Network Working Group                                       G. Pelletier
Request for Comments: 4996                                   K. Sandlund
Category: Standards Track                                       Ericsson
                                                           L-E. Jonsson

                                                                M. West
                                                     Siemens/Roke Manor
                                                              July 2007


  RObust Header Compression (ROHC): A Profile for TCP/IP (ROHC-TCP)

Status of This Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (C) The IETF Trust (2007).

Abstract

  This document specifies a ROHC (Robust Header Compression) profile
  for compression of TCP/IP packets.  The profile, called ROHC-TCP,
  provides efficient and robust compression of TCP headers, including
  frequently used TCP options such as SACK (Selective Acknowledgments)
  and Timestamps.

  ROHC-TCP works well when used over links with significant error rates
  and long round-trip times.  For many bandwidth-limited links where
  header compression is essential, such characteristics are common.
















Pelletier, et al.           Standards Track                     [Page 1]

RFC 4996                        ROHC-TCP                       July 2007


Table of Contents

  1.  Introduction . . . . . . . . . . . . . . . . . . . . . . . . .  3
  2.  Terminology  . . . . . . . . . . . . . . . . . . . . . . . . .  4
  3.  Background . . . . . . . . . . . . . . . . . . . . . . . . . .  5
    3.1.  Existing TCP/IP Header Compression Schemes . . . . . . . .  5
    3.2.  Classification of TCP/IP Header Fields . . . . . . . . . .  6
  4.  Overview of the TCP/IP Profile (Informative) . . . . . . . . .  8
    4.1.  General Concepts . . . . . . . . . . . . . . . . . . . . .  8
    4.2.  Compressor and Decompressor Interactions . . . . . . . . .  8
      4.2.1.  Compressor Operation . . . . . . . . . . . . . . . . .  8
      4.2.2.  Decompressor Feedback  . . . . . . . . . . . . . . . .  9
    4.3.  Packet Formats and Encoding Methods  . . . . . . . . . . .  9
      4.3.1.  Compressing TCP Options  . . . . . . . . . . . . . . . 10
      4.3.2.  Compressing Extension Headers  . . . . . . . . . . . . 10
    4.4.  Expected Compression Ratios with ROHC-TCP  . . . . . . . . 10
  5.  Compressor and Decompressor Logic (Normative)  . . . . . . . . 11
    5.1.  Context Initialization . . . . . . . . . . . . . . . . . . 11
    5.2.  Compressor Operation . . . . . . . . . . . . . . . . . . . 11
      5.2.1.  Compression Logic  . . . . . . . . . . . . . . . . . . 11
      5.2.2.  Feedback Logic . . . . . . . . . . . . . . . . . . . . 13
      5.2.3.  Context Replication  . . . . . . . . . . . . . . . . . 14
    5.3.  Decompressor Operation . . . . . . . . . . . . . . . . . . 14
      5.3.1.  Decompressor States and Logic  . . . . . . . . . . . . 14
      5.3.2.  Feedback Logic . . . . . . . . . . . . . . . . . . . . 18
      5.3.3.  Context Replication  . . . . . . . . . . . . . . . . . 18
  6.  Encodings in ROHC-TCP (Normative)  . . . . . . . . . . . . . . 18
    6.1.  Control Fields in ROHC-TCP . . . . . . . . . . . . . . . . 18
      6.1.1.  Master Sequence Number (MSN) . . . . . . . . . . . . . 19
      6.1.2.  IP-ID Behavior . . . . . . . . . . . . . . . . . . . . 19
      6.1.3.  Explicit Congestion Notification (ECN) . . . . . . . . 20
    6.2.  Compressed Header Chains . . . . . . . . . . . . . . . . . 21
    6.3.  Compressing TCP Options with List Compression  . . . . . . 23
      6.3.1.  List Compression . . . . . . . . . . . . . . . . . . . 23
      6.3.2.  Table-Based Item Compression . . . . . . . . . . . . . 24
      6.3.3.  Encoding of Compressed Lists . . . . . . . . . . . . . 25
      6.3.4.  Item Table Mappings  . . . . . . . . . . . . . . . . . 26
      6.3.5.  Compressed Lists in Dynamic Chain  . . . . . . . . . . 28
      6.3.6.  Irregular Chain Items for TCP Options  . . . . . . . . 28
      6.3.7.  Replication of TCP Options . . . . . . . . . . . . . . 28
    6.4.  Profile-Specific Encoding Methods  . . . . . . . . . . . . 29
      6.4.1.  inferred_ip_v4_header_checksum . . . . . . . . . . . . 29
      6.4.2.  inferred_mine_header_checksum  . . . . . . . . . . . . 30
      6.4.3.  inferred_ip_v4_length  . . . . . . . . . . . . . . . . 30
      6.4.4.  inferred_ip_v6_length  . . . . . . . . . . . . . . . . 31
      6.4.5.  inferred_offset  . . . . . . . . . . . . . . . . . . . 31
      6.4.6.  baseheader_extension_headers . . . . . . . . . . . . . 31
      6.4.7.  baseheader_outer_headers . . . . . . . . . . . . . . . 32



Pelletier, et al.           Standards Track                     [Page 2]

RFC 4996                        ROHC-TCP                       July 2007


      6.4.8.  Scaled Encoding of Fields  . . . . . . . . . . . . . . 32
    6.5.  Encoding Methods With External Parameters  . . . . . . . . 34
  7.  Packet Types (Normative) . . . . . . . . . . . . . . . . . . . 36
    7.1.  Initialization and Refresh (IR) Packets  . . . . . . . . . 36
    7.2.  Context Replication (IR-CR) Packets  . . . . . . . . . . . 38
    7.3.  Compressed (CO) Packets  . . . . . . . . . . . . . . . . . 41
  8.  Header Formats (Normative) . . . . . . . . . . . . . . . . . . 42
    8.1.  Design Rationale for Compressed Base Headers . . . . . . . 42
    8.2.  Formal Definition of Header Formats  . . . . . . . . . . . 45
    8.3.  Feedback Formats and Options . . . . . . . . . . . . . . . 86
      8.3.1.  Feedback Formats . . . . . . . . . . . . . . . . . . . 86
      8.3.2.  Feedback Options . . . . . . . . . . . . . . . . . . . 87
  9.  Security Considerations  . . . . . . . . . . . . . . . . . . . 89
  10. IANA Considerations  . . . . . . . . . . . . . . . . . . . . . 89
  11. Acknowledgments  . . . . . . . . . . . . . . . . . . . . . . . 90
  12. References . . . . . . . . . . . . . . . . . . . . . . . . . . 90
    12.1. Normative References . . . . . . . . . . . . . . . . . . . 90
    12.2. Informative References . . . . . . . . . . . . . . . . . . 91

1.  Introduction

  There are several reasons to perform header compression on low- or
  medium-speed links for TCP/IP traffic, and these have already been
  discussed in [RFC2507].  Additional considerations that make
  robustness an important objective for a TCP [RFC0793] compression
  scheme are introduced in [RFC4163].  Finally, existing TCP/IP header
  compression schemes ([RFC1144], [RFC2507]) are limited in their
  handling of the TCP options field and cannot compress the headers of
  handshaking packets (SYNs and FINs).

  It is thus desirable for a header compression scheme to be able to
  handle loss on the link between the compression and decompression
  points as well as loss before the compression point.  The header
  compression scheme also needs to consider how to efficiently compress
  short-lived TCP transfers and TCP options, such as SACK ([RFC2018],
  [RFC2883]) and Timestamps ([RFC1323]).

  The ROHC WG has developed a header compression framework on top of
  which various profiles can be defined for different protocol sets, or
  for different compression strategies.  This document defines a TCP/IP
  compression profile for the ROHC framework [RFC4995], compliant with
  the requirements listed in [RFC4163].

  Specifically, it describes a header compression scheme for TCP/IP
  header compression (ROHC-TCP) that is robust against packet loss and
  that offers enhanced capabilities, in particular for the compression
  of header fields including TCP options.  The profile identifier for
  TCP/IP compression is 0x0006.



Pelletier, et al.           Standards Track                     [Page 3]

RFC 4996                        ROHC-TCP                       July 2007


2.  Terminology

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in [RFC2119].

  This document reuses some of the terminology found in [RFC4995].  In
  addition, this document uses or defines the following terms:

  Base context

     The base context is a context that has been validated by both the
     compressor and the decompressor.  A base context can be used as
     the reference when building a new context using replication.

  Base Context Identifier (Base CID)

     The Base CID is the CID that identifies the base context, from
     which information needed for context replication can be extracted.

  Base header

     A compressed representation of the innermost IP and TCP headers of
     the uncompressed packet.

  Chaining of items

     A chain groups fields based on similar characteristics.  ROHC-TCP
     defines chain items for static, dynamic, replicable, or irregular
     fields.  Chaining is done by appending an item for each header
     e.g., to the chain in their order of appearance in the
     uncompressed packet.  Chaining is useful to construct compressed
     headers from an arbitrary number of any of the protocol headers
     for which ROHC-TCP defines a compressed format.

  Context Replication (CR)

     Context replication is the mechanism that establishes and
     initializes a new context based on another existing valid context
     (a base context).  This mechanism is introduced to reduce the
     overhead of the context establishment procedure, and is especially
     useful for compression of multiple short-lived TCP connections
     that may be occurring simultaneously or near-simultaneously.








Pelletier, et al.           Standards Track                     [Page 4]

RFC 4996                        ROHC-TCP                       July 2007


  ROHC-TCP packet types

     ROHC-TCP uses three different packet types: the Initialization and
     Refresh (IR) packet type, the Context Replication (IR-CR) packet
     type, and the Compressed packet (CO) type.

  Short-lived TCP transfer

     Short-lived TCP transfers refer to TCP connections transmitting
     only small amounts of packets for each single connection.

3.  Background

  This section provides some background information on TCP/IP header
  compression.  The fundamentals of general header compression can be
  found in [RFC4995].  In the following subsections, two existing
  TCP/IP header compression schemes are first described along with a
  discussion of their limitations, followed by the classification of
  TCP/IP header fields.  Finally, some of the characteristics of
  short-lived TCP transfers are summarized.

  A behavior analysis of TCP/IP header fields is found in [RFC4413].

3.1.  Existing TCP/IP Header Compression Schemes

  Compressed TCP (CTCP) and IP Header Compression (IPHC) are two
  different schemes that may be used to compress TCP/IP headers.  Both
  schemes transmit only the differences from the previous header in
  order to reduce the size of the TCP/IP header.

  The CTCP [RFC1144] compressor detects transport-level retransmissions
  and sends a header that updates the context completely when they
  occur.  While CTCP works well over reliable links, it is vulnerable
  when used over less reliable links as even a single packet loss
  results in loss of synchronization between the compressor and the
  decompressor.  This in turn leads to the TCP receiver discarding all
  remaining packets in the current window because of a checksum error.
  This effectively prevents the TCP fast retransmit algorithm [RFC2581]
  from being triggered.  In such a case, the compressor must wait until
  TCP times out and retransmits a packet to resynchronize.

  To reduce the errors due to the inconsistent contexts between
  compressor and decompressor when compressing TCP, IPHC [RFC2507]
  improves somewhat on CTCP by augmenting the repair mechanism of CTCP
  with a local repair mechanism called TWICE and with a link-layer
  mechanism based on negative acknowledgments to request a header that
  updates the context.




Pelletier, et al.           Standards Track                     [Page 5]

RFC 4996                        ROHC-TCP                       July 2007


  The TWICE algorithm assumes that only the Sequence Number field of
  TCP segments is changing with the deltas between consecutive packets
  being constant in most cases.  This assumption is however not always
  true, especially when TCP Timestamps and SACK options are used.

  The full header request mechanism requires a feedback channel that
  may be unavailable in some circumstances.  This channel is used to
  explicitly request that the next packet be sent with an uncompressed
  header to allow resynchronization without waiting for a TCP timeout.
  In addition, this mechanism does not perform well on links with long
  round-trip times.

  Both CTCP and IPHC are also limited in their handling of the TCP
  options field.  For IPHC, any change in the options field (caused by
  Timestamps or SACK, for example) renders the entire field
  uncompressible, while for CTCP, such a change in the options field
  effectively disables TCP/IP header compression altogether.

  Finally, existing TCP/IP compression schemes do not compress the
  headers of handshaking packets (SYNs and FINs).  Compressing these
  packets may greatly improve the overall header compression ratio for
  the cases where many short-lived TCP connections share the same
  channel.

3.2.  Classification of TCP/IP Header Fields

  Header compression is possible due to the fact that there is much
  redundancy between header field values within packets, especially
  between consecutive packets.  To utilize these properties for TCP/IP
  header compression, it is important to understand the change patterns
  of the various header fields.

  All fields of the TCP/IP packet header have been classified in detail
  in [RFC4413].  The main conclusion is that most of the header fields
  can easily be compressed away since they seldom or never change.  The
  following fields do however require more sophisticated mechanisms:

    - IPv4 Identification       (16 bits) - IP-ID
    - TCP Sequence Number       (32 bits) - SN
    - TCP Acknowledgment Number (32 bits)
    - TCP Reserved              ( 4 bits)
    - TCP ECN flags             ( 2 bits) - ECN
    - TCP Window                (16 bits)








Pelletier, et al.           Standards Track                     [Page 6]

RFC 4996                        ROHC-TCP                       July 2007


    - TCP Options
      o  Maximum Segment Size   (32 bits) - MSS
      o  Window Scale           (24 bits) - WSCALE
      o  SACK Permitted         (16 bits)
      o  TCP SACK               (80, 144, 208, or 272 bits) - SACK
      o  TCP Timestamp          (80 bits) - TS

  The assignment of IP-ID values can be done in various ways, usually
  one of sequential, sequential jump, or random, as described in
  Section 4.1.3 of [RFC4413].  Some IPv4 stacks do use a sequential
  assignment when generating IP-ID values but do not transmit the
  contents of this field in network byte order; instead, it is sent
  with the two octets reversed.  In this case, the compressor can
  compress the IP-ID field after swapping the bytes.  Consequently, the
  decompressor also swaps the bytes of the IP-ID after decompression to
  regenerate the original IP-ID.  With respect to TCP compression, the
  analysis in [RFC4413] reveals that there is no obvious candidate
  among the TCP fields suitable to infer the IP-ID.

  The change pattern of several TCP fields (Sequence Number,
  Acknowledgment Number, Window, etc.) is very hard to predict.  Of
  particular importance to a TCP/IP header compression scheme is the
  understanding of the sequence and acknowledgment numbers [RFC4413].

  Specifically, the TCP Sequence Number can be anywhere within a range
  defined by the TCP Window at any point on the path (i.e., wherever a
  compressor might be deployed).  Missing packets or retransmissions
  can cause the TCP Sequence Number to fluctuate within the limits of
  this window.  The TCP Window also bounds the jumps in acknowledgment
  number.

  Another important behavior of the TCP/IP header is the dependency
  between the sequence number and the acknowledgment number.  TCP
  connections can be either near-symmetrical or show a strong
  asymmetrical bias with respect to the data traffic.  In the latter
  case, the TCP connections mainly have one-way traffic (Web browsing
  and file downloading, for example).  This means that on the forward
  path (from server to client), only the sequence number is changing
  while the acknowledgment number remains constant for most packets; on
  the backward path (from client to server), only the acknowledgment
  number is changing and the sequence number remains constant for most
  packets.  A compression scheme for TCP should thus have packet
  formats suitable for either cases, i.e., packet formats that can
  carry either only sequence number bits, only acknowledgment number
  bits, or both.

  In addition, TCP flows can be short-lived transfers.  Short-lived TCP
  transfers will degrade the performance of header compression schemes



Pelletier, et al.           Standards Track                     [Page 7]

RFC 4996                        ROHC-TCP                       July 2007


  that establish a new context by initially sending full headers.
  Multiple simultaneous or near simultaneous TCP connections may
  exhibit much similarity in header field values and context values
  among each other, which would make it possible to reuse information
  between flows when initializing a new context.  A mechanism to this
  end, context replication [RFC4164], makes the context establishment
  step faster and more efficient, by replicating part of an existing
  context to a new flow.  The conclusion from [RFC4413] is that part of
  the IP sub-context, some TCP fields, and some context values can be
  replicated since they seldom change or change with only a small jump.

  ROHC-TCP also compresses the following headers: IPv6 Destination
  Options header [RFC2460], IPv6 Routing header [RFC2460], IPv6 Hop-by-
  Hop Options header [RFC2460], Authentication Header (AH) [RFC4302],
  NULL-encrypted Encapsulating Security Payload (ESP) header [RFC4303],
  Generic Routing Encapsulation (GRE) [RFC2784][RFC2890] and the
  Minimal Encapsulation header (MINE) [RFC2004].

  Headers specific to Mobile IP (for IPv4 or IPv6) do not receive any
  special treatment in this document, for reasons similar to those
  described in [RFC3095].

4.  Overview of the TCP/IP Profile (Informative)

4.1.  General Concepts

  ROHC-TCP uses the ROHC protocol as described in [RFC4995].  ROHC-TCP
  supports context replication as defined in [RFC4164].  Context
  replication can be particularly useful for short-lived TCP flows
  [RFC4413].

4.2.  Compressor and Decompressor Interactions

4.2.1.  Compressor Operation

  Header compression with ROHC can be conceptually characterized as the
  interaction of a compressor with a decompressor state machine.  The
  compressor's task is to minimally send the information needed to
  successfully decompress a packet, based on a certain confidence
  regarding the state of the decompressor context.

  For ROHC-TCP compression, the compressor normally starts compression
  with the initial assumption that the decompressor has no useful
  information to process the new flow, and sends Initialization and
  Refresh (IR) packets.  Alternatively, the compressor may also support
  Context Replication (CR) and use IR-CR packets [RFC4164], which
  attempts to reuse context information related to another flow.




Pelletier, et al.           Standards Track                     [Page 8]

RFC 4996                        ROHC-TCP                       July 2007


  The compressor can then adjust the compression level based on its
  confidence that the decompressor has the necessary information to
  successfully process the Compressed (CO) packets that it selects.  In
  other words, the task of the compressor is to ensure that the
  decompressor operates in the state that allows decompression of the
  most efficient CO packet(s), and to allow the decompressor to move to
  that state as soon as possible otherwise.

4.2.2.  Decompressor Feedback

  The ROHC-TCP profile can be used in environments with or without
  feedback capabilities from decompressor to compressor.  ROHC-TCP
  however assumes that if a ROHC feedback channel is available and if
  this channel is used at least once by the decompressor for a specific
  ROHC-TCP context, this channel will be used during the entire
  compression operation for that context.  If the feedback channel
  disappears, compression should be restarted.

  The reception of either positive acknowledgment (ACKs) or negative
  acknowledgment (NACKs) establishes the feedback channel from the
  decompressor for the context for which the feedback was received.
  Once there is an established feedback channel for a specific context,
  the compressor should make use of this feedback to estimate the
  current state of the decompressor.  This helps in increasing the
  compression efficiency by providing the information needed for the
  compressor to achieve the necessary confidence level.

  The ROHC-TCP feedback mechanism is limited in its applicability by
  the number of (least significant bit (LSB) encoded) master sequence
  number (MSN) (see Section 6.1.1) bits used in the FEEDBACK-2 format
  (see Section 8.3).  It is not suitable for a decompressor to use
  feedback altogether where the MSN bits in the feedback could wrap
  around within one round-trip time.  Instead, unidirectional operation
  -- where the compressor periodically sends larger context-updating
  packets -- is more appropriate.

4.3.  Packet Formats and Encoding Methods

  The packet formats and encoding methods used for ROHC-TCP are defined
  using the formal notation [RFC4997].  The formal notation is used to
  provide an unambiguous representation of the packet formats and a
  clear definition of the encoding methods.









Pelletier, et al.           Standards Track                     [Page 9]

RFC 4996                        ROHC-TCP                       July 2007


4.3.1.  Compressing TCP Options

  The TCP options in ROHC-TCP are compressed using a list compression
  encoding that allows option content to be established so that TCP
  options can be added to the context without having to send all TCP
  options uncompressed.

4.3.2.  Compressing Extension Headers

  ROHC-TCP compresses the extension headers as listed in Section 3.2.
  These headers are treated exactly as other headers and thus have a
  static chain, a dynamic chain, an irregular chain, and a chain for
  context replication (Section 6.2).

  This means that headers appearing in or disappearing from the flow
  being compressed will lead to changes to the static chain.  However,
  the change pattern of extension headers is not deemed to impair
  compression efficiency with respect to this design strategy.

4.4.  Expected Compression Ratios with ROHC-TCP

  The following table illustrates typical compression ratios that can
  be expected when using ROHC-TCP and IPHC [RFC2507].

  The figures in the table assume that the compression context has
  already been properly initialized.  For the TS option, the Timestamp
  is assumed to change with small values.  All TCP options include a
  suitable number of No Operation (NOP) options [RFC0793] for padding
  and/or alignment.  Finally, in the examples for IPv4, a sequential
  IP-ID behavior is assumed.

                            Total Header Size (octets)
                             ROHC-TCP          IPHC
                    Unc.   DATA    ACK      DATA    ACK
  IPv4+TCP+TS       52       8      8        18     18
  IPv4+TCP+TS       52       7      6        16     16   (1)
  IPv6+TCP+TS       72       8      7        18     18
  IPv6+TCP+no opt   60       6      5         6      6
  IPv6+TCP+SACK     80       -     15         -     80   (2)
  IPv6+TCP+SACK     80       -      9         -     26   (3)

  (1) The payload size of the data stream is constant.
  (2) The SACK option appears in the header, but was not present
      in the previous packet.  Two SACK blocks are assumed.
  (3) The SACK option appears in the header, and was also present
      in the previous packet (with different SACK blocks).
      Two SACK blocks are assumed.




Pelletier, et al.           Standards Track                    [Page 10]

RFC 4996                        ROHC-TCP                       July 2007


  The table below illustrates the typical initial compression ratios
  for ROHC-TCP and IPHC.  The data stream in the example is assumed to
  be IPv4+TCP, with a sequential behavior for the IP-ID.  The following
  options are assumed present in the SYN packet: TS, MSS, and WSCALE,
  with an appropriate number of NOP options.

                    Total Header Size (octets)
                     Unc.   ROHC-TCP   IPHC
  1st packet (SYN)   60      49        60
  2nd packet         52      12        52

  The figures in the table assume that the compressor has received an
  acknowledgment from the decompressor before compressing the second
  packet, which can be expected when feedback is used in ROHC-TCP.
  This is because in the most common case, the TCP ACKs are expected to
  take the same return path, and because TCP does not send more packets
  until the TCP SYN packet has been acknowledged.

5.  Compressor and Decompressor Logic (Normative)

5.1.  Context Initialization

  The static context of ROHC-TCP flows can be initialized in either of
  two ways:

  1.  By using an IR packet as in Section 7.1, where the profile number
      is 0x06 and the static chain ends with the static part of a TCP
      header.

  2.  By replicating an existing context using the mechanism defined by
      [RFC4164].  This is done with the IR-CR packet defined in
      Section 7.2, where the profile number is 0x06.

5.2.  Compressor Operation

5.2.1.  Compression Logic

  The task of the compressor is to determine what data must be sent
  when compressing a TCP/IP packet, so that the decompressor can
  successfully reconstruct the original packet based on its current
  state.  The selection of the type of compressed header to send thus
  depends on a number of factors, including:

  o  The change behavior of header fields in the flow, e.g., conveying
     the necessary information within the restrictions of the set of
     available packet formats.





Pelletier, et al.           Standards Track                    [Page 11]

RFC 4996                        ROHC-TCP                       July 2007


  o  The compressor's level of confidence regarding decompressor state,
     e.g., by selecting header formats updating the same type of
     information for a number of consecutive packets or from the
     reception of decompressor feedback (ACKs and/or NACKs).

  o  Additional robustness required for the flow, e.g., periodic
     refreshes of static and dynamic information using IR and IR-DYN
     packets when decompressor feedback is not expected.

  The impact of these factors on the compressor's packet type selection
  is described in more detail in the following subsections.

  In this section, a "higher compression state" means that less data
  will be sent in compressed packets, i.e., smaller compressed headers
  are used, while a lower compression state means that a larger amount
  of data will be sent using larger compressed headers.

5.2.1.1.  Optimistic Approach

  The optimistic approach is the principle by which a compressor sends
  the same type of information for a number of packets (consecutively
  or not) until it is fairly confident that the decompressor has
  received the information.  The optimistic approach is useful to
  ensure robustness when ROHC-TCP is used to compress packet over lossy
  links.

  Therefore, if field X in the uncompressed packet changes value, the
  compressor MUST use a packet type that contains an encoding for field
  X until it has gained confidence that the decompressor has received
  at least one packet containing the new value for X. The compressor
  SHOULD choose a compressed format with the smallest header that can
  convey the changes needed to fulfill the optimistic approach
  condition used.

5.2.1.2.  Periodic Context Refreshes

  When the optimistic approach is used, there will always be a
  possibility of decompression failures since the decompressor may not
  have received sufficient information for correct decompression.

  Therefore, until the decompressor has established a feedback channel,
  the compressor SHOULD periodically move to a lower compression state
  and send IR and/or IR-DYN packets.  These refreshes can be based on
  timeouts, on the number of compressed packets sent for the flow, or
  any other strategy specific to the implementation.  Once the feedback
  channel is established, the decompressor MAY stop performing periodic
  refreshes.




Pelletier, et al.           Standards Track                    [Page 12]

RFC 4996                        ROHC-TCP                       July 2007


5.2.2.  Feedback Logic

  The semantics of feedback messages, acknowledgments (ACKs) and
  negative acknowledgments (NACKs or STATIC-NACKs), are defined in
  Section 5.2.4.1 of [RFC4995].

5.2.2.1.  Optional Acknowledgments (ACKs)

  The compressor MAY use acknowledgment feedback (ACKs) to move to a
  higher compression state.

  Upon reception of an ACK for a context-updating packet, the
  compressor obtains confidence that the decompressor has received the
  acknowledged packet and that it has observed changes in the packet
  flow up to the acknowledged packet.

  This functionality is optional, so a compressor MUST NOT expect to
  get such ACKs, even if a feedback channel is available and has been
  established for that flow.

5.2.2.2.  Negative Acknowledgments (NACKs)

  The compressor uses feedback from the decompressor to move to a lower
  compression state (NACKs).

  On reception of a NACK feedback, the compressor SHOULD:

  o  assume that only the static part of the decompressor is valid, and

  o  re-send all dynamic information (via an IR or IR-DYN packet) the
     next time it compresses a packet for the indicated flow

  unless it has confidence that information sent after the packet being
  acknowledged already provides a suitable response to the NACK
  feedback.  In addition, the compressor MAY use a CO packet carrying a
  7-bit Cyclic Redundancy Check (CRC) if it can determine with enough
  confidence what information provides a suitable response to the NACK
  feedback.

  On reception of a STATIC-NACK feedback, the compressor SHOULD:

  o  assume that the decompressor has no valid context, and

  o  re-send all static and all dynamic information (via an IR packet)
     the next time it compresses a packet for the indicated flow






Pelletier, et al.           Standards Track                    [Page 13]

RFC 4996                        ROHC-TCP                       July 2007


  unless it has confidence that information sent after the packet that
  is being acknowledged already provides a suitable response to the
  STATIC-NACK feedback.

5.2.3.  Context Replication

  A compressor MAY support context replication by implementing the
  additional compression and feedback logic defined in [RFC4164].

5.3.  Decompressor Operation

5.3.1.  Decompressor States and Logic

  The three states of the decompressor are No Context (NC), Static
  Context (SC), and Full Context (FC).  The decompressor starts in its
  lowest compression state, the NC state.  Successful decompression
  will always move the decompressor to the FC state.  The decompressor
  state machine normally never leaves the FC state once it has entered
  this state; only repeated decompression failures will force the
  decompressor to transit downwards to a lower state.

  Below is the state machine for the decompressor.  Details of the
  transitions between states and decompression logic are given in the
  subsections following the figure.

                                Success
               +-->------>------>------>------>------>--+
               |                                        |
   No Static   |            No Dynamic        Success   |    Success
    +-->--+    |             +-->--+      +--->----->---+    +-->--+
    |     |    |             |     |      |             |    |     |
    |     v    |             |     v      |             v    |     v
  +-----------------+   +---------------------+   +-------------------+
  | No Context (NC) |   | Static Context (SC) |   | Full Context (FC) |
  +-----------------+   +---------------------+   +-------------------+
     ^                         |        ^                         |
     |  Static Context         |        | Context Damage Assumed  |
     |  Damage Assumed         |        |                         |
     +-----<------<------<-----+        +-----<------<------<-----+

5.3.1.1.  Reconstruction and Verification

  When decompressing an IR or an IR-DYN packet, the decompressor MUST
  validate the integrity of the received header using CRC-8 validation
  [RFC4995].  If validation fails, the packet MUST NOT be delivered to
  upper layers.





Pelletier, et al.           Standards Track                    [Page 14]

RFC 4996                        ROHC-TCP                       July 2007


  Upon receiving an IR-CR packet, the decompressor MUST perform the
  actions as specified in [RFC4164].

  When decompressing other packet types (e.g., CO packets), the
  decompressor MUST validate the outcome of the decompression attempt
  using CRC verification [RFC4995].  If verification fails, a
  decompressor implementation MAY attempt corrective or repair measures
  on the packet, and the result of any attempt MUST be validated using
  the CRC verification; otherwise, the packet MUST NOT be delivered to
  upper layers.

  When the CRC-8 validation or the CRC verification of the received
  header is successful, the decompressor SHOULD update its context with
  the information received in the current header; the decompressor then
  passes the reconstructed packet to the system's network layer.
  Otherwise, the decompressor context MUST NOT be updated.

  If the received packet is older than the current reference packet,
  e.g., based on the master sequence number (MSN) in the compressed
  packet, the decompressor MAY refrain from updating the context using
  the information received in the current packet, even if the
  correctness of its header was successfully verified.

5.3.1.2.  Detecting Context Damage

  All header formats carry a CRC and are context updating.  A packet
  for which the CRC succeeds updates the reference values of all header
  fields, either explicitly (from the information about a field carried
  within the compressed header) or implicitly (fields that are inferred
  from other fields).

  The decompressor may assume that some or the entire context is
  invalid, following one or more failures to validate or verify a
  header using the CRC.  Because the decompressor cannot know the exact
  reason(s) for a CRC failure or what field caused it, the validity of
  the context hence does not refer to what exact context entry is
  deemed valid or not.

  Validity of the context rather relates to the detection of a problem
  with the context.  The decompressor first assumes that the type of
  information that most likely caused the failure(s) is the state that
  normally changes for each packet, i.e., context damage of the dynamic
  part of the context.  Upon repeated failures and unsuccessful
  repairs, the decompressor then assumes that the entire context,
  including the static part, needs to be repaired, i.e., static context
  damage.





Pelletier, et al.           Standards Track                    [Page 15]

RFC 4996                        ROHC-TCP                       July 2007


  Context Damage Detection

     The assumption of context damage means that the decompressor will
     not attempt decompression of a CO header that carries a 3-bit CRC,
     and only attempt decompression of IR, IR-DYN, or IR-CR headers or
     CO headers protected by a CRC-7.

  Static Context Damage Detection

     The assumption of static context damage means that the
     decompressor refrains from attempting decompression of any type of
     header other than the IR header.

  How these assumptions are made, i.e., how context damage is detected,
  is open to implementations.  It can be based on the residual error
  rate, where a low error rate makes the decompressor assume damage
  more often than on a high-rate link.

  The decompressor implements these assumptions by selecting the type
  of compressed header for which it may attempt decompression.  In
  other words, validity of the context refers to the ability of a
  decompressor to attempt or not attempt decompression of specific
  packet types.

5.3.1.3.  No Context (NC) State

  Initially, while working in the No Context (NC) state, the
  decompressor has not yet successfully decompressed a packet.

  Allowing decompression:

     In the NC state, only packets carrying sufficient information on
     the static fields (IR and IR-CR packets) can be decompressed;
     otherwise, the packet MUST NOT be decompressed and MUST NOT be
     delivered to upper layers.

  Feedback logic:

     In the NC state, the decompressor should send a STATIC-NACK if a
     packet of a type other than IR is received, or if decompression of
     an IR packet has failed, subject to the feedback rate limitation
     as described in Section 5.3.2

  Once a packet has been validated and decompressed correctly, the
  decompressor MUST transit to the FC state.






Pelletier, et al.           Standards Track                    [Page 16]

RFC 4996                        ROHC-TCP                       July 2007


5.3.1.4.  Static Context (SC) State

  When the decompressor is in the Static Context (SC) state, only the
  static part of the decompressor context is valid.

  From the SC state, the decompressor moves back to the NC state if
  static context damage is detected.

  Allowing decompression:

     In the SC state, packets carrying sufficient information on the
     dynamic fields covered by an 8-bit CRC (e.g., IR and IR-DYN) or CO
     packets covered by a 7-bit CRC can be decompressed; otherwise, the
     packet MUST NOT be decompressed and MUST NOT be delivered to upper
     layers.

  Feedback logic:

     In the SC state, the decompressor should send a STATIC-NACK if CRC
     validation of an IR/IR-DYN/IR-CR fails and static context damage
     is assumed.  If any other packet type is received, the
     decompressor should send a NACK.  Both of the above cases are
     subject to the feedback rate limitation as described in
     Section 5.3.2.

  Once a packet has been validated and decompressed correctly, the
  decompressor MUST transit to the FC state.

5.3.1.5.  Full Context (FC) State

  In the Full Context (FC) state, both the static and the dynamic parts
  of the decompressor context are valid.  From the FC state, the
  decompressor moves back to the SC state if context damage is
  detected.

  Allowing decompression:

     In the FC state, decompression can be attempted regardless of the
     type of packet received.

  Feedback logic:

     In the FC state, the decompressor should send a NACK if the
     decompression of any packet type fails and context damage is
     assumed, subject to the feedback rate limitation as described in
     Section 5.3.2.





Pelletier, et al.           Standards Track                    [Page 17]

RFC 4996                        ROHC-TCP                       July 2007


5.3.2.  Feedback Logic

  The decompressor MAY send positive feedback (ACKs) to initially
  establish the feedback channel for a particular flow.  Either
  positive feedback (ACKs) or negative feedback (NACKs) establishes
  this channel.

  Once the feedback channel is established, the decompressor is
  REQUIRED to continue sending NACKs or STATIC-NACKs for as long as the
  context is associated with the same profile, in this case with
  profile 0x0006, as per the logic defined for each state in
  Section 5.3.1.

  The decompressor MAY send ACKs upon successful decompression of any
  packet type.  In particular, when a packet carrying a significant
  context update is correctly decompressed, the decompressor MAY send
  an ACK.

  The decompressor should limit the rate at which it sends feedback,
  for both ACKs and STATIC-NACK/NACKs, and should avoid sending
  unnecessary duplicates of the same type of feedback message that may
  be associated to the same event.

5.3.3.  Context Replication

  ROHC-TCP supports context replication; therefore, the decompressor
  MUST implement the additional decompressor and feedback logic defined
  in [RFC4164].

6.  Encodings in ROHC-TCP (Normative)

6.1.  Control Fields in ROHC-TCP

  In ROHC-TCP, a number of control fields are used by the decompressor
  in its interpretation of the format of the packets received from the
  compressor.

  A control field is a field that is transmitted from the compressor to
  the decompressor, but is not part of the uncompressed header.  Values
  for control fields can be set up in the context of both the
  compressor and the decompressor.  Once established at the
  decompressor, the values of these fields should be kept until updated
  by another packet.








Pelletier, et al.           Standards Track                    [Page 18]

RFC 4996                        ROHC-TCP                       July 2007


6.1.1.  Master Sequence Number (MSN)

  There is no field in the TCP header that can act as the master
  sequence number for TCP compression, as explained in [RFC4413],
  Section 5.6.

  To overcome this problem, ROHC-TCP introduces a control field called
  the Master Sequence Number (MSN) field.  The MSN field is created at
  the compressor, rather than using one of the fields already present
  in the uncompressed header.  The compressor increments the value of
  the MSN by one for each packet that it sends.

  The MSN field has the following two functions:

  1.  Differentiating between packets when sending feedback data.

  2.  Inferring the value of incrementing fields such as the IP-ID.

  The MSN field is present in every packet sent by the compressor.  The
  MSN is LSB encoded within the CO packets, and the 16-bit MSN is sent
  in full in IR/IR-DYN packets.  The decompressor always sends the MSN
  as part of the feedback information.  The compressor can later use
  the MSN to infer which packet the decompressor is acknowledging.

  When the MSN is initialized, it SHOULD be initialized to a random
  value.  The compressor should only initialize a new MSN for the
  initial IR or IR-CR packet sent for a CID that corresponds to a
  context that is not already associated with this profile.  In other
  words, if the compressor reuses the same CID to compress many TCP
  flows one after the other, the MSN is not reinitialized but rather
  continues to increment monotonically.

  For context replication, the compressor does not use the MSN of the
  base context when sending the IR-CR packet, unless the replication
  process overwrites the base context (i.e., Base CID == CID).
  Instead, the compressor uses the value of the MSN if it already
  exists in the ROHC-TCP context being associated with the new flow
  (CID); otherwise, the MSN is initialized to a new value.

6.1.2.  IP-ID Behavior

  The IP-ID field of the IPv4 header can have different change
  patterns.  Conceptually, a compressor monitors changes in the value
  of the IP-ID field and selects encoding methods and packet formats
  that are the closest match to the observed change pattern.

  ROHC-TCP defines different types of compression techniques for the
  IP-ID, to provide the flexibility to compress any of the behaviors it



Pelletier, et al.           Standards Track                    [Page 19]

RFC 4996                        ROHC-TCP                       July 2007


  may observe for this field: sequential in network byte order (NBO),
  sequential byte-swapped, random (RND), or constant to a value of
  zero.

  The compressor monitors changes in the value of the IP-ID field for a
  number of packets, to identify which one of the above listed
  compression alternatives is the closest match to the observed change
  pattern.  The compressor can then select packet formats and encoding
  methods based on the identified field behavior.

  If more than one level of IP headers is present, ROHC-TCP can assign
  a sequential behavior (NBO or byte-swapped) only to the IP-ID of the
  innermost IP header.  This is because only this IP-ID can possibly
  have a sufficiently close correlation with the MSN (see also
  Section 6.1.1) to compress it as a sequentially changing field.
  Therefore, a compressor MUST NOT assign either the sequential (NBO)
  or the sequential byte-swapped behavior to tunneling headers.

  The control field for the IP-ID behavior determines which set of
  packet formats will be used.  These control fields are also used to
  determine the contents of the irregular chain item (see Section 6.2)
  for each IP header.

6.1.3.  Explicit Congestion Notification (ECN)

  When ECN [RFC3168] is used once on a flow, the ECN bits could change
  quite often.  ROHC-TCP maintains a control field in the context to
  indicate whether or not ECN is used.  This control field is
  transmitted in the dynamic chain of the TCP header, and its value can
  be updated using specific compressed headers carrying a 7-bit CRC.

  When this control field indicates that ECN is being used, items of
  all IP and TCP headers in the irregular chain include bits used for
  ECN.  To preserve octet-alignment, all of the TCP reserved bits are
  transmitted and, for outer IP headers, the entire Type of Service/
  Traffic Class (TOS/TC) field is included in the irregular chain.
  When there is only one IP header present in the packet (i.e., no IP
  tunneling is used), this compression behavior allows the compressor
  to handle changes in the ECN bits by adding a single octet to the
  compressed header.

  The reason for including the ECN bits of all IP headers in the
  compressed packet when the control field is set is that the profile
  needs to efficiently compress flows containing IP tunnels using the
  "full-functionality option" of Section 9.1 of [RFC3168].  For these
  flows, a change in the ECN bits of an inner IP header is propagated
  to the outer IP headers.  When the "limited-functionality" option is
  used, the compressor will therefore sometimes send one octet more



Pelletier, et al.           Standards Track                    [Page 20]

RFC 4996                        ROHC-TCP                       July 2007


  than necessary per tunnel header, but this has been considered a
  reasonable tradeoff when designing this profile.

6.2.  Compressed Header Chains

  Some packet types use one or more chains containing sub-header
  information.  The function of a chain is to group fields based on
  similar characteristics, such as static, dynamic, or irregular
  fields.  Chaining is done by appending an item for each header to the
  chain in their order of appearance in the uncompressed packet,
  starting from the fields in the outermost header.

  Chains are defined for all headers compressed by ROHC-TCP, as listed
  below.  Also listed are the names of the encoding methods used to
  encode each of these protocol headers.

  o  TCP [RFC0793], encoding method: "tcp"

  o  IPv4 [RFC0791], encoding method: "ipv4"

  o  IPv6 [RFC2460], encoding method: "ipv6"

  o  AH [RFC4302], encoding method: "ah"

  o  GRE [RFC2784][RFC2890], encoding method: "gre"

  o  MINE [RFC2004], encoding method: "mine"

  o  NULL-encrypted ESP [RFC4303], encoding method: "esp_null"

  o  IPv6 Destination Options header [RFC2460], encoding method:
     "ip_dest_opt"

  o  IPv6 Hop-by-Hop Options header [RFC2460], encoding method:
     "ip_hop_opt"

  o  IPv6 Routing header [RFC2460], encoding method: "ip_rout_opt"

  Static chain:

     The static chain consists of one item for each header of the chain
     of protocol headers to be compressed, starting from the outermost
     IP header and ending with a TCP header.  In the formal description
     of the packet formats, this static chain item for each header is a
     format whose name is suffixed by "_static".  The static chain is
     only used in IR packets.





Pelletier, et al.           Standards Track                    [Page 21]

RFC 4996                        ROHC-TCP                       July 2007


  Dynamic chain:

     The dynamic chain consists of one item for each header of the
     chain of protocol headers to be compressed, starting from the
     outermost IP header and ending with a TCP header.  The dynamic
     chain item for the TCP header also contains a compressed list of
     TCP options (see Section 6.3).  In the formal description of the
     packet formats, the dynamic chain item for each header type is a
     format whose name is suffixed by "_dynamic".  The dynamic chain is
     used in both IR and IR-DYN packets.

  Replicate chain:

     The replicate chain consists of one item for each header in the
     chain of protocol headers to be compressed, starting from the
     outermost IP header and ending with a TCP header.  The replicate
     chain item for the TCP header also contains a compressed list of
     TCP options (see Section 6.3).  In the formal description of the
     packet formats, the replicate chain item for each header type is a
     format whose name is suffixed by "_replicate".  Header fields that
     are not present in the replicate chain are replicated from the
     base context.  The replicate chain is only used in the IR-CR
     packet.

  Irregular chain:

     The structure of the irregular chain is analogous to the structure
     of the static chain.  For each compressed packet, the irregular
     chain is appended at the specified location in the general format
     of the compressed packets as defined in Section 7.3.  This chain
     also includes the irregular chain items for TCP options as defined
     in Section 6.3.6, which are placed directly after the irregular
     chain item of the TCP header, and in the same order as the options
     appear in the uncompressed packet.  In the formal description of
     the packet formats, the irregular chain item for each header type
     is a format whose name is suffixed by "_irregular".  The irregular
     chain is used only in CO packets.

     The format of the irregular chain for the innermost IP header
     differs from the format of outer IP headers, since this header is
     part of the compressed base header.










Pelletier, et al.           Standards Track                    [Page 22]

RFC 4996                        ROHC-TCP                       July 2007


6.3.  Compressing TCP Options with List Compression

  This section describes in detail how list compression is applied to
  the TCP options.  In the definition of the packet formats for ROHC-
  TCP, the most frequent TCP options have one encoding method each, as
  listed in the table below.

          +-----------------+------------------------+
          |   Option name   |  Encoding method name  |
          +-----------------+------------------------+
          |      NOP        | tcp_opt_nop            |
          |      EOL        | tcp_opt_eol            |
          |      MSS        | tcp_opt_mss            |
          |  WINDOW SCALE   | tcp_opt_wscale         |
          |   TIMESTAMP     | tcp_opt_ts             |
          | SACK-PERMITTED  | tcp_opt_sack_permitted |
          |      SACK       | tcp_opt_sack           |
          | Generic options | tcp_opt_generic        |
          +-----------------+------------------------+

  Each of these encoding methods has an uncompressed format, a format
  suffixed by "_list_item" and a format suffixed by "_irregular".  In
  some cases, a single encoding method may have multiple "_list_item"
  or "_irregular" formats, in which case bindings inside these formats
  determine what format is used.  This is further described in the
  following sections.

6.3.1.  List Compression

  The TCP options in the uncompressed packet can be represented as an
  ordered list, whose order and presence are usually constant between
  packets.  The generic structure of such a list is as follows:

           +--------+--------+--...--+--------+
     list: | item 1 | item 2 |       | item n |
           +--------+--------+--...--+--------+

  To compress this list, ROHC-TCP uses a list compression scheme, which
  compresses each of these items individually and combines them into a
  compressed list.

  The basic principles of list-based compression are the following:

     1) When a context is being initialized, a complete representation
     of the compressed list of options is transmitted.  All options
     that have any content are present in the compressed list of items
     sent by the compressor.




Pelletier, et al.           Standards Track                    [Page 23]

RFC 4996                        ROHC-TCP                       July 2007


  Then, once the context has been initialized:

     2) When the structure AND the content of the list are unchanged,
     no information about the list is sent in compressed headers.

     3) When the structure of the list is constant, and when only the
     content defined within the irregular format for one or more
     options is changed, no information about the list needs to be sent
     in compressed base headers; the irregular content is sent as part
     of the irregular chain, as described in Section 6.3.6.

     4) When the structure of the list changes, a compressed list is
     sent in the compressed base header, including a representation of
     its structure and order.  Content defined within the irregular
     format of an option can still be sent as part of the irregular
     chain (as described in Section 6.3.6), provided that the item
     content is not part of the compressed list.

6.3.2.  Table-Based Item Compression

  The Table-based item compression compresses individual items sent in
  compressed lists.  The compressor assigns a unique identifier,
  "Index", to each item, "Item", of a list.

  Compressor Logic

     The compressor conceptually maintains an item table containing all
     items, indexed using "Index".  The (Index, Item) pair is sent
     together in compressed lists until the compressor gains enough
     confidence that the decompressor has observed the mapping between
     items and their respective index.  Confidence is obtained from the
     reception of an acknowledgment from the decompressor, or by
     sending (Index, Item) pairs using the optimistic approach.  Once
     confidence is obtained, the index alone is sent in compressed
     lists to indicate the presence of the item corresponding to this
     index.

     The compressor may reassign an existing index to a new item, by
     re-establishing the mapping using the procedure described above.

  Decompressor Logic

     The decompressor conceptually maintains an item table that
     contains all (Index, Item) pairs received.  The item table is
     updated whenever an (Index, Item) pair is received and
     decompression is successfully verified using the CRC.  The
     decompressor retrieves the item from the table whenever an index
     without an accompanying item is received.



Pelletier, et al.           Standards Track                    [Page 24]

RFC 4996                        ROHC-TCP                       July 2007


     If an index without an accompanying item is received and the
     decompressor does not have any context for this index, the header
     MUST be discarded and a NACK SHOULD be sent.

6.3.3.  Encoding of Compressed Lists

  Each item present in a compressed list is represented by:

  o  an index into the table of items

  o  a presence bit indicating if a compressed representation of the
     item is present in the list

  o  an item (if the presence bit is set)

  Decompression of an item will fail if the presence bit is not set and
  the decompressor has no entry in the context for that item.

  A compressed list of TCP options uses the following encoding:

       0   1   2   3   4   5   6   7
     +---+---+---+---+---+---+---+---+
     | Reserved  |PS |       m       |
     +---+---+---+---+---+---+---+---+
     |        XI_1, ..., XI_m        | m octets, or m * 4 bits
     /                --- --- --- ---/
     |               :    Padding    : if PS = 0 and m is odd
     +---+---+---+---+---+---+---+---+
     |                               |
     /      item_1, ..., item_n      / variable
     |                               |
     +---+---+---+---+---+---+---+---+

     Reserved: MUST be set to zero; otherwise, the decompressor MUST
     discard the packet.

     PS: Indicates size of XI fields:

        PS = 0 indicates 4-bit XI fields;

        PS = 1 indicates 8-bit XI fields.

     m: Number of XI item(s) in the compressed list.

     XI_1, ..., XI_m: m XI items.  Each XI represents one TCP option in
     the uncompressed packet, in the same order as they appear in the
     uncompressed packet.




Pelletier, et al.           Standards Track                    [Page 25]

RFC 4996                        ROHC-TCP                       July 2007


        The format of an XI item is as follows:

                +---+---+---+---+
        PS = 0: | X |   Index   |
                +---+---+---+---+

                  0   1   2   3   4   5   6   7
                +---+---+---+---+---+---+---+---+
        PS = 1: | X | Reserved  |     Index     |
                +---+---+---+---+---+---+---+---+

        X: Indicates whether the item is present in the list:

           X = 1 indicates that the item corresponding to the Index is
           sent in the item_1, ..., item_n list;

           X = 0 indicates that the item corresponding to the Index is
           not sent and is instead included in the irregular chain.

        Reserved: MUST be set to zero; otherwise, the decompressor MUST
        discard the packet.

        Index: An index into the item table.  See Section 6.3.4.

        When 4-bit XI items are used, the XI items are placed in octets
        in the following manner:

          0   1   2   3   4   5   6   7
        +---+---+---+---+---+---+---+---+
        |     XI_k      |    XI_k + 1   |
        +---+---+---+---+---+---+---+---+

     Padding: A 4-bit padding field is present when PS = 0 and the
     number of XIs is odd.  The Padding field MUST be set to zero;
     otherwise, the decompressor MUST discard the packet.

     Item 1, ..., item n: Each item corresponds to an XI with X = 1 in
     XI 1, ..., XI m.  The format of the entries in the item list is
     described in Section 6.2.

6.3.4.  Item Table Mappings

  The item table for TCP options list compression is limited to 16
  different items, since it is unlikely that any packet flow will
  contain a larger number of unique options.






Pelletier, et al.           Standards Track                    [Page 26]

RFC 4996                        ROHC-TCP                       July 2007


  The mapping between the TCP option type and table indexes are listed
  in the table below:

        +-----------------+---------------+
        |   Option name   |  Table index  |
        +-----------------+---------------+
        |      NOP        |       0       |
        |      EOL        |       1       |
        |      MSS        |       2       |
        |  WINDOW SCALE   |       3       |
        |   TIMESTAMP     |       4       |
        | SACK-PERMITTED  |       5       |
        |      SACK       |       6       |
        | Generic options |      7-15     |
        +-----------------+---------------+

  Some TCP options are used more frequently than others.  To simplify
  their compression, a part of the item table is reserved for these
  option types, as shown on the table above.  Both the compressor and
  the decompressor MUST use these mappings between item and indexes to
  (de)compress TCP options when using list compression.

  It is expected that the option types for which an index is reserved
  in the item table will only appear once in a list.  However, if an
  option type is detected twice in the same options list and if both
  options have a different content, the compressor should compress the
  second occurrence of the option type by mapping it to a generic
  compressed option.  Otherwise, if the options have the exact same
  content, the compressor can still use the same table index for both.

  The NOP option

     The NOP option can appear more than once in the list.  However,
     since its value is always the same, no context information needs
     to be transmitted.  Multiple NOP options can thus be mapped to the
     same index.  Since the NOP option does not have any content when
     compressed as a "_list_item", it will never be present in the item
     list.  For consistency, the compressor should still establish an
     entry in the list by setting the presence bit, as done for the
     other type of options.

     List compression always preserves the original order of each item
     in the decompressed list, whether or not the item is present in
     the compressed "_list_item" or if multiple items of the same type
     can be mapped to the same index, as for the NOP option.






Pelletier, et al.           Standards Track                    [Page 27]

RFC 4996                        ROHC-TCP                       July 2007


  The EOL option

     The size of the compressed format for the EOL option can be larger
     than one octet, and it is defined so that it includes the option
     padding.  This is because the EOL should terminate the parsing of
     the options, but it can also be followed by padding octets that
     all have the value zero.

  The Generic option

     The Generic option can be used to compress any type of TCP option
     that does not have a reserved index in the item table.

6.3.5.  Compressed Lists in Dynamic Chain

  A compressed list for TCP options that is part of the dynamic chain
  (e.g., in IR or IR-DYN packets) must have all its list items present,
  i.e., all X-bits in the XI list MUST be set.

6.3.6.  Irregular Chain Items for TCP Options

  The "_list_item" represents the option inside the compressed item
  list, and the "_irregular" format is used for the option fields that
  are expected to change with each packet.  When an item of the
  specified type is present in the current context, these irregular
  fields are present in each compressed packet, as part of the
  irregular chain.  Since many of the TCP option types are not expected
  to change for the duration of a flow, many of the "_irregular"
  formats are empty.

  The irregular chain for TCP options is structured analogously to the
  structure of the TCP options in the uncompressed packet.  If a
  compressed list is present in the compressed packet, then the
  irregular chain for TCP options must not contain irregular items for
  the list items that are transmitted inside the compressed list (i.e.,
  items in the list that have the X-bit set in its XI).  The items that
  are not present in the compressed list, but are present in the
  uncompressed list, must have their respective irregular items present
  in the irregular chain.

6.3.7.  Replication of TCP Options

  The entire table of TCP options items is always replicated when using
  the IR-CR packet.  In the IR-CR packet, the list of options for the
  new flow is also transmitted as a compressed list in the IR-CR
  packet.





Pelletier, et al.           Standards Track                    [Page 28]

RFC 4996                        ROHC-TCP                       July 2007


6.4.  Profile-Specific Encoding Methods

  This section defines encoding methods that are specific to this
  profile.  These methods are used in the formal definition of the
  packet formats in Section 8.

6.4.1.  inferred_ip_v4_header_checksum

  This encoding method compresses the Header Checksum field of the IPv4
  header.  This checksum is defined in [RFC0791] as follows:

     Header Checksum: 16 bits

        A checksum on the header only.  Since some header fields change
        (e.g., time to live), this is recomputed and verified at each
        point that the internet header is processed.

     The checksum algorithm is:

        The checksum field is the 16 bit one's complement of the one's
        complement sum of all 16 bit words in the header.  For purposes
        of computing the checksum, the value of the checksum field is
        zero.

  As described above, the header checksum protects individual hops from
  processing a corrupted header.  When almost all IP header information
  is compressed away, and when decompression is verified by a CRC
  computed over the original header for every compressed packet, there
  is no point in having this additional checksum; instead, it can be
  recomputed at the decompressor side.

  The "inferred_ip_v4_header_checksum" encoding method thus compresses
  the IPv4 header checksum down to a size of zero bits.  Using this
  encoding method, the decompressor infers the value of this field
  using the computation above.

  This encoding method implicitly assumes that the compressor will not
  process a corrupted header; otherwise, it cannot guarantee that the
  checksum as recomputed by the decompressor will be bitwise identical
  to its original value before compression.











Pelletier, et al.           Standards Track                    [Page 29]

RFC 4996                        ROHC-TCP                       July 2007


6.4.2.  inferred_mine_header_checksum

  This encoding method compresses the minimal encapsulation header
  checksum.  This checksum is defined in [RFC2004] as follows:

     Header Checksum

        The 16-bit one's complement of the one's complement sum of all
        16-bit words in the minimal forwarding header.  For purposes of
        computing the checksum, the value of the checksum field is 0.
        The IP header and IP payload (after the minimal forwarding
        header) are not included in this checksum computation.

  The "inferred_mine_header_checksum" encoding method compresses the
  minimal encapsulation header checksum down to a size of zero bits,
  i.e., no bits are transmitted in compressed headers for this field.
  Using this encoding method, the decompressor infers the value of this
  field using the above computation.

  The motivations and the assumptions for inferring this checksum are
  similar to the ones explained above in Section 6.4.1.

6.4.3.  inferred_ip_v4_length

  This encoding method compresses the Total Length field of the IPv4
  header.  The Total Length field of the IPv4 header is defined in
  [RFC0791] as follows:

     Total Length: 16 bits

        Total Length is the length of the datagram, measured in octets,
        including internet header and data.  This field allows the
        length of a datagram to be up to 65,535 octets.

  The "inferred_ip_v4_length" encoding method compresses the IPv4
  header checksum down to a size of zero bits.  Using this encoding
  method, the decompressor infers the value of this field by counting
  in octets the length of the entire packet after decompression.













Pelletier, et al.           Standards Track                    [Page 30]

RFC 4996                        ROHC-TCP                       July 2007


6.4.4.  inferred_ip_v6_length

  This encoding method compresses the Payload Length field of the IPv6
  header.  This length field is defined in [RFC2460] as follows:

     Payload Length: 16-bit unsigned integer

        Length of the IPv6 payload, i.e., the rest of the packet
        following this IPv6 header, in octets.  (Note that any
        extension headers present are considered part of the payload,
        i.e., included in the length count.)

  The "inferred_ip_v6_length" encoding method compresses the Payload
  Length field of the IPv6 header down to a size of zero bits.  Using
  this encoding method, the decompressor infers the value of this field
  by counting in octets the length of the entire packet after
  decompression.

6.4.5.  inferred_offset

  This encoding method compresses the data offset field of the TCP
  header.

  The "inferred_offset" encoding method is used on the Data Offset
  field of the TCP header.  This field is defined in [RFC0793] as:

     Data Offset: 4 bits

        The number of 32 bit words in the TCP Header.  This indicates
        where the data begins.  The TCP header (even one including
        options) is an integral number of 32 bits long.

  The "inferred_offset" encoding method compresses the Data Offset
  field of the TCP header down to a size of zero bits.  Using this
  encoding method, the decompressor infers the value of this field by
  first decompressing the TCP options list, and by then setting:

             data offset = (options length / 4) + 5

  The equation above uses integer arithmetic.

6.4.6.  baseheader_extension_headers

  In CO packets (see Section 7.3), the innermost IP header and the TCP
  header are combined to create a compressed base header.  In some
  cases, the IP header will have a number of extension headers between
  itself and the TCP header.




Pelletier, et al.           Standards Track                    [Page 31]

RFC 4996                        ROHC-TCP                       July 2007


  To remain formally correct, the base header must define some
  representation of these extension headers, which is what this
  encoding method is used for.  This encoding method skips over all the
  extension headers and does not encode any of the fields.  Changed
  fields in these headers are encoded in the irregular chain.

6.4.7.  baseheader_outer_headers

  This encoding method, as well as the baseheader_extension_headers
  encoding method described above, is needed for the specification to
  remain formally correct.  It is used in CO packets (see Section 7.3)
  to describe tunneling IP headers and their respective extension
  headers (i.e., all headers located before the innermost IP header).

  This encoding method skips over all the fields in these headers and
  does not perform any encoding.  Changed fields in outer headers are
  instead handled by the irregular chain.

6.4.8.  Scaled Encoding of Fields

  Some header fields will exhibit a change pattern where the field
  increases by a constant value or by multiples of the same value.

  Examples of fields that may have this behavior are the TCP Sequence
  Number and the TCP Acknowledgment Number.  For such fields, ROHC-TCP
  provides the means to downscale the field value before applying LSB
  encoding, which allows the compressor to transmit fewer bits.

  To be able to use scaled encoding, the field is required to fulfill
  the following equation:

       unscaled_value = scaling_factor * scaled_value + residue

  To use the scaled encoding, the compressor must be confident that the
  decompressor has established values for the "residue" and the
  "scaling_factor", so that it can correctly decompress the field when
  only an LSB-encoded "scaled_value" is present in the compressed
  packet.

  Once the compressor is confident that the value of the scaling_factor
  and the value of the residue have been established in the
  decompressor, the compressor may send compressed packets using the
  scaled representation of the field.  The compressor MUST NOT use
  scaled encoding with the value of the scaling_factor set to zero.

  If the compressor detects that the value of the residue has changed,
  or if the compressor uses a different value for the scaling factor,




Pelletier, et al.           Standards Track                    [Page 32]

RFC 4996                        ROHC-TCP                       July 2007


  it MUST NOT use scaled encoding until it is confident that the
  decompressor has received the new value(s) of these fields.

  When the unscaled value of the field wraps around, the value of the
  residue is likely to change, even if the scaling_factor remains
  constant.  In such a case, the compressor must act in the same way as
  for any other change in the residue.

  The following subsections describe how the scaled encoding is applied
  to specific fields in ROHC-TCP, in particular, how the scaling_factor
  and residue values are established for the different fields.

6.4.8.1.  Scaled TCP Sequence Number Encoding

  For some TCP flows, such as data transfers, the payload size will be
  constant over periods of time.  For such flows, the TCP Sequence
  Number is bound to increase by multiples of the payload size between
  packets, which means that this field can be a suitable target for
  scaled encoding.  When using this encoding, the payload size will be
  used as the scaling factor (i.e., as the value for scaling_factor) of
  this encoding.  This means that the scaling factor does not need to
  be explicitly transmitted, but is instead inferred from the length of
  the payload in the compressed packet.

  Establishing scaling_factor:

     The scaling factor is established by sending unscaled TCP Sequence
     Number bits, so that the decompressor can infer the scaling_factor
     from the payload size.

  Establishing residue:

     The residue is established identically as the scaling_factor,
     i.e., by sending unscaled TCP Sequence Number bits.

  A detailed specification of how the TCP Sequence Number uses the
  scaled encoding can be found in the definitions of the packet
  formats, in Section 8.2.

6.4.8.2.  Scaled Acknowledgment Number Encoding

  Similar to the pattern exhibited by the TCP Sequence Number, the
  expected increase in the TCP Acknowledgment Number is often constant
  and is therefore suitable for scaled encoding.

  For the TCP Acknowledgment Number, the scaling factor depends on the
  size of packets flowing in the opposite direction; this information
  might not be available to the compressor/decompressor pair.  For this



Pelletier, et al.           Standards Track                    [Page 33]

RFC 4996                        ROHC-TCP                       July 2007


  reason, ROHC-TCP uses an explicitly transmitted scaling factor to
  compress the TCP Acknowledgment Number.

  Establishing scaling_factor:

     The scaling factor is established by explicitly transmitting the
     value of the scaling factor (called ack_stride in the formal
     notation in Section 8.2) to the decompressor, using one of the
     packet types that can carry this information.

  Establishing residue:

     The scaling factor is established by sending unscaled TCP
     Acknowledgment Number bits, so that the decompressor can infer its
     value from the unscaled value and the scaling factor (ack_stride).

  A detailed specification of how the TCP Acknowledgment Number uses
  the scaled encoding can be found in the definitions of the packet
  formats, in Section 8.2.

  The compressor MAY use the scaled acknowledgment number encoding;
  what value it will use as the scaling factor is up to the compressor
  implementation.  In the case where there is a co-located decompressor
  processing packets of the same TCP flow in the opposite direction,
  the scaling factor for the sequence number used for that flow can be
  used by the compressor to determine a suitable scaling factor for the
  TCP Acknowledgment number for this flow.

6.5.  Encoding Methods With External Parameters

  A number of encoding methods in Section 8.2 have one or more
  arguments for which the derivation of the parameter's value is
  outside the scope of the ROHC-FN specification of the header formats.
  This section lists the encoding methods together with a definition of
  each of their parameters.

  o  esp_null(next_header_value):

        next_header_value: Set to the value of the Next Header field
        located in the ESP trailer, usually 12 octets from the end of
        the packet.  Compression of null-encrypted ESP headers should
        only be performed when the compressor has prior knowledge of
        the exact location of the Next Header field.








Pelletier, et al.           Standards Track                    [Page 34]

RFC 4996                        ROHC-TCP                       July 2007


  o  ipv6(is_innermost, ttl_irregular_chain_flag, ip_inner_ecn):

        is_innermost: This Boolean flag is set to true when processing
        the innermost IP header; otherwise, it is set to false.

        ttl_irregular_chain_flag: This parameter must be set to the
        value that was used for the corresponding
        "ttl_irregular_chain_flag" parameter of the "co_baseheader"
        encoding method (as defined below) when extracting the
        irregular chain for a compressed header; otherwise, it is set
        to zero and ignored for other types of chains.

        ip_inner_ecn: This parameter is bound by the encoding method,
        and therefore it should be undefined when calling this encoding
        method.  This value is then used to bind the corresponding
        parameter in the "tcp" encoding method, as its value is needed
        when processing the irregular chain for TCP.  See the
        definition of the "ip_inner_ecn" parameter for the "tcp"
        encoding method below.

  o  ipv4(is_innermost, ttl_irregular_chain_flag, ip_inner_ecn):

        See definition of arguments for "ipv6" above.

  o  tcp_opt_eol(nbits):

        nbits: This parameter is set to the length of the padding data
        located after the EOL option type octet to the end of the TCP
        options in the uncompressed header.

  o  tcp_opt_sack(ack_value):

        ack_value: Set to the value of the Acknowledgment Number field
        of the TCP header.

  o  tcp(payload_size, ack_stride_value, ip_inner_ecn):

        payload_size: Set to the length (in octets) of the payload
        following the TCP header.

        ack_stride_value: This parameter is the scaling factor used
        when scaling the TCP Acknowledgment Number.  Its value is set
        by the compressor implementation.  See Section 6.4.8.2 for
        recommendations on how to set this value.

        ip_inner_ecn: This parameter binds with the value given to the
        corresponding "ip_inner_ecn" parameter by the "ipv4" or the
        "ipv6" encoding method when processing the innermost IP header



Pelletier, et al.           Standards Track                    [Page 35]

RFC 4996                        ROHC-TCP                       July 2007


        of this packet.  See also the definition of the "ip_inner_ecn"
        parameter to the "ipv6" and "ipv4" encoding method above.

  o  co_baseheader(payload_size, ack_stride_value,
     ttl_irregular_chain_flag):

        payload_size: Set to the length (in octets) of the payload
        following the TCP header.

        ack_stride_value: This parameter is the scaling factor used
        when scaling the TCP Acknowledgment Number.  Its value is set
        by the compressor implementation.  See Section 6.4.8.2 for
        recommendations on how to set this value.

        ttl_irregular_chain_flag: This parameter is set to one if the
        TTL/Hop Limit of an outer header has changed compared to its
        reference in the context; otherwise, it is set to zero.  The
        value used for this parameter is also used for the
        "ttl_irregular_chain_flag" argument for the "ipv4" and "ipv6"
        encoding methods when processing the irregular chain, as
        defined above for the "ipv6" and "ipv4" encoding methods.

7.  Packet Types (Normative)

  ROHC-TCP uses three different packet types: the Initialization and
  Refresh (IR) packet type, the Context Replication (IR-CR) packet
  type, and the Compressed (CO) packet type.

  Each packet type defines a number of packet formats: two packet
  formats are defined for the IR type, one packet format is defined for
  the IR-CR type, and two sets of eight base header formats are defined
  for the CO type with one additional format that is common to both
  sets.

  The profile identifier for ROHC-TCP is 0x0006.

7.1.  Initialization and Refresh (IR) Packets

  ROHC-TCP uses the basic structure of the ROHC IR and IR-DYN packets
  as defined in [RFC4995] (Sections 5.2.2.1 and 5.2.2.2, respectively).

  Packet type: IR

     This packet type communicates the static part and the dynamic part
     of the context.

     For the ROHC-TCP IR packet, the value of the x bit MUST be set to
     one.  It has the following format, which corresponds to the



Pelletier, et al.           Standards Track                    [Page 36]

RFC 4996                        ROHC-TCP                       July 2007


     "Header" and "Payload" fields described in Section 5.2.1 of
     [RFC4995]:

       0   1   2   3   4   5   6   7
      --- --- --- --- --- --- --- ---
     :        Add-CID octet          : if for small CIDs and (CID != 0)
     +---+---+---+---+---+---+---+---+
     | 1   1   1   1   1   1   0   1 | IR type octet
     +---+---+---+---+---+---+---+---+
     :                               :
     /       0-2 octets of CID       / 1-2 octets if for large CIDs
     :                               :
     +---+---+---+---+---+---+---+---+
     |         Profile = 0x06        | 1 octet
     +---+---+---+---+---+---+---+---+
     |              CRC              | 1 octet
     +---+---+---+---+---+---+---+---+
     |                               |
     /         Static chain          / variable length
     |                               |
      - - - - - - - - - - - - - - - -
     |                               |
     /         Dynamic chain         / variable length
     |                               |
      - - - - - - - - - - - - - - - -
     |                               |
     /            Payload            / variable length
     |                               |
      - - - - - - - - - - - - - - - -

     CRC: 8-bit CRC, computed according to Section 5.3.1.1. of
     [RFC4995].  The CRC covers the entire IR header, thus excluding
     payload, padding, and feedback, if any.

     Static chain: See Section 6.2.

     Dynamic chain: See Section 6.2.

     Payload: The payload of the corresponding original packet, if any.
     The payload consists of all data after the last octet of the TCP
     header to end of the uncompressed packet.  The presence of a
     payload is inferred from the packet length.

  Packet type: IR-DYN

     This packet type communicates the dynamic part of the context.





Pelletier, et al.           Standards Track                    [Page 37]

RFC 4996                        ROHC-TCP                       July 2007


     The ROHC-TCP IR-DYN packet has the following format, which
     corresponds to the "Header" and "Payload" fields described in
     Section 5.2.1 of [RFC4995]:

       0   1   2   3   4   5   6   7
      --- --- --- --- --- --- --- ---
     :         Add-CID octet         : if for small CIDs and (CID != 0)
     +---+---+---+---+---+---+---+---+
     | 1   1   1   1   1   0   0   0 | IR-DYN type octet
     +---+---+---+---+---+---+---+---+
     :                               :
     /       0-2 octets of CID       / 1-2 octets if for large CIDs
     :                               :
     +---+---+---+---+---+---+---+---+
     |         Profile = 0x06        | 1 octet
     +---+---+---+---+---+---+---+---+
     |              CRC              | 1 octet
     +---+---+---+---+---+---+---+---+
     |                               |
     /         Dynamic chain         / variable length
     |                               |
      - - - - - - - - - - - - - - - -
     |                               |
     /            Payload            / variable length
     |                               |
      - - - - - - - - - - - - - - - -

     CRC: 8-bit CRC, computed according to Section 5.3.1.1 of
     [RFC4995].  The CRC covers the entire IR-DYN header, thus
     excluding payload, padding, and feedback, if any.

     Dynamic chain: See Section 6.2.

     Payload: The payload of the corresponding original packet, if any.
     The payload consists of all data after the last octet of the TCP
     header to end of the uncompressed packet.  The presence of a
     payload is inferred from the packet length.

7.2.  Context Replication (IR-CR) Packets

  Context replication requires a dedicated IR packet format that
  uniquely identifies the IR-CR packet for the ROHC-TCP profile.  This
  section defines the profile-specific part of the IR-CR packet
  [RFC4164].







Pelletier, et al.           Standards Track                    [Page 38]

RFC 4996                        ROHC-TCP                       July 2007


  Packet type: IR-CR

     This packet type communicates a reference to a base context along
     with the static and dynamic parts of the replicated context that
     differs from the base context.

  The ROHC-TCP IR-CR packet follows the general format of the ROHC CR
  packet, as defined in [RFC4164], Section 3.5.2.  With consideration
  to the extensibility of the IR packet type defined in [RFC4995], the
  ROHC-TCP profile supports context replication through the profile-
  specific part of the IR packet.  This is achieved using the bit (x)
  left in the IR header for "Profile specific information".  For ROHC-
  TCP, this bit is defined as a flag indicating whether this packet is
  an IR packet or an IR-CR packet.  For the ROHC-TCP IR-CR packet, the
  value of the x bit MUST be set to zero.




































Pelletier, et al.           Standards Track                    [Page 39]

RFC 4996                        ROHC-TCP                       July 2007


  The ROHC-TCP IR-CR has the following format, which corresponds to the
  "Header" and "Payload" fields described in Section 5.2.1 of
  [RFC4995]:

       0   1   2   3   4   5   6   7
      --- --- --- --- --- --- --- ---
     :         Add-CID octet         : if for small CIDs and (CID != 0)
     +---+---+---+---+---+---+---+---+
     | 1   1   1   1   1   1   0   0 | IR-CR type octet
     +---+---+---+---+---+---+---+---+
     :                               :
     /       0-2 octets of CID       / 1-2 octets if for large CIDs
     :                               :
     +---+---+---+---+---+---+---+---+
     |         Profile = 0x06        | 1 octet
     +---+---+---+---+---+---+---+---+
     |              CRC              | 1 octet
     +---+---+---+---+---+---+---+---+
     | B |             CRC7          | 1 octet
     +---+---+---+---+---+---+---+---+
     :   Reserved    |   Base CID    : 1 octet, for small CID, if B=1
     +---+---+---+---+---+---+---+---+
     :                               :
     /           Base CID            / 1-2 octets, for large CIDs,
     :                               : if B=1
     +---+---+---+---+---+---+---+---+
     |                               |
     /        Replicate chain        / variable length
     |                               |
      - - - - - - - - - - - - - - - -
     |                               |
     /            Payload            / variable length
     |                               |
      - - - - - - - - - - - - - - - -

     B: B = 1 indicates that the Base CID field is present.

     CRC: This CRC covers the entire IR-CR header, thus excluding
     payload, padding, and feedback, if any.  This 8-bit CRC is
     calculated according to Section 5.3.1.1 of [RFC4995].

     CRC7: The CRC over the original, uncompressed, header.  Calculated
     according to Section 3.5.1.1 of [RFC4164].

     Reserved: MUST be set to zero; otherwise, the decompressor MUST
     discard the packet.





Pelletier, et al.           Standards Track                    [Page 40]

RFC 4996                        ROHC-TCP                       July 2007


     Base CID: CID of base context.  Encoded according to [RFC4164],
     Section 3.5.3.

     Replicate chain: See Section 6.2.

     Payload: The payload of the corresponding original packet, if any.
     The presence of a payload is inferred from the packet length.

7.3.  Compressed (CO) Packets

  The ROHC-TCP CO packets communicate irregularities in the packet
  header.  All CO packets carry a CRC and can update the context.

  The general format for a compressed TCP header is as follows, which
  corresponds to the "Header" and "Payload" fields described in Section
  5.2.1 of [RFC4995]:

        0   1   2   3   4   5   6   7
       --- --- --- --- --- --- --- ---
      :         Add-CID octet         :  if for small CIDs and CID 1-15
      +---+---+---+---+---+---+---+---+
      |   First octet of base header  |  (with type indication)
      +---+---+---+---+---+---+---+---+
      :                               :
      /   0, 1, or 2 octets of CID    /  1-2 octets if large CIDs
      :                               :
      +---+---+---+---+---+---+---+---+
      /   Remainder of base header    /  variable number of octets
      +---+---+---+---+---+---+---+---+
      :        Irregular chain        :
      /   (including irregular chain  /  variable
      :    items for TCP options)     :
       --- --- --- --- --- --- --- ---
      |                               |
      /            Payload            / variable length
      |                               |
       - - - - - - - - - - - - - - - -

     Base header: The complete set of base headers is defined in
     Section 8.

     Irregular chain: See Section 6.2 and Section 6.3.6.

     Payload: The payload of the corresponding original packet, if any.
     The presence of a payload is inferred from the packet length.






Pelletier, et al.           Standards Track                    [Page 41]

RFC 4996                        ROHC-TCP                       July 2007


8.  Header Formats (Normative)

  This section describes the set of compressed TCP/IP packet formats.
  The normative description of the packet formats is given using the
  formal notation for ROHC profiles defined in [RFC4997].  The formal
  description of the packet formats specifies all of the information
  needed to compress and decompress a header relative to the context.

  In particular, the notation provides a list of all the fields present
  in the uncompressed and compressed TCP/IP headers, and defines how to
  map from each uncompressed packet to its compressed equivalent and
  vice versa.

8.1.  Design Rationale for Compressed Base Headers

  The compressed header formats are defined as two separate sets: one
  set for the packets where the innermost IP header contains a
  sequential IP-ID (either network byte order or byte swapped), and one
  set for the packets without sequential IP-ID (either random, zero, or
  no IP-ID).

  These two sets of header formats are referred to as the "sequential"
  and the "random" set of header formats, respectively.

  In addition, there is one compressed format that is common to both
  sets of header formats and that can thus be used regardless of the
  type of IP-ID behavior.  This format can transmit rarely changing
  fields and also send the frequently changing fields coded in variable
  lengths.  It can also change the value of control fields such as
  IP-ID behavior and ECN behavior.

  All compressed base headers contain a 3-bit CRC, unless they update
  control fields such as "ip_id_behavior" or "ecn_used" that affect the
  interpretation of subsequent headers.  Headers that can modify these
  control fields carry a 7-bit CRC instead.

  When discussing LSB-encoded fields below, "p" equals the
  "offset_param" and "k" equals the "num_lsbs_param" in [RFC4997].  The
  encoding methods used in the compressed base headers are based on the
  following design criteria:

  o  MSN

        Since the MSN is a number generated by the compressor, it only
        needs to be large enough to ensure robust operation and to
        accommodate a small amount of reordering [RFC4163].  Therefore,
        each compressed base header has an MSN field that is LSB-
        encoded with k=4 and p=4 to handle a reordering depth of up to



Pelletier, et al.           Standards Track                    [Page 42]

RFC 4996                        ROHC-TCP                       July 2007


        4 packets.  Additional guidance to improve robustness when
        reordering is possible can be found in [RFC4224].

  o  TCP Sequence Number

        ROHC-TCP has the capability to handle bulk data transfers
        efficiently, for which the sequence number is expected to
        increase by about 1460 octets (which can be represented by 11
        bits).  For the compressed base headers to handle
        retransmissions (i.e., negative delta to the sequence number),
        the LSB interpretation interval has to handle negative offsets
        about as large as positive offsets, which means that one more
        bit is needed.

        Also, for ROHC-TCP to be robust to losses, two additional bits
        are added to the LSB encoding of the sequence number.  This
        means that the base headers should contain at least 14 bits of
        LSB-encoded sequence number when present.  According to the
        logic above, the LSB offset value is set to be as large as the
        positive offset, i.e., p = 2^(k-1)-1.

  o  TCP Acknowledgment Number

        The design criterion for the acknowledgment number is similar
        to that of the TCP Sequence Number.  However, often only every
        other data packet is acknowledged, which means that the
        expected delta value is twice as large as for sequence numbers.

        Therefore, at least 15 bits of acknowledgment number should be
        used in compressed base headers.  Since the acknowledgment
        number is expected to constantly increase, and the only
        exception to this is packet reordering (either on the ROHC
        channel [RFC3759] or prior to the compression point), the
        negative offset for LSB encoding is set to be 1/4 of the total
        interval, i.e., p = 2^(k-2)-1.

  o  TCP Window

        The TCP Window field is expected to increase in increments of
        similar size as the TCP Sequence Number, and therefore the
        design criterion for the TCP window is to send at least 14 bits
        when used.

  o  IP-ID

        For the "sequential" set of packet formats, all the compressed
        base headers contain LSB-encoded IP-ID offset bits, where the
        offset is the difference between the value of the MSN field and



Pelletier, et al.           Standards Track                    [Page 43]

RFC 4996                        ROHC-TCP                       July 2007


        the value of the IP-ID field.  The requirement is that at least
        3 bits of IP-ID should always be present, but it is preferable
        to use 4 to 7 bits.  When k=3 then p=1, and if k>3 then p=3
        since the offset is expected to increase most of the time.

  Each set of header formats contains eight different compressed base
  headers.  The reason for having this large number of header formats
  is that the TCP Sequence Number, TCP Acknowledgment Number, and TCP
  Window are frequently changing in a non-linear pattern.

  The design of the header formats is derived from the field behavior
  analysis found in [RFC4413].

  All of the compressed base headers transmit LSB-encoded MSN bits, the
  TCP Push flag, and a CRC, and in addition to this, all the base
  headers in the sequential packet format set contain LSB-encoded IP-ID
  bits.

  The following header formats exist in both the sequential and random
  packet format sets:

  o  Format 1: This header format carries changes to the TCP Sequence
     Number and is expected to be used on the downstream of a data
     transfer.

  o  Format 2: This header format carries the TCP Sequence Number in
     scaled form and is expected to be useful for the downstream of a
     data transfer where the payload size is constant for multiple
     packets.

  o  Format 3: This header format carries changes in the TCP
     Acknowledgment Number and is expected to be useful for the
     acknowledgment direction of a data transfer.

  o  Format 4: This header format is similar to format 3, but carries a
     scaled TCP Acknowledgment Number.

  o  Format 5: This header format carries both the TCP Sequence Number
     and the TCP Acknowledgment Number and is expected to be useful for
     flows that send data in both directions.

  o  Format 6: This header format is similar to format 5, but carries
     the TCP Sequence Number in scaled form, when the payload size is
     static for certain intervals in a data flow.

  o  Format 7: This header format carries changes to both the TCP
     Acknowledgment Number and the TCP Window and is expected to be
     useful for the acknowledgment flows of data connections.



Pelletier, et al.           Standards Track                    [Page 44]

RFC 4996                        ROHC-TCP                       July 2007


  o  Format 8: This header format is used to convey changes to some of
     the more seldom changing fields in the TCP flow, such as ECN
     behavior, RST/SYN/FIN flags, the TTL/Hop Limit, and the TCP
     options list.  This format carries a 7-bit CRC, since it can
     change the structure of the contents of the irregular chain for
     subsequent packets.  Note that this can be seen as a reduced form
     of the common packet format.

  o  Common header format: The common header format can be used for all
     kinds of IP-ID behavior and should be useful when some of the more
     rarely changing fields in the IP or TCP header change.  Since this
     header format can update control fields that decide how the
     decompressor interprets packets, it carries a 7-bit CRC to reduce
     the probability of context corruption.  This header can basically
     convey changes to any of the dynamic fields in the IP and TCP
     headers, and it uses a large set of flags to provide information
     about which fields are present in the header format.

8.2.  Formal Definition of Header Formats

////////////////////////////////////////////
// Constants
////////////////////////////////////////////

IP_ID_BEHAVIOR_SEQUENTIAL = 0;
IP_ID_BEHAVIOR_SEQUENTIAL_SWAPPED = 1;
IP_ID_BEHAVIOR_RANDOM = 2;
IP_ID_BEHAVIOR_ZERO = 3;

////////////////////////////////////////////
// Global control fields
////////////////////////////////////////////

CONTROL {
  ecn_used            [ 1 ];
  msn                 [ 16 ];
}

///////////////////////////////////////////////
// Encoding methods not specified in FN syntax
///////////////////////////////////////////////

list_tcp_options               "defined in Section 6.3.3";
inferred_ip_v4_header_checksum "defined in Section 6.4.1";
inferred_mine_header_checksum  "defined in Section 6.4.2";
inferred_ip_v4_length          "defined in Section 6.4.3";
inferred_ip_v6_length          "defined in Section 6.4.4";
inferred_offset                "defined in Section 6.4.5";



Pelletier, et al.           Standards Track                    [Page 45]

RFC 4996                        ROHC-TCP                       July 2007


baseheader_extension_headers   "defined in Section 6.4.6";
baseheader_outer_headers       "defined in Section 6.4.7";

////////////////////////////////////////////
// General encoding methods
////////////////////////////////////////////

static_or_irreg(flag, width)
{
  UNCOMPRESSED {
    field [ width ];
  }

  COMPRESSED irreg_enc {
    field =:= irregular(width) [ width ];
    ENFORCE(flag == 1);
  }

  COMPRESSED static_enc {
    field =:= static [ 0 ];
    ENFORCE(flag == 0);
  }
}

zero_or_irreg(flag, width)
{
  UNCOMPRESSED {
    field [ width ];
  }

  COMPRESSED non_zero {
    field =:= irregular(width) [ width ];
    ENFORCE(flag == 0);
  }

  COMPRESSED zero {
    field =:= uncompressed_value(width, 0) [ 0 ];
    ENFORCE(flag == 1);
  }
}

variable_length_32_enc(flag)
{
  UNCOMPRESSED {
    field [ 32 ];
  }

  COMPRESSED not_present {



Pelletier, et al.           Standards Track                    [Page 46]

RFC 4996                        ROHC-TCP                       July 2007


    field =:= static [ 0 ];
    ENFORCE(flag == 0);
  }

  COMPRESSED lsb_8_bit {
    field =:= lsb(8, 63) [ 8 ];
    ENFORCE(flag == 1);
  }

  COMPRESSED lsb_16_bit {
    field =:= lsb(16, 16383) [ 16 ];
    ENFORCE(flag == 2);
  }

  COMPRESSED irreg_32_bit {
    field =:= irregular(32) [ 32 ];
    ENFORCE(flag == 3);
  }
}

optional32(flag)
{
  UNCOMPRESSED {
    item [ 0, 32 ];
  }

  COMPRESSED present {
    item =:= irregular(32) [ 32 ];
    ENFORCE(flag == 1);
  }

  COMPRESSED not_present {
    item =:= compressed_value(0, 0) [ 0 ];
    ENFORCE(flag == 0);
  }
}
lsb_7_or_31
{
  UNCOMPRESSED {
    item [ 32 ];
  }

  COMPRESSED lsb_7 {
    discriminator =:= '0'       [ 1 ];
    item          =:= lsb(7, 8) [ 7 ];
  }

  COMPRESSED lsb_31 {



Pelletier, et al.           Standards Track                    [Page 47]

RFC 4996                        ROHC-TCP                       July 2007


    discriminator =:= '1'          [ 1 ];
    item          =:= lsb(31, 256) [ 31 ];
  }
}

opt_lsb_7_or_31(flag)
{
  UNCOMPRESSED {
    item [ 0, 32 ];
  }

  COMPRESSED present {
    item =:= lsb_7_or_31 [ 8, 32 ];
    ENFORCE(flag == 1);
  }

  COMPRESSED not_present {
    item =:= compressed_value(0, 0) [ 0 ];
    ENFORCE(flag == 0);
  }
}

crc3(data_value, data_length)
{
  UNCOMPRESSED {
  }

  COMPRESSED {
    crc_value =:=
      crc(3, 0x06, 0x07, data_value, data_length) [ 3 ];
  }
}

crc7(data_value, data_length)
{
  UNCOMPRESSED {
  }

  COMPRESSED {
    crc_value =:=
      crc(7, 0x79, 0x7f, data_value, data_length) [ 7 ];
  }
}

one_bit_choice
{
  UNCOMPRESSED {
    field [ 1 ];



Pelletier, et al.           Standards Track                    [Page 48]

RFC 4996                        ROHC-TCP                       July 2007


  }

  COMPRESSED zero {
    field [ 1 ];
    ENFORCE(field.UVALUE == 0);
  }

  COMPRESSED nonzero {
    field [ 1 ];
    ENFORCE(field.UVALUE == 1);
  }
}


// Encoding method for updating a scaled field and its associated
// control fields.  Should be used both when the value is scaled
// or unscaled in a compressed format.
field_scaling(stride_value, scaled_value, unscaled_value)
{
  UNCOMPRESSED {
    residue_field [ 32 ];
  }

  COMPRESSED no_scaling {
    ENFORCE(stride_value == 0);
    ENFORCE(residue_field.UVALUE == unscaled_value);
    ENFORCE(scaled_value == 0);
  }

  COMPRESSED scaling_used {
    ENFORCE(stride_value != 0);
    ENFORCE(residue_field.UVALUE == (unscaled_value % stride_value));
    ENFORCE(unscaled_value ==
            scaled_value * stride_value + residue_field.UVALUE);
  }
}
////////////////////////////////////////////
// IPv6 Destination options header
////////////////////////////////////////////

ip_dest_opt
{
  UNCOMPRESSED {
    next_header [ 8 ];
    length      [ 8 ];
    value       [ length.UVALUE * 64 + 48 ];
  }




Pelletier, et al.           Standards Track                    [Page 49]

RFC 4996                        ROHC-TCP                       July 2007


  DEFAULT {
    length      =:= static;
    next_header =:= static;
    value       =:= static;
  }

  COMPRESSED dest_opt_static {
    next_header =:= irregular(8) [ 8 ];
    length      =:= irregular(8) [ 8 ];
  }

  COMPRESSED dest_opt_dynamic {
    value =:=
      irregular(length.UVALUE * 64 + 48) [ length.UVALUE * 64 + 48 ];
  }

  COMPRESSED dest_opt_0_replicate {
    discriminator =:= '00000000' [ 8 ];
  }

  COMPRESSED dest_opt_1_replicate {
    discriminator =:= '10000000'                     [ 8 ];
    length        =:= irregular(8)                   [ 8 ];
    value         =:=
      irregular(length.UVALUE*64+48) [ length.UVALUE * 64 + 48 ];
  }

  COMPRESSED dest_opt_irregular {
  }
}

////////////////////////////////////////////
// IPv6 Hop-by-Hop options header
////////////////////////////////////////////

ip_hop_opt
{
  UNCOMPRESSED {
    next_header [ 8 ];
    length      [ 8 ];
    value       [ length.UVALUE * 64 + 48 ];
  }

  DEFAULT {
    length      =:= static;
    next_header =:= static;
    value       =:= static;
  }



Pelletier, et al.           Standards Track                    [Page 50]

RFC 4996                        ROHC-TCP                       July 2007


  COMPRESSED hop_opt_static {
    next_header =:= irregular(8) [ 8 ];
    length      =:= irregular(8) [ 8 ];
  }

  COMPRESSED hop_opt_dynamic {
    value =:=
      irregular(length.UVALUE*64+48) [ length.UVALUE * 64 + 48 ];
  }

  COMPRESSED hop_opt_0_replicate {
    discriminator =:= '00000000' [ 8 ];
  }

  COMPRESSED hop_opt_1_replicate {
    discriminator =:= '10000000'                     [ 8 ];
    length        =:= irregular(8)                   [ 8 ];
    value         =:=
      irregular(length.UVALUE*64+48) [ length.UVALUE * 64 + 48 ];
  }

  COMPRESSED hop_opt_irregular {
  }
}

////////////////////////////////////////////
// IPv6 Routing header
////////////////////////////////////////////

ip_rout_opt
{
  UNCOMPRESSED {
    next_header [ 8 ];
    length      [ 8 ];
    value       [ length.UVALUE * 64 + 48 ];
  }

  DEFAULT {
    length      =:= static;
    next_header =:= static;
    value       =:= static;
  }

  COMPRESSED rout_opt_static {
    next_header =:= irregular(8)                   [ 8 ];
    length      =:= irregular(8)                   [ 8 ];
    value       =:=
      irregular(length.UVALUE*64+48) [ length.UVALUE * 64 + 48 ];



Pelletier, et al.           Standards Track                    [Page 51]

RFC 4996                        ROHC-TCP                       July 2007


  }

  COMPRESSED rout_opt_dynamic {
  }

  COMPRESSED rout_opt_0_replicate {
    discriminator =:= '00000000' [ 8 ];
  }

  COMPRESSED rout_opt_0_replicate {
    discriminator =:= '10000000'                     [ 8 ];
    length        =:= irregular(8)                   [ 8 ];
    value         =:=
      irregular(length.UVALUE*64+48) [ length.UVALUE * 64 + 48 ];
  }

  COMPRESSED rout_opt_irregular {
  }
}

////////////////////////////////////////////
// GRE Header
////////////////////////////////////////////

optional_checksum(flag_value)
{
  UNCOMPRESSED {
    value     [ 0, 16 ];
    reserved1 [ 0, 16 ];
  }

  COMPRESSED cs_present {
    value     =:= irregular(16)             [ 16 ];
    reserved1 =:= uncompressed_value(16, 0) [ 0 ];
    ENFORCE(flag_value == 1);
  }

  COMPRESSED not_present {
    value     =:= compressed_value(0, 0) [ 0 ];
    reserved1 =:= compressed_value(0, 0) [ 0 ];
    ENFORCE(flag_value == 0);
  }
}

gre_proto
{
  UNCOMPRESSED {
    protocol [ 16 ];



Pelletier, et al.           Standards Track                    [Page 52]

RFC 4996                        ROHC-TCP                       July 2007


  }

  COMPRESSED ether_v4 {
    discriminator =:= compressed_value(1, 0)         [ 1 ];
    protocol      =:= uncompressed_value(16, 0x0800) [ 0 ];
  }

  COMPRESSED ether_v6 {
    discriminator =:= compressed_value(1, 1)         [ 1 ];
    protocol      =:= uncompressed_value(16, 0x86DD) [ 0 ];
  }
}

gre
{
  UNCOMPRESSED {
    c_flag                                 [ 1 ];
    r_flag    =:= uncompressed_value(1, 0) [ 1 ];
    k_flag                                 [ 1 ];
    s_flag                                 [ 1 ];
    reserved0 =:= uncompressed_value(9, 0) [ 9 ];
    version   =:= uncompressed_value(3, 0) [ 3 ];
    protocol                               [ 16 ];
    checksum_and_res                       [ 0, 32 ];
    key                                    [ 0, 32 ];
    sequence_number                        [ 0, 32 ];
  }

  DEFAULT {
    c_flag           =:= static;
    k_flag           =:= static;
    s_flag           =:= static;
    protocol         =:= static;
    key              =:= static;
    sequence_number  =:= static;
  }

  COMPRESSED gre_static {
    protocol =:= gre_proto                 [ 1 ];
    c_flag   =:= irregular(1)              [ 1 ];
    k_flag   =:= irregular(1)              [ 1 ];
    s_flag   =:= irregular(1)              [ 1 ];
    padding  =:= compressed_value(4, 0)    [ 4 ];
    key      =:= optional32(k_flag.UVALUE) [ 0, 32 ];
  }

  COMPRESSED gre_dynamic {
    checksum_and_res =:=



Pelletier, et al.           Standards Track                    [Page 53]

RFC 4996                        ROHC-TCP                       July 2007


      optional_checksum(c_flag.UVALUE)             [ 0, 16 ];
    sequence_number  =:= optional32(s_flag.UVALUE) [ 0, 32 ];
  }

  COMPRESSED gre_0_replicate {
    discriminator    =:= '00000000'    [ 8 ];
    checksum_and_res =:=
      optional_checksum(c_flag.UVALUE) [ 0, 16 ];
    sequence_number  =:=
      optional32(s_flag.UVALUE)        [ 0, 8, 32 ];
  }

  COMPRESSED gre_1_replicate {
    discriminator    =:= '10000'                   [ 5 ];
    c_flag           =:= irregular(1)              [ 1 ];
    k_flag           =:= irregular(1)              [ 1 ];
    s_flag           =:= irregular(1)              [ 1 ];
    checksum_and_res =:=
      optional_checksum(c_flag.UVALUE)             [ 0, 16 ];
    key              =:= optional32(k_flag.UVALUE) [ 0, 32 ];
    sequence_number  =:= optional32(s_flag.UVALUE) [ 0, 32 ];
  }

  COMPRESSED gre_irregular {
    checksum_and_res =:=
      optional_checksum(c_flag.UVALUE) [ 0, 16 ];
    sequence_number  =:=
      opt_lsb_7_or_31(s_flag.UVALUE)   [ 0, 8, 32 ];
  }
}

/////////////////////////////////////////////
// MINE header
/////////////////////////////////////////////

mine
{
  UNCOMPRESSED {
    next_header [ 8 ];
    s_bit       [ 1 ];
    res_bits    [ 7 ];
    checksum    [ 16 ];
    orig_dest   [ 32 ];
    orig_src    [ 0, 32 ];
  }

  DEFAULT {
    next_header =:= static;



Pelletier, et al.           Standards Track                    [Page 54]

RFC 4996                        ROHC-TCP                       July 2007


    s_bit       =:= static;
    res_bits    =:= static;
    checksum    =:= inferred_mine_header_checksum;
    orig_dest   =:= static;
    orig_src    =:= static;
  }

  COMPRESSED mine_static {
    next_header =:= irregular(8)             [ 8 ];
    s_bit       =:= irregular(1)             [ 1 ];
    // Reserved bits are included to achieve byte-alignment
    res_bits    =:= irregular(7)             [ 7 ];
    orig_dest   =:= irregular(32)            [ 32 ];
    orig_src    =:= optional32(s_bit.UVALUE) [ 0, 32 ];
  }

  COMPRESSED mine_dynamic {
  }

  COMPRESSED mine_0_replicate {
    discriminator =:= '00000000' [ 8 ];
  }

  COMPRESSED mine_1_replicate {
    discriminator =:= '10000000'               [ 8 ];
    s_bit         =:= irregular(1)             [ 1 ];
    res_bits      =:= irregular(7)             [ 7 ];
    orig_dest     =:= irregular(32)            [ 32 ];
    orig_src      =:= optional32(s_bit.UVALUE) [ 0, 32 ];
  }

  COMPRESSED mine_irregular {
  }
}

/////////////////////////////////////////////
// Authentication Header (AH)
/////////////////////////////////////////////

ah
{
  UNCOMPRESSED {
    next_header     [ 8 ];
    length          [ 8 ];
    res_bits        [ 16 ];
    spi             [ 32 ];
    sequence_number [ 32 ];
    auth_data       [ length.UVALUE*32-32 ];



Pelletier, et al.           Standards Track                    [Page 55]

RFC 4996                        ROHC-TCP                       July 2007


  }

  DEFAULT {
    next_header     =:= static;
    length          =:= static;
    res_bits        =:= static;
    spi             =:= static;
    sequence_number =:= static;
  }

  COMPRESSED ah_static {
    next_header =:= irregular(8)  [ 8 ];
    length      =:= irregular(8)  [ 8 ];
    spi         =:= irregular(32) [ 32 ];
  }

  COMPRESSED ah_dynamic {
    res_bits        =:= irregular(16) [ 16 ];
    sequence_number =:= irregular(32) [ 32 ];
    auth_data       =:=
      irregular(length.UVALUE*32-32)  [ length.UVALUE*32-32 ];
  }

  COMPRESSED ah_0_replicate {
    discriminator   =:= '00000000'    [ 8 ];
    sequence_number =:= irregular(32) [ 32 ];
    auth_data       =:=
      irregular(length.UVALUE*32-32)  [ length.UVALUE*32-32 ];
  }

  COMPRESSED ah_1_replicate {
    discriminator   =:= '10000000'    [ 8 ];
    length          =:= irregular(8)  [ 8 ];
    res_bits        =:= irregular(16) [ 16 ];
    spi             =:= irregular(32) [ 32 ];
    sequence_number =:= irregular(32) [ 32 ];
    auth_data       =:=
      irregular(length.UVALUE*32-32)  [ length.UVALUE*32-32 ];
  }

  COMPRESSED ah_irregular {
    sequence_number =:= lsb_7_or_31  [ 8, 32 ];
    auth_data       =:=
      irregular(length.UVALUE*32-32) [ length.UVALUE*32-32 ];
  }
}

/////////////////////////////////////////////



Pelletier, et al.           Standards Track                    [Page 56]

RFC 4996                        ROHC-TCP                       July 2007


// ESP header (NULL encrypted)
/////////////////////////////////////////////

// The value of the Next Header field from the trailer
// part of the packet is passed as a parameter.
esp_null(next_header_value)
{
  UNCOMPRESSED {
    spi             [ 32 ];
    sequence_number [ 32 ];
  }

  CONTROL {
    nh_field [ 8 ];
  }

  DEFAULT {
    spi             =:= static;
    sequence_number =:= static;
    nh_field        =:= static;
  }

  COMPRESSED esp_static {
    nh_field =:= compressed_value(8, next_header_value) [ 8 ];
    spi      =:= irregular(32)                          [ 32 ];
  }

  COMPRESSED esp_dynamic {
    sequence_number =:= irregular(32) [ 32 ];
  }

  COMPRESSED esp_0_replicate {
    discriminator   =:= '00000000'    [ 8 ];
    sequence_number =:= irregular(32) [ 32 ];
  }
  COMPRESSED esp_1_replicate {
    discriminator   =:= '10000000'    [ 8 ];
    spi             =:= irregular(32) [ 32 ];
    sequence_number =:= irregular(32) [ 32 ];
  }

  COMPRESSED esp_irregular {
    sequence_number =:= lsb_7_or_31 [ 8, 32 ];
  }
}

/////////////////////////////////////////////
// IPv6 Header



Pelletier, et al.           Standards Track                    [Page 57]

RFC 4996                        ROHC-TCP                       July 2007


/////////////////////////////////////////////

fl_enc
{
  UNCOMPRESSED {
    flow_label [ 20 ];
  }

  COMPRESSED fl_zero {
    discriminator =:= '0'                       [ 1 ];
    flow_label    =:= uncompressed_value(20, 0) [ 0 ];
    reserved      =:= '0000'                    [ 4 ];
  }

  COMPRESSED fl_non_zero {
    discriminator =:= '1'           [ 1 ];
    flow_label    =:= irregular(20) [ 20 ];
  }
}

// The is_innermost flag is true if this is the innermost IP header
// If extracting the irregular chain for a compressed packet:
//   - ttl_irregular_chain_flag must have the same value as it had when
//     processing co_baseheader.
//   - ip_inner_ecn is bound in this encoding method and the value that
//     it gets bound to should be passed to the tcp encoding method
//   For other formats than the irregular chain, these two are ignored
ipv6(is_innermost, ttl_irregular_chain_flag, ip_inner_ecn)
{
  UNCOMPRESSED {
    version         =:= uncompressed_value(4, 6) [ 4 ];
    dscp                                         [ 6 ];
    ip_ecn_flags                                 [ 2 ];
    flow_label                                   [ 20 ];
    payload_length                               [ 16 ];
    next_header                                  [ 8 ];
    ttl_hopl                                     [ 8 ];
    src_addr                                     [ 128 ];
    dst_addr                                     [ 128 ];
  }

  DEFAULT {
    dscp           =:= static;
    ip_ecn_flags   =:= static;
    flow_label     =:= static;
    payload_length =:= inferred_ip_v6_length;
    next_header    =:= static;
    ttl_hopl       =:= static;



Pelletier, et al.           Standards Track                    [Page 58]

RFC 4996                        ROHC-TCP                       July 2007


    src_addr       =:= static;
    dst_addr       =:= static;
  }

  COMPRESSED ipv6_static {
    version_flag =:= '1'            [ 1 ];
    reserved     =:= '00'           [ 2 ];
    flow_label   =:= fl_enc         [ 5, 21 ];
    next_header  =:= irregular(8)   [ 8 ];
    src_addr     =:= irregular(128) [ 128 ];
    dst_addr     =:= irregular(128) [ 128 ];
  }

  COMPRESSED ipv6_dynamic {
    dscp         =:= irregular(6) [ 6 ];
    ip_ecn_flags =:= irregular(2) [ 2 ];
    ttl_hopl     =:= irregular(8) [ 8 ];
  }

  COMPRESSED ipv6_replicate {
    dscp         =:= irregular(6) [ 6 ];
    ip_ecn_flags =:= irregular(2) [ 2 ];
    reserved     =:= '000'        [ 3 ];
    flow_label   =:= fl_enc       [ 5, 21 ];
  }

  COMPRESSED ipv6_outer_without_ttl_irregular {
    dscp         =:= static_or_irreg(ecn_used.UVALUE, 6) [ 0, 6 ];
    ip_ecn_flags =:= static_or_irreg(ecn_used.UVALUE, 2) [ 0, 2 ];
    ENFORCE(ttl_irregular_chain_flag == 0);
    ENFORCE(is_innermost == false);
  }

  COMPRESSED ipv6_outer_with_ttl_irregular {
    dscp         =:= static_or_irreg(ecn_used.UVALUE, 6) [ 0, 6 ];
    ip_ecn_flags =:= static_or_irreg(ecn_used.UVALUE, 2) [ 0, 2 ];
    ttl_hopl     =:= irregular(8)                        [ 8 ];
    ENFORCE(ttl_irregular_chain_flag == 1);
    ENFORCE(is_innermost == false);
  }

  COMPRESSED ipv6_innermost_irregular {
    ENFORCE(ip_inner_ecn == ip_ecn_flags.UVALUE);
    ENFORCE(is_innermost == true);
  }
}

/////////////////////////////////////////////



Pelletier, et al.           Standards Track                    [Page 59]

RFC 4996                        ROHC-TCP                       July 2007


// IPv4 Header
/////////////////////////////////////////////

ip_id_enc_dyn(behavior)
{
  UNCOMPRESSED {
    ip_id [ 16 ];
  }

  COMPRESSED ip_id_seq {
    ip_id =:= irregular(16) [ 16 ];
    ENFORCE((behavior == IP_ID_BEHAVIOR_SEQUENTIAL) ||
            (behavior == IP_ID_BEHAVIOR_SEQUENTIAL_SWAPPED) ||
            (behavior == IP_ID_BEHAVIOR_RANDOM));
  }

  COMPRESSED ip_id_zero {
    ip_id =:= uncompressed_value(16, 0) [ 0 ];
    ENFORCE(behavior == IP_ID_BEHAVIOR_ZERO);
  }
}

ip_id_enc_irreg(behavior)
{
  UNCOMPRESSED {
    ip_id [ 16 ];
  }

  COMPRESSED ip_id_seq {
    ENFORCE(behavior == IP_ID_BEHAVIOR_SEQUENTIAL);
  }

  COMPRESSED ip_id_seq_swapped {
    ENFORCE(behavior == IP_ID_BEHAVIOR_SEQUENTIAL_SWAPPED);
  }
  COMPRESSED ip_id_rand {
    ip_id =:= irregular(16) [ 16 ];
    ENFORCE(behavior == IP_ID_BEHAVIOR_RANDOM);
  }

  COMPRESSED ip_id_zero {
    ip_id =:= uncompressed_value(16, 0) [ 0 ];
    ENFORCE(behavior == IP_ID_BEHAVIOR_ZERO);
  }
}

ip_id_behavior_choice(is_inner)
{



Pelletier, et al.           Standards Track                    [Page 60]

RFC 4996                        ROHC-TCP                       July 2007


  UNCOMPRESSED {
    behavior [ 2 ];
  }

  DEFAULT {
    behavior =:= irregular(2);
  }

  COMPRESSED sequential {
    behavior [ 2 ];
    ENFORCE(is_inner == true);
    ENFORCE(behavior.UVALUE == IP_ID_BEHAVIOR_SEQUENTIAL);
  }

  COMPRESSED sequential_swapped {
    behavior [ 2 ];
    ENFORCE(is_inner == true);
    ENFORCE(behavior.UVALUE ==
            IP_ID_BEHAVIOR_SEQUENTIAL_SWAPPED);
  }

  COMPRESSED random {
    behavior [ 2 ];
    ENFORCE(behavior.UVALUE == IP_ID_BEHAVIOR_RANDOM);
  }

  COMPRESSED zero {
    behavior [ 2 ];
    ENFORCE(behavior.UVALUE == IP_ID_BEHAVIOR_ZERO);
  }
}

// The is_innermost flag is true if this is the innermost IP header
// If extracting the irregular chain for a compressed packet:
//   - ttl_irregular_chain_flag must have the same value as it had when
//     processing co_baseheader.
//   - ip_inner_ecn is bound in this encoding method and the value that
//     it gets bound to should be passed to the tcp encoding method
//   For other formats than the irregular chain, these two are ignored
ipv4(is_innermost, ttl_irregular_chain_flag, ip_inner_ecn)
{
  UNCOMPRESSED {
    version        =:= uncompressed_value(4, 4)  [ 4 ];
    hdr_length     =:= uncompressed_value(4, 5)  [ 4 ];
    dscp                                         [ 6 ];
    ip_ecn_flags                                 [ 2 ];
    length                                       [ 16 ];
    ip_id                                        [ 16 ];



Pelletier, et al.           Standards Track                    [Page 61]

RFC 4996                        ROHC-TCP                       July 2007


    rf             =:= uncompressed_value(1, 0)  [ 1 ];
    df                                           [ 1 ];
    mf             =:= uncompressed_value(1, 0)  [ 1 ];
    frag_offset    =:= uncompressed_value(13, 0) [ 13 ];
    ttl_hopl                                     [ 8 ];
    protocol                                     [ 8 ];
    checksum                                     [ 16 ];
    src_addr                                     [ 32 ];
    dst_addr                                     [ 32 ];
  }

  CONTROL {
    ip_id_behavior [ 2 ];
  }

  DEFAULT {
    dscp           =:= static;
    ip_ecn_flags   =:= static;
    length         =:= inferred_ip_v4_length;
    df             =:= static;
    ttl_hopl       =:= static;
    protocol       =:= static;
    checksum       =:= inferred_ip_v4_header_checksum;
    src_addr       =:= static;
    dst_addr       =:= static;
    ip_id_behavior =:= static;
  }

  COMPRESSED ipv4_static {
    version_flag =:= '0'           [ 1 ];
    reserved     =:= '0000000'     [ 7 ];
    protocol     =:= irregular(8)  [ 8 ];
    src_addr     =:= irregular(32) [ 32 ];
    dst_addr     =:= irregular(32) [ 32 ];
  }

  COMPRESSED ipv4_dynamic {
    reserved       =:= '00000'             [ 5 ];
    df             =:= irregular(1)        [ 1 ];
    ip_id_behavior =:= ip_id_behavior_choice(is_innermost) [ 2 ];
    dscp           =:= irregular(6)        [ 6 ];
    ip_ecn_flags   =:= irregular(2)        [ 2 ];
    ttl_hopl       =:= irregular(8)        [ 8 ];
    ip_id          =:=
      ip_id_enc_dyn(ip_id_behavior.UVALUE) [ 0, 16 ];
  }

  COMPRESSED ipv4_replicate {



Pelletier, et al.           Standards Track                    [Page 62]

RFC 4996                        ROHC-TCP                       July 2007


    reserved       =:= '0000'              [ 4 ];
    ip_id_behavior =:= ip_id_behavior_choice(is_innermost) [ 2 ];
    ttl_flag       =:= irregular(1)        [ 1 ];
    df             =:= irregular(1)        [ 1 ];
    dscp           =:= irregular(6)        [ 6 ];
    ip_ecn_flags   =:= irregular(2)        [ 2 ];
    ip_id          =:=
      ip_id_enc_dyn(ip_id_behavior.UVALUE) [ 0, 16 ];
    ttl_hopl     =:=
        static_or_irreg(ttl_flag.UVALUE, 8) [ 0, 8 ];
  }

  COMPRESSED ipv4_outer_without_ttl_irregular {
    ip_id        =:=
      ip_id_enc_irreg(ip_id_behavior.UVALUE) [ 0, 16 ];
    dscp         =:= static_or_irreg(ecn_used.UVALUE, 6) [ 0, 6 ];
    ip_ecn_flags =:= static_or_irreg(ecn_used.UVALUE, 2) [ 0, 2 ];
    ENFORCE(ttl_irregular_chain_flag == 0);
    ENFORCE(is_innermost == false);
  }

  COMPRESSED ipv4_outer_with_ttl_irregular {
    ip_id        =:=
      ip_id_enc_irreg(ip_id_behavior.UVALUE)             [ 0, 16 ];
    dscp         =:= static_or_irreg(ecn_used.UVALUE, 6) [ 0, 6 ];
    ip_ecn_flags =:= static_or_irreg(ecn_used.UVALUE, 2) [ 0, 2 ];
    ttl_hopl     =:= irregular(8)                        [ 8 ];
    ENFORCE(is_innermost == false);
    ENFORCE(ttl_irregular_chain_flag == 1);
  }

  COMPRESSED ipv4_innermost_irregular {
    ip_id          =:=
      ip_id_enc_irreg(ip_id_behavior.UVALUE) [ 0, 16 ];
    ENFORCE(ip_inner_ecn == ip_ecn_flags.UVALUE);
    ENFORCE(is_innermost == true);
  }
}

/////////////////////////////////////////////
// TCP Options
/////////////////////////////////////////////

// nbits is bound to the remaining length (in bits) of TCP
// options, including the EOL type byte.
tcp_opt_eol(nbits)
{
  UNCOMPRESSED {



Pelletier, et al.           Standards Track                    [Page 63]

RFC 4996                        ROHC-TCP                       July 2007


    type     =:= uncompressed_value(8, 0) [ 8 ];
    padding  =:=
      uncompressed_value(nbits-8, 0)      [ nbits-8 ];
  }

  CONTROL {
    pad_len [ 8 ];
  }

  COMPRESSED eol_list_item {
    pad_len =:= compressed_value(8, nbits-8) [ 8 ];
  }

  COMPRESSED eol_irregular {
    pad_len =:= static;
    ENFORCE(nbits-8 == pad_len.UVALUE);
  }
}

tcp_opt_nop
{
  UNCOMPRESSED {
    type =:= uncompressed_value(8, 1) [ 8 ];
  }

  COMPRESSED nop_list_item {
  }

  COMPRESSED nop_irregular {
  }
}

tcp_opt_mss
{
  UNCOMPRESSED {
    type   =:= uncompressed_value(8, 2) [ 8 ];
    length =:= uncompressed_value(8, 4) [ 8 ];
    mss                                 [ 16 ];
  }

  COMPRESSED mss_list_item {
    mss =:= irregular(16) [ 16 ];
  }

  COMPRESSED mss_irregular {
    mss    =:= static;
  }
}



Pelletier, et al.           Standards Track                    [Page 64]

RFC 4996                        ROHC-TCP                       July 2007


tcp_opt_wscale
{
  UNCOMPRESSED {
    type   =:= uncompressed_value(8, 3) [ 8 ];
    length =:= uncompressed_value(8, 3) [ 8 ];
    wscale                              [ 8 ];
  }

  COMPRESSED wscale_list_item {
    wscale =:= irregular(8) [ 8 ];
  }

  COMPRESSED wscale_irregular {
    wscale =:= static;
  }
}

ts_lsb
{
  UNCOMPRESSED {
    tsval [ 32 ];
  }

  COMPRESSED tsval_7 {
    discriminator =:= '0'        [ 1 ];
    tsval         =:= lsb(7, -1) [ 7 ];
  }

  COMPRESSED tsval_14 {
    discriminator =:= '10'        [ 2 ];
    tsval         =:= lsb(14, -1) [ 14 ];
  }

  COMPRESSED tsval_21 {
    discriminator =:= '110'               [ 3 ];
    tsval         =:= lsb(21, 0x00040000) [ 21 ];
  }

  COMPRESSED tsval_29 {
    discriminator =:= '111'               [ 3 ];
    tsval         =:= lsb(29, 0x04000000) [ 29 ];
  }
}

tcp_opt_ts
{
  UNCOMPRESSED {
    type   =:= uncompressed_value(8, 8)  [ 8 ];



Pelletier, et al.           Standards Track                    [Page 65]

RFC 4996                        ROHC-TCP                       July 2007


    length =:= uncompressed_value(8, 10) [ 8 ];
    tsval                                [ 32 ];
    tsecho                               [ 32 ];
  }

  COMPRESSED tsopt_list_item {
    tsval  =:= irregular(32) [ 32 ];
    tsecho =:= irregular(32) [ 32 ];
  }

  COMPRESSED tsopt_irregular {
    tsval  =:= ts_lsb [ 8, 16, 24, 32 ];
    tsecho =:= ts_lsb [ 8, 16, 24, 32 ];
  }
}

sack_var_length_enc(base)
{
  UNCOMPRESSED {
    sack_field [ 32 ];
  }

  CONTROL {
    sack_offset [ 32 ];
    ENFORCE(sack_offset.UVALUE == (sack_field.UVALUE - base));
  }


  COMPRESSED lsb_15 {
    discriminator =:= '0'         [ 1 ];
    sack_offset   =:= lsb(15, -1) [ 15 ];
  }

  COMPRESSED lsb_22 {
    discriminator =:= '10'        [ 2 ];
    sack_offset   =:= lsb(22, -1) [ 22 ];
  }

  COMPRESSED lsb_30 {
    discriminator =:= '11'        [ 2 ];
    sack_offset   =:= lsb(30, -1) [ 30 ];
  }
}

sack_block(prev_block_end)
{
  UNCOMPRESSED {
    block_start [ 32 ];



Pelletier, et al.           Standards Track                    [Page 66]

RFC 4996                        ROHC-TCP                       July 2007


    block_end   [ 32 ];
  }

  COMPRESSED {
    block_start =:=
      sack_var_length_enc(prev_block_end) [ 16, 24, 32 ];
    block_end   =:=
      sack_var_length_enc(block_start)    [ 16, 24, 32 ];
  }
}

// The value of the parameter is set to the ack_number value
// of the TCP header
tcp_opt_sack(ack_value)
{

  UNCOMPRESSED {
    type    =:= uncompressed_value(8, 5) [ 8 ];
    length                               [ 8 ];
    block_1                              [ 64 ];
    block_2                              [ 0, 64 ];
    block_3                              [ 0, 64 ];
    block_4                              [ 0, 64 ];
  }

  DEFAULT {
    length  =:= static;
    block_2 =:= uncompressed_value(0, 0);
    block_3 =:= uncompressed_value(0, 0);
    block_4 =:= uncompressed_value(0, 0);
  }

  COMPRESSED sack1_list_item {
    discriminator =:= '00000001';
    block_1       =:= sack_block(ack_value);
    ENFORCE(length.UVALUE == 10);
  }

  COMPRESSED sack2_list_item {
    discriminator =:= '00000010';
    block_1       =:= sack_block(ack_value);
    block_2       =:= sack_block(block_1_end.UVALUE);
    ENFORCE(length.UVALUE == 18);
  }

  COMPRESSED sack3_list_item {
    discriminator =:= '00000011';
    block_1       =:= sack_block(ack_value);



Pelletier, et al.           Standards Track                    [Page 67]

RFC 4996                        ROHC-TCP                       July 2007


    block_2       =:= sack_block(block_1_end.UVALUE);
    block_3       =:= sack_block(block_2_end.UVALUE);
    ENFORCE(length.UVALUE == 26);
  }

  COMPRESSED sack4_list_item {
    discriminator =:= '00000100';
    block_1       =:= sack_block(ack_value);
    block_2       =:= sack_block(block_1_end.UVALUE);
    block_3       =:= sack_block(block_2_end.UVALUE);
    block_4       =:= sack_block(block_3_end.UVALUE);
    ENFORCE(length.UVALUE == 34);
  }

  COMPRESSED sack_unchanged_irregular {
    discriminator =:= '00000000';
    block_1       =:= static;
    block_2       =:= static;
    block_3       =:= static;
    block_4       =:= static;
  }

  COMPRESSED sack1_irregular {
    discriminator =:= '00000001';
    block_1       =:= sack_block(ack_value);
    ENFORCE(length.UVALUE == 10);
  }

  COMPRESSED sack2_irregular {
    discriminator =:= '00000010';
    block_1       =:= sack_block(ack_value);
    block_2       =:= sack_block(block_1_end.UVALUE);
    ENFORCE(length.UVALUE == 18);
  }

  COMPRESSED sack3_irregular {
    discriminator =:= '00000011';
    block_1       =:= sack_block(ack_value);
    block_2       =:= sack_block(block_1_end.UVALUE);
    block_3       =:= sack_block(block_2_end.UVALUE);
    ENFORCE(length.UVALUE == 26);
  }

  COMPRESSED sack4_irregular {
    discriminator =:= '00000100';
    block_1       =:= sack_block(ack_value);
    block_2       =:= sack_block(block_1_end.UVALUE);
    block_3       =:= sack_block(block_2_end.UVALUE);



Pelletier, et al.           Standards Track                    [Page 68]

RFC 4996                        ROHC-TCP                       July 2007


    block_4       =:= sack_block(block_3_end.UVALUE);
    ENFORCE(length.UVALUE == 34);
  }
}

tcp_opt_sack_permitted
{
  UNCOMPRESSED {
    type   =:= uncompressed_value(8, 4) [ 8 ];
    length =:= uncompressed_value(8, 2) [ 8 ];
  }

  COMPRESSED sack_permitted_list_item {
  }

  COMPRESSED sack_permitted_irregular {
  }
}

tcp_opt_generic
{
  UNCOMPRESSED {
    type                                    [ 8 ];
    length_msb =:= uncompressed_value(1, 0) [ 1 ];
    length_lsb                              [ 7 ];
    contents                           [ length_len.UVALUE*8-16 ];
  }

  CONTROL {
    option_static [ 1 ];
  }

  DEFAULT {
    type       =:= static;
    length_lsb =:= static;
    contents   =:= static;
  }

  COMPRESSED generic_list_item {
    type          =:= irregular(8)      [ 8 ];
    option_static =:= one_bit_choice    [ 1 ];
    length_lsb    =:= irregular(7)      [ 7 ];
    contents      =:=
      irregular(length_lsb.UVALUE*8-16) [ length_len.UVALUE*8-16 ];
  }

  // Used when context of option has option_static set to one
  COMPRESSED generic_static_irregular {



Pelletier, et al.           Standards Track                    [Page 69]

RFC 4996                        ROHC-TCP                       July 2007


    ENFORCE(option_static.UVALUE == 1);
  }

  // An item that can change, but currently is unchanged
  COMPRESSED generic_stable_irregular {
    discriminator =:= '11111111' [ 8 ];
    ENFORCE(option_static.UVALUE == 0);
  }

  // An item that is assumed to change constantly.
  // Length is not allowed to change here, since a length change is
  // most likely to cause new NOPs or an EOL length change.
  COMPRESSED generic_full_irregular {
    discriminator =:= '00000000'        [ 8 ];
    contents      =:=
      irregular(length_lsb.UVALUE*8-16) [ length_lsb.UVALUE*8-16 ];
    ENFORCE(option_static.UVALUE == 0);
  }
}

tcp_list_presence_enc(presence)
{
  UNCOMPRESSED {
    tcp_options;
  }

  COMPRESSED list_not_present {
    tcp_options =:= static [ 0 ];
    ENFORCE(presence == 0);
  }

  COMPRESSED list_present {
    tcp_options =:= list_tcp_options [ VARIABLE ];
    ENFORCE(presence == 1);
  }
}

/////////////////////////////////////////////
// TCP Header
/////////////////////////////////////////////

port_replicate(flags)
{
  UNCOMPRESSED {
    port [ 16 ];
  }

  COMPRESSED port_static_enc {



Pelletier, et al.           Standards Track                    [Page 70]

RFC 4996                        ROHC-TCP                       July 2007


    port =:= static [ 0 ];
    ENFORCE(flags == 0b00);
  }

  COMPRESSED port_lsb8 {
    port =:= lsb(8, 64) [ 8 ];
    ENFORCE(flags == 0b01);
  }

  COMPRESSED port_irr_enc {
    port =:= irregular(16) [ 16 ];
    ENFORCE(flags == 0b10);
  }
}

tcp_irreg_ip_ecn(ip_inner_ecn)
{
  UNCOMPRESSED {
    ip_ecn_flags [ 2 ];
  }

  COMPRESSED ecn_present {
    // This field does not exist in the uncompressed header
    // and therefore cannot use uncompressed_value.
    ip_ecn_flags =:=
      compressed_value(2, ip_inner_ecn) [ 2 ];
    ENFORCE(ecn_used.UVALUE == 1);
  }

  COMPRESSED ecn_not_present {
    ip_ecn_flags =:= static [ 0 ];
    ENFORCE(ecn_used.UVALUE == 0);
  }
}

rsf_index_enc
{
  UNCOMPRESSED {
    rsf_flag [ 3 ];
  }

  COMPRESSED none {
    rsf_idx  =:= '00' [ 2 ];
    rsf_flag =:= uncompressed_value(3, 0x00);
  }

  COMPRESSED rst_only {
    rsf_idx  =:= '01' [ 2 ];



Pelletier, et al.           Standards Track                    [Page 71]

RFC 4996                        ROHC-TCP                       July 2007


    rsf_flag =:= uncompressed_value(3, 0x04);
  }

  COMPRESSED syn_only {
    rsf_idx  =:= '10' [ 2 ];
    rsf_flag =:= uncompressed_value(3, 0x02);
  }

  COMPRESSED fin_only {
    rsf_idx  =:= '11' [ 2 ];
    rsf_flag =:= uncompressed_value(3, 0x01);
  }
}

optional_2bit_padding(used_flag)
{
  UNCOMPRESSED {
  }

  COMPRESSED used {
    padding =:= compressed_value(2, 0x0) [ 2 ];
    ENFORCE(used_flag == 1);
  }

  COMPRESSED unused {
    padding =:= compressed_value(0, 0x0);
    ENFORCE(used_flag == 0);
  }
}

// ack_stride_value is the user-selected stride for scaling the
// TCP ack_number
// ip_inner_ecn is the value bound when processing the innermost
// IP header (ipv4 or ipv6 encoding method)
tcp(payload_size, ack_stride_value, ip_inner_ecn)
{
  UNCOMPRESSED {
    src_port      [ 16 ];
    dst_port      [ 16 ];
    seq_number    [ 32 ];
    ack_number    [ 32 ];
    data_offset   [ 4 ];
    tcp_res_flags [ 4 ];
    tcp_ecn_flags [ 2 ];
    urg_flag      [ 1 ];
    ack_flag      [ 1 ];
    psh_flag      [ 1 ];
    rsf_flags     [ 3 ];



Pelletier, et al.           Standards Track                    [Page 72]

RFC 4996                        ROHC-TCP                       July 2007


    window        [ 16 ];
    checksum      [ 16 ];
    urg_ptr       [ 16 ];
    options       [ (data_offset.UVALUE-5)*32 ];
  }

  CONTROL {
    seq_number_scaled                    [ 32 ];
    seq_number_residue =:=
        field_scaling(payload_size, seq_number_scaled.UVALUE,
                      seq_number.UVALUE) [ 32 ];
    ack_stride                           [ 16 ];
    ack_number_scaled                    [ 32 ];
    ack_number_residue =:=
        field_scaling(ack_stride.UVALUE, ack_number_scaled.UVALUE,
                      ack_number.UVALUE) [ 32 ];
    ENFORCE(ack_stride.UVALUE == ack_stride_value);
  }

  INITIAL {
    ack_stride     =:= uncompressed_value(16, 0);
  }

  DEFAULT {
    src_port      =:= static;
    dst_port      =:= static;
    seq_number    =:= static;
    ack_number    =:= static;
    data_offset   =:= inferred_offset;
    tcp_res_flags =:= static;
    tcp_ecn_flags =:= static;
    urg_flag      =:= static;
    ack_flag      =:= uncompressed_value(1, 1);
    rsf_flags     =:= uncompressed_value(3, 0);
    window        =:= static;
    urg_ptr       =:= static;
  }

  COMPRESSED tcp_static {
    src_port =:= irregular(16) [ 16 ];
    dst_port =:= irregular(16) [ 16 ];
  }

  COMPRESSED tcp_dynamic {
    ecn_used        =:= one_bit_choice          [ 1 ];
    ack_stride_flag =:= irregular(1)            [ 1 ];
    ack_zero        =:= irregular(1)            [ 1 ];
    urp_zero        =:= irregular(1)            [ 1 ];



Pelletier, et al.           Standards Track                    [Page 73]

RFC 4996                        ROHC-TCP                       July 2007


    tcp_res_flags   =:= irregular(4)            [ 4 ];
    tcp_ecn_flags   =:= irregular(2)            [ 2 ];
    urg_flag        =:= irregular(1)            [ 1 ];
    ack_flag        =:= irregular(1)            [ 1 ];
    psh_flag        =:= irregular(1)            [ 1 ];
    rsf_flags       =:= irregular(3)            [ 3 ];
    msn             =:= irregular(16)           [ 16 ];
    seq_number      =:= irregular(32)           [ 32 ];
    ack_number      =:=
      zero_or_irreg(ack_zero.CVALUE, 32)        [ 0, 32 ];
    window          =:= irregular(16)           [ 16 ];
    checksum        =:= irregular(16)           [ 16 ];
    urg_ptr         =:=
      zero_or_irreg(urp_zero.CVALUE, 16)        [ 0, 16 ];
    ack_stride      =:=
      static_or_irreg(ack_stride_flag.CVALUE, 16) [ 0, 16 ];
    options         =:= list_tcp_options        [ VARIABLE ];
  }

  COMPRESSED tcp_replicate {
    reserved          =:= '0'                      [ 1 ];
    window_presence   =:= irregular(1)             [ 1 ];
    list_present      =:= irregular(1)             [ 1 ];
    src_port_presence =:= irregular(2)             [ 2 ];
    dst_port_presence =:= irregular(2)             [ 2 ];
    ack_stride_flag   =:= irregular(1)             [ 1 ];
    ack_presence      =:= irregular(1)             [ 1 ];
    urp_presence      =:= irregular(1)             [ 1 ];
    urg_flag          =:= irregular(1)             [ 1 ];
    ack_flag          =:= irregular(1)             [ 1 ];
    psh_flag          =:= irregular(1)             [ 1 ];
    rsf_flags         =:= rsf_index_enc            [ 2 ];
    ecn_used          =:= one_bit_choice           [ 1 ];
    msn               =:= irregular(16)            [ 16 ];
    seq_number        =:= irregular(32)            [ 32 ];
    src_port          =:=
      port_replicate(src_port_presence)      [ 0, 8, 16 ];
    dst_port          =:=
      port_replicate(dst_port_presence)      [ 0, 8, 16 ];
    window            =:=
      static_or_irreg(window_presence, 16)   [ 0, 16 ];
    urg_point         =:=
      static_or_irreg(urp_presence, 16)    [ 0, 16 ];
    ack_number        =:=
      static_or_irreg(ack_presence, 32)    [ 0, 32 ];
    ecn_padding       =:=
      optional_2bit_padding(ecn_used.CVALUE)     [ 0, 2 ];
    tcp_res_flags =:=



Pelletier, et al.           Standards Track                    [Page 74]

RFC 4996                        ROHC-TCP                       July 2007


      static_or_irreg(ecn_used.CVALUE, 4)        [ 0, 4 ];
    tcp_ecn_flags     =:=
      static_or_irreg(ecn_used.CVALUE, 2)        [ 0, 2 ];
    checksum          =:= irregular(16)            [ 16 ];
    ack_stride        =:=
      static_or_irreg(ack_stride_flag.CVALUE, 16)  [ 0, 16 ];
    options           =:=
      tcp_list_presence_enc(list_present.CVALUE) [ VARIABLE ];
  }

  COMPRESSED tcp_irregular {
    ip_ecn_flags  =:= tcp_irreg_ip_ecn(ip_inner_ecn)  [ 0, 2 ];
    tcp_res_flags =:=
      static_or_irreg(ecn_used.CVALUE, 4)            [ 0, 4 ];
    tcp_ecn_flags =:=
      static_or_irreg(ecn_used.CVALUE, 2)             [ 0, 2 ];
    checksum      =:= irregular(16)                   [ 16 ];
  }
}

///////////////////////////////////////////////////
// Encoding methods used in compressed base headers
///////////////////////////////////////////////////

dscp_enc(flag)
{
  UNCOMPRESSED {
    dscp [ 6 ];
  }

  COMPRESSED static_enc {
    dscp =:= static [ 0 ];
    ENFORCE(flag == 0);
  }

  COMPRESSED irreg {
    dscp    =:= irregular(6)           [ 6 ];
    padding =:= compressed_value(2, 0) [ 2 ];
    ENFORCE(flag == 1);
  }
}

ip_id_lsb(behavior, k, p)
{
  UNCOMPRESSED {
    ip_id [ 16 ];
  }




Pelletier, et al.           Standards Track                    [Page 75]

RFC 4996                        ROHC-TCP                       July 2007


  CONTROL {
    ip_id_offset [ 16 ];
    ip_id_nbo    [ 16 ];
  }

  COMPRESSED nbo {
    ip_id_offset =:= lsb(k, p) [ k ];
    ENFORCE(behavior == IP_ID_BEHAVIOR_SEQUENTIAL);
    ENFORCE(ip_id_offset.UVALUE == ip_id.UVALUE - msn.UVALUE);
  }

  COMPRESSED non_nbo {
    ip_id_offset =:= lsb(k, p) [ k ];
    ENFORCE(behavior == IP_ID_BEHAVIOR_SEQUENTIAL_SWAPPED);
    ENFORCE(ip_id_nbo.UVALUE ==
            (ip_id.UVALUE / 256) + (ip_id.UVALUE % 256) * 256);
    ENFORCE(ip_id_nbo.ULENGTH == 16);
    ENFORCE(ip_id_offset.UVALUE == ip_id_nbo.UVALUE - msn.UVALUE);
  }
}

optional_ip_id_lsb(behavior, indicator)
{
  UNCOMPRESSED {
    ip_id [ 16 ];
  }

  COMPRESSED short {
    ip_id =:= ip_id_lsb(behavior, 8, 3) [ 8 ];
    ENFORCE((behavior == IP_ID_BEHAVIOR_SEQUENTIAL) ||
            (behavior == IP_ID_BEHAVIOR_SEQUENTIAL_SWAPPED));
    ENFORCE(indicator == 0);
  }

  COMPRESSED long {
    ip_id =:= irregular(16)  [ 16 ];
    ENFORCE((behavior == IP_ID_BEHAVIOR_SEQUENTIAL) ||
            (behavior == IP_ID_BEHAVIOR_SEQUENTIAL_SWAPPED));
    ENFORCE(indicator == 1);
  }

  COMPRESSED not_present {
    ENFORCE((behavior == IP_ID_BEHAVIOR_RANDOM) ||
            (behavior == IP_ID_BEHAVIOR_ZERO));
  }
}

dont_fragment(version)



Pelletier, et al.           Standards Track                    [Page 76]

RFC 4996                        ROHC-TCP                       July 2007


{
  UNCOMPRESSED {
    df [ 1 ];
  }

  COMPRESSED v4 {
    df =:= irregular(1) [ 1 ];
    ENFORCE(version == 4);
  }

  COMPRESSED v6 {
    df =:= compressed_value(1, 0) [ 1 ];
    ENFORCE(version == 6);
  }
}

//////////////////////////////////
// Actual start of compressed packet formats
// Important note:
//   The base header is the compressed representation
//   of the innermost IP header AND the TCP header.
//////////////////////////////////

// ttl_irregular_chain_flag is set by the user if the TTL/Hop Limit
// of an outer header has changed.  The same value must be passed as
// an argument to the ipv4/ipv6 encoding methods when extracting
// the irregular chain items.
co_baseheader(payload_size, ack_stride_value,
              ttl_irregular_chain_flag)
{
  UNCOMPRESSED v4 {
    outer_headers  =:= baseheader_outer_headers        [ VARIABLE ];
    version        =:= uncompressed_value(4, 4)        [ 4 ];
    header_length  =:= uncompressed_value(4, 5)        [ 4 ];
    dscp                                               [ 6 ];
    ip_ecn_flags                                       [ 2 ];
    length                                             [ 16 ];
    ip_id                                              [ 16 ];
    rf             =:= uncompressed_value(1, 0)        [ 1 ];
    df                                                 [ 1 ];
    mf             =:= uncompressed_value(1, 0)        [ 1 ];
    frag_offset    =:= uncompressed_value(13, 0)       [ 13 ];
    ttl_hopl                                           [ 8 ];
    next_header                                        [ 8 ];
    checksum                                           [ 16 ];
    src_addr                                           [ 32 ];
    dest_addr                                          [ 32 ];
    extension_headers =:= baseheader_extension_headers [ VARIABLE ];



Pelletier, et al.           Standards Track                    [Page 77]

RFC 4996                        ROHC-TCP                       July 2007


    src_port                                           [ 16 ];
    dest_port                                          [ 16 ];
    seq_number                                         [ 32 ];
    ack_number                                         [ 32 ];
    data_offset                                        [ 4 ];
    tcp_res_flags                                      [ 4 ];
    tcp_ecn_flags                                      [ 2 ];
    urg_flag                                           [ 1 ];
    ack_flag                                           [ 1 ];
    psh_flag                                           [ 1 ];
    rsf_flags                                          [ 3 ];
    window                                             [ 16 ];
    tcp_checksum                                       [ 16 ];
    urg_ptr                                            [ 16 ];
    options                           [ (data_offset.UVALUE-5)*32 ];
  }

  UNCOMPRESSED v6 {
    outer_headers  =:= baseheader_outer_headers        [ VARIABLE ];
    version =:= uncompressed_value(4, 6)               [ 4 ];
    dscp                                               [ 6 ];
    ip_ecn_flags                                       [ 2 ];
    flow_label                                         [ 20 ];
    payload_length                                     [ 16 ];
    next_header                                        [ 8 ];
    ttl_hopl                                           [ 8 ];
    src_addr                                           [ 128 ];
    dest_addr                                          [ 128 ];
    extension_headers =:= baseheader_extension_headers [ VARIABLE ];
    src_port                                           [ 16 ];
    dest_port                                          [ 16 ];
    seq_number                                         [ 32 ];
    ack_number                                         [ 32 ];
    data_offset                                        [ 4 ];
    tcp_res_flags                                      [ 4 ];
    tcp_ecn_flags                                      [ 2 ];
    urg_flag                                           [ 1 ];
    ack_flag                                           [ 1 ];
    psh_flag                                           [ 1 ];
    rsf_flags                                          [ 3 ];
    window                                             [ 16 ];
    tcp_checksum                                       [ 16 ];
    urg_ptr                                            [ 16 ];
    options                           [ (data_offset.UVALUE-5)*32 ];
    ENFORCE(ip_id_behavior.UVALUE == IP_ID_BEHAVIOR_RANDOM);
  }

  CONTROL {



Pelletier, et al.           Standards Track                    [Page 78]

RFC 4996                        ROHC-TCP                       July 2007


    ip_id_behavior                       [ 2 ];
    seq_number_scaled                    [ 32 ];
    seq_number_residue =:=
        field_scaling(payload_size, seq_number_scaled.UVALUE,
                      seq_number.UVALUE) [ 32 ];
    ack_stride                           [ 16 ];
    ack_number_scaled                    [ 32 ];
    ack_number_residue =:=
        field_scaling(ack_stride.UVALUE, ack_number_scaled.UVALUE,
                      ack_number.UVALUE) [ 32 ];
    ENFORCE(ack_stride_value == ack_stride.UVALUE);
  }

  INITIAL {
    ack_stride     =:= uncompressed_value(16, 0);
  }

  DEFAULT {
    tcp_ecn_flags  =:= static;
    data_offset    =:= inferred_offset;
    tcp_res_flags  =:= static;
    rsf_flags      =:= uncompressed_value(3, 0);
    dest_port      =:= static;
    dscp           =:= static;
    src_port       =:= static;
    urg_flag       =:= uncompressed_value(1, 0);
    window         =:= static;
    dest_addr      =:= static;
    version        =:= static;
    ttl_hopl       =:= static;
    src_addr       =:= static;
    df             =:= static;
    ack_number     =:= static;
    urg_ptr        =:= static;
    seq_number     =:= static;
    ack_flag       =:= uncompressed_value(1, 1);
    // The default for "options" is case 2) and 3) from
    // the list in section 6.3.1 (i.e. nothing present in the
    // baseheader itself).
    payload_length =:= inferred_ip_v6_length;
    checksum       =:= inferred_ip_v4_header_checksum;
    length         =:= inferred_ip_v4_length;
    flow_label     =:= static;
    next_header    =:= static;
    ip_ecn_flags   =:= static;
    // The tcp_checksum has no default,
    // it is considered a part of tcp_irregular
    ip_id_behavior =:= static;



Pelletier, et al.           Standards Track                    [Page 79]

RFC 4996                        ROHC-TCP                       July 2007


    ecn_used       =:= static;

    // Default is to have no TTL in irregular chain
    // Can only be nonzero if co_common is used
    ENFORCE(ttl_irregular_chain_flag == 0);
  }

  ////////////////////////////////////////////
  // Common compressed packet format
  ////////////////////////////////////////////

  COMPRESSED co_common {
    discriminator        =:= '1111101'                [ 7 ];
    ttl_hopl_outer_flag  =:=
        compressed_value(1, ttl_irregular_chain_flag) [ 1 ];
    ack_flag             =:= irregular(1)             [ 1 ];
    psh_flag             =:= irregular(1)             [ 1 ];
    rsf_flags            =:= rsf_index_enc            [ 2 ];
    msn                  =:= lsb(4, 4)                [ 4 ];
    seq_indicator        =:= irregular(2)             [ 2 ];
    ack_indicator        =:= irregular(2)             [ 2 ];
    ack_stride_indicator =:= irregular(1)             [ 1 ];
    window_indicator     =:= irregular(1)             [ 1 ];
    ip_id_indicator      =:= irregular(1)             [ 1 ];
    urg_ptr_present      =:= irregular(1)             [ 1 ];
    reserved             =:= compressed_value(1, 0)   [ 1 ];
    ecn_used             =:= one_bit_choice           [ 1 ];
    dscp_present         =:= irregular(1)             [ 1 ];
    ttl_hopl_present     =:= irregular(1)             [ 1 ];
    list_present         =:= irregular(1)             [ 1 ];
    ip_id_behavior       =:= ip_id_behavior_choice(true)     [ 2 ];
    urg_flag             =:= irregular(1)             [ 1 ];
    df                   =:= dont_fragment(version.UVALUE)   [ 1 ];
    header_crc           =:= crc7(THIS.UVALUE, THIS.ULENGTH) [ 7 ];
    seq_number           =:=
      variable_length_32_enc(seq_indicator.CVALUE) [ 0, 8, 16, 32 ];
    ack_number           =:=
      variable_length_32_enc(ack_indicator.CVALUE) [ 0, 8, 16, 32 ];
    ack_stride           =:=
      static_or_irreg(ack_stride_indicator.CVALUE, 16)  [ 0, 16 ];
    window               =:=
      static_or_irreg(window_indicator.CVALUE, 16)      [ 0, 16 ];
    ip_id                =:=
      optional_ip_id_lsb(ip_id_behavior.UVALUE,
                         ip_id_indicator.CVALUE)      [ 0, 8, 16 ];
    urg_ptr              =:=
      static_or_irreg(urg_ptr_present.CVALUE, 16)     [ 0, 16 ];
    dscp                 =:=



Pelletier, et al.           Standards Track                    [Page 80]

RFC 4996                        ROHC-TCP                       July 2007


      dscp_enc(dscp_present.CVALUE)                   [ 0, 8 ];
    ttl_hopl             =:=
      static_or_irreg(ttl_hopl_present.CVALUE, 8)     [ 0, 8 ];
    options              =:=
      tcp_list_presence_enc(list_present.CVALUE)      [ VARIABLE ];
  }

  // Send LSBs of sequence number
  COMPRESSED rnd_1 {
    discriminator =:= '101110'                        [ 6 ];
    seq_number    =:= lsb(18, 65535)                  [ 18 ];
    msn           =:= lsb(4, 4)                       [ 4 ];
    psh_flag      =:= irregular(1)                    [ 1 ];
    header_crc    =:= crc3(THIS.UVALUE, THIS.ULENGTH) [ 3 ];
    ENFORCE((ip_id_behavior.UVALUE == IP_ID_BEHAVIOR_RANDOM) ||
            (ip_id_behavior.UVALUE == IP_ID_BEHAVIOR_ZERO));
  }

  // Send scaled sequence number LSBs
  COMPRESSED rnd_2 {
    discriminator      =:= '1100'                          [ 4 ];
    seq_number_scaled  =:= lsb(4, 7)                       [ 4 ];
    msn                =:= lsb(4, 4)                       [ 4 ];
    psh_flag           =:= irregular(1)                    [ 1 ];
    header_crc         =:= crc3(THIS.UVALUE, THIS.ULENGTH) [ 3 ];
    ENFORCE(payload_size != 0);
    ENFORCE((ip_id_behavior.UVALUE == IP_ID_BEHAVIOR_RANDOM) ||
            (ip_id_behavior.UVALUE == IP_ID_BEHAVIOR_ZERO));
  }

  // Send acknowledgment number LSBs
  COMPRESSED rnd_3 {
    discriminator =:= '0'                             [ 1 ];
    ack_number    =:= lsb(15, 8191)                   [ 15 ];
    msn           =:= lsb(4, 4)                       [ 4 ];
    psh_flag      =:= irregular(1)                    [ 1 ];
    header_crc    =:= crc3(THIS.UVALUE, THIS.ULENGTH) [ 3 ];
    ENFORCE((ip_id_behavior.UVALUE == IP_ID_BEHAVIOR_RANDOM) ||
            (ip_id_behavior.UVALUE == IP_ID_BEHAVIOR_ZERO));
  }

  // Send acknowledgment number scaled
  COMPRESSED rnd_4 {
    discriminator      =:= '1101'                          [ 4 ];
    ack_number_scaled  =:= lsb(4, 3)                       [ 4 ];
    msn                =:= lsb(4, 4)                       [ 4 ];
    psh_flag           =:= irregular(1)                    [ 1 ];
    header_crc         =:= crc3(THIS.UVALUE, THIS.ULENGTH) [ 3 ];



Pelletier, et al.           Standards Track                    [Page 81]

RFC 4996                        ROHC-TCP                       July 2007


    ENFORCE(ack_stride.UVALUE != 0);
    ENFORCE((ip_id_behavior.UVALUE == IP_ID_BEHAVIOR_RANDOM) ||
            (ip_id_behavior.UVALUE == IP_ID_BEHAVIOR_ZERO));
  }

  // Send ACK and sequence number
  COMPRESSED rnd_5 {
    discriminator =:= '100'                           [ 3 ];
    psh_flag      =:= irregular(1)                    [ 1 ];
    msn           =:= lsb(4, 4)                       [ 4 ];
    header_crc    =:= crc3(THIS.UVALUE, THIS.ULENGTH) [ 3 ];
    seq_number    =:= lsb(14, 8191)                   [ 14 ];
    ack_number    =:= lsb(15, 8191)                   [ 15 ];
    ENFORCE((ip_id_behavior.UVALUE == IP_ID_BEHAVIOR_RANDOM) ||
            (ip_id_behavior.UVALUE == IP_ID_BEHAVIOR_ZERO));
  }

  // Send both ACK and scaled sequence number LSBs
  COMPRESSED rnd_6 {
    discriminator      =:= '1010'                          [ 4 ];
    header_crc         =:= crc3(THIS.UVALUE, THIS.ULENGTH) [ 3 ];
    psh_flag           =:= irregular(1)                    [ 1 ];
    ack_number         =:= lsb(16, 16383)                  [ 16 ];
    msn                =:= lsb(4, 4)                       [ 4 ];
    seq_number_scaled  =:= lsb(4, 7)                       [ 4 ];
    ENFORCE(payload_size != 0);
    ENFORCE((ip_id_behavior.UVALUE == IP_ID_BEHAVIOR_RANDOM) ||
            (ip_id_behavior.UVALUE == IP_ID_BEHAVIOR_ZERO));
  }

  // Send ACK and window
  COMPRESSED rnd_7 {
    discriminator =:= '101111'                        [ 6 ];
    ack_number    =:= lsb(18, 65535)                  [ 18 ];
    window        =:= irregular(16)                   [ 16 ];
    msn           =:= lsb(4, 4)                       [ 4 ];
    psh_flag      =:= irregular(1)                    [ 1 ];
    header_crc    =:= crc3(THIS.UVALUE, THIS.ULENGTH) [ 3 ];
    ENFORCE((ip_id_behavior.UVALUE == IP_ID_BEHAVIOR_RANDOM) ||
            (ip_id_behavior.UVALUE == IP_ID_BEHAVIOR_ZERO));
  }

  // An extended packet type for seldom-changing fields
  // Can send LSBs of TTL, RSF flags, change ECN behavior, and
  // options list
  COMPRESSED rnd_8 {
    discriminator =:= '10110'                         [ 5 ];
    rsf_flags     =:= rsf_index_enc                   [ 2 ];



Pelletier, et al.           Standards Track                    [Page 82]

RFC 4996                        ROHC-TCP                       July 2007


    list_present  =:= irregular(1)                    [ 1 ];
    header_crc    =:= crc7(THIS.UVALUE, THIS.ULENGTH) [ 7 ];
    msn           =:= lsb(4, 4)                       [ 4 ];
    psh_flag      =:= irregular(1)                    [ 1 ];
    ttl_hopl      =:= lsb(3, 3)                       [ 3 ];
    ecn_used      =:= one_bit_choice                  [ 1 ];
    seq_number    =:= lsb(16, 65535)                  [ 16 ];
    ack_number    =:= lsb(16, 16383)                  [ 16 ];
    options       =:=
      tcp_list_presence_enc(list_present.CVALUE)      [ VARIABLE ];
    ENFORCE((ip_id_behavior.UVALUE == IP_ID_BEHAVIOR_RANDOM) ||
            (ip_id_behavior.UVALUE == IP_ID_BEHAVIOR_ZERO));
  }

  // Send LSBs of sequence number
  COMPRESSED seq_1 {
    discriminator =:= '1010'                                 [ 4 ];
    ip_id         =:= ip_id_lsb(ip_id_behavior.UVALUE, 4, 3) [ 4 ];
    seq_number    =:= lsb(16, 32767)                         [ 16 ];
    msn           =:= lsb(4, 4)                              [ 4 ];
    psh_flag      =:= irregular(1)                           [ 1 ];
    header_crc    =:= crc3(THIS.UVALUE, THIS.ULENGTH)        [ 3 ];
    ENFORCE((ip_id_behavior.UVALUE == IP_ID_BEHAVIOR_SEQUENTIAL) ||
            (ip_id_behavior.UVALUE ==
             IP_ID_BEHAVIOR_SEQUENTIAL_SWAPPED));
  }

  // Send scaled sequence number LSBs
  COMPRESSED seq_2 {
    discriminator      =:= '11010'                         [ 5 ];
    ip_id              =:=
      ip_id_lsb(ip_id_behavior.UVALUE, 7, 3)               [ 7 ];
    seq_number_scaled  =:= lsb(4, 7)                       [ 4 ];
    msn                =:= lsb(4, 4)                       [ 4 ];
    psh_flag           =:= irregular(1)                    [ 1 ];
    header_crc         =:= crc3(THIS.UVALUE, THIS.ULENGTH) [ 3 ];
    ENFORCE(payload_size != 0);
    ENFORCE((ip_id_behavior.UVALUE == IP_ID_BEHAVIOR_SEQUENTIAL) ||
            (ip_id_behavior.UVALUE ==
             IP_ID_BEHAVIOR_SEQUENTIAL_SWAPPED));
  }

  // Send acknowledgment number LSBs
  COMPRESSED seq_3 {
    discriminator =:= '1001'                                 [ 4 ];
    ip_id         =:= ip_id_lsb(ip_id_behavior.UVALUE, 4, 3) [ 4 ];
    ack_number    =:= lsb(16, 16383)                         [ 16 ];
    msn           =:= lsb(4, 4)                              [ 4 ];



Pelletier, et al.           Standards Track                    [Page 83]

RFC 4996                        ROHC-TCP                       July 2007


    psh_flag      =:= irregular(1)                           [ 1 ];
    header_crc    =:= crc3(THIS.UVALUE, THIS.ULENGTH)        [ 3 ];
    ENFORCE((ip_id_behavior.UVALUE == IP_ID_BEHAVIOR_SEQUENTIAL) ||
            (ip_id_behavior.UVALUE ==
             IP_ID_BEHAVIOR_SEQUENTIAL_SWAPPED));
  }

  // Send scaled acknowledgment number scaled
  COMPRESSED seq_4 {
    discriminator     =:= '0'                             [ 1 ];
    ack_number_scaled =:= lsb(4, 3)                       [ 4 ];
    // Due to having very few ip_id bits, no negative offset
    ip_id      =:= ip_id_lsb(ip_id_behavior.UVALUE, 3, 1) [ 3 ];
    msn               =:= lsb(4, 4)                       [ 4 ];
    psh_flag          =:= irregular(1)                    [ 1 ];
    header_crc        =:= crc3(THIS.UVALUE, THIS.ULENGTH) [ 3 ];
    ENFORCE(ack_stride.UVALUE != 0);
    ENFORCE((ip_id_behavior.UVALUE == IP_ID_BEHAVIOR_SEQUENTIAL) ||
            (ip_id_behavior.UVALUE ==
             IP_ID_BEHAVIOR_SEQUENTIAL_SWAPPED));
  }

  // Send ACK and sequence number
  COMPRESSED seq_5 {
    discriminator =:= '1000'                                 [ 4 ];
    ip_id         =:= ip_id_lsb(ip_id_behavior.UVALUE, 4, 3) [ 4 ];
    ack_number    =:= lsb(16, 16383)                         [ 16 ];
    seq_number    =:= lsb(16, 32767)                         [ 16 ];
    msn           =:= lsb(4, 4)                              [ 4 ];
    psh_flag      =:= irregular(1)                           [ 1 ];
    header_crc    =:= crc3(THIS.UVALUE, THIS.ULENGTH)        [ 3 ];
    ENFORCE((ip_id_behavior.UVALUE == IP_ID_BEHAVIOR_SEQUENTIAL) ||
            (ip_id_behavior.UVALUE ==
             IP_ID_BEHAVIOR_SEQUENTIAL_SWAPPED));
  }

  // Send both ACK and scaled sequence number LSBs
  COMPRESSED seq_6 {
    discriminator      =:= '11011'                          [ 5 ];
    seq_number_scaled  =:= lsb(4, 7)                        [ 4 ];
    ip_id        =:= ip_id_lsb(ip_id_behavior.UVALUE, 7, 3) [ 7 ];
    ack_number         =:= lsb(16, 16383)                   [ 16 ];
    msn                =:= lsb(4, 4)                        [ 4 ];
    psh_flag           =:= irregular(1)                     [ 1 ];
    header_crc         =:= crc3(THIS.UVALUE, THIS.ULENGTH)  [ 3 ];
    ENFORCE(payload_size != 0);
    ENFORCE((ip_id_behavior.UVALUE == IP_ID_BEHAVIOR_SEQUENTIAL) ||
            (ip_id_behavior.UVALUE ==



Pelletier, et al.           Standards Track                    [Page 84]

RFC 4996                        ROHC-TCP                       July 2007


             IP_ID_BEHAVIOR_SEQUENTIAL_SWAPPED));
  }

  // Send ACK and window
  COMPRESSED seq_7 {
    discriminator =:= '1100'                                 [ 4 ];
    window        =:= lsb(15, 16383)                         [ 15 ];
    ip_id         =:= ip_id_lsb(ip_id_behavior.UVALUE, 5, 3) [ 5 ];
    ack_number    =:= lsb(16, 32767)                         [ 16 ];
    msn           =:= lsb(4, 4)                              [ 4 ];
    psh_flag      =:= irregular(1)                           [ 1 ];
    header_crc    =:= crc3(THIS.UVALUE, THIS.ULENGTH)        [ 3 ];
    ENFORCE((ip_id_behavior.UVALUE == IP_ID_BEHAVIOR_SEQUENTIAL) ||
            (ip_id_behavior.UVALUE ==
             IP_ID_BEHAVIOR_SEQUENTIAL_SWAPPED));
  }

  // An extended packet type for seldom-changing fields
  // Can send LSBs of TTL, RSF flags, change ECN behavior, and
  // options list
  COMPRESSED seq_8 {
    discriminator =:= '1011'                                 [ 4 ];
    ip_id         =:= ip_id_lsb(ip_id_behavior.UVALUE, 4, 3) [ 4 ];
    list_present  =:= irregular(1)                           [ 1 ];
    header_crc    =:= crc7(THIS.UVALUE, THIS.ULENGTH)        [ 7 ];
    msn           =:= lsb(4, 4)                              [ 4 ];
    psh_flag      =:= irregular(1)                           [ 1 ];
    ttl_hopl      =:= lsb(3, 3)                              [ 3 ];
    ecn_used      =:= one_bit_choice                         [ 1 ];
    ack_number    =:= lsb(15, 8191)                          [ 15 ];
    rsf_flags     =:= rsf_index_enc                          [ 2 ];
    seq_number    =:= lsb(14, 8191)                          [ 14 ];
    options       =:=
      tcp_list_presence_enc(list_present.CVALUE)       [ VARIABLE ];
    ENFORCE((ip_id_behavior.UVALUE == IP_ID_BEHAVIOR_SEQUENTIAL) ||
            (ip_id_behavior.UVALUE ==
             IP_ID_BEHAVIOR_SEQUENTIAL_SWAPPED));
  }
}












Pelletier, et al.           Standards Track                    [Page 85]

RFC 4996                        ROHC-TCP                       July 2007


8.3.  Feedback Formats and Options

8.3.1.  Feedback Formats

  This section describes the feedback formats for the ROHC-TCP profile,
  following the general ROHC feedback format described in Section 5.2.3
  of [RFC4995].

  All feedback formats carry a field labeled MSN.  The MSN field
  contains LSBs of the MSN control field described in Section 6.1.1.
  The sequence number to use is the MSN corresponding to the last
  header that was successfully CRC-8 validated or CRC verified.

  FEEDBACK-1

       0   1   2   3   4   5   6   7
     +---+---+---+---+---+---+---+---+
     |              MSN              |
     +---+---+---+---+---+---+---+---+

     MSN: The LSB-encoded master sequence number.

  A FEEDBACK-1 is an ACK.  In order to send a NACK or a STATIC-NACK,
  FEEDBACK-2 must be used.

  FEEDBACK-2

       0   1   2   3   4   5   6   7
     +---+---+---+---+---+---+---+---+
     |Acktype|          MSN          |
     +---+---+---+---+---+---+---+---+
     |              MSN              |
     +---+---+---+---+---+---+---+---+
     |              CRC              |
     +---+---+---+---+---+---+---+---+
     /       Feedback options        /
     +---+---+---+---+---+---+---+---+

     Acktype:

        0 = ACK

        1 = NACK

        2 = STATIC-NACK

        3 is reserved (MUST NOT be used for parsability)




Pelletier, et al.           Standards Track                    [Page 86]

RFC 4996                        ROHC-TCP                       July 2007


     MSN: The LSB-encoded master sequence number.

     CRC: 8-bit CRC computed over the entire feedback element (as
     defined in Section 5.3.1.1 of [RFC4995]).  For the purpose of
     computing the CRC, the CRC field is zero.  The CRC is calculated
     using the polynomial defined in [RFC4995].

     Feedback options: A variable number of feedback options, see
     Section 8.3.2.  Options may appear in any order.

  A FEEDBACK-2 of type NACK or STATIC-NACK is always implicitly an
  acknowledgment for a successfully decompressed packet, which packet
  corresponds to the MSN of the feedback element, unless the MSN-NOT-
  VALID option (Section 8.3.2.2) appears in the feedback element.

  The FEEDBACK-2 format always carries a CRC and is thus more robust
  than the FEEDBACK-1 format.  When receiving FEEDBACK-2, the
  compressor MUST verify the information by computing the CRC and by
  comparing the result with the CRC carried in the feedback format.  If
  the two are not identical, the feedback element MUST be discarded.

8.3.2.  Feedback Options

  A ROHC-TCP feedback option has variable length and the following
  general format:

       0   1   2   3   4   5   6   7
     +---+---+---+---+---+---+---+---+
     |   Opt Type    |    Opt Len    |
     +---+---+---+---+---+---+---+---+
     /          option data          /  Opt Length (octets)
     +---+---+---+---+---+---+---+---+

  Each ROHC-TCP feedback option can appear at most once within a
  FEEDBACK-2.

8.3.2.1.  The REJECT Option

  The REJECT option informs the compressor that the decompressor does
  not have sufficient resources to handle the flow.

     +---+---+---+---+---+---+---+---+
     |  Opt Type = 2 |  Opt Len = 0  |
     +---+---+---+---+---+---+---+---+

  When receiving a REJECT option, the compressor MUST stop compressing
  the packet flow, and SHOULD refrain from attempting to increase the
  number of compressed packet flows for some time.  The REJECT option



Pelletier, et al.           Standards Track                    [Page 87]

RFC 4996                        ROHC-TCP                       July 2007


  MUST NOT appear more than once in the FEEDBACK-2 format; otherwise,
  the compressor MUST discard the entire feedback element.

8.3.2.2.  The MSN-NOT-VALID Option

  The MSN-NOT-VALID option indicates that the MSN of the feedback is
  not valid.

     +---+---+---+---+---+---+---+---+
     |  Opt Type = 3 |  Opt Len = 0  |
     +---+---+---+---+---+---+---+---+

  A compressor MUST ignore the MSN of the feedback element when this
  option is present.  Consequently, a NACK or a STATIC-NACK feedback
  type sent with the MSN-NOT-VALID option is equivalent to a STATIC-
  NACK with respect to the semantics of the feedback message.

  The MSN-NOT-VALID option MUST NOT appear more than once in the
  FEEDBACK-2 format and MUST NOT appear in the same feedback element as
  the MSN option; otherwise, the compressor MUST discard the entire
  feedback element.

8.3.2.3.  The MSN Option

  The MSN option provides 2 additional bits of MSN.

     +---+---+---+---+---+---+---+---+
     |  Opt Type = 4 |  Opt Len = 1  |
     +---+---+---+---+---+---+---+---+
     |  MSN  |        Reserved       |
     +---+---+---+---+---+---+---+---+

  These 2 bits are the least significant bits of the MSN and are thus
  concatenated with the 14 bits already present in the FEEDBACK-2
  format.

  The MSN option MUST NOT appear more than once in the FEEDBACK-2
  format and MUST NOT appear in the same feedback element as the MSN-
  NOT-VALID option; otherwise, the compressor MUST discard the entire
  feedback element.

8.3.2.4.  The CONTEXT_MEMORY Feedback Option

  The CONTEXT_MEMORY option means that the decompressor does not have
  sufficient memory resources to handle the context of the packet flow,
  as the flow is currently compressed.





Pelletier, et al.           Standards Track                    [Page 88]

RFC 4996                        ROHC-TCP                       July 2007


       0   1   2   3   4   5   6   7
     +---+---+---+---+---+---+---+---+
     |  Opt Type = 9 |  Opt Len = 0  |
     +---+---+---+---+---+---+---+---+

  When receiving a CONTEXT_MEMORY option, the compressor SHOULD take
  actions to compress the packet flow in a way that requires less
  decompressor memory resources, or stop compressing the packet flow.

  The CONTEXT_MEMORY option MUST NOT appear more than once in the
  FEEDBACK-2 format; otherwise, the compressor MUST discard the entire
  feedback element.

8.3.2.5.  Unknown Option Types

  If an option type unknown to the compressor is encountered, the
  compressor MUST continue parsing the rest of the FEEDBACK element,
  which is possible since the length of the option is explicit, but
  MUST otherwise ignore the unknown option.

9.  Security Considerations

  A malfunctioning or malicious header compressor could cause the
  header decompressor to reconstitute packets that do not match the
  original packets but still have valid IP and TCP headers, and
  possibly also valid TCP checksums.  Such corruption may be detected
  with end-to-end authentication and integrity mechanisms that will not
  be affected by the compression.  Moreover, this header compression
  scheme uses an internal checksum for verification of reconstructed
  headers.  This reduces the probability of producing decompressed
  headers not matching the original ones without this being noticed.

  Denial-of-service attacks are possible if an intruder can introduce
  (for example) bogus IR, CO, or FEEDBACK packets onto the link and
  thereby cause compression efficiency to be reduced.  However, an
  intruder having the ability to inject arbitrary packets at the link
  layer in this manner raises additional security issues that dwarf
  those related to the use of header compression.

10.  IANA Considerations

  The ROHC profile identifier 0x0006 has been reserved by the IANA for
  the profile defined in this document.

  A ROHC profile identifier has been reserved by the IANA for the
  profile defined in this document.  Profiles 0x0000-0x0005 have
  previously been reserved; this profile is 0x0006.  As for previous




Pelletier, et al.           Standards Track                    [Page 89]

RFC 4996                        ROHC-TCP                       July 2007


  ROHC profiles, profile numbers 0xnn06 have been reserved for future
  updates of this profile.

       Profile             Usage            Document
       identifier

       0x0006              ROHC TCP         [RFC4996]
       0xnn06              Reserved

11.  Acknowledgments

  The authors would like to thank Qian Zhang, Hong Bin Liao, Richard
  Price, and Fredrik Lindstroem for their work with early versions of
  this specification.  Thanks also to Robert Finking and Carsten
  Bormann for valuable input.

  Additional thanks: this document was reviewed during working group
  last-call by committed reviewers Joe Touch and Ted Faber, as well as
  by Sally Floyd, who provided a review at the request of the Transport
  Area Directors.

12.  References

12.1.  Normative References

  [RFC0791]  Postel, J., "Internet Protocol", STD 5, RFC 791,
             September 1981.

  [RFC0793]  Postel, J., "Transmission Control Protocol", STD 7,
             RFC 793, September 1981.

  [RFC2004]  Perkins, C., "Minimal Encapsulation within IP", RFC 2004,
             October 1996.

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119, March 1997.

  [RFC2460]  Deering, S. and R. Hinden, "Internet Protocol, Version 6
             (IPv6) Specification", RFC 2460, December 1998.

  [RFC2784]  Farinacci, D., Li, T., Hanks, S., Meyer, D., and P.
             Traina, "Generic Routing Encapsulation (GRE)", RFC 2784,
             March 2000.

  [RFC2890]  Dommety, G., "Key and Sequence Number Extensions to GRE",
             RFC 2890, September 2000.





Pelletier, et al.           Standards Track                    [Page 90]

RFC 4996                        ROHC-TCP                       July 2007


  [RFC4164]  Pelletier, G., "RObust Header Compression (ROHC): Context
             Replication for ROHC Profiles", RFC 4164, August 2005.

  [RFC4302]  Kent, S., "IP Authentication Header", RFC 4302,
             December 2005.

  [RFC4303]  Kent, S., "IP Encapsulating Security Payload (ESP)",
             RFC 4303, December 2005.

  [RFC4995]  Jonsson, L-E., Pelletier, G., and K. Sandlund, "The RObust
             Header Compression (ROHC) Framework", RFC 4995, July 2007.

  [RFC4997]  Finking, R. and G. Pelletier, "Formal Notation for Robust
             Header Compression (ROHC-FN)", RFC 4997, July 2007.

12.2.  Informative References

  [RFC1144]  Jacobson, V., "Compressing TCP/IP headers for low-speed
             serial links", RFC 1144, February 1990.

  [RFC1323]  Jacobson, V., Braden, B., and D. Borman, "TCP Extensions
             for High Performance", RFC 1323, May 1992.

  [RFC2018]  Mathis, M., Mahdavi, J., Floyd, S., and A. Romanow, "TCP
             Selective Acknowledgment Options", RFC 2018, October 1996.

  [RFC2507]  Degermark, M., Nordgren, B., and S. Pink, "IP Header
             Compression", RFC 2507, February 1999.

  [RFC2581]  Allman, M., Paxson, V., and W. Stevens, "TCP Congestion
             Control", RFC 2581, April 1999.

  [RFC2883]  Floyd, S., Mahdavi, J., Mathis, M., and M. Podolsky, "An
             Extension to the Selective Acknowledgement (SACK) Option
             for TCP", RFC 2883, July 2000.

  [RFC3095]  Bormann, C., Burmeister, C., Degermark, M., Fukushima, H.,
             Hannu, H., Jonsson, L-E., Hakenberg, R., Koren, T., Le,
             K., Liu, Z., Martensson, A., Miyazaki, A., Svanbro, K.,
             Wiebke, T., Yoshimura, T., and H. Zheng, "RObust Header
             Compression (ROHC): Framework and four profiles: RTP, UDP,
             ESP, and uncompressed", RFC 3095, July 2001.

  [RFC3168]  Ramakrishnan, K., Floyd, S., and D. Black, "The Addition
             of Explicit Congestion Notification (ECN) to IP",
             RFC 3168, September 2001.





Pelletier, et al.           Standards Track                    [Page 91]

RFC 4996                        ROHC-TCP                       July 2007


  [RFC3759]  Jonsson, L-E., "RObust Header Compression (ROHC):
             Terminology and Channel Mapping Examples", RFC 3759,
             April 2004.

  [RFC4163]  Jonsson, L-E., "RObust Header Compression (ROHC):
             Requirements on TCP/IP Header Compression", RFC 4163,
             August 2005.

  [RFC4224]  Pelletier, G., Jonsson, L-E., and K. Sandlund, "RObust
             Header Compression (ROHC): ROHC over Channels That Can
             Reorder Packets", RFC 4224, January 2006.

  [RFC4413]  West, M. and S. McCann, "TCP/IP Field Behavior", RFC 4413,
             March 2006.





































Pelletier, et al.           Standards Track                    [Page 92]

RFC 4996                        ROHC-TCP                       July 2007


Authors' Addresses

  Ghyslain Pelletier
  Ericsson
  Box 920
  Lulea  SE-971 28
  Sweden

  Phone: +46 (0) 8 404 29 43
  EMail: [email protected]


  Kristofer Sandlund
  Ericsson
  Box 920
  Lulea  SE-971 28
  Sweden

  Phone: +46 (0) 8 404 41 58
  EMail: [email protected]


  Lars-Erik Jonsson
  Optand 737
  Ostersund  SE-831 92
  Sweden

  Phone: +46 70 365 20 58
  EMail: [email protected]


  Mark A West
  Siemens/Roke Manor
  Roke Manor Research Ltd.
  Romsey, Hampshire  SO51 0ZN
  UK

  Phone: +44 1794 833311
  EMail: [email protected]
  URI:   http://www.roke.co.uk











Pelletier, et al.           Standards Track                    [Page 93]

RFC 4996                        ROHC-TCP                       July 2007


Full Copyright Statement

  Copyright (C) The IETF Trust (2007).

  This document is subject to the rights, licenses and restrictions
  contained in BCP 78, and except as set forth therein, the authors
  retain all their rights.

  This document and the information contained herein are provided on an
  "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
  OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
  THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
  OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
  THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
  WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

  The IETF takes no position regarding the validity or scope of any
  Intellectual Property Rights or other rights that might be claimed to
  pertain to the implementation or use of the technology described in
  this document or the extent to which any license under such rights
  might or might not be available; nor does it represent that it has
  made any independent effort to identify any such rights.  Information
  on the procedures with respect to rights in RFC documents can be
  found in BCP 78 and BCP 79.

  Copies of IPR disclosures made to the IETF Secretariat and any
  assurances of licenses to be made available, or the result of an
  attempt made to obtain a general license or permission for the use of
  such proprietary rights by implementers or users of this
  specification can be obtained from the IETF on-line IPR repository at
  http://www.ietf.org/ipr.

  The IETF invites any interested party to bring to its attention any
  copyrights, patents or patent applications, or other proprietary
  rights that may cover technology that may be required to implement
  this standard.  Please address the information to the IETF at
  [email protected].

Acknowledgement

  Funding for the RFC Editor function is currently provided by the
  Internet Society.







Pelletier, et al.           Standards Track                    [Page 94]