Network Working Group                                      J. Jeong, Ed.
Request for Comments: 5006                  ETRI/University of Minnesota
Category: Experimental                                           S. Park
                                                    SAMSUNG Electronics
                                                             L. Beloeil
                                                     France Telecom R&D
                                                         S. Madanapalli
                                                     Ordyn Technologies
                                                         September 2007


        IPv6 Router Advertisement Option for DNS Configuration

Status of This Memo

  This memo defines an Experimental Protocol for the Internet
  community.  It does not specify an Internet standard of any kind.
  Discussion and suggestions for improvement are requested.
  Distribution of this memo is unlimited.

Abstract

  This document specifies a new IPv6 Router Advertisement option to
  allow IPv6 routers to advertise DNS recursive server addresses to
  IPv6 hosts.

Table of Contents

  1.  Introduction . . . . . . . . . . . . . . . . . . . . . . . . .  2
    1.1.  Applicability Statements . . . . . . . . . . . . . . . . .  2
    1.2.  Coexistence of RDNSS Option and DHCP Option  . . . . . . .  2
  2.  Definitions  . . . . . . . . . . . . . . . . . . . . . . . . .  3
  3.  Terminology  . . . . . . . . . . . . . . . . . . . . . . . . .  3
  4.  Overview . . . . . . . . . . . . . . . . . . . . . . . . . . .  3
  5.  Neighbor Discovery Extension . . . . . . . . . . . . . . . . .  4
    5.1.  Recursive DNS Server Option  . . . . . . . . . . . . . . .  4
    5.2.  Procedure of DNS Configuration . . . . . . . . . . . . . .  5
      5.2.1.  Procedure in IPv6 Host . . . . . . . . . . . . . . . .  5
  6.  Implementation Considerations  . . . . . . . . . . . . . . . .  6
    6.1.  DNS Server List Management . . . . . . . . . . . . . . . .  6
    6.2.  Synchronization between DNS Server List and Resolver
          Repository . . . . . . . . . . . . . . . . . . . . . . . .  7
  7.  Security Considerations  . . . . . . . . . . . . . . . . . . .  8
  8.  IANA Considerations  . . . . . . . . . . . . . . . . . . . . .  8
  9.  Acknowledgements . . . . . . . . . . . . . . . . . . . . . . .  8
  10. References . . . . . . . . . . . . . . . . . . . . . . . . . .  9
    10.1. Normative References . . . . . . . . . . . . . . . . . . .  9
    10.2. Informative References . . . . . . . . . . . . . . . . . .  9



Jeong, et al.                 Experimental                      [Page 1]

RFC 5006          IPv6 RA Option for DNS Configuration    September 2007


1.  Introduction

  Neighbor Discovery (ND) for IP Version 6 and IPv6 Stateless Address
  Autoconfiguration provide ways to configure either fixed or mobile
  nodes with one or more IPv6 addresses, default routers and some other
  parameters [2][3].  To support the access to additional services in
  the Internet that are identified by a DNS name, such as a web server,
  the configuration of at least one recursive DNS server is also needed
  for DNS name resolution.

  It is infeasible for nomadic hosts, such as laptops, to be configured
  manually with a DNS resolver each time they connect to a different
  wireless LAN (WLAN) such as IEEE 802.11 a/b/g [12]-[15].  Normally,
  DHCP [6]-[8] is used to locate such resolvers.  This document
  provides an alternate, experimental mechanism which uses a new IPv6
  Router Advertisement (RA) option to allow IPv6 routers to advertise
  DNS recursive server addresses to IPv6 hosts.

1.1.  Applicability Statements

  The only standards-track DNS configuration mechanism in the IETF is
  DHCP, and its support in hosts and routers is necessary for reasons
  of interoperability.

  RA-based DNS configuration is a useful, optional alternative in
  networks where an IPv6 host's address is autoconfigured through IPv6
  stateless address autoconfiguration, and where the delays in
  acquiring server addresses and communicating with the servers are
  critical.  RA-based DNS configuration allows the host to acquire the
  nearest server addresses on every link.  Furthermore, it learns these
  addresses from the same RA message that provides configuration
  information for the link, thereby avoiding an additional protocol
  run.  This can be beneficial in some mobile environments, such as
  with Mobile IPv6 [10].

  The advantages and disadvantages of the RA-based approach are
  discussed in [9] along with other approaches, such as the DHCP and
  well-known anycast addresses approaches.

1.2.  Coexistence of RDNSS Option and DHCP Option

  The RDNSS (Recursive DNS Server) option and DHCP option can be used
  together [9].  To order the RA and DHCP approaches, the O (Other
  stateful configuration) flag can be used in the RA message [2].  If
  no RDNSS option is included in the RA messages, an IPv6 host may
  perform DNS configuration through DHCPv6 [6]-[8] regardless of
  whether the O flag is set or not.




Jeong, et al.                 Experimental                      [Page 2]

RFC 5006          IPv6 RA Option for DNS Configuration    September 2007


2.  Definitions

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in [1].

3.  Terminology

  This document uses the terminology described in [2] and [3].  In
  addition, four new terms are defined below:

  o  Recursive DNS Server (RDNSS): Server which provides a recursive
     DNS resolution service for translating domain names into IP
     addresses as defined in [4] and [5].

  o  RDNSS Option: IPv6 RA option to deliver the RDNSS information to
     IPv6 hosts [2].

  o  DNS Server List: A data structure for managing DNS Server
     Information in the IPv6 protocol stack in addition to the Neighbor
     Cache and Destination Cache for Neighbor Discovery [2].

  o  Resolver Repository: Configuration repository with RDNSS addresses
     that a DNS resolver on the host uses for DNS name resolution; for
     example, the Unix resolver file (i.e., /etc/resolv.conf) and
     Windows registry.

4.  Overview

  This document defines a new ND option called RDNSS option that
  contains the addresses of recursive DNS servers.  Existing ND
  transport mechanisms (i.e., advertisements and solicitations) are
  used.  This works in the same way that hosts learn about routers and
  prefixes.  An IPv6 host can configure the IPv6 addresses of one or
  more RDNSSes via RA messages periodically sent by a router or
  solicited by a Router Solicitation (RS).

  Through the RDNSS option, along with the prefix information option
  based on the ND protocol ([2] and [3]), an IPv6 host can perform
  network configuration of its IPv6 address and RDNSS simultaneously
  without needing a separate message exchange for the RDNSS
  information.  The RA option for RDNSS can be used on any network that
  supports the use of ND.

  This approach requires RDNSS information to be configured in the
  routers sending the advertisements.  The configuration of RDNSS
  addresses in the routers can be done by manual configuration.  The
  automatic configuration or redistribution of RDNSS information is



Jeong, et al.                 Experimental                      [Page 3]

RFC 5006          IPv6 RA Option for DNS Configuration    September 2007


  possible by running a DHCPv6 client on the router [6]-[8].  The
  automatic configuration of RDNSS addresses in routers is out of scope
  for this document.

5.  Neighbor Discovery Extension

  The IPv6 DNS configuration mechanism in this document needs a new ND
  option in Neighbor Discovery: the Recursive DNS Server (RDNSS)
  option.

5.1.  Recursive DNS Server Option

  The RDNSS option contains one or more IPv6 addresses of recursive DNS
  servers.  All of the addresses share the same lifetime value.  If it
  is desirable to have different lifetime values, multiple RDNSS
  options can be used.  Figure 1 shows the format of the RDNSS option.

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |     Type      |     Length    |           Reserved            |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                           Lifetime                            |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                                                               |
    :            Addresses of IPv6 Recursive DNS Servers            :
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

          Figure 1: Recursive DNS Server (RDNSS) Option Format

  Fields:

    Type          8-bit identifier of the RDNSS option type as assigned
                  by the IANA: 25

    Length        8-bit unsigned integer.  The length of the option
                  (including the Type and Length fields) is in units of
                  8 octets.  The minimum value is 3 if one IPv6 address
                  is contained in the option.  Every additional RDNSS
                  address increases the length by 2.  The Length field
                  is used by the receiver to determine the number of
                  IPv6 addresses in the option.








Jeong, et al.                 Experimental                      [Page 4]

RFC 5006          IPv6 RA Option for DNS Configuration    September 2007


    Lifetime      32-bit unsigned integer.  The maximum time, in
                  seconds (relative to the time the packet is sent),
                  over which this RDNSS address MAY be used for name
                  resolution.  Hosts MAY send a Router Solicitation to
                  ensure the RDNSS information is fresh before the
                  interval expires.  In order to provide fixed hosts
                  with stable DNS service and allow mobile hosts to
                  prefer local RDNSSes to remote RDNSSes, the value of
                  Lifetime should be at least as long as the Maximum RA
                  Interval (MaxRtrAdvInterval) in RFC 4861, and be at
                  most as long as two times MaxRtrAdvInterval; Lifetime
                  SHOULD be bounded as follows:  MaxRtrAdvInterval <=
                  Lifetime <= 2*MaxRtrAdvInterval.  A value of all one
                  bits (0xffffffff) represents infinity.  A value of
                  zero means that the RDNSS address MUST no longer be
                  used.

    Addresses of IPv6 Recursive DNS Servers
                  One or more 128-bit IPv6 addresses of the recursive
                  DNS servers.  The number of addresses is determined
                  by the Length field.  That is, the number of
                  addresses is equal to (Length - 1) / 2.

5.2.  Procedure of DNS Configuration

  The procedure of DNS configuration through the RDNSS option is the
  same as with any other ND option [2].

5.2.1.  Procedure in IPv6 Host

  When an IPv6 host receives an RDNSS option through RA, it checks
  whether the option is valid.

  o  If the RDNSS option is valid, the host SHOULD copy the option's
     value into the DNS Server List and the Resolver Repository as long
     as the value of the Length field is greater than or equal to the
     minimum value (3).  The host MAY ignore additional RDNSS addresses
     within an RDNSS option and/or additional RDNSS options within an
     RA when it has gathered a sufficient number of RDNSS addresses.

  o  If the RDNSS option is invalid (e.g., the Length field has a value
     less than 3), the host SHOULD discard the option.









Jeong, et al.                 Experimental                      [Page 5]

RFC 5006          IPv6 RA Option for DNS Configuration    September 2007


6.  Implementation Considerations

  Note:  This non-normative section gives some hints for implementing
     the processing of the RDNSS option in an IPv6 host.

  For the configuration and management of RDNSS information, the
  advertised RDNSS addresses can be stored and managed in both the DNS
  Server List and the Resolver Repository.

  In environments where the RDNSS information is stored in user space
  and ND runs in the kernel, it is necessary to synchronize the DNS
  Server List of RDNSS addresses in kernel space and the Resolver
  Repository in user space.  For the synchronization, an implementation
  where ND works in the kernel should provide a write operation for
  updating RDNSS information from the kernel to the Resolver
  Repository.  One simple approach is to have a daemon (or a program
  that is called at defined intervals) that keeps monitoring the
  lifetime of RDNSS addresses all the time.  Whenever there is an
  expired entry in the DNS Server List, the daemon can delete the
  corresponding entry from the Resolver Repository.

6.1.  DNS Server List Management

  The kernel or user-space process (depending on where RAs are
  processed) should maintain a data structure called a DNS Server List
  which keeps the list of RDNSS addresses.  Each entry in the DNS
  Server List consists of an RDNSS address and Expiration-time as
  follows:

  o  RDNSS address: IPv6 address of the Recursive DNS Server, which is
     available for recursive DNS resolution service in the network
     advertising the RDNSS option; such a network is called site in
     this document.

  o  Expiration-time: The time when this entry becomes invalid.
     Expiration-time is set to the value of the Lifetime field of the
     RDNSS option plus the current system time.  Whenever a new RDNSS
     option with the same address is received, this field is updated to
     have a new expiration time.  When Expiration-time becomes less
     than the current system time, this entry is regarded as expired.

  Note:  An RDNSS address MUST be used only as long as both the RA
     router lifetime and the RDNSS option lifetime have not expired.
     The reason is that the RDNSS may not be currently reachable or may
     not provide service to the host's current address (e.g., due to
     network ingress filtering [16][17]).





Jeong, et al.                 Experimental                      [Page 6]

RFC 5006          IPv6 RA Option for DNS Configuration    September 2007


6.2.  Synchronization between DNS Server List and Resolver Repository

  When an IPv6 host receives the information of multiple RDNSS
  addresses within a site through an RA message with RDNSS option(s),
  it stores the RDNSS addresses (in order) into both the DNS Server
  List and the Resolver Repository.  The processing of the RDNSS
  option(s) included in an RA message is as follows:

     Step (a): Receive and parse the RDNSS option(s).  For the RDNSS
     addresses in each RDNSS option, perform Step (b) through Step (d).
     Note that Step (e) is performed whenever an entry expires in the
     DNS Server List.

     Step (b): For each RDNSS address, check the following: If the
     RDNSS address already exists in the DNS Server List and the RDNSS
     option's Lifetime field is set to zero, delete the corresponding
     RDNSS entry from both the DNS Server List and the Resolver
     Repository in order to prevent the RDNSS address from being used
     any more for certain reasons in network management, e.g., the
     breakdown of the RDNSS or a renumbering situation.  The processing
     of this RDNSS address is finished here.  Otherwise, go to Step
     (c).

     Step (c): For each RDNSS address, if it already exists in the DNS
     Server List, then just update the value of the Expiration-time
     field according to the procedure specified in the second bullet of
     Section 6.1.  Otherwise, go to Step (d).

     Step (d): For each RDNSS address, if it does not exist in the DNS
     Server List, register the RDNSS address and lifetime with the DNS
     Server List and then insert the RDNSS address in front of the
     Resolver Repository.  In the case where the data structure for the
     DNS Server List is full of RDNSS entries, delete from the DNS
     Server List the entry with the shortest expiration time (i.e., the
     entry that will expire first).  The corresponding RDNSS address is
     also deleted from the Resolver Repository.  In the order in the
     RDNSS option, position the newly added RDNSS addresses in front of
     the Resolver Repository so that the new RDNSS addresses may be
     preferred according to their order in the RDNSS option for the DNS
     name resolution.  The processing of these RDNSS addresses is
     finished here.  Note that, in the case where there are several
     routers advertising RDNSS option(s) in a subnet, the RDNSSes that
     have been announced recently are preferred.

     Step (e): Delete each expired entry from the DNS Server List, and
     delete the RDNSS address corresponding to the entry from the
     Resolver Repository.




Jeong, et al.                 Experimental                      [Page 7]

RFC 5006          IPv6 RA Option for DNS Configuration    September 2007


7.  Security Considerations

  The security of the RA option for RDNSS might be worse than ND
  protocol security [2].  However, any new vulnerability in this RA
  option is not known yet.  In this context, it can be claimed that the
  vulnerability of ND is not worse and is a subset of the attacks that
  any node attached to a LAN can do independently of ND.  A malicious
  node on a LAN can promiscuously receive packets for any router's MAC
  address and send packets with the router's MAC address as the source
  MAC address in the L2 header.  As a result, L2 switches send packets
  addressed to the router to the malicious node.  Also, this attack can
  send redirects that tell the hosts to send their traffic somewhere
  else.  The malicious node can send unsolicited RA or Neighbor
  Advertisement (NA) replies, answer RS or Neighbor Solicitation (NS)
  requests, etc.  Also, an attacker could configure a host to send out
  an RA with a fraudulent RDNSS address, which is presumably an easier
  avenue of attack than becoming a rogue router and having to process
  all traffic for the subnet.  It is necessary to disable the RA RDNSS
  option in both routers and clients administratively to avoid this
  problem.  All of this can be done independently of implementing ND.
  Therefore, it can be claimed that the RA option for RDNSS has
  vulnerabilities similar to those existing in current mechanisms.

  If the Secure Neighbor Discovery (SEND) protocol is used as a
  security mechanism for ND, all the ND options including the RDNSS
  option are automatically included in the signatures [11], so the
  RDNSS transport is integrity-protected.  However, since any valid
  SEND node can still insert RDNSS options, SEND cannot verify who is
  or is not authorized to send the options.

8.  IANA Considerations

  The IANA has assigned a new IPv6 Neighbor Discovery Option type for
  the RDNSS option defined in this document.

                Option Name               Type
                RDNSS option              25

  The IANA registry for these options is:

      http://www.iana.org/assignments/icmpv6-parameters

9.  Acknowledgements

  This document has greatly benefited from inputs by Robert Hinden,
  Pekka Savola, Iljitsch van Beijnum, Brian Haberman and Tim Chown.
  The authors appreciate their contributions.




Jeong, et al.                 Experimental                      [Page 8]

RFC 5006          IPv6 RA Option for DNS Configuration    September 2007


10.  References

10.1.  Normative References

  [1]   Bradner, S., "Key words for use in RFCs to Indicate Requirement
        Levels", BCP 14, RFC 2119, March 1997.

  [2]   Narten, T., Nordmark, E., Simpson, W., and H. Soliman,
        "Neighbor Discovery for IP version 6 (IPv6)", RFC 4861,
        September 2007.

  [3]   Thomson, S., Narten, T., and T. Jinmei, "IPv6 Stateless Address
        Autoconfiguration", RFC 4862, September 2007.

10.2.  Informative References

  [4]   Mockapetris, P., "Domain Names - Concepts and Facilities",
        RFC 1034, November 1987.

  [5]   Mockapetris, P., "Domain Names - Implementation and
        Specification", RFC 1035, November 1987.

  [6]   Droms, R., Ed., "Dynamic Host Configuration Protocol for IPv6
        (DHCPv6)", RFC 3315, July 2003.

  [7]   Droms, R., "Stateless Dynamic Host Configuration Protocol
        (DHCP) Service for IPv6", RFC 3736, April 2004.

  [8]   Droms, R., Ed., "DNS Configuration options for Dynamic Host
        Configuration Protocol for IPv6 (DHCPv6)", RFC 3646,
        December 2003.

  [9]   Jeong, J., Ed., "IPv6 Host Configuration of DNS Server
        Information Approaches", RFC 4339, February 2006.

  [10]  Johnson, D., Perkins, C., and J. Arkko, "Mobility Support in
        IPv6", RFC 3775, June 2004.

  [11]  Arkko, J., Ed., "SEcure Neighbor Discovery (SEND)", RFC 3971,
        March 2005.

  [12]  ANSI/IEEE Std 802.11, "Part 11: Wireless LAN Medium Access
        Control (MAC) and Physical Layer (PHY) Specifications",
        March 1999.

  [13]  IEEE Std 802.11a, "Part 11: Wireless LAN Medium Access Control
        (MAC) and Physical Layer (PHY) specifications: High-speed
        Physical Layer in the 5 GHZ Band", September 1999.



Jeong, et al.                 Experimental                      [Page 9]

RFC 5006          IPv6 RA Option for DNS Configuration    September 2007


  [14]  IEEE Std 802.11b, "Part 11: Wireless LAN Medium Access Control
        (MAC) and Physical Layer (PHY) specifications: Higher-Speed
        Physical Layer Extension in the 2.4 GHz Band", September 1999.

  [15]  IEEE P802.11g/D8.2, "Part 11: Wireless LAN Medium Access
        Control (MAC) and Physical Layer (PHY) specifications: Further
        Higher Data Rate Extension in the 2.4 GHz Band", April 2003.

  [16]  Damas, J. and F. Neves, "Preventing Use of Recursive
        Nameservers in Reflector Attacks", Work in Progress, July 2007.

  [17]  Ferguson, P. and D. Senie, "Network Ingress Filtering:
        Defeating Denial of Service Attacks which employ IP Source
        Address Spoofing", BCP 38, RFC 2827, May 2000.





































Jeong, et al.                 Experimental                     [Page 10]

RFC 5006          IPv6 RA Option for DNS Configuration    September 2007


Authors' Addresses

  Jaehoon Paul Jeong (editor)
  ETRI/Department of Computer Science and Engineering
  University of Minnesota
  117 Pleasant Street SE
  Minneapolis, MN  55455
  USA

  Phone: +1 651 587 7774
  Fax:   +1 612 625 0572
  EMail: [email protected]
  URI:   http://www.cs.umn.edu/~jjeong/


  Soohong Daniel Park
  Mobile Convergence Laboratory
  SAMSUNG Electronics
  416 Maetan-3dong, Yeongtong-Gu
  Suwon, Gyeonggi-Do  443-742
  Korea

  Phone: +82 31 200 4508
  EMail: [email protected]


  Luc Beloeil
  France Telecom R&D
  42, rue des coutures
  BP 6243
  14066 CAEN Cedex 4
  France

  Phone: +33 02 3175 9391
  EMail: [email protected]


  Syam Madanapalli
  Ordyn Technologies
  1st Floor, Creator Building, ITPL
  Bangalore - 560066
  India

  Phone: +91-80-40383000
  EMail: [email protected]






Jeong, et al.                 Experimental                     [Page 11]

RFC 5006          IPv6 RA Option for DNS Configuration    September 2007


Full Copyright Statement

  Copyright (C) The IETF Trust (2007).

  This document is subject to the rights, licenses and restrictions
  contained in BCP 78, and except as set forth therein, the authors
  retain all their rights.

  This document and the information contained herein are provided on an
  "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
  OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
  THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
  OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
  THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
  WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

  The IETF takes no position regarding the validity or scope of any
  Intellectual Property Rights or other rights that might be claimed to
  pertain to the implementation or use of the technology described in
  this document or the extent to which any license under such rights
  might or might not be available; nor does it represent that it has
  made any independent effort to identify any such rights.  Information
  on the procedures with respect to rights in RFC documents can be
  found in BCP 78 and BCP 79.

  Copies of IPR disclosures made to the IETF Secretariat and any
  assurances of licenses to be made available, or the result of an
  attempt made to obtain a general license or permission for the use of
  such proprietary rights by implementers or users of this
  specification can be obtained from the IETF on-line IPR repository at
  http://www.ietf.org/ipr.

  The IETF invites any interested party to bring to its attention any
  copyrights, patents or patent applications, or other proprietary
  rights that may cover technology that may be required to implement
  this standard.  Please address the information to the IETF at
  [email protected].












Jeong, et al.                 Experimental                     [Page 12]