Network Working Group                                          R. Koodli
Request for Comments: 4988                                    C. Perkins
Category: Experimental                            Nokia Siemens Networks
                                                           October 2007


                      Mobile IPv4 Fast Handovers

Status of This Memo

  This memo defines an Experimental Protocol for the Internet
  community.  It does not specify an Internet standard of any kind.
  Discussion and suggestions for improvement are requested.
  Distribution of this memo is unlimited.

Abstract

  This document adapts the Mobile IPv6 Fast Handovers to improve delay
  and packet loss resulting from Mobile IPv4 handover operations.
  Specifically, this document addresses movement detection, IP address
  configuration, and location update latencies during a handover.  For
  reducing the IP address configuration latency, the document proposes
  that the new Care-of Address is always made to be the new access
  router's IP address.



























Koodli & Perkins              Experimental                      [Page 1]

RFC 4988                  MIP4 Fast Handovers               October 2007


Table of Contents

  1. Introduction ....................................................3
  2. Terminology .....................................................4
  3. Factors Affecting Handover ......................................5
  4. Protocol ........................................................6
     4.1. Overview ...................................................6
     4.2. Operation ..................................................7
  5. Message Formats ................................................10
     5.1. Fast Binding Update (FBU) .................................10
     5.2. Fast Binding Acknowledgment (FBAck) .......................12
     5.3. Router Solicitation for Proxy Advertisement (RtSolPr) .....13
     5.4. Proxy Router Advertisement (PrRtAdv) ......................14
     5.5. Handover Initiate (HI) ....................................17
     5.6. Handover Acknowledge (HAck) ...............................19
  6. Option Formats .................................................20
     6.1. Link-Layer Address Option Format ..........................20
     6.2. New IPv4 Address Option Format ............................22
     6.3. New Router Prefix Information Option ......................22
  7. Security Considerations ........................................23
  8. IANA Considerations ............................................24
  9. Acknowledgments ................................................25
  10. References ....................................................25
     10.1. Normative References .....................................25
     10.2. Informative References ...................................26


























Koodli & Perkins              Experimental                      [Page 2]

RFC 4988                  MIP4 Fast Handovers               October 2007


1.  Introduction

  This document adapts the fast handover specification [rfc4068] to
  IPv4 networks.  The fast handover protocol specified in this document
  is particularly interesting for operation over links such as IEEE 802
  wireless links.  Fast handovers are not typically needed for wired
  media due to the relatively large delays attributable to establishing
  new connections in today's wired networks.  Mobile IPv4 [rfc3344]
  registration messages are reused (with new type numbers) in this
  document to enable faster implementation using existing Mobile IPv4
  software.  This document does not require link-layer triggers for
  protocol operation, but performance will typically be enhanced by
  using the appropriate triggers when they are available.  This
  document assumes that the reader is familiar with the basic operation
  and terminology of Mobile IPv4 [rfc3344] and Fast Handovers for
  Mobile IPv6 [rfc4068].

  The active agents that enable continued packet delivery to a mobile
  node (MN) are the access routers on the networks that the mobile node
  connects to.  Handover means that the mobile node changes its network
  connection, and we consider the scenario in which this change means
  change in access routers.  The mobile node utilizes the access
  routers as default routers in the normal sense, but also as partners
  in mobility management.  Thus, when the mobile node moves to a new
  network, it processes handover-related signaling in order to identify
  and develop a relationship with a new access router.  In this
  document, we call the previous access router PAR and the new access
  router NAR, consistent with the terminology in [rfc4068].  Unless
  otherwise mentioned, a PAR is also a Previous Foreign Agent (PFA) and
  a NAR is also a New Foreign Agent (NFA).

  On a particular network, a mobile node may obtain its IP address via
  DHCP [rfc2131] (i.e., Co-located Care-of Address) or use the Foreign
  Agent CoA.  During a handover, the new CoA (NCoA) is always made to
  be that of NAR.  This allows a mobile node to receive and send
  packets using its previous CoA (PCoA), so that delays resulting from
  IP configuration (such as DHCP address acquisition delay) subsequent
  to attaching to the new link are disengaged from affecting the
  existing sessions.

  Unlike in Mobile IPv6, a Mobile IPv4 host may rely on its Foreign
  Agent to provide a Care-of Address.  Using the protocol specified in
  this document, the binding at the PAR is always established between
  the on-link address the mobile node is using and a new CoA that it
  can use on the NAR's link.  When FA-CoA is used, the on-link address
  is the MN's home address, not the FA-CoA itself, which needs to be





Koodli & Perkins              Experimental                      [Page 3]

RFC 4988                  MIP4 Fast Handovers               October 2007


  bound to the NCoA.  So, when we say "a binding is established between
  PCoA and NCoA", it is actually the home address of the mobile node
  that is bound to the NCoA in the FA-CoA mode.

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in [RFC2119].

2.  Terminology

  The terminology used in this document in based on [rfc4068] and
  [rfc3344].  We provide some definitions below for convenience.

     Mobile Node (MN): A Mobile IPv4 host.

     Access Point (AP): A Layer 2 device connected to an IP subnet that
     offers wireless connectivity to an MN.  An Access Point Identifier
     (AP-ID) refers to the AP's L2 address.  Sometimes, AP-ID is also
     referred to as a Base Station Subsystem ID (BSSID).

     Access Router (AR): The MN's default router.

     Previous Access Router (PAR): The MN's default router prior to its
     handover.

     New Access Router (NAR): The MN's default router subsequent to its
     handover.

     Previous CoA (PCoA): The IP address of the MN valid on PAR's
     subnet.

     New CoA (NCoA): The MN's Care-of Address valid on NAR's subnet.

     Handover: A process of terminating existing connectivity and
     obtaining new IP connectivity.

     (AP-ID, AR-Info) tuple: Contains an access router's L2 and IP
     addresses, and the prefix valid on the interface to which the
     Access Point (identified by AP-ID) is attached.  The triplet
     [Router's L2 address, Router's IP address, Prefix] is called
     "AR-Info".










Koodli & Perkins              Experimental                      [Page 4]

RFC 4988                  MIP4 Fast Handovers               October 2007


3.  Factors Affecting Handover

  Both link-layer operations and IP-layer procedures affect the
  perceived handover performance.  However, the overall performance is
  also (always) a function of specific implementation of the technology
  as well as the system configuration.  This document only specifies IP
  layer protocol operations.  The purpose of this section is to provide
  an illustration of events that affect handover performance, but it is
  purely informative.

  The IP-layer handover delay and packet loss are influenced by
  latencies due to movement detection, IP address configuration, and
  the Mobile IP registration procedure.  Movement detection latency
  comes from the need to reliably detect movement to a new subnet.
  This is a function of the frequency of router advertisements as well
  as default agent reachability.  IP address configuration latency
  depends on the particular IP CoA being used.  If co-located mode with
  DHCP is used, the latency is quite likely going to be higher and
  potentially unacceptable for real-time applications such as Voice
  over IP.  Finally, the Mobile IP registration procedure introduces a
  round-trip of delay between the Mobile Node and its Home Agent over
  the Internet.  This delay is incurred after the mobile node performs
  movement detection and IP configuration.

  Underlying the IP operations are link-layer procedures.  These are
  technology-specific.  For instance, in IEEE 802.11, the handover
  operation typically involves scanning access points over all
  available channels, selecting a suitable access point, and
  associating with it.  It may also involve performing access control
  operations such as those specified in IEEE 802.1X [ieee-802.1x].
  These delays contribute to the handover performance.  See [fh-ccr]
  and Chapters 20 and 22 in [mi-book].  Optimizations are being
  proposed for standardization in IEEE; for instance, see
  [ieee-802.11r] and [ieee-802.21].  Together with appropriate
  implementation techniques, these optimizations can provide the
  required level of delay support at the link-layer for real-time
  applications.














Koodli & Perkins              Experimental                      [Page 5]

RFC 4988                  MIP4 Fast Handovers               October 2007


4.  Protocol

4.1.  Overview

  The design of the protocol is the same as for Mobile IPv6 [rfc4068].
  Readers should consult [rfc4068] for details; here we provide a
  summary.

  The protocol avoids the delay due to movement detection and IP
  configuration and disengages Mobile IP registration delay from the
  time-critical path.  The protocol provides the surrounding network
  neighborhood information so that a mobile node can determine whether
  it is moving to a new subnet even before the handover.  The
  information provided and the signaling exchanged between the local
  mobility agents allow the mobile node to send and receive packets
  immediately after handover.  In order to disengage the Mobile IP
  registration latency, the protocol provides routing support for the
  continued use of a mobile node's previous CoA.

  After a mobile node obtains its IPv4 Care-of Address, it builds a
  neighborhood access point and subnet map using the Router
  Solicitation for Proxy Advertisement (RtSolPr) and Proxy Router
  Advertisement (PrRtAdv) messages.  The mobile node may scan for
  access points (APs) based on the configuration policy in operation
  for its wireless network interface.  If a scan detects a new AP, the
  mobile node resolves the corresponding AP Identifier to subnet
  information using the RtSolPr and PrRtAdv messages mentioned above.

  At some point, the mobile node decides to undergo handover.  It sends
  a Fast Binding Update (FBU) message to PAR from the previous link or
  from the new link.  An FBU message enables creation of a binding
  between the mobile node's previous CoA and the new CoA.

  The coordination between the access routers is done by way of the
  Handover Initiate (HI) and Handover Acknowledge (HAck) messages
  defined in [rfc4068].  After these signals have been exchanged
  between the previous and new access routers (PAR and NAR), data
  arriving at PAR will be tunneled to NAR for delivery to the newly
  arrived mobile node.  The purpose of HI is to securely deliver the
  routing parameters for establishing this tunnel.  The tunnel is
  created by the access routers in response to the delivery of the FBU
  from the mobile node.









Koodli & Perkins              Experimental                      [Page 6]

RFC 4988                  MIP4 Fast Handovers               October 2007


4.2.  Operation

  In response to a handover trigger or indication, the mobile node
  sends a Fast Binding Update message to the Previous Access Router
  (PAR) (see Section 5.1).  Depending on the Mobile IP mode of
  operation, the source IP address is either the Home Address (in FA
  CoA mode) or co-located CoA (in CCoA mode).  The FBU message SHOULD
  (when possible) be sent while the mobile node is still connected to
  PAR.  When sent in this "predictive" mode, the fields in the FBU MUST
  be set as follows:

     The Home Address field is either the Home Address or the co-
     located CoA whenever the mobile node has a co-located CoA.

     The Home Agent field is set to PAR's IP address.

     The Care-of Address field is the NAR's IP address (as discovered
     via a PrRtAdv message).

     The fields in the IP header MUST be set as follows:

     The Destination IP address is PAR's IP address.

     The Source IP address is either the Home Address or the co-located
     CoA whenever the mobile node has a co-located CoA.

  As a result of processing the FBU, PAR creates a binding between the
  address given by the mobile node in the Home Address field and NAR's
  IP address in its routing table.  The PAR sends an FBack message (see
  Section 5.2) as a response to the mobile node.

  The timeline for the predictive mode of operation (adapted from
  [rfc4068]) is shown in Figure 1.


















Koodli & Perkins              Experimental                      [Page 7]

RFC 4988                  MIP4 Fast Handovers               October 2007


            MN                    PAR                  NAR
             |                     |                    |
             |------RtSolPr------->|                    |
             |<-----PrRtAdv--------|                    |
             |                     |                    |
             |------FBU----------->|--------HI--------->|
             |                     |<------HAck---------|
             |          <--FBack---|--FBack--->         |
             |                     |                    |
          disconnect             forward                |
             |                   packets===============>|
             |                     |                    |
             |                     |                    |
         connect                   |                    |
             |                     |                    |
             |--------- FBU --------------------------->|
             |<=================================== deliver packets
             |                     |              (including FBack)
             |                     |<-----FBU-----------|

                Figure 1: Predictive Fast Handover

  The mobile node sends the FBU, regardless of its previous
  transmission, when attachment to a new link is detected.  This
  minimally allows NAR to detect the mobile node's attachment, but also
  the retransmission of FBU when an FBack has not been received yet.
  When sent in this "reactive" mode, the Destination IP address in the
  IP header MUST be NAR's IP address; the rest of the fields in the FBU
  are the same as in the "predictive" case.

  When NAR receives FBU, it may already have processed the HI message
  and created a host route entry for the mobile node, using either the
  home address or the co-located care-of address as provided by PAR.
  In that case, NAR SHOULD immediately forward arriving and buffered
  packets as well as the FBAck message.  In any case, NAR MUST forward
  the contents of the FBU message, starting from the Type field, to
  PAR; the Source and Destination IP addresses in the new packet now
  contain the IP addresses of NAR and PAR, respectively.

  The reactive mode of operation (adapted from [rfc4068]) is
  illustrated in Figure 2.  Even though the Figure does not show the HI
  and HAck messages illustrated in Figure 1, these messages could
  already have been exchanged (in the case when the PAR has already
  processed the FBU sent from the previous link); if not, the PAR sends
  a HI message to the NAR.  The FBack packet is forwarded by the NAR to
  the MN along with the data packets.





Koodli & Perkins              Experimental                      [Page 8]

RFC 4988                  MIP4 Fast Handovers               October 2007


                MN                    PAR                  NAR
                 |                     |                    |
                 |------RtSolPr------->|                    |
                 |<-----PrRtAdv--------|                    |
                 |                     |                    |
              disconnect               |                    |
                 |                     |                    |
                 |                     |                    |
              connect                  |                    |
                 |-----------FBU-------|------------------->|
                 |                     |<-----FBU-----------|
                 |                     |------FBack-------->|
                 |                   forward                |
                 |                   packets===============>|
                 |                     |                    |
                 |<=================================== deliver packets
                 |                                    (including FBack)
                 |                                          |

                      Figure 2: Reactive Fast Handover

  The Handover Initiate (HI) and Handover Acknowledge (HAck) messages
  serve to establish a bidirectional tunnel between the routers to
  support packet forwarding for PCoA.  The tunnel itself is established
  as a response to the FBU message.  The PAR sends the HI message with
  Code = 0 when it receives FBU with source IP address set to PCoA.
  The PAR sends HI with Code = 1 when it receives FBU with source IP
  address not set to PCoA (i.e., when received from NAR).  This allows
  NAR to disambiguate HI message processing sent as a response to
  predictive and reactive modes of operation.  If NAR receives a HI
  message with Code = 1, and it has already set up a host route entry
  and a reverse tunnel for PCoA, it SHOULD still respond with a HAck
  message, using an appropriate Code value defined in Section 5.6.

  The protocol provides an option for NAR to return NCoA for use by the
  mobile node.  When NAR can provide an NCoA for exclusive use of the
  mobile node, the address is supplied in the HAck message.  The PAR
  includes this NCoA in FBack.  Exactly how NAR manages the address
  pool from which it supplies NCoA is not specified in this document.
  Nevertheless, the MN should be prepared to use this address instead
  of performing DHCP or similar operations to obtain an IPv4 address.

  Even though the mobile node can obtain this NCoA from the NAR, it is
  unaware of the address at the time it sends an FBU.  Hence, it binds
  PCoA to NAR's IP address as before.






Koodli & Perkins              Experimental                      [Page 9]

RFC 4988                  MIP4 Fast Handovers               October 2007


5.  Message Formats

  This section specifies the formats for messages used in this
  protocol.  The Code values below are the same as those in [rfc4068],
  and do not require any assignment from IANA.

5.1.  Fast Binding Update (FBU)

  The FBU format is bitwise identical to the Registration Request
  format in [rfc3344].  The same destination port number, 434, is used,
  but the FBU and FBAck messages in this specification have new message
  type numbers.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |     Type      |x|x|D|M|G|r|T|x| reserved  |     Lifetime      |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                          Home Address                         |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                           Home Agent                          |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                        Care-of Address                        |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                                                               |
     +                         Identification                        +
     |                                                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     | Extensions ...
     +-+-+-+-+-+-+-+-

               Figure 3: Fast Binding Update (FBU) Message

     IP Fields:

        Source address: The interface address from which the message is
        sent.  Either PCoA (co-located or Home Address), or NAR's IP
        address (when forwarded from NAR to PAR).

        Destination Address: The IP address of the Previous Access
        Router (PAR) or the New Access Router (NAR).

        Source Port: variable

        Destination port: 434






Koodli & Perkins              Experimental                     [Page 10]

RFC 4988                  MIP4 Fast Handovers               October 2007


     Message Fields:

        Type: 20

        Flags: See [rfc3344].  The 'S' and 'B' flags in [rfc3344] are
        sent as zero, and ignored on reception.

        reserved: Sent as zero, ignored on reception

        Lifetime: The number of seconds remaining before the binding
        expires.  This value MUST NOT exceed 10 seconds.

        Home Address: MUST be either the co-located CoA or the Home
        Address itself (in FA-CoA mode)

        Home Agent: The Previous Access Router's global IP address

        Care-of Address: The New Access Router's global IP address.
        Even when a New CoA is provided to the MN (see Section 5.4),
        NAR's IP address MUST be used for this field.

        Identification: a 64-bit number used for matching an FBU with
        FBack.  Identical to usage in [rfc3344]

        Extensions: MUST contain the MN-PAR Authentication Extension
        (see Section 8)

  The MN-PAR Authentication Extension is the Generalized Mobile IP
  Authentication Extension in [rfc4721] with a new Subtype for MN-PAR
  Authentication.  The Authenticator field in the Generalized Mobile IP
  Authentication Extension is calculated using a shared key between the
  MN and the PAR.  However, the key distribution itself is beyond the
  scope of this document, and is assumed to be performed by other means
  (for example, using [rfc3957]).

















Koodli & Perkins              Experimental                     [Page 11]

RFC 4988                  MIP4 Fast Handovers               October 2007


5.2.  Fast Binding Acknowledgment (FBAck)

  The FBAck format is bitwise identical to the Registration Reply
  format in [rfc3344].

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |     Type      |     Code      | reserved  |     Lifetime      |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                          Home Address                         |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                           Home Agent                          |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                                                               |
     +                         Identification                        +
     |                                                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     | Extensions ...
     +-+-+-+-+-+-+-+-

             Figure 4: Fast Binding Acknowledgment (FBAck)

     IP Fields:

        Message Source address: Typically copied from the destination
        address of the FBU message

        Destination Address: Copied from the Source IP address in FBU
        message

        Source Port: variable

        Destination port: Copied from the source port in FBU message

     Message Fields:

        Type: 21

        Code: Indicates the result of processing FBU message.

           0: FBU Accepted
           1: FBU Accepted, NCoA supplied
           128: FBU Not Accepted, reason unspecified
           129: Administratively prohibited
           130: Insufficient resources

        reserved: Sent as zero, ignored on reception



Koodli & Perkins              Experimental                     [Page 12]

RFC 4988                  MIP4 Fast Handovers               October 2007


        Lifetime: The granted number of seconds remaining before
        binding expires.

        Home Address: either the co-located CoA or the Home Address
        itself (in FA-Coa mode)

        Home Agent: The Previous Access Router's global IP address

        Identification: a 64-bit number used for matching FBU.  Copied
        from the field in FBU for which this FBack is a reply.

        Extensions: The MN-PAR Authentication extension MUST be present
        (see Section 8).  In addition, a New IPv4 Address Option, with
        Option-Code 2, MUST be present when NAR supplies the NCoA (see
        Section 6.2).

5.3.  Router Solicitation for Proxy Advertisement (RtSolPr)

  Mobile Nodes send Router Solicitation for Proxy Advertisement in
  order to prompt routers for Proxy Router Advertisements.  All the
  link-layer address options have the format defined in Section 6.1.
  The message format and processing rules are identical to those
  defined in [rfc4068].

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |     Type      |     Code      |          Checksum             |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |   Subtype     |   Reserved    |          Identifier           |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |   Options ...
    +-+-+-+-+-+-+-+-+-+-+-+-

     Figure 5: Router Solicitation for Proxy Advertisement (RtSolPr)
                                 Message

     IP Fields:

        Source Address: An IP address assigned to the sending interface

        Destination Address: The address of the Access Router or the
        all routers multicast address.

        Time-to-Live: At least 1.  See [rfc1256].






Koodli & Perkins              Experimental                     [Page 13]

RFC 4988                  MIP4 Fast Handovers               October 2007


     ICMP Fields:

        Type: 41.  See Section 3 in [rfc4065].

        Code: 0

        Checksum: The 16-bit one's complement of the one's complement
        sum of the ICMP message, starting with the ICMP Type.  For
        computing the checksum, the Checksum and the Reserved fields
        are set to 0.  See [rfc1256].

        Subtype: 6

        Reserved: MUST be set to zero by the sender and ignored by the
        receiver.

        Identifier: MUST be set by the sender so that replies can be
        matched to this Solicitation.

     Valid Options:

        New Access Point Link-layer Address: The link-layer address or
        identification of the access point for which the MN requests
        routing advertisement information.  It MUST be included in all
        RtSolPr messages.  More than one such address or identifier can
        be present.  This field can also be a wildcard address (see
        Section 6.1).

5.4.  Proxy Router Advertisement (PrRtAdv)

  Access routers send out a Proxy Router Advertisement message
  gratuitously if the handover is network-initiated or as a response to
  RtSolPr message from a mobile node, providing the link-layer address,
  IP address, and subnet prefixes of neighboring access routers.  All
  the link-layer address options have the format defined in Section
  6.1.

  The message format and processing rules are identical to those
  defined in [rfc4068].












Koodli & Perkins              Experimental                     [Page 14]

RFC 4988                  MIP4 Fast Handovers               October 2007


     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |     Type      |     Code      |          Checksum             |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |   Subtype     |   Reserved    |          Identifier           |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |   Options ...
    +-+-+-+-+-+-+-+-+-+-+-+-

         Figure 6: Proxy Router Advertisement (PrRtAdv) Message

     IP Fields:

        Source Address: An IP address assigned to the sending interface

        Destination Address: The Source Address of an invoking Router
        Solicitation for Proxy Advertisement or the address of the node
        the Access Router is instructing to handover.

        Time-to-Live: At least 1.  See [rfc1256].

     ICMP Fields:

        Type: 41.  See Section 3 in [rfc4065].

        Code 0, 1, 2, 3, or 4.  See below.

        Checksum: The 16-bit one's complement of the one's complement
        sum of the ICMP message, starting with the ICMP Type.  For
        computing the checksum, the Checksum and the Reserved fields
        are set to 0.  See [rfc1256].

        Subtype: 7

        Reserved: MUST be set to zero by the sender and ignored by the
        receiver.

        Identifier: Copied from Router Solicitation for Proxy
        Advertisement or set to Zero if unsolicited.

     Valid Options in the following order:

        New Access Point Link-layer Address: The link-layer address
        (LLA) or identification of the access point.  When there is no
        wildcard in RtSolPr, this is copied from the LLA (for which the
        router is supplying the [AP-ID, AR-Info] tuple) present in




Koodli & Perkins              Experimental                     [Page 15]

RFC 4988                  MIP4 Fast Handovers               October 2007


        RtSolPr.  When a wildcard is present in RtSolPr, PAR uses its
        neighborhood information to populate this field.  This option
        MUST be present.

        New Router's Link-layer Address: The link-layer address of the
        Access Router for which this message is proxied.  This option
        MUST be included when Code is 0 or 1.

        New Router's IP Address: The IP address of NAR.  This option
        MUST be included when Code is 0 or 1.

        New Router Prefix Information Option: The number of leading
        bits that define the network number of the corresponding
        Router's IP Address option (see above).

        New CoA Option: MAY be present, typically when PrRtAdv is sent
        unsolicited.  PAR MAY compute new CoA by communicating with the
        NAR or by means not specified in this document.  In any case,
        the MN should be prepared to use this address instead of
        performing DHCP or similar operations to obtain an IPv4
        address.  Even when it uses the New CoA provided, the MN MUST
        bind its current on-link address (PCoA) to that of NAR in the
        FBU message.

  A PrRtAdv with Code 0 means that the MN should use the [AP-ID,
  AR-Info] tuple present in the options above.  In this case, the
  Option-Code field (see Section 6.1) in the New AP LLA option is 1,
  reflecting the LLA of the access point for which the rest of the
  options are related, and the Option-Code for the New Router's LLA
  option is 3.  Multiple tuples may be present.

  A PrRtAdv with Code 1 means that the message is sent unsolicited.  If
  a New IPv4 option (see Figure 10) is present following the New Router
  Prefix Information option (see Section 6.3), the MN SHOULD use the
  supplied NCoA and send the FBU immediately or else stand to lose
  service.  This message acts as a network-initiated handover trigger.
  The Option-Code field (see Section 6.1) in the New AP LLA option in
  this case is 1 reflecting the LLA of the access point for which the
  rest of the options are related.

  A Proxy Router Advertisement with Code 2 means that no new router
  information is present.  The LLA option contains an Option-Code value
  that indicates a specific reason (see Section 6.1).

  A Proxy Router Advertisement with Code 3 means that new router
  information is only present for a subset of access points requested.
  The Option-Code values in the LLA option distinguish different
  outcomes (see Section 6.1).



Koodli & Perkins              Experimental                     [Page 16]

RFC 4988                  MIP4 Fast Handovers               October 2007


  A Proxy Router Advertisement with Code 4 means that the subnet
  information regarding neighboring access points is sent unsolicited,
  but the message is not a handover trigger, unlike when the message is
  sent with Code 1.  Multiple tuples may be present.

  When a wildcard AP identifier is supplied in the RtSolPr message, the
  PrRtAdv message should include all available [Access Point
  Identifier, Link-Layer Address option, Prefix Information Option]
  tuples corresponding to the PAR's neighborhood.

  The New CoA option may also be used when the PrRtAdv is sent as a
  response to a RtSolPr message.  However, the solicited RtSolPr and
  PrRtAdv exchange for neighborhood discovery is logically decoupled
  from the actual handover phase involving the FBU and FBack messages
  (above) as well as HI and HAck messages (see below).  This means the
  access routers have to carefully manage the supplied address due to
  the relative scarcity of addresses in IPv4.

5.5.  Handover Initiate (HI)

  The Handover Initiate (HI) is an ICMP message sent by an Access
  Router (typically PAR) to another Access Router (typically NAR) to
  initiate the process of a mobile node's handover.

  The message format and processing rules are identical to those
  defined in [rfc4068].

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |     Type      |     Code      |          Checksum             |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |   Subtype     |S|U| Reserved  |          Identifier           |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |   Options ...
    +-+-+-+-+-+-+-+-+-+-+-+-

                Figure 7:  Handover Initiate (HI) Message

     IP Fields:

        Source Address: The IP address of the PAR

        Destination Address: The IP address of the NAR

        Time-to-Live: At least 1.  See [rfc1256].





Koodli & Perkins              Experimental                     [Page 17]

RFC 4988                  MIP4 Fast Handovers               October 2007


     ICMP Fields:

        Type: 41.  See Section 3 in [rfc4065].

        Code: 0 or 1.  See below

        Checksum: The 16-bit one's complement of the one's complement
        sum of the ICMP message, starting with the ICMP Type.  For
        computing the checksum, the Checksum and the Reserved fields
        are set to 0.  See [rfc1256].

        Subtype: 8

        S: Assigned address configuration flag.  When set, this message
        requests a new CoA to be returned by the destination.  May be
        set when Code = 0.  MUST be 0 when Code = 1.

        U: Buffer flag.  When set, the destination SHOULD buffer any
        packets towards the node indicated in the options of this
        message.  Used when Code = 0, SHOULD be set to 0 when Code = 1.

        Reserved: MUST be set to zero by the sender and ignored by the
        receiver.

        Identifier: MUST be set by the sender so replies can be matched
        to this message.

     Valid Options:

        Link-layer address of MN: The link-layer address of the MN that
        is undergoing handover to the destination (i.e., NAR).  This
        option MUST be included so that the destination can recognize
        the MN.

        Previous Care-of Address: The IP address used by the MN while
        attached to the originating router.  This option MUST be
        included so that a host route can be established on the NAR.

        New Care-of Address: This option MAY be present when the MN
        wishes to use a new IP address when connected to the
        destination.  When the 'S' bit is set, NAR MAY provide this
        address in HAck, in which case the MN should be prepared to use
        this address instead of performing DHCP or similar operations
        to obtain an IPv4 address.

  PAR uses Code = 0 when it processes the FBU received with PCoA as
  source IP address.  PAR uses Code = 1 when the FBU is received with
  NAR's IP address as the source IP address.



Koodli & Perkins              Experimental                     [Page 18]

RFC 4988                  MIP4 Fast Handovers               October 2007


5.6.  Handover Acknowledge (HAck)

  The Handover Acknowledgment message is a new ICMP message that MUST
  be sent (typically by NAR to PAR) as a reply to the Handover Initiate
  (HI) (see Section 5.5) message.

  The message format and processing rules are identical to those
  defined in [rfc4068].

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |     Type      |     Code      |          Checksum             |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |   Subtype     |    Reserved   |          Identifier           |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |   Options ...
    +-+-+-+-+-+-+-+-+-+-+-+-

                Figure 8:  Handover Acknowledge (HAck) Message

     IP Fields:

        Source Address: Copied from the destination address of the
        Handover Initiate Message to which this message is a response.

        Destination Address: Copied from the source address of the
        Handover Initiate Message to which this message is a response.

        Time-to-Live: At least 1.  See [rfc1256].

     ICMP Fields:

        Type: 41.  See Section 3 in [rfc4065].

        Code:

           0: Handover Accepted
           1: Handover Accepted, NCoA not valid
           2: Handover Accepted, NCoA in use
           3: Handover Accepted, NCoA assigned (used in Assigned
              addressing)
           4: Handover Accepted, NCoA not assigned
           128: Handover Not Accepted, reason unspecified
           129: Administratively prohibited
           130: Insufficient resources





Koodli & Perkins              Experimental                     [Page 19]

RFC 4988                  MIP4 Fast Handovers               October 2007


        Checksum: The 16-bit one's complement of the one's complement
        sum of the ICMP message, starting with the ICMP Type.  For
        computing the checksum, the Checksum and the Reserved fields
        are set to 0.  See [rfc1256].

        Subtype: 9

        Reserved: MUST be set to zero by the sender and ignored by the
        receiver.

        Identifier: Copied from the corresponding field in the Handover
        Initiate message this message is in response to.

     Valid Options:

        New Care-of Address: If the 'S' flag in the HI message is set,
        this option MUST be used to provide NCoA the MN should use when
        connected to this router.  This option MAY be included even
        when 'S' bit is not set, e.g., Code 2 above.  The MN should be
        prepared to use this address instead of performing DHCP or
        similar operations to obtain an IPv4 address.

  The Code 0 is the expected average case of a handover being accepted
  and the routing support provided for the use of PCoA.  The rest of
  the Code values pertain to the use of NCoA (which is common in
  [rfc4068]).  Code values 1 and 2 are for cases when the MN proposes
  an NCoA and the NAR provides a response.  Code 3 is when the NAR
  provides NCoA (which could be the same as that proposed by the MN).
  Code 4 is when the NAR does not provide NCoA, but instead provides
  routing support for PCoA.

6.  Option Formats

  The options in this section are specified as extensions for the HI
  and HAck messages, as well as for the PrRtSol and PrRtAdv messages.
  The Option-Code values below are the same as those in [rfc4068], and
  do not require any assignment from IANA.

6.1.  Link-Layer Address Option Format

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |     Type      |    Length     |  Option-Code  |     LLA ...
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

               Figure 9: Link-Layer Address Option Format




Koodli & Perkins              Experimental                     [Page 20]

RFC 4988                  MIP4 Fast Handovers               October 2007


     Fields:

        Type: 20

        Option-Code:

           0: Wildcard requesting resolution for all nearby access
              points
           1: Link-Layer Address of the New Access Point
           2: Link-Layer Address of the MN
           3: Link-Layer Address of the NAR
           4: Link-Layer Address of the source of the RtSolPr or
              PrRtAdv message
           5: The access point identified by the LLA belongs to the
              current interface of the router
           6: No prefix information available for the access point
              identified by the LLA
           7: No fast handovers support available for the access point
              identified by the LLA

        Length: The length of the option (including the Type, Length
        and Option-Code fields) in units of 8 octets.

        Link-Layer Address: The variable-length link-layer address.
        The content and format of this field (including byte and bit
        ordering) depends on the specific link-layer in use.

  There is no length field for the LLA itself.  Implementations MUST
  determine the length of the LLA based on the specific link technology
  where the protocol is run.  The total size of the LLA option itself
  MUST be a multiple of 8 octets.  Hence, padding may be necessary
  depending on the size of the LLA used.  In such a case, the padN
  option [rfc2460] MUST be used.  As an example, when the LLA is 6
  bytes (meaning 7 bytes of padding is necessary to bring the LLA
  option length to 2), the padN option will have a length field of 5
  and 5 bytes of zero-valued octets (see [rfc2460]).















Koodli & Perkins              Experimental                     [Page 21]

RFC 4988                  MIP4 Fast Handovers               October 2007


6.2.  New IPv4 Address Option Format

  This option is used to provide the new router's IPv4 address or the
  NCoA in PrRtAdv, as well as PCoA and NCoA in HI and HAck messages.

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |     Type      |    Length     |  Option-Code  |    Reserved   |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                      New IPv4 Address                         |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                Figure 10: New IPv4 Address Option Format

     Fields:

        Type: 21

        Length: The length of the option (including the Type, Length
        and Option-Code fields) in units of 8 octets.

        Option-Code:

           1: Previous CoA
           2: New CoA
           3: NAR's IP Address

        Reserved: Set to zero.

        New IPv4 Address: NAR's IPv4 address or the NCoA assigned by
        NAR.

6.3.  New Router Prefix Information Option

  This option is used in the PrRtAdv message.

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |     Type      |    Length     |  Option-Code  | Prefix-Length |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                           Reserved                            |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

         Figure 11: New Router Prefix Information Option Format





Koodli & Perkins              Experimental                     [Page 22]

RFC 4988                  MIP4 Fast Handovers               October 2007


     Fields:

        Type: 22

        Length: The length of the option (including the Type, Length
        and Option-Code fields) in units of 8 octets.

        Option-Code: 0

        Prefix-Length The number of leading bits that define the
        network number of the corresponding Router's IP Address option.

        Reserved: Set to zero.

7.  Security Considerations

  As outlined in [rfc4068], the following vulnerabilities are
  identified and the solutions mentioned.

  Insecure FBU:

  Failure to protect the FBU message could result in packets meant for
  an address being stolen or redirected to some unsuspecting node.
  This concern is similar to that in Mobile Node and Home Agent
  relationship.

  Hence, the FBU and FBack messages MUST be protected using a security
  association shared between a mobile node and its access router.  In
  particular, the MN-PAR Authentication Extension MUST be present in
  each of these messages.  This document does not specify how the
  security association is established between an MN and the AR/FA.

  Secure FBU, malicious or inadvertent redirection:

  Even if the MN-PAR authentication extension is present in an FBU, an
  MN may inadvertently or maliciously attempt to bind its PCoA to an
  unintended address on NAR's link, and cause traffic flooding to an
  unsuspecting node.

  This vulnerability is avoided by always binding the PCoA to the NAR's
  IP address, even when the NAR supplies an NCoA to use for the MN.  It
  is still possible to jam NAR's buffer with redirected traffic.
  However, the handover state corresponding to the MN's PCoA has a
  finite lifetime, and can be configured to be a few multiples of the
  anticipated handover latency.  Hence, the extent of this
  vulnerability is small.  It is possible to trace the culprit MN with
  an established security association at the access router.




Koodli & Perkins              Experimental                     [Page 23]

RFC 4988                  MIP4 Fast Handovers               October 2007


  Communication between the access routers:

  The access routers communicate using HI and HAck messages in order to
  establish a temporary routing path for the MN undergoing handover.
  This message exchange needs to be secured to ensure routing updates
  take place as intended.

  The HI and HAck messages need to be secured using a preexisting
  security association between the access routers to ensure at least
  message integrity and authentication, and SHOULD also include
  encryption.  IPsec ESP SHOULD be used.

8.  IANA Considerations

  The IANA assignments made for messages, extensions, and options
  specified in this document are described in the following paragraphs.

  This document defines two new messages that use the Mobile IPv4
  control message format [rfc3344].  These message details are as
  follows:

                  +------+-------------+-------------+
                  | Type | Description |  Reference  |
                  +------+-------------+-------------+
                  |  20  |     FBU     | Section 5.1 |
                  |  21  |    FBAck    | Section 5.2 |
                  +------+-------------+-------------+

  This document defines four new experimental ICMP messages that use
  the ICMP Type 41 for IPv4.  See Section 3 in [rfc4065].  The new
  messages specified in this document have been assigned Subtypes from
  the registry in [rfc4065]:

                 +---------+-------------+-------------+
                 | Subtype | Description |  Reference  |
                 +---------+-------------+-------------+
                 |    6    |   RtSolPr   | Section 5.3 |
                 |    7    |   PrRtAdv   | Section 5.4 |
                 |    8    |      HI     | Section 5.5 |
                 |    9    |     HAck    | Section 5.6 |
                 +---------+-------------+-------------+

  This document defines three new options that have been assigned Types
  from the Mobile IP Extensions for ICMP Router Discovery messages
  [rfc3344].  These options are as follows:






Koodli & Perkins              Experimental                     [Page 24]

RFC 4988                  MIP4 Fast Handovers               October 2007


                +------+------------------+-------------+
                | Type |    Description   |  Reference  |
                +------+------------------+-------------+
                |  20  |        LLA       | Section 6.1 |
                |  21  | New IPv4 Address | Section 6.2 |
                |  22  |  NAR Prefix Info | Section 6.3 |
                +------+------------------+-------------+

  The MN-PAR Authentication Extension described in Sections 5.1 and 5.2
  is a Generalized Mobile IP Authentication Extension defined in
  Section 5 of [rfc4721].  The MN-PAR Authentication has been assigned
  a Subtype from the registry specified in [rfc4721].  The Extension
  details are as follows:

     +---------+-----------------------+--------------------------+
     | Subtype |      Description      |         Reference        |
     +---------+-----------------------+--------------------------+
     |    4    | MN-PAR Auth Extension |        Section 5.1       |
     +---------+-----------------------+--------------------------+

9.  Acknowledgments

  Thanks to all those who expressed interest in having a Fast Handovers
  for Mobile IPv4 protocol along the lines of [rfc4068].  Thanks to
  Vijay Devarapalli, Kent Leung, and Domagoj Premec for their review
  and input.  Kumar Viswanath and Uday Mohan implemented an early
  version of this protocol.  Many thanks to Alex Petrescu for his
  thorough review that improved this document.  Thanks to Pete McCann
  for the proofreading, and to Jari Arkko for the review, which have
  helped improve this document.  Thanks to Francis Dupont and Hannes
  Tschofenig for the GEN-ART and TSV-DIR reviews.

  Sending FBU from the new link (i.e., reactive mode) is similar to
  using the extension defined in [mip4-ro]; however, this document also
  addresses movement detection and router discovery latencies.

10.  References

10.1.  Normative References

  [RFC2119]      Bradner, S., "Key words for use in RFCs to Indicate
                 Requirement Levels", BCP 14, RFC 2119, March 1997.

  [rfc1256]      Deering, S., Ed., "ICMP Router Discovery Messages",
                 RFC 1256, September 1991.

  [rfc2460]      Deering, S. and R. Hinden, "Internet Protocol, Version
                 6 (IPv6) Specification", RFC 2460, December 1998.



Koodli & Perkins              Experimental                     [Page 25]

RFC 4988                  MIP4 Fast Handovers               October 2007


  [rfc3344]      Perkins, C., Ed., "IP Mobility Support for IPv4", RFC
                 3344, August 2002.

  [rfc4065]      Kempf, J., "Instructions for Seamoby and Experimental
                 Mobility Protocol IANA Allocations", RFC 4065, July
                 2005.

  [rfc4068]      Koodli, R., Ed., "Fast Handovers for Mobile IPv6", RFC
                 4068, July 2005.

  [rfc4721]      Perkins, C., Calhoun, P., and J. Bharatia, "Mobile
                 IPv4 Challenge/Response Extensions (Revised)", RFC
                 4721, January 2007.

10.2.  Informative References

  [fh-ccr]       R. Koodli and C. E. Perkins, "Fast Handovers and
                 Context Transfers in Mobile Networks", ACM Computer
                 Communications Review Special Issue on Wireless
                 Extensions to the Internet, October 2001.

  [ieee-802.11r] IEEE, "IEEE Standard for Local and Metropolitan Area
                 Networks:  Fast Roaming/Fast BSS Transition, IEEE Std
                 802.11r", September 2006.

  [ieee-802.1x]  IEEE, "IEEE Standards for Local and Metropolitan Area
                 Networks: Port-based Network Access Control, IEEE Std
                 802.1X-2001", June 2001.

  [ieee-802.21]  The IEEE 802.21 group, http://www.ieee802.org/21.

  [mi-book]      R. Koodli and C. E. Perkins, "Mobile Internetworking
                 with IPv6: Concepts, Principles and Practices", John
                 Wiley & Sons, June 2007.

  [mip4-ro]      Perkins, C. and D. Johnson, "Route Optimization in
                 Mobile IP", Work in Progress, September 2001.

  [rfc2131]      Droms, R., "Dynamic Host Configuration Protocol", RFC
                 2131, March 1997.

  [rfc3957]      Perkins, C. and P. Calhoun, "Authentication,
                 Authorization, and Accounting (AAA) Registration Keys
                 for Mobile IPv4", RFC 3957, March 2005.







Koodli & Perkins              Experimental                     [Page 26]

RFC 4988                  MIP4 Fast Handovers               October 2007


Authors' Addresses

  Rajeev Koodli
  Nokia Siemens Networks
  313 Fairchild Driive
  Mountain View, CA 94043
  USA

  EMail: [email protected]


  Charles Perkins
  Nokia Siemens Networks
  313 Fairchild Driive
  Mountain View, CA 94043
  USA

  EMail: [email protected]

































Koodli & Perkins              Experimental                     [Page 27]

RFC 4988                  MIP4 Fast Handovers               October 2007


Full Copyright Statement

  Copyright (C) The IETF Trust (2007).

  This document is subject to the rights, licenses and restrictions
  contained in BCP 78, and except as set forth therein, the authors
  retain all their rights.

  This document and the information contained herein are provided on an
  "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
  OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
  THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
  OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
  THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
  WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

  The IETF takes no position regarding the validity or scope of any
  Intellectual Property Rights or other rights that might be claimed to
  pertain to the implementation or use of the technology described in
  this document or the extent to which any license under such rights
  might or might not be available; nor does it represent that it has
  made any independent effort to identify any such rights.  Information
  on the procedures with respect to rights in RFC documents can be
  found in BCP 78 and BCP 79.

  Copies of IPR disclosures made to the IETF Secretariat and any
  assurances of licenses to be made available, or the result of an
  attempt made to obtain a general license or permission for the use of
  such proprietary rights by implementers or users of this
  specification can be obtained from the IETF on-line IPR repository at
  http://www.ietf.org/ipr.

  The IETF invites any interested party to bring to its attention any
  copyrights, patents or patent applications, or other proprietary
  rights that may cover technology that may be required to implement
  this standard.  Please address the information to the IETF at
  [email protected].












Koodli & Perkins              Experimental                     [Page 28]