTIFIER  ::=  { iso(1) member-body(2)
         us(840) ansi-X9-62(10045) signatures(4) ecdsa-with-sha2(3) 3 }

  When either the ecdsa-with-SHA256 or the ecdsa-with-SHA384 algorithm
  identifier is used, the AlgorithmIdentifier parameters field MUST be
  absent.

  When signing, the ECDSA algorithm generates two values, commonly
  called r and s.  To transfer these two values as one signature, they
  MUST be encoded using the Ecdsa-Sig-Value type specified in RFC 3279
  [PKIX1ALG]:

     Ecdsa-Sig-Value  ::=  SEQUENCE {
       r  INTEGER,
       s  INTEGER }

4.  Key Management

  CMS accommodates the following general key management techniques: key
  agreement, key transport, previously distributed symmetric key-
  encryption keys, and passwords.  In Suite B, ephemeral-static key
  agreement MUST be used as described in Section 4.1.

  When a key agreement algorithm is used, a key-encryption algorithm is
  also needed.  In Suite B, the Advanced Encryption Standard (AES) Key
  Wrap, as specified in RFC 3394 [AESWRAP, SH], MUST be used as the
  key-encryption algorithm.  AES Key Wrap is discussed further in
  Section 4.2.  The key-encryption key used with the AES Key Wrap



Housley & Solinas            Informational                      [Page 5]

RFC 5008                   Suite B in S/MIME              September 2007


  algorithm is obtained from a key derivation function (KDF).  In Suite
  B, there are two KDFs, one based on SHA-256 and one based on SHA-384.
  These KDFs are discussed further in Section 4.3.

4.1.  ECDH Key Agreement Algorithm

  This section specifies the conventions employed by implementations
  that support ECDH.  The direction set by RFC 3278 [CMSECC] is
  followed, but additional key derivation functions and key wrap
  algorithms are employed.  S/MIME is used in store-and-forward
  communications, which means that ephemeral-static ECDH is always
  employed.  This means that the message originator uses an ephemeral
  ECDH key and that the message recipient uses a static ECDH key, which
  is obtained from an X.509 certificate.  In Suite B, Security Level 1,
  ephemeral-static ECDH MUST be used with the SHA-256 KDF, AES-128 Key
  Wrap, and the P-256 elliptic curve.  In Suite B, Security Level 2,
  ephemeral-static ECDH MUST be used with the SHA-384 KDF, AES-256 Key
  Wrap, and the P-384 elliptic curve.

  Within the CMS enveloped-data content type, key agreement algorithm
  identifiers are located in the EnvelopedData RecipientInfos
  KeyAgreeRecipientInfo keyEncryptionAlgorithm field.

  As specified in RFC 3279 [PKIX1ALG], ECDSA and ECDH use the same
  conventions for carrying a subject public key in a certificate.
  These conventions are discussed in Section 3.

  Ephemeral-static ECDH key agreement is defined in [SEC1] and
  [IEEE1363].  When using ephemeral-static ECDH, the EnvelopedData
  RecipientInfos keyAgreeRecipientInfo field is used as follows:

     version MUST be 3.

     originator MUST be the originatorKey alternative.  The
     originatorKey algorithm field MUST contain the id-ecPublicKey
     object identifier (see Section 3) with NULL parameters.  The
     originatorKey publicKey field MUST contain the message
     originator's ephemeral public key, which is a DER-encoded ECPoint
     (see Section 3).  The ECPoint SHOULD be represented in
     uncompressed form.

     ukm can be present or absent.  However, message originators SHOULD
     include the ukm.  As specified in RFC 3852 [CMS], implementations
     MUST support ukm message recipient processing, so interoperability
     is not a concern if the ukm is present or absent.  When present,
     the ukm is used to ensure that a different key-encryption key is
     generated, even when the ephemeral private key is improperly used




Housley & Solinas            Informational                      [Page 6]

RFC 5008                   Suite B in S/MIME              September 2007


     more than once.  See [RANDOM] for guidance on generation of random
     values.

     keyEncryptionAlgorithm MUST be one of the two algorithm
     identifiers listed below, and the algorithm identifier parameter
     field MUST be present and identify the key wrap algorithm.  The
     key wrap algorithm denotes the symmetric encryption algorithm used
     to encrypt the content-encryption key with the pairwise key-
     encryption key generated using the ephemeral-static ECDH key
     agreement algorithm (see Section 4.3).  In Suite B, Security Level
     1, the keyEncryptionAlgorithm MUST be dhSinglePass-stdDH-
     sha256kdf-scheme, and the keyEncryptionAlgorithm parameter MUST be
     a KeyWrapAlgorithm containing id-aes128-wrap (see Section 4.2).
     In Suite B, Security Level 2, the keyEncryptionAlgorithm MUST be
     dhSinglePass-stdDH-sha384kdf-scheme, and the
     keyEncryptionAlgorithm parameter MUST be a KeyWrapAlgorithm
     containing id-aes256-wrap (see Section 4.2).  The algorithm
     identifier for dhSinglePass-stdDH-sha256kdf-scheme and
     dhSinglePass-stdDH-sha384kdf-scheme are:

        dhSinglePass-stdDH-sha256kdf-scheme  OBJECT IDENTIFIER  ::=
            { iso(1) identified-organization(3) certicom(132)
              schemes(1) 11 1 }

        dhSinglePass-stdDH-sha384kdf-scheme  OBJECT IDENTIFIER  ::=
            { iso(1) identified-organization(3) certicom(132)
              schemes(1) 11 2 }

     Both of these algorithm identifiers use KeyWrapAlgorithm as the
     type for their parameter:

        KeyWrapAlgorithm  ::=  AlgorithmIdentifier

     recipientEncryptedKeys contains an identifier and an encrypted key
     for each recipient.  The RecipientEncryptedKey
     KeyAgreeRecipientIdentifier MUST contain either the
     issuerAndSerialNumber identifying the recipient's certificate or
     the RecipientKeyIdentifier containing the subject key identifier
     from the recipient's certificate.  In both cases, the recipient's
     certificate contains the recipient's static ECDH public key.
     RecipientEncryptedKey EncryptedKey MUST contain the content-
     encryption key encrypted with the ephemeral-static, ECDH-generated
     pairwise key-encryption key using the algorithm specified by the
     KeyWrapAlgorithm (see Section 4.3).







Housley & Solinas            Informational                      [Page 7]

RFC 5008                   Suite B in S/MIME              September 2007


4.2.  AES Key Wrap

  CMS offers support for symmetric key-encryption key management;
  however, it is not used in Suite B.  Rather, the AES Key Wrap key-
  encryption algorithm, as specified in RFC 3394 [AESWRAP, SH], is used
  to encrypt the content-encryption key with a pairwise key-encryption
  key that is generated using ephemeral-static ECDH.  In Suite B,
  Security Level 1, AES-128 Key Wrap MUST be used as the key-encryption
  algorithm.  In Suite B, Security Level 2, AES-256 Key Wrap MUST be
  used as the key-encryption algorithm.

  Within the CMS enveloped-data content type, wrapped content-
  encryption keys are located in the EnvelopedData RecipientInfos
  KeyAgreeRecipientInfo RecipientEncryptedKeys encryptedKey field, and
  key wrap algorithm identifiers are located in the KeyWrapAlgorithm
  parameters within the EnvelopedData RecipientInfos
  KeyAgreeRecipientInfo keyEncryptionAlgorithm field.

  The algorithm identifiers for AES Key Wrap are specified in RFC 3394
  [SH], and the ones needed for Suite B are repeated here:

     id-aes128-wrap  OBJECT IDENTIFIER  ::=  { joint-iso-itu-t(2)
         country(16) us(840) organization(1) gov(101) csor(3)
         nistAlgorithm(4) aes(1) 5 }

     id-aes256-wrap  OBJECT IDENTIFIER  ::=  { joint-iso-itu-t(2)
         country(16) us(840) organization(1) gov(101) csor(3)
         nistAlgorithm(4) aes(1) 45 }

4.3.  Key Derivation Functions

  CMS offers support for deriving symmetric key-encryption keys from
  passwords; however, password-based key management is not used in
  Suite B.  Rather, KDFs based on SHA-256 and SHA-384 are used to
  derive a pairwise key-encryption key from the shared secret produced
  by ephemeral-static ECDH.  In Suite B, Security Level 1, the KDF
  based on SHA-256 MUST be used.  In Suite B, Security Level 2, KDF
  based on SHA-384 MUST be used.

  As specified in Section 8.2 of RFC 3278 [CMSECC], using ECDH with the
  CMS enveloped-data content type, the derivation of key-encryption
  keys makes use of the ECC-CMS-SharedInfo type, which is repeated
  here:

     ECC-CMS-SharedInfo  ::=  SEQUENCE {
       keyInfo      AlgorithmIdentifier,
       entityUInfo  [0] EXPLICIT OCTET STRING OPTIONAL,
       suppPubInfo  [2] EXPLICIT OCTET STRING }



Housley & Solinas            Informational                      [Page 8]

RFC 5008                   Suite B in S/MIME              September 2007


  In Suite B, the fields of ECC-CMS-SharedInfo are used as follows:

     keyInfo contains the object identifier of the key-encryption
     algorithm that will be used to wrap the content-encryption key and
     NULL parameters.  In Suite B, Security Level 1, AES-128 Key Wrap
     MUST be used, resulting in {id-aes128-wrap, NULL}.  In Suite B,
     Security Level 2, AES-256 Key Wrap MUST be used, resulting in
     {id-aes256-wrap, NULL}.

     entityUInfo optionally contains a random value provided by the
     message originator.  If the ukm is present, then the entityUInfo
     MUST be present, and it MUST contain the ukm value.  If the ukm is
     not present, then the entityUInfo MUST be absent.

     suppPubInfo contains the length of the generated key-encryption
     key, in bits, represented as a 32-bit unsigned number, as
     described in RFC 2631 [CMSDH].  In Suite B, Security Level 1, a
     128-bit AES key MUST be used, resulting in 0x00000080.  In Suite
     B, Security Level 2, a 256-bit AES key MUST be used, resulting in
     0x00000100.

  ECC-CMS-SharedInfo is DER-encoded and used as input to the key
  derivation function, as specified in Section 3.6.1 of [SEC1].  Note
  that ECC-CMS-SharedInfo differs from the OtherInfo specified in
  [CMSDH].  Here, a counter value is not included in the keyInfo field
  because the KDF specified in [SEC1] ensures that sufficient keying
  data is provided.

  The KDF specified in [SEC1] provides an algorithm for generating an
  essentially arbitrary amount of keying material from the shared
  secret produced by ephemeral-static ECDH, which is called Z for the
  remainder of this discussion.  The KDF can be summarized as:

     KM = Hash ( Z || Counter || ECC-CMS-SharedInfo )

  To generate a key-encryption key, one or more KM blocks are
  generated, incrementing Counter appropriately, until enough material
  has been generated.  The KM blocks are concatenated left to right:

     KEK = KM ( counter=1 ) || KM ( counter=2 ) ...

  The elements of the KDF are used as follows:

     Hash is the one-way hash function, and it is either SHA-256 or
     SHA-384 [SHA2].  In Suite B, Security Level 1, the SHA-256 MUST be
     used.  In Suite B, Security Level 2, SHA-384 MUST be used.





Housley & Solinas            Informational                      [Page 9]

RFC 5008                   Suite B in S/MIME              September 2007


     Z is the shared secret value generated by ephemeral-static ECDH.
     Leading zero bits MUST be preserved.  In Suite B, Security Level
     1, Z MUST be exactly 256 bits.  In Suite B, Security Level 2, Z
     MUST be exactly 384 bits.

     Counter is a 32-bit unsigned number, represented in network byte
     order.  Its initial value MUST be 0x00000001 for any key
     derivation operation.  In Suite B, Security Level 1 and Security
     Level 2, exactly one iteration is needed; the Counter is not
     incremented.

     ECC-CMS-SharedInfo is composed as described above.  It MUST be DER
     encoded.

  To generate a key-encryption key, one KM block is generated, with a
  Counter value of 0x00000001:

     KEK = KM ( 1 ) = Hash ( Z || Counter=1 || ECC-CMS-SharedInfo )

  In Suite B, Security Level 1, the key-encryption key MUST be the most
  significant 128 bits of the SHA-256 output value.  In Suite B,
  Security Level 2, the key-encryption key MUST be the most significant
  256 bits of the SHA-384 output value.

  Note that the only source of secret entropy in this computation is Z.
  The effective key space of the key-encryption key is limited by the
  size of Z, in addition to any security level considerations imposed
  by the elliptic curve that is used.  However, if entityUInfo is
  different for each message, a different key-encryption key will be
  generated for each message.

5.  AES CBC Content Encryption

  This section specifies the conventions employed by implementations
  that support content encryption using AES [AES] in Cipher Block
  Chaining (CBC) mode [MODES].  The conventions in RFC 3565 [CMSAES]
  are followed.  In Suite B, Security Level 1, the AES-128 in CBC mode
  MUST be used for content encryption.  In Suite B, Security Level 2,
  AES-256 in CBC mode MUST be used.

  Within the CMS enveloped-data content type, content encryption
  algorithm identifiers are located in the EnvelopedData
  EncryptedContentInfo contentEncryptionAlgorithm field.  The content
  encryption algorithm is used to encipher the content located in the
  EnvelopedData EncryptedContentInfo encryptedContent field.

  The AES CBC content-encryption algorithm is described in [AES] and
  [MODES].  The algorithm identifier for AES-128 in CBC mode is:



Housley & Solinas            Informational                     [Page 10]

RFC 5008                   Suite B in S/MIME              September 2007


     id-aes128-CBC  OBJECT IDENTIFIER  ::=  { joint-iso-itu-t(2)
         country(16) us(840) organization(1) gov(101) csor(3)
         nistAlgorithm(4) aes(1) 2 }

  The algorithm identifier for AES-256 in CBC mode is:

     id-aes256-CBC  OBJECT IDENTIFIER  ::=  { joint-iso-itu-t(2)
         country(16) us(840) organization(1) gov(101) csor(3)
         nistAlgorithm(4) aes(1) 42 }

  The AlgorithmIdentifier parameters field MUST be present, and the
  parameters field must contain AES-IV:

     AES-IV  ::=  OCTET STRING (SIZE(16))

  The 16-octet initialization vector is generated at random by the
  originator.  See [RANDOM] for guidance on generation of random
  values.

6.  Security Considerations

  This document specifies the conventions for using the NSA's Suite B
  algorithms in S/MIME.  All of the algorithms have been specified in
  previous documents, although a few new algorithm identifiers have
  been assigned.

  Two levels of security may be achieved using this specification.
  Users must consider their risk environment to determine which level
  is appropriate for their own use.

  For signed and encrypted messages, Suite B provides a consistent
  level of security for confidentiality and integrity of the message
  content.

  The security considerations in RFC 3852 [CMS] discuss the CMS as a
  method for digitally signing data and encrypting data.

  The security considerations in RFC 3370 [CMSALG] discuss
  cryptographic algorithm implementation concerns in the context of the
  CMS.

  The security considerations in RFC 3278 [CMSECC] discuss the use of
  elliptic curve cryptography (ECC) in the CMS.

  The security considerations in RFC 3565 [CMSAES] discuss the use of
  AES in the CMS.





Housley & Solinas            Informational                     [Page 11]

RFC 5008                   Suite B in S/MIME              September 2007


7.  References

7.1.  Normative References

  [AES]       National Institute of Standards and Technology, "Advanced
              Encryption Standard (AES)", FIPS PUB 197, November 2001.

  [AESWRAP]   National Institute of Standards and Technology, "AES Key
              Wrap Specification", 17 November 2001.  [See
              http://csrc.nist.gov/encryption/kms/key-wrap.pdf]

  [DSS]       National Institute of Standards and Technology, "Digital
              Signature Standard (DSS)", FIPS PUB 186-2, January 2000.

  [ECDSA]     American National Standards Institute, "Public Key
              Cryptography For The Financial Services Industry: The
              Elliptic Curve Digital Signature Algorithm (ECDSA)", ANSI
              X9.62-1998, 1999.

  [CMS]       Housley, R., "Cryptographic Message Syntax (CMS)", RFC
              3852, July 2004.

  [CMSAES]    Schaad, J., "Use of the Advanced Encryption Standard
              (AES) Encryption Algorithm in Cryptographic Message
              Syntax (CMS)", RFC 3565, July 2003.

  [CMSALG]    Housley, R., "Cryptographic Message Syntax (CMS)
              Algorithms", RFC 3370, August 2002.

  [CMSDH]     Rescorla, E., "Diffie-Hellman Key Agreement Method", RFC
              2631, June 1999.

  [CMSECC]    Blake-Wilson, S., Brown, D., and P. Lambert, "Use of
              Elliptic Curve Cryptography (ECC) Algorithms in
              Cryptographic Message Syntax (CMS)", RFC 3278, April
              2002.

  [IEEE1363]  Institute of Electrical and Electronics Engineers,
              "Standard Specifications for Public Key Cryptography",
              IEEE Std 1363, 2000.

  [MODES]     National Institute of Standards and Technology, "DES
              Modes of Operation", FIPS Pub 81, 2 December 1980.

  [MSG]       Ramsdell, B., "Secure/Multipurpose Internet Mail
              Extensions (S/MIME) Version 3.1 Message Specification",
              RFC 3851, July 2004.




Housley & Solinas            Informational                     [Page 12]

RFC 5008                   Suite B in S/MIME              September 2007


  [PKIX1]     Housley, R., Polk, W., Ford, W., and D. Solo, "Internet
              X.509 Public Key Infrastructure Certificate and
              Certificate Revocation List (CRL) Profile", RFC 3280,
              April 2002.

  [PKIX1ALG]  Bassham, L., Polk, W., and R. Housley, "Algorithms and
              Identifiers for the Internet X.509 Public Key
              Infrastructure Certificate and Certificate Revocation
              List (CRL) Profile", RFC 3279, April 2002.

  [SEC1]      Standards for Efficient Cryptography Group, "Elliptic
              Curve Cryptography", 2000.  [See http://www.secg.org/
              collateral/sec1.pdf.]

  [SH]        Schaad, J., and R. Housley, "Advanced Encryption Standard
              (AES) Key Wrap Algorithm", RFC 3394, September 2002.

  [SHA2]      National Institute of Standards and Technology, "Secure
              Hash Standard", FIPS 180-2, 1 August 2002.

  [STDWORDS]  S. Bradner, "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119, March 1997.

  [X.208-88]  CCITT.  Recommendation X.208: Specification of Abstract
              Syntax Notation One (ASN.1).  1988.

  [X.209-88]  CCITT.  Recommendation X.209: Specification of Basic
              Encoding Rules for Abstract Syntax Notation One (ASN.1).
              1988.

  [X.509-88]  CCITT.  Recommendation X.509: The Directory -
              Authentication Framework.  1988.

7.2.  Informative References

  [EH]        Eastlake 3rd, D. and T. Hansen, "US Secure Hash
              Algorithms (SHA and HMAC-SHA)", RFC 4634, July 2006.

  [RANDOM]    Eastlake, D., 3rd, Schiller, J., and S. Crocker,
              "Randomness Requirements for Security", BCP 106, RFC
              4086, June 2005.

  [SuiteB]    National Security Agency, "Fact Sheet NSA Suite B
              Cryptography", July 2005.  [See http://www.nsa.gov/ia/
              industry/crypto_Suite_b.cfm?MenuID=10.2.7)






Housley & Solinas            Informational                     [Page 13]

RFC 5008                   Suite B in S/MIME              September 2007


Authors' Addresses

  Russell Housley
  Vigil Security, LLC
  918 Spring Knoll Drive
  Herndon, VA 20170
  USA

  EMail: [email protected]


  Jerome A. Solinas
  National Information Assurance Laboratory
  National Security Agency
  9800 Savage Road
  Fort George G. Meade, MD 20755
  USA

  EMail: [email protected]
































Housley & Solinas            Informational                     [Page 14]

RFC 5008                   Suite B in S/MIME              September 2007


Full Copyright Statement

  Copyright (C) The IETF Trust (2007).

  This document is subject to the rights, licenses and restrictions
  contained in BCP 78, and except as set forth therein, the authors
  retain all their rights.

  This document and the information contained herein are provided on an
  "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
  OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
  THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
  OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
  THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
  WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

  The IETF takes no position regarding the validity or scope of any
  Intellectual Property Rights or other rights that might be claimed to
  pertain to the implementation or use of the technology described in
  this document or the extent to which any license under such rights
  might or might not be available; nor does it represent that it has
  made any independent effort to identify any such rights.  Information
  on the procedures with respect to rights in RFC documents can be
  found in BCP 78 and BCP 79.

  Copies of IPR disclosures made to the IETF Secretariat and any
  assurances of licenses to be made available, or the result of an
  attempt made to obtain a general license or permission for the use of
  such proprietary rights by implementers or users of this
  specification can be obtained from the IETF on-line IPR repository at
  http://www.ietf.org/ipr.

  The IETF invites any interested party to bring to its attention any
  copyrights, patents or patent applications, or other proprietary
  rights that may cover technology that may be required to implement
  this standard.  Please address the information to the IETF at
  [email protected].












Housley & Solinas            Informational                     [Page 15]