Network Working Group                                       P. Srisuresh
Request for Comments: 4973                                Kazeon Systems
Category: Experimental                                         P. Joseph
                                                             Consultant
                                                              July 2007


   OSPF-xTE: Experimental Extension to OSPF for Traffic Engineering

Status of This Memo

  This memo defines an Experimental Protocol for the Internet
  community.  It does not specify an Internet standard of any kind.
  Discussion and suggestions for improvement are requested.
  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (C) The IETF Trust (2007).

Abstract

  This document defines OSPF-xTE, an experimental traffic engineering
  (TE) extension to the link-state routing protocol OSPF.  OSPF-xTE
  defines new TE Link State Advertisements (LSAs) to disseminate TE
  metrics within an autonomous System (AS), which may consist of
  multiple areas.  When an AS consists of TE and non-TE nodes, OSPF-xTE
  ensures that non-TE nodes in the AS are unaffected by the TE LSAs.
  OSPF-xTE generates a stand-alone TE Link State Database (TE-LSDB),
  distinct from the native OSPF LSDB, for computation of TE circuit
  paths.  OSPF-xTE is versatile and extendible to non-packet networks
  such as Synchronous Optical Network (SONET) / Time Division
  Multiplexing (TDM) and optical networks.

IESG Note

  The content of this RFC was at one time considered by the IETF, and
  therefore it may resemble a current IETF work in progress or a
  published IETF work.  This RFC is not a candidate for any level of
  Internet Standard.  The IETF disclaims any knowledge of the fitness
  of this RFC for any purpose and in particular notes that the decision
  to publish is not based on IETF review for such things as security,
  congestion control, or inappropriate interaction with deployed
  protocols.  The RFC Editor has chosen to publish this document at its
  discretion.  Readers of this RFC should exercise caution in
  evaluating its value for implementation and deployment.  See RFC 3932
  for more information.




Srisuresh & Joseph            Experimental                      [Page 1]

RFC 4973           OSPF Traffic Engineering Extension          July 2007


  See RFC 3630 for the IETF consensus protocol for OSPF Traffic
  Engineering.  The OSPF WG position at the time of publication is that
  although this proposal has some useful properties, the protocol in
  RFC 3630 is sufficient for the traffic engineering needs that have
  been identified so far, and the cost of migrating to this proposal
  exceeds its benefits.

Table of Contents

  1. Introduction ....................................................3
  2. Principles of Traffic Engineering ...............................3
  3. Terminology .....................................................5
     3.1. Native OSPF Terms ..........................................5
     3.2. OSPF-xTE Terms .............................................6
  4. Motivations behind the Design of OSPF-xTE .......................9
     4.1. Scalable Design ............................................9
     4.2. Operable in Mixed and Peer Networks ........................9
     4.3. Efficient in Flooding Reach ................................9
     4.4. Ability to Reserve TE-Exclusive Links .....................10
     4.5. Extensible Design .........................................11
     4.6. Unified for Packet and Non-Packet Networks ................11
     4.7. Networks Benefiting from the OSPF-xTE Design ..............11
  5. OSPF-xTE Solution Overview .....................................12
     5.1. OSPF-xTE Solution .........................................12
     5.2. Assumptions ...............................................13
  6. Strategy for Transition of Opaque LSAs to OSPF-xTE .............14
  7. OSPF-xTE Router Adjacency -- TE Topology Discovery .............14
     7.1. The OSPF-xTE Router Adjacency .............................14
     7.2. The Hello Protocol ........................................15
     7.3. The Designated Router .....................................15
     7.4. The Backup Designated Router ..............................15
     7.5. Flooding and the Synchronization of Databases .............16
     7.6. The Graph of Adjacencies ..................................16
  8. TE LSAs for Packet Network .....................................18
     8.1. TE-Router LSA (0x81) ......................................18
          8.1.1. Router-TE Flags: TE Capabilities of the Router .....19
          8.1.2. Router-TE TLVs .....................................20
          8.1.3. Link-TE Flags: TE Capabilities of a Link ...........22
          8.1.4. Link-TE TLVs .......................................23
     8.2. TE-Incremental-Link-Update LSA (0x8d) .....................26
     8.3. TE-Circuit-Path LSA (0x8C) ................................28
     8.4. TE-Summary LSAs ...........................................31
          8.4.1. TE-Summary Network LSA (0x83) ......................32
          8.4.2. TE-Summary Router LSA (0x84) .......................33
     8.5. TE-AS-external LSAs (0x85) ................................34
  9. TE LSAs for Non-Packet Network .................................36
     9.1. TE-Router LSA (0x81) ......................................36
          9.1.1. Router-TE flags - TE Capabilities of a Router ......37



Srisuresh & Joseph            Experimental                      [Page 2]

RFC 4973           OSPF Traffic Engineering Extension          July 2007


          9.1.2. Link-TE Options: TE Capabilities of a TE Link ......38
     9.2. TE-positional-ring-network LSA (0x82) .....................38
     9.3. TE-Router-Proxy LSA (0x8e) ................................40
  10. Abstract Topology Representation with TE Support ..............42
  11. Changes to Data Structures in OSPF-xTE Nodes ..................44
     11.1. Changes to Router Data Structure .........................44
     11.2. Two Sets of Neighbors ....................................44
     11.3. Changes to Interface Data Structure ......................44
  12. IANA Considerations ...........................................45
     12.1. TE LSA Type Values .......................................45
     12.2. TE TLV Tag Values ........................................46
  13. Acknowledgements ..............................................46
  14. Security Considerations .......................................47
  15. Normative References ..........................................48
  16. Informative References ........................................48

1.  Introduction

  This document defines OSPF-xTE, an experimental traffic engineering
  (TE) extension to the link-state routing protocol OSPF.  The
  objective of OSPF-xTE is to discover TE network topology and
  disseminate TE metrics within an autonomous system (AS).  A stand-
  alone TE Link State Database (TE-LSDB), different from the native
  OSPF LSDB, is created to facilitate computation of TE circuit paths.
  Devising algorithms to compute TE circuit paths is not an objective
  of this document.

  OSPF-xTE is different from the Opaque-LSA-based approach outlined in
  [OPQLSA-TE].  Section 4 describes the motivations behind the design
  of OSPF-xTE.  Section 6 outlines a transition path for those
  currently using [OPQLSA-TE] for intra-area and wish to extend this
  using OSPF-xTE across the AS.

  Readers interested in TE extensions for packet networks alone may
  skip section 9.0.

2.  Principles of Traffic Engineering

  The objective of traffic engineering (TE) is to set up circuit
  path(s) between a pair of nodes or links and to forward traffic of a
  certain forwarding equivalency class (FEC) through the circuit path.
  Only unicast circuit paths are considered in this section; multicast
  variations are outside the scope.

  A traffic engineered circuit path is unidirectional and may be
  identified by the tuple: (FEC, TE circuit parameters, origin
  node/link, destination node/link).




Srisuresh & Joseph            Experimental                      [Page 3]

RFC 4973           OSPF Traffic Engineering Extension          July 2007


  A forwarding equivalency class (FEC) is a grouping of traffic that is
  forwarded in the same manner by a node.  An FEC may be classified
  based on a number of criteria, as follows:

       a) traffic arriving on a specific interface,
       b) traffic arriving at a certain time of day,
       c) traffic meeting a certain packet based classification
          criteria (ex: based on a match of the fields in the IP and
          transport headers within a packet),
       d) traffic in a certain priority class,
       e) traffic arriving on a specific set of TDM (Synchronous
          Transport Signal (STS)) circuits on an interface, or
       f) traffic arriving on a certain wavelength of an interface.

  Discerning traffic based on the FEC criteria is mandatory for Label
  Edge Routers (LERs).  The intermediate Label-Switched Routers (LSRs)
  are transparent to the traffic content.  LSRs are only responsible
  for maintaining the circuit for its lifetime.  This document will not
  address definition of FEC criteria, the mapping of an FEC to circuit,
  or the associated signaling to set up circuits.  [MPLS-TE] and
  [GMPLS-TE] address the FEC criteria. [RSVP-TE] and [CR-LDP] address
  signaling protocols to set up circuits.

  This document is concerned with the collection of TE metrics for all
  the TE enforceable nodes and links within an autonomous system.  TE
  metrics for a node may include the following.

       a) Ability to perform traffic prioritization,
       b) Ability to provision bandwidth on interfaces,
       c) Support for Constrained Shortest Path First (CSPF)
          algorithms,
       d) Support for certain TE-Circuit switch type, and
       e) Support for a certain type of automatic protection switching.

  TE metrics for a link may include the following.

       a) available bandwidth,
       b) reliability of the link,
       c) color assigned to the link,
       d) cost of bandwidth usage on the link, and
       e) membership in a Shared Risk Link Group (SRLG).

  A number of CSPF (Constraint-based Shortest Path First) algorithms
  may be used to dynamically set up TE circuit paths in a TE network.

  OSPF-xTE mandates that the originating and the terminating entities
  of a TE circuit path be identifiable by IP addresses.




Srisuresh & Joseph            Experimental                      [Page 4]

RFC 4973           OSPF Traffic Engineering Extension          July 2007


3.  Terminology

  Definitions of the majority of the terms used in the context of the
  OSPF protocol may be found in [OSPF-V2].  MPLS and traffic
  engineering terms may be found in [MPLS-ARCH].  RSVP-TE and CR-LDP
  signaling-specific terms may be found in [RSVP-TE] and [CR-LDP],
  respectively.

  The following subsections describe the native OSPF terms and the
  OSPF-xTE terms used within this document.

3.1.  Native OSPF Terms

  o  Native node (Non-TE node)

      A native or non-TE node is an OSPF router that is capable of IP
      packet forwarding but does not take part in a TE network.  A
      native OSPF node forwards IP traffic using the shortest-path
      forwarding algorithm and does not run the OSPF-xTE extensions.

  o  Native link (Non-TE link)

      A native (or non-TE) link is a network attachment to a TE or
      non-TE node used for IP packet traversal.

  o  Native OSPF network (Non-TE network)

      A native OSPF network refers to an OSPF network that does not
      support TE.  "Non-TE network", "native-OSPF network", and "non-TE
      topology" are used synonymously throughout the document.

  o  LSP

      LSP stands for "Label-Switched Path".  An LSP is a TE circuit
      path in a packet network.  The terms "LSP" and "TE circuit path"
      are used synonymously in the context of packet networks.

  o  LSA

      LSA stands for OSPF "Link State Advertisement".











Srisuresh & Joseph            Experimental                      [Page 5]

RFC 4973           OSPF Traffic Engineering Extension          July 2007


  o  LSDB

      LSDB stands for "Link State Database".  An LSDB contains a
      representation of the topology of a network.  A native LSDB,
      constituted of native OSPF LSAs, represents the topology of a
      native IP network.  The TE-LSDB, on the other hand, is
      constituted of TE LSAs and is a representation of the TE network
      topology.

3.2.  OSPF-xTE Terms

  o  TE node

      A TE node is a node in the traffic engineering (TE) network.  A
      TE node has a minimum of one TE link attached to it.  Associated
      with each TE node is a set of supported TE metrics.  A TE node
      may also participate in a native IP network.

      In a SONET/TDM or photonic cross-connect network, a TE node is
      not required to be an OSPF-xTE node.  An external OSPF-xTE node
      may act as proxy for the TE nodes that cannot be routers
      themselves.

  o  TE link

      A TE link is a network attachment point to a TE node and is
      intended for traffic engineering use.  Associated with each TE
      link is a set of supported TE metrics.  A TE link may also
      optionally carry native IP traffic.

      Of the various links attached to a TE node, only the links that
      take part in a traffic-engineered network are called TE links.

  o  TE circuit path

      A TE circuit path is a unidirectional data path that is defined
      by a list of TE nodes connected to each other through TE links.
      A TE circuit path is also often referred simply as a circuit path
      or a circuit.

      For the purposes of OSPF-xTE, the originating and terminating
      entities of a TE circuit path must be identifiable by their IP
      addresses.  As a general rule, all nodes and links party to a
      traffic-engineered network should be uniquely identifiable by an
      IP address.






Srisuresh & Joseph            Experimental                      [Page 6]

RFC 4973           OSPF Traffic Engineering Extension          July 2007


  o  OSPF-xTE node (OSPF-xTE router)

      An OSPF-xTE node is a TE node that runs the OSPF routing protocol
      and the OSPF-xTE extensions described in this document.  An
      autonomous system (AS) may consist of a combination of native and
      OSPF-xTE nodes.

  o  TE Control network

      The IP network used by the OSPF-xTE nodes for OSPF-xTE
      communication is referred as the TE control network or simply the
      control network.  The control network can be independent of the
      TE data network.

  o  TE network (TE topology)

      A TE network is a network of connected TE nodes and TE links, for
      the purpose of setting up one or more TE circuit paths.  The
      terms "TE network", "TE data network", and "TE topology" are used
      synonymously throughout the document.

  o  Packet-TE network (Packet network)

      A packet-TE network is a TE network in which the nodes switch
      MPLS packets.  An MPLS packet is defined in [MPLS-TE] as a packet
      with an MPLS header, followed by data octets.  The intermediary
      node(s) of a circuit path in a packet-TE network perform MPLS
      label swapping to emulate the circuit.

      Unless specified otherwise, the term "packet network" is used
      throughout the document to refer to a packet-TE network.

  o  Non-packet-TE network (Non-packet network)

      A non-packet-TE network is a TE network in which the nodes switch
      non-packet entities such as STS time slots, Lambda wavelengths,
      or simply interfaces.

      SONET/TDM and fiber cross-connect networks are examples of non-
      packet-TE networks.  Circuit emulation in these networks is
      accomplished by the switch fabric in the intermediary nodes
      (based on TDM time slot, fiber interface, or Lambda).

      Unless specified otherwise, the term non-packet network is used
      throughout the document to refer a non-packet-TE network.






Srisuresh & Joseph            Experimental                      [Page 7]

RFC 4973           OSPF Traffic Engineering Extension          July 2007


  o  Mixed network

      A mixed network is a network that is constituted of both packet-
      TE and non-TE networks.  Traffic in the network is strictly
      datagram oriented, i.e., IP datagrams or MPLS packets.  Routers
      in a mixed network may be TE or native nodes.

      OSPF-xTE is usable within a packet network or a mixed network.

  o  Peer network

      A peer network is a network that is constituted of packet-TE and
      non-packet-TE networks combined.  In a peer network, a TE node
      could potentially support TE links for the packet as well as
      non-packet data.

      OSPF-xTE is usable within a packet network or a non-packet
      network or a peer network, which is a combination of the two.

  o  CSPF

      CSPF stands for "Constrained Shortest Path First".  Given a TE
      LSDB and a set of constraints that must be satisfied to form a
      circuit path, there may be several CSPF algorithms to obtain a TE
      circuit path that meets the criteria.

  o  TLV

      A TLV stands for a data object in the form: Tag-Length-Value.
      All TLVs are assumed to be of the following format, unless
      specified otherwise.  The Tag and Length are 16 bits wide each.
      The Length includes the 4 octets required for Tag and Length
      specification.  All TLVs described in this document are padded to
      32-bit alignment.  Any padding required for alignment will not be
      a part of the length field, however.  TLVs are used to describe
      traffic engineering characteristics of the TE nodes, TE links,
      and TE circuit paths.

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |            Tag                |     Length (4 or more)        |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                            Value ....                         |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                            ....                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+




Srisuresh & Joseph            Experimental                      [Page 8]

RFC 4973           OSPF Traffic Engineering Extension          July 2007


  o  Router-TE TLVs (Router TLVs)

      TLVs used to describe the TE capabilities of a TE node.

  o  Link-TE TLVs (Link TLVs)

      TLVs used to describe the TE capabilities of a TE link.

4.  Motivations behind the Design of OSPF-xTE

  There are several motivations that led to the design of OSPF-xTE.
  OSPF-xTE is scalable, efficient, and usable across a variety of
  network topologies.  These motivations are explained in detail in the
  following subsections.  The last subsection lists real-world network
  scenarios that benefit from the OSPF-xTE.

4.1.  Scalable Design

  In OSPF-xTE, an area-level abstraction provides the scaling required
  for the TE topology in a large autonomous system (AS).  An OSPF-xTE
  area border router will advertise summary LSAs for TE and non-TE
  topologies independent of each other.  Readers may refer to section
  10 for a topological view of the AS from the perspective of a OSPF-
  xTE node in an area.

  [OPQLSA-TE], on the other hand, is designed for intra-area and is not
  scalable to AS-wide scope.

4.2.  Operable in Mixed and Peer Networks

  OSPF-xTE assumes that an AS may be constituted of coexisting TE and
  non-TE networks.  OSPF-xTE dynamically discovers TE topology and the
  associated TE metrics of the nodes and links that form the TE
  network.  As such, OSPF-xTE generates a stand-alone TE-LSDB that is
  fully representative of the TE network.  Stand-alone TE-LSDB allows
  for speedy TE computations.

  [OPQLSA-TE] is designed for packet networks and is not suitable for
  mixes and peer networks.  TE-LSDB in [OPQLSA-TE] is derived from the
  combination of Opaque LSAs and native LSDB.  Further, the TE-LSDB
  thus derived has no knowledge of the TE capabilities of the routers
  in the network.

4.3.  Efficient in Flooding Reach

  OSPF-xTE is able to identify the TE topology in a mixed network and
  to limit the flooding of TE LSAs to only the TE nodes.  Non-TE nodes
  are not bombarded with TE LSAs.



Srisuresh & Joseph            Experimental                      [Page 9]

RFC 4973           OSPF Traffic Engineering Extension          July 2007


  In a TE network, a subset of the TE metrics may be prone to rapid
  change, while others remain largely unchanged.  Changes in TE metrics
  must be communicated at the earliest throughout the network to ensure
  that the TE-LSDB is up-to-date within the network.  As a general
  rule, a TE network is likely to generate significantly more control
  traffic than a native network.  The excess traffic is almost directly
  proportional to the rate at which TE circuits are set up and torn
  down within the TE network.  The TE database synchronization should
  occur much quicker compared to the aggregate circuit set up and
  tear-down rates.  OSPF-xTE defines TE-Incremental-Link-update LSA
  (section 8.2) to advertise only a subset of the metrics that are
  prone to rapid changes.

  The more frequent and wider the flooding, the larger the number of
  retransmissions and acknowledgements.  The same information (needed
  or not) may reach a router through multiple links.  Even if the
  router did not forward the information past the node, it would still
  have to send acknowledgements across all the various links on which
  the LSAs tried to converge.  It is undesirable to flood non-TE nodes
  with TE information.

4.4.  Ability to Reserve TE-Exclusive Links

  OSPF-xTE draws a clear distinction between TE and non-TE links.  A TE
  link may be configured to permit TE traffic alone, and not permit
  best-effort IP traffic on the link.  This permits TE enforceability
  on the TE links.

  When links of a TE topology do not overlap the links of a native IP
  network, OSPF-xTE allows for virtual isolation of the two networks.
  Best-effort IP network and TE network often have different service
  requirements.  Keeping the two networks physically isolated can be
  expensive.  Combining the two networks into a single physically
  connected network will bring economies of scale, while service
  enforceability can be maintained individually for each of the TE and
  non-TE sections of the network.

  [OPQLSA-TE] does not support the ability to isolate best-effort IP
  traffic from TE traffic on a link.  All links are subject to best-
  effort IP traffic.  An OSPF router could potentially select a TE link
  to be its least cost link and inundate the link with best-effort IP
  traffic, thereby rendering the link unusable for TE purposes.









Srisuresh & Joseph            Experimental                     [Page 10]

RFC 4973           OSPF Traffic Engineering Extension          July 2007


4.5.  Extensible Design

  The OSPF-xTE design is based on the tried-and-tested OSPF paradigm,
  and it inherits all the benefits of OSPF, present and future.  TE
  LSAs are extensible, just as the native OSPF on which OSPF-xTE is
  founded are extensible.

4.6.  Unified for Packet and Non-Packet Networks

  OSPF-xTE is usable within a packet network or a non-packet network or
  a combination peer network.

  Signaling protocols such as RSVP and LDP work the same across packet
  and non-packet networks.  Signaling protocols merely need the TE
  characteristics of nodes and links so they can signal the nodes to
  formulate TE circuit paths.  In a peer network, the underlying
  control protocol must be capable of providing a unified LSDB for all
  TE nodes (nodes with packet-TE links as well as non-packet-TE links)
  in the network.  OSPF-xTE meets this requirement.

4.7.  Networks Benefiting from the OSPF-xTE Design

  Below are examples of some real-world network scenarios that benefit
  from OSPF-xTE.

  o  IP providers transitioning to provide TE services

      Providers needing to support MPLS-based TE in their IP network
      may choose to transition gradually.  They may add new TE links or
      convert existing links into TE links within an area first and
      progressively advance to offering MPLS in the entire AS.

      Not all routers will support TE extensions at the same time
      during the migration process.  Use of TE-specific LSAs and their
      flooding to OSPF-xTE only nodes will allow the vendor to
      introduce MPLS TE without destabilizing the existing network.
      The native OSPF-LSDB will remain undisturbed while newer TE links
      are added to the network.

  o  Providers offering best-effort-IP & TE services

      Providers choosing to offer both best-effort-IP and TE based
      packet services simultaneously on the same physically connected
      network will benefit from the OSPF-xTE design.  By maintaining
      independent LSDBs for each type of service, TE links are not
      cannibalized in a mixed network.





Srisuresh & Joseph            Experimental                     [Page 11]

RFC 4973           OSPF Traffic Engineering Extension          July 2007


  o  Large TE networks

      The OSPF-xTE design is advantageous in large TE networks that
      require the AS to be sub-divided into multiple areas.  OSPF-xTE
      permits inter-area exchange of TE information, which ensures that
      all nodes in the AS have up-to-date, AS-wide, TE reachability
      knowledge.  This in turn will make TE circuit setup predictable
      and computationally bounded.

  o  Non-Packet Networks and Peer Networks

      Vendors may also use OSPF-xTE for their non-packet TE networks.
      OSPF-xTE defines the following functions in support of non-packet
      TE networks.
       (a) "Positional-Ring" type network LSAs.
       (b) Router proxying -- allowing a router to advertise on behalf
             of other nodes (that are not packet/OSPF-capable).

5.  OSPF-xTE Solution Overview

5.1.  OSPF-xTE Solution

  Locally-scoped Opaque LSA (type 9) is used to discovery the TE
  topology within a network.  Section 7.1 describes in detail the use
  of type 9 Opaque LSA for TE topology discovery.  TE LSAs are designed
  for use by the OSPF-xTE nodes.  Section 8.0 describes the TE LSAs in
  detail.  Changes required of the OSPF data structures to support
  OSPF-xTE are described in section 11.0.  A new TE-neighbors data
  structure will be used to advertise TE LSAs along TE topology.

  An OSPF-xTE node will have a native LSDB and a TE-LSDB, while a
  native OSPF node will have just a native LSDB.  Consider the OSPF
  area, constituted of OSPF-xTE and native OSPF routers, shown in
  Figure 1.  Nodes RT1, RT2, RT3, and RT6 are OSPF-xTE routers with TE
  and non-TE link attachments.  Nodes RT4 and RT5 are native OSPF
  routers with no TE links.  When the LSA database is synchronized, all
  nodes will share the same native LSDB.  OSPF-xTE nodes alone will
  have the additional TE-LSDB.













Srisuresh & Joseph            Experimental                     [Page 12]

RFC 4973           OSPF Traffic Engineering Extension          July 2007


             +---+
             |   |--------------------------------------+
             |RT6|\\                                    |
             +---+  \\                                  |
              ||      \\                                |
              ||        \\                              |
              ||          \\                            |
              ||          +---+                         |
              ||          |   |----------------+        |
              ||          |RT1|\\              |        |
              ||          +---+  \\            |        |
              ||          //|      \\          |        |
              ||        //  |        \\        |        |
              ||      //    |          \\      |        |
             +---+  //      |            \\  +---+      |
             |RT2|//        |              \\|RT3|------+
             |   |----------|----------------|   |
             +---+          |                +---+
                            |                  |
                            |                  |
                            |                  |
                          +---+              +---+
                          |RT5|--------------|RT4|
                          +---+              +---+
        Legend:
             --   Native (non-TE) network link
             |    Native (non-TE) network link
             \\   TE network link
             ||   TE network link

            Figure 1.  A (TE + native) OSPF Network Topology

5.2.  Assumptions

  OSPF-xTE is an extension to the native OSPF protocol and does not
  mandate changes to the existing OSPF.  OSPF-xTE design makes the
  following assumptions.

  (1)  An OSPF-xTE node will need to establish router adjacency with at
       least one other OSPF-xTE node in the area in order for the
       router's TE database to be synchronized within the area.
       Failing this, the OSPF router will not be in the TE calculations
       of other TE routers in the area.

       It is the responsibility of the network administrator(s) to
       ensure connectedness of the TE network.  Otherwise, there can be
       disjoint TE topologies within a network.




Srisuresh & Joseph            Experimental                     [Page 13]

RFC 4973           OSPF Traffic Engineering Extension          July 2007


  (2)  OSPF-xTE nodes must advertise the link state of its TE links.
       TE links are not obligated to support native IP traffic.  Hence,
       an OSPF-xTE node cannot be required to synchronize its link-
       state database with neighbors on all its links.  The only
       requirement is to have the TE LSDB synchronized across all
       OSPF-xTE nodes in the area.

  (3)  A link in a packet network may be designated as a TE link or a
       native-IP link or both.  For example, a link may be used for
       both TE and non-TE traffic, as long as the link is under
       subscribed in bandwidth for TE traffic (for example, 50% of the
       link capacity is set aside for TE traffic).

  (4)  Non-packet TE sub-topologies must have a minimum of one node
       running OSPF-xTE protocol.  For example, a SONET/SDH TDM ring
       must have a minimum of one Gateway Network Element (GNE) running
       OSPF-xTE.  The OSPF-xTE node will advertise on behalf of all the
       TE nodes in the ring.

6.  Strategy for Transition of Opaque LSAs to OSPF-xTE

  Below is a strategy to transition implementations currently using
  Opaque LSAs ([OPQLSA-TE]) within an area to adapt OSPF-xTE in a
  gradual fashion across the AS.

  (1)  Use [OPQLSA-TE] within an area.  Derive TE topology within the
       area from the combination of Opaque LSAs and native LSDB.

  (2)  Use TE-Summary LSAs and TE-AS-external LSAs for inter-area
       communication.  Use the TE topology within an area to summarize
       the TE networks in the area and advertise the same to all TE
       nodes in the backbone.  The TE-ABRs (TE area border routers) on
       the backbone area will in turn advertise these summaries within
       their connected areas.

7.  OSPF-xTE Router Adjacency -- TE Topology Discovery

  OSPF creates adjacencies between neighboring routers for the purpose
  of exchanging routing information.  The following subsections
  describe the use of locally-scoped Opaque LSAs to discover OSPF-xTE
  neighboring routers.  The capability is used as the basis to build a
  TE topology.

7.1.  The OSPF-xTE Router Adjacency

  OSPF uses the options field in the Hello packet to advertise optional
  router capabilities [OSPF-V2].  However, all the bits in this field
  have been allocated and there is no way to advertise OSPF-xTE



Srisuresh & Joseph            Experimental                     [Page 14]

RFC 4973           OSPF Traffic Engineering Extension          July 2007


  capability using the options field at this time.  This document
  proposes using local-scope Opaque LSA (OPAQUE-9 LSA) to advertise
  support for OSPF-xTE and establish OSPF-xTE adjacency.  In order to
  exchange Opaque LSAs, the neighboring routers must have the O-bit
  (Opaque option bit) set in the options field.

  [OSPF-CAP] proposes a format for exchanging router capabilities via
  OPAQUE-9 LSA.  Routers supporting OSPF-xTE will be required to set
  the "OSPF Experimental TE" bit within the "router capabilities"
  field.  Two routers will not become TE neighbors unless they share a
  common network link on which both routers advertise support for
  OSPF-xTE.  Routers that do not support OSPF-xTE may simply ignore the
  advertisement.

7.2.  The Hello Protocol

  The Hello protocol is primarily responsible for dynamically
  establishing and maintaining neighbor adjacencies.  In a TE network,
  it is not required for all links and neighbors to establish adjacency
  using this protocol.  OSPF-xTE router adjacency between two routers
  is established using the method described in the previous section.

  For non-broadcast multi-access (NBMA) and broadcast networks, the
  HELLO protocol is responsible for electing the Designated Router and
  the Backup Designated Router.  Routers supporting the TE option shall
  be given a higher precedence for becoming a designated router over
  those that do not support TE.

7.3.  The Designated Router

  When a router's non-TE link first becomes functional, it checks to
  see whether there is currently a Designated Router for the network.
  If there is one, it accepts that Designated Router, regardless of its
  router priority, so long as the current designated router is TE
  compliant.  Otherwise, the router itself becomes Designated Router if
  it has the highest Router Priority on the network and is TE
  compliant.

  OSPF-xTE must be implemented on the most robust routers, as they
  become likely candidates to take on the role as Designated Router.

7.4.  The Backup Designated Router

  The Backup Designated Router is also elected by the Hello Protocol.
  Each Hello Packet has a field that specifies the Backup Designated
  Router for the network.  Once again, TE-compliance must be weighed in
  conjunction with router priority in electing the Backup Designated
  Router.



Srisuresh & Joseph            Experimental                     [Page 15]

RFC 4973           OSPF Traffic Engineering Extension          July 2007


7.5.  Flooding and the Synchronization of Databases

  In OSPF, adjacent routers within an area are required to synchronize
  their databases.  However, a more concise requirement is that all
  routers in an area must converge on the same LSDB.  As stated in item
  2 of section 5.2, a basic assertion of OSPF-xTE is that the links
  used by the OSPF-xTE control network for flooding must not be
  required to match the links used by the data network for real-time
  data forwarding.  For instance, it should not be required to send
  OSPF-xTE messages over a TE link that is configured to reject non-TE
  traffic.  However, the control network must be set up such that a
  minimum of one path exists between any two OSPF or OSPF-xTE routers
  within the network, for flooding purposes.  This revised control
  network connectivity requirement does not jeopardize convergence of
  LSDB within an area.

  In a mixed network, where some of the neighbors are TE compliant and
  others are not, the designated OSPF-xTE router will exchange
  different sets of LSAs with its neighbors.  TE LSAs are exchanged
  only with the TE neighbors.  Native LSAs are exchanged with all
  neighbors (TE and non-TE alike).  Restricting the scope of TE LSA
  flooding to just the OSPF-xTE nodes will not affect the native nodes
  that coexist with the OSPF-xTE nodes.

  The control traffic for a TE network (i.e., TE LSA advertisement) is
  likely to be higher than that of a native OSPF network.  This is
  because the TE metrics may vary with each TE circuit setup and the
  corresponding state change must be advertised at the earliest, not
  exceeding the MinLSInterval of 5 seconds.  To minimize advertising
  repetitive content, OSPF-xTE defines a new TE-incremental-Link-update
  LSA (section 8.2) that would advertise just the TLVs that changed for
  a link.

  The OSPFIGP-TE well-known multicast address 224.0.0.24 has been
  assigned by IANA for the exchange of TE-compliant database
  descriptors during database synchronization.

7.6.  The Graph of Adjacencies

  If two routers have multiple networks in common, they may have
  multiple adjacencies between them.  The adjacency may be one of two
  types - native OSPF adjacency and TE adjacency.  OSPF-xTE routers
  will form both types of adjacency.

  Two types of adjacency graphs are possible, depending on whether a
  Designated Router is elected for the network.  On physical point-to-
  point networks, point-to-multipoint networks, and virtual links,
  neighboring routers become adjacent whenever they can communicate



Srisuresh & Joseph            Experimental                     [Page 16]

RFC 4973           OSPF Traffic Engineering Extension          July 2007


  directly.  The adjacency can be either (a) TE-compliant or (b)
  native.  In contrast, on broadcast and NBMA networks the designated
  router and the backup designated router may maintain two sets of
  adjacency.  The remaining routers will form either TE-compliant or
  native adjacency.

  In the broadcast network in Figure 2, routers RT7 and RT3 are chosen
  as the Designated and Backup Designated Routers, respectively.
  Routers RT3, RT4 and RT7 are TE-compliant, but RT5 and RT6 are not.
  So RT4 will have TE-compliant adjacency with the designated and
  backup routers, while RT5 and RT6 will only have native adjacency
  with the Designated and Backup Designated Routers.

               Network                          Adjacency

        +---+            +---+
        |RT1|------------|RT2|            o-----------------o
        +---+    N1      +---+           RT1               RT2

                                                RT7
                                                 o:::::
           +---+   +---+   +---+                /|    :
           |RT7|   |RT3|   |RT4|               / |    :
           +---+   +---+   +---+              /  |    :
             |       |       |               /   |    :
        +-----------------------+        RT5o RT6o    oRT4
           N2    |       |                   *   *    ;
               +---+   +---+                  *  *    ;
               |RT5|   |RT6|                   * *    ;
               +---+   +---+                    **    ;
                                                 o;;;;;
                                                RT3

                           Adjacency Legend:

                              ----- Native adjacency (primary)
                              ***** Native adjacency (backup)
                              ::::: TE-compliant adjacency (primary)
                              ;;;;; TE-compliant adjacency (backup)

        Figure 2.  Two Adjacency Graphs with TE-Compliant Routers










Srisuresh & Joseph            Experimental                     [Page 17]

RFC 4973           OSPF Traffic Engineering Extension          July 2007


8.  TE LSAs for Packet Network

  The OSPFv2 protocol currently has a total of 11 LSA types.  LSA types
  1 through 5 are defined in [OSPF-V2].  LSA types 6, 7, and 8 are
  defined in [MOSPF], [NSSA], and [BGP-OSPF], respectively.  LSA types
  9 through 11 are defined in [OPAQUE].

  Each LSA type has a unique flooding scope.  Opaque LSA types 9
  through 11 are general purpose LSAs, with flooding scope set to
  link-local, area-local, and AS-wide (except stub areas) respectively.

  In the following subsections, we define new LSAs for traffic
  engineering (TE) use.  The values for the new TE LSA types are
  assigned with the high bit of the LSA-type octet set to 1.  The new
  TE LSAs are largely modeled after the existing LSAs for content
  format and have a unique flooding scope.

  TE-router LSA is defined to advertise TE characteristics of an OSPF-
  xTE router and all the TE links attached to the router.  TE-
  incremental-Link-Update LSA is defined to advertise incremental
  updates to the metrics of a TE link.  Flooding scope for both these
  LSAs is restricted to an area.

  TE-Summary network and router LSAs are defined to advertise the
  reachability of area-specific TE networks and area border routers
  (along with router TE characteristics) to external areas.  Flooding
  scope of the TE-Summary LSAs is the TE topology in the entire AS less
  the non-backbone area for which the advertising router is an ABR.
  Just as with native OSPF summary LSAs, the TE-Summary LSAs do not
  reveal the topological details of an area to external areas.

  TE-AS-external LSA and TE-Circuit-Path LSA are defined to advertise
  AS external network reachability and pre-engineered TE circuits,
  respectively.  While flooding scope for both these LSAs can be the
  entire AS, flooding scope for the pre-engineered TE circuit LSA may
  optionally be restricted to just the TE topology within an area.

8.1.  TE-Router LSA (0x81)

  The TE-router LSA (0x81) is modeled after the router LSA and has the
  same flooding scope as the router LSA.  However, the scope is
  restricted to only the OSPF-xTE nodes within the area.  The TE router
  LSA describes the TE metrics of the router as well as the TE links
  attached to the router.  Below is the format of the TE-router LSA.
  Unless specified explicitly otherwise, the fields carry the same
  meaning as they do in a router LSA.  Only the differences are
  explained below.  Router-TE flags, Router-TE TLVs, Link-TE options,
  and Link-TE TLVs are each described in the following sub-sections.



Srisuresh & Joseph            Experimental                     [Page 18]

RFC 4973           OSPF Traffic Engineering Extension          July 2007


       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |            LS age             |     Options   |     0x81      |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                        Link State ID                          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                     Advertising Router                        |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                     LS sequence number                        |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |         LS checksum           |             length            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |    0    |V|E|B|      0        |       Router-TE flags         |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |  Router-TE flags (contd.)     |       Router-TE TLVs          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                     ....                                      |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                     ....      |            # of TE links      |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                          Link ID                              |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                         Link Data                             |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |     Type      |        0      |    Link-TE flags              |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |   Link-TE flags (contd.)      |  Zero or more Link-TE TLVs    |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                          Link ID                              |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                         Link Data                             |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                              ...                              |

8.1.1.  Router-TE Flags: TE Capabilities of the Router

  The following flags are used to describe the TE capabilities of an
  OSPF-xTE router.  The remaining bits of the 32-bit word are reserved
  for future use.

      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |L|L|P| | | |                                             |L|S|C|
      |S|E|S| | | |                                             |S|I|S|
      |R|R|C| | | |                                             |P|G|P|
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |<---- Boolean TE flags ------->|<- TE flags pointing to TLVs ->|




Srisuresh & Joseph            Experimental                     [Page 19]

RFC 4973           OSPF Traffic Engineering Extension          July 2007


      Bit LSR - When set, the router is considered to have LSR (Label-
                Switched Router) capability.

      Bit LER - When set, the router is considered to have LER
                capability.  All MPLS border routers will be required
                to have LER capability.  Setting both the LER and E
                bits indicates an AS Boundary router with LER
                capability.  Setting both the LER and B bits indicates
                an area border router with LER capability.

      Bit PSC - Indicates the node is packet-switch capable.

      Bit LSP - An MPLS Label switch TLV TE-NODE-TLV-MPLS-SWITCHING
                follows.  This is applicable only when the PSC flag is
                set.

      Bit SIG - An MPLS Signaling-protocol-support TLV TE-NODE-TLV-
                MPLS-SIG-PROTOCOLS follows.

      BIT CSPF - A CSPF algorithm support TLV TE-NODE-TLV-CSPF-ALG
                follows.

8.1.2.  Router-TE TLVs

  The following Router-TE TLVs are defined.

8.1.2.1.  TE-NODE-TLV-MPLS-SWITCHING

  MPLS switching TLV is applicable only for packet switched nodes.  The
  TLV specifies the MPLS packet switching capabilities of the TE node.

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |            Tag = 0x8001       |     Length = 6                |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      | Label Depth   |  QOS          |                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Label Depth is the depth of label stack the node is capable of
  processing on its ingress interfaces.  An octet is used to represent
  label depth.  A default value of 1 is assumed when the TLV is not
  listed.  Label depth is relevant when an LER has to pop multiple
  labels off the MPLS stack.

  QOS is a single-octet field that may be assigned '1' or '0'.  Nodes
  supporting QOS are able to interpret the EXP bits in the MPLS header
  to prioritize multiple classes of traffic through the same LSP.



Srisuresh & Joseph            Experimental                     [Page 20]

RFC 4973           OSPF Traffic Engineering Extension          July 2007


8.1.2.2.  TE-NODE-TLV-MPLS-SIG-PROTOCOLS

  MPLS signaling protocols TLV lists all the signaling protocol
  supported by the node.  An octet is used to list each signaling
  protocol supported.

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |            Tag = 0x8002       |     Length = 5, 6 or 7        |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |   Protocol-1  |   ...         |      ....                     |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  RSVP-TE protocol is represented as 1, CR-LDP as 2, and LDP as 3.
  These are the only permitted signaling protocols at this time.

8.1.2.3.  TE-NODE-TLV-CSPF-ALGORITHMS

  The CSPF algorithms TLV lists all the CSPF algorithm codes supported.
  Support for CSPF algorithms makes the node eligible to compute
  complete or partial circuit paths.  Support for CSPF algorithms can
  also be beneficial in knowing whether or not a node is capable of
  expanding loose routes (in an MPLS signaling request) into a detailed
  circuit path.

  Two octets are used to list each CSPF algorithm code.  The algorithm
  codes may be vendor defined and unique within an Autonomous System.
  If the node supports 'n' CSPF algorithms, the Length would be (4 + 4
  * ((n+1)/2)) octets.

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |            Tag = 0x8003       |     Length = 4(1 + (n+1)/2)   |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                    CSPF-1     |      ....                     |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                    CSPF-n     |                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+











Srisuresh & Joseph            Experimental                     [Page 21]

RFC 4973           OSPF Traffic Engineering Extension          July 2007


8.1.2.4.  TE-NODE-TLV-NULL

  When a TE-Router or a TE link has multiple TLVs to describe the
  metrics, the NULL TLV is used to terminate the TLV list.

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |            Tag = 0x8888       |     Length = 4                |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

8.1.3.  Link-TE Flags: TE Capabilities of a Link

  The following flags are used to describe the TE capabilities of a
  link.  The remaining bits of the 32-bit word are reserved for future
  use.

      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |T|N|P| | | |D|                                         |S|L|B|C|
      |E|T|K| | | |B|                                         |R|U|W|O|
      | |E|T| | | |S|                                         |L|G| |L|
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |<---- Boolean TE flags ------->|<- TE flags pointing to TLVs ->|


      Bit TE   - Indicates whether TE is permitted on the link.  A link
                 can be denied for TE use by setting the flag to 0.

      Bit NTE  - Indicates whether non-TE traffic is permitted on the
                 TE link.  This flag is relevant only when the TE flag
                 is set.

      Bit PKT  - Indicates whether or not the link is capable of IP
                 packet processing.

      Bit DBS  - Indicates whether or not database synchronization is
                 permitted on this link.

      Bit SRLG - Shared Risk Link Group TLV TE-LINK-TLV-SRLG follows.

      Bit LUG  - Link Usage Cost Metric TLV TE-LINK-TLV-LUG follows.

      Bit BW   - One or more Link Bandwidth TLVs follow.

      Bit COL  - Link Color TLV TE-LINK-TLV-COLOR follows.






Srisuresh & Joseph            Experimental                     [Page 22]

RFC 4973           OSPF Traffic Engineering Extension          July 2007


8.1.4.  Link-TE TLVs

8.1.4.1.  TE-LINK-TLV-SRLG

  The SRLG describes the list of Shared Risk Link Groups (SRLG) the
  link belongs to.  Two octets are used to list each SRLG.  If the link
  belongs to 'n' SRLGs, the Length would be (4 + 4 * ((n+1)/2)) octets.

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |            Tag = 0x0001       |     Length = 4(1 + (n+1)/2)   |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                    SRLG-1     |      ....                     |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                    SRLG-n     |                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

8.1.4.2  TE-LINK-TLV-BANDWIDTH-MAX

  The Bandwidth TLV specifies the maximum bandwidth of the link, as
  follows.

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |            Tag = 0x0002       |     Length = 8                |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                      Maximum Bandwidth                        |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Bandwidth is expressed in units of 32 bytes/sec (256 bits/sec).  A
  32-bit field for bandwidth would permit specification not exceeding 1
  terabit/sec.

  Maximum Bandwidth is the maximum link capacity expressed in bandwidth
  units.  Portions or all of this bandwidth may be used for TE use.














Srisuresh & Joseph            Experimental                     [Page 23]

RFC 4973           OSPF Traffic Engineering Extension          July 2007


8.1.4.3.  TE-LINK-TLV-BANDWIDTH-MAX-FOR-TE

  The Bandwidth TLV specifies the maximum bandwidth available for TE
  use, as follows.

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |            Tag = 0x0003       |     Length = 8                |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |              Maximum Bandwidth available for TE use           |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Bandwidth is expressed in units of 32 bytes/sec (256 bits/sec).  A
  32-bit field for bandwidth would permit specification not exceeding 1
  terabit/sec.

  "Maximum Bandwidth available for TE use" is the total reservable
  bandwidth on the link for use by all the TE circuit paths traversing
  the link.  The link is oversubscribed when this field is more than
  the Maximum Bandwidth.  When the field is less than the Maximum
  Bandwidth, the remaining bandwidth on the link may be used for non-TE
  traffic in a mixed network.

8.1.4.4.  TE-LINK-TLV-BANDWIDTH-TE

  The Bandwidth TLV specifies the bandwidth reserved for TE as follows.

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |            Tag = 0x0004       |     Length = 8                |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                      TE Bandwidth subscribed                  |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Bandwidth is expressed in units of 32 bytes/sec (256 bits/sec).  A
  32-bit field for bandwidth would permit specification not exceeding 1
  terabit/sec.

  "TE Bandwidth subscribed" is the bandwidth that is currently
  subscribed from of the link. "TE Bandwidth subscribed" must be less
  than the "Maximum bandwidth available for TE use".  New TE circuit
  paths are able to claim no more than the difference between the two
  bandwidths for reservation.






Srisuresh & Joseph            Experimental                     [Page 24]

RFC 4973           OSPF Traffic Engineering Extension          July 2007


8.1.4.5.  TE-LINK-TLV-LUG

  The link usage cost TLV specifies bandwidth unit usage cost, TE
  circuit set-up cost, and any time constraints for setup and teardown
  of TE circuits on the link.

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |            Tag = 0x0005       |     Length = 28               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                      Bandwidth unit usage cost                |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                      TE circuit set-up cost                   |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                      TE circuit set-up time constraint        |
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                      TE circuit tear-down time constraint     |
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Circuit Setup time constraint

      This 64-bit number specifies the time at or after which a TE-
      circuit path may be set up on the link.  The set-up time
      constraint is specified as the number of seconds from the start
      of January 1, 1970 UTC.  A reserved value of 0 implies no circuit
      setup time constraint.

  Circuit Teardown time constraint

      This 64-bit number specifies the time at or before which all TE-
      circuit paths using the link must be torn down.  The teardown
      time constraint is specified as the number of seconds from the
      start of January 1 1970 UTC.  A reserved value of 0 implies no
      circuit teardown time constraint.














Srisuresh & Joseph            Experimental                     [Page 25]

RFC 4973           OSPF Traffic Engineering Extension          July 2007


8.1.4.6.  TE-LINK-TLV-COLOR

  The color TLV is similar to the SRLG TLV, in that an Autonomous
  System may choose to issue colors to a TE link meeting certain
  criteria.  The color TLV can be used to specify one or more colors
  assigned to the link as follows.  Two octets are used to list each
  color.  If the link belongs to 'n' number of colors, the Length would
  be (4 + 4 * ((n+1)/2)) octets.

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |            Tag = 0x0006       |     Length = 4(1 + (n+1)/2)   |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                    Color-1    |      ....                     |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                    Color-n    |                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

8.1.4.7.  TE-LINK-TLV-NULL

  When a TE link has multiple TLVs to describe its metrics, the NULL
  TLV is used to terminate the TLV list.  The TE-LINK-TLV-NULL is same
  as the TE-NODE-TLV-NULL described in section 8.1.2.4

8.2.  TE-Incremental-Link-Update LSA (0x8d)

  A significant difference between a native OSPF network and a TE
  network is that the latter may be subject to frequent real-time
  circuit pinning and is likely to undergo TE-state updates.  Some
  links might undergo changes more frequently than others.  Flooding
  the network with TE-router LSAs at the aggregated speed of all link
  metric changes is simply not desirable.  A smaller in size TE-
  incremental-link-update LSA is designed to advertise only the
  incremental link updates.

  A TE-incremental-link-update LSA will be advertised as frequently as
  the link state is changed (not exceeding once every MinLSInterval
  seconds).  The TE link sequence is largely the advertisement of a
  sub-portion of router LSA.  The sequence number on this will be
  incremented with the TE-router LSA's sequence as the basis.  When an
  updated TE-router LSA is advertised within 30 minutes of the previous
  advertisement, the updated TE-router LSA will assume a sequence
  number that is larger than the most frequently updated of its links.







Srisuresh & Joseph            Experimental                     [Page 26]

RFC 4973           OSPF Traffic Engineering Extension          July 2007


  Below is the format of the TE-incremental-link-update LSA.

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |            LS age             |     Options   |     0x8d      |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                        Link State ID (same as Link ID)        |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                     Advertising Router                        |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                     LS sequence number                        |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |         LS checksum           |             length            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                         Link Data                             |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |     Type      |        0      |    Link-TE options            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |     Link-TE options           | Zero or more Link-TE TLVs     |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |     # TOS     |                            metric             |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                              ...                              |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |      TOS      |        0      |          TOS  metric          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Link State ID

      This would be exactly the same as would have been specified for
      Link ID, for a link within the router LSA.

  Link Data

      This specifies the router ID the link belongs to.  In majority of
      cases, this would be same as the advertising router.  This choice
      for Link Data is primarily to facilitate proxy advertisement for
      incremental link updates.

      Suppose that a proxy router LSA was used to advertise the TE-
      router LSA of a SONET/TDM node, and that the proxy router is now
      required to advertise incremental-link-update for the same
      SONET/TDM node.  Specifying the actual router-ID to which the
      link in the incremental-link-update LSA belongs helps receiving
      nodes in finding the exact match for the LSA in their database.





Srisuresh & Joseph            Experimental                     [Page 27]

RFC 4973           OSPF Traffic Engineering Extension          July 2007


      The tuple of (LS Type, LSA ID, Advertising router) uniquely
      identifies the LSA and replaces LSAs of the same tuple with an
      older sequence number.  However, there is an exception to this
      rule in the context of TE-link-update LSA.  TE-Link-update LSA
      will initially assume the sequence number of the TE-router LSA it
      belongs to.  Further, when a new TE-router LSA update with a
      larger sequence number is advertised, the newer sequence number
      is assumed by all the link LSAs.

8.3.  TE-Circuit-Path LSA (0x8C)

  TE-Circuit-path LSA (next page) may be used to advertise the
  availability of pre-engineered TE circuit path(s) originating from
  any router in the network.  The flooding scope may be area-wide or
  AS-wide.  Fields are as follows.

  Link State ID

  The ID of the far-end router or the far-end link-ID to which the TE
  circuit path(s) is being advertised.

  TE-circuit-path(s) flags

      Bit G - When set, the flooding scope is set to be AS-wide.
              Otherwise, the flooding scope is set to be area-wide.

      Bit E - When set, the advertised Link-State ID is an AS boundary
              router (E is for external).  The advertising router and
              the Link State ID belong to the same area.

      Bit B - When set, the advertised Link State ID is an area border
              router (B is for Border)

      Bit D - When set, this indicates that the duration of circuit
              path validity follows.

      Bit S - When set, this indicates that setup time of the circuit
              path follows.

      Bit T - When set, this indicates that teardown time of the
              circuit path follows.

      CktType - This 4-bit field specifies the circuit type of the
              Forward Equivalency Class (FEC).







Srisuresh & Joseph            Experimental                     [Page 28]

RFC 4973           OSPF Traffic Engineering Extension          July 2007


               0x01 - Origin is Router, Destination is Router.
               0x02 - Origin is Link,   Destination is Link.
               0x04 - Origin is Router, Destination is Link.
               0x08 - Origin is Link,   Destination is Router.

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |            LS age             |     Options   |      0x84     |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                       Link State ID                           |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                     Advertising Router                        |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                     LS sequence number                        |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |         LS checksum           |             Length            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |      0    |G|E|B|D|S|T|CktType| Circuit Duration (Optional)   |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                 Circuit Duration cont...                      |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      | Circuit Duration cont..       | Circuit Setup time (Optional) |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                 Circuit Setup time cont...                    |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      | Circuit Setup time cont..     |Circuit Teardown time(Optional)|
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                 Circuit Teardown time cont...                 |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      | Circuit Teardown time cont..  |  No. of TE Circuit Paths      |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                          Circuit-TE ID                        |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                         Circuit-TE Data                       |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |     Type      |        0      |    Circuit-TE flags           |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |   Circuit-TE flags (contd.)   |  Zero or more Circuit-TE TLVs |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                          Circuit-TE ID                        |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                         Circuit-TE Data                       |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                              ...                              |






Srisuresh & Joseph            Experimental                     [Page 29]

RFC 4973           OSPF Traffic Engineering Extension          July 2007


  Circuit Duration (Optional)

      This 64-bit number specifies the seconds from the time of the LSA
      advertisement for which the pre-engineered circuit path will be
      valid.  This field is specified only when the D-bit is set in the
      TE-circuit-path flags.

  Circuit Setup time (Optional)

      This 64-bit number specifies the time at which the TE circuit
      path may be set up.  This field is specified only when the S-bit
      is set in the TE-circuit-path flags.  The set-up time is
      specified as the number of seconds from the start of January 1,
      1970 UTC.

  Circuit Teardown time (Optional)

      This 64-bit number specifies the time at which the TE circuit
      path may be torn down.  This field is specified only when the
      T-bit is set in the TE-circuit-path flags.  The teardown time is
      specified as the number of seconds from the start of January 1
      1970 UTC.

  No. of TE Circuit Paths

      This specifies the number of pre-engineered TE circuit paths
      between the advertising router and the router specified in the
      Link State ID.

  Circuit-TE ID

      This is the ID of the far-end router for a given TE circuit path
      segment.

  Circuit-TE Data

      This is the virtual link identifier on the near-end router for a
      given TE circuit path segment.  This can be a private interface
      or handle the near-end router uses to identify the virtual link.

      The sequence of (Circuit-TE ID, Circuit-TE Data) pairs lists the
      end-point nodes and links in the LSA as a series.

  Circuit-TE flags

      This lists the zero or more TE-link TLVs that all member elements
      of the LSP meet.




Srisuresh & Joseph            Experimental                     [Page 30]

RFC 4973           OSPF Traffic Engineering Extension          July 2007


8.4.  TE-Summary LSAs

  TE-Summary LSAs are Type 0x83 and 0x84 LSAs.  These LSAs are
  originated by area border routers.  A TE-Summary-network LSA (0x83)
  describes the reachability of TE networks in a non-backbone area,
  advertised by the area border router.  A Type 0x84 summary LSA
  describes the reachability of area border routers and AS border
  routers and their TE capabilities.

  One of the benefits of having multiple areas within an AS is that
  frequent TE advertisements within the area do not impact outside the
  area.  Only the TE abstractions befitting the external areas are
  advertised.






































Srisuresh & Joseph            Experimental                     [Page 31]

RFC 4973           OSPF Traffic Engineering Extension          July 2007


8.4.1.  TE-Summary Network LSA (0x83)

  A TE-Summary network LSA may be used to advertise reachability of
  TE-networks accessible to areas external to the originating area.
  The content and the flooding scope of a TE-Summary LSA is different
  from that of a native Summary LSA.

  The scope of flooding for a TE-Summary network LSA is AS-wide, with
  the exception of the originating area and the stub areas.  The area
  border router for each non-backbone area is responsible for
  advertising the reachability of backbone networks into the area.

  Unlike a native-summary network LSA, a TE-Summary network LSA does
  not advertise summary costs to reach networks within an area.  This
  is because TE parameters are not necessarily additive or comparable.
  The parameters can be varied in their expression.  For example, a
  TE-Summary network LSA will not summarize a network whose links do
  not fall under an SRLG (Shared-Risk Link Group).  This way, the TE-
  Summary LSA merely advertises the reachability of TE networks within
  an area.  The specific circuit paths can be computed by the ABR.
  Pre-engineered circuit paths are advertised using TE-Circuit-path
  LSAs(refer to Section 8.3).

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |            LS age             |     Options   |    0x83       |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                  Link State ID  (IP Network Number)           |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |            Advertising Router (Area Border Router)            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                     LS sequence number                        |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |         LS checksum           |            Length             |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                         Network Mask                          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                         Area-ID                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+











Srisuresh & Joseph            Experimental                     [Page 32]

RFC 4973           OSPF Traffic Engineering Extension          July 2007


8.4.2.  TE-Summary Router LSA (0x84)

   A TE-Summary router LSA may be used to advertise the availability of
   area border routers (ABRs) and AS border routers (ASBRs) that are
   TE-capable.  The TE-Summary router LSAs are originated by the Area
   Border Routers.  The scope of flooding for the TE-Summary router LSA
   is the non-backbone area the advertising ABR belongs to.

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |            LS age             |     Options   |      0x84     |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                     Link State ID                             |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                     Advertising Router (ABR)                  |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                     LS sequence number                        |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |         LS checksum           |             Length            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |    0      |E|B|      0        |       No. of Areas            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                     Area-ID                                   |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                       ...                                     |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                   Router-TE flags                             |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                   Router-TE TLVs                              |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                     ....                                      |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Link State ID

      The ID of the area border router or the AS border router whose TE
      capability is being advertised.

  Advertising Router

      The ABR that advertises its TE capabilities (and the OSPF areas
      it belongs to) or the TE capabilities of an ASBR within one of
      the areas for which the ABR is a border router.







Srisuresh & Joseph            Experimental                     [Page 33]

RFC 4973           OSPF Traffic Engineering Extension          July 2007


  No. of Areas

      Specifies the number of OSPF areas the link state ID belongs to.

  Area-ID

      Specifies the OSPF area(s) the link state ID belongs to.  When
      the link state ID is same as the advertising router ID, the
      Area-ID lists all the areas the ABR belongs to.  In the case the
      link state ID is an ASBR, the Area-ID simply lists the area the
      ASBR belongs to.  The advertising router is assumed to be the ABR
      from the same area the ASBR is located in.

  Summary-router-TE flags

      Bit E - When set, the advertised Link-State ID is an AS boundary
              router (E is for external).  The advertising router and
              the Link State ID belong to the same area.

      Bit B - When set, the advertised Link state ID is an Area border
              router (B is for Border)

  Router-TE flags, Router-TE TLVs

      TE capabilities of the link-state-ID router.

      TE Flags and TE TLVs are as applicable to the ABR/ASBR specified
      in the link state ID.  The semantics is same as specified in the
      Router-TE LSA.

8.5.  TE-AS-external LSAs (0x85)

  TE-AS-external LSAs are the Type 0x85 LSAs.  This is modeled after
  AS-external LSA format and flooding scope.  TE-AS-external LSAs are
  originated by AS boundary routers with TE extensions, and describe
  the TE networks and pre-engineered circuit paths external to the AS.
  As with AS-external LSA, the flooding scope of the TE-AS-external LSA
  is AS-wide, with the exception of stub areas.













Srisuresh & Joseph            Experimental                     [Page 34]

RFC 4973           OSPF Traffic Engineering Extension          July 2007


       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |            LS age             |     Options   |      0x85     |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                        Link State ID                          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                     Advertising Router                        |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                     LS sequence number                        |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |         LS checksum           |             length            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                         Network Mask                          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                       Forwarding address                      |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                      External Route Tag                       |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |  #  of Virtual TE links       |                 0             |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                      Link-TE flags                            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                      Link-TE TLVs                             |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                              ...                              |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                      TE-Forwarding address                    |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                      External Route TE Tag                    |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                              ...                              |

  Network Mask

       The IP address mask for the advertised TE destination.  For
       example, this can be used to specify access to a specific TE
       node or TE link with an mask of 0xffffffff.  This can also be
       used to specify access to an aggregated set of destinations
       using a different mask.  ex: 0xff000000.

  Link-TE flags, Link-TE TLVs

       The TE attributes of this route.  These fields are optional and
       are provided only when one or more pre-engineered circuits can
       be specified with the advertisement.  Without these fields, the
       LSA will simply state TE reachability info.




Srisuresh & Joseph            Experimental                     [Page 35]

RFC 4973           OSPF Traffic Engineering Extension          July 2007


  Forwarding address

       Data traffic for the advertised destination will be forwarded to
       this address.  If the Forwarding address is set to 0.0.0.0, data
       traffic will be forwarded instead to the LSA's originator (i.e.,
       the responsible AS boundary router).

  External Route Tag

       A 32-bit field attached to each external route.  This is not
       used by the OSPF protocol itself.  It may be used to communicate
       information between AS boundary routers; the precise nature of
       such information is outside the scope of this specification.

9.  TE LSAs for Non-Packet Network

  A non-packet network would use the TE LSAs described in the previous
  section for a packet network with some variations.  These variations
  are described in the following subsections.

  Two new LSAs, TE-Positional-ring-network LSA and TE-Router-Proxy LSA
  are defined for use in non-packet TE networks.

  Readers may refer to [SONET-SDH] for a detailed description of the
  terms used in the context of SONET/SDH TDM networks,

9.1.  TE-Router LSA (0x81)

  The following fields are used to describe each router link (i.e.,
  interface).  Each router link is typed (see the below Type field).
  The Type field indicates the kind of link being described.

  Type

       A new link type "Positional-Ring Type" (value 5) is defined.
       This is essentially a connection to a TDM-Ring.  TDM ring
       network is different from LAN/NBMA transit network in that nodes
       on the TDM ring do not necessarily have a terminating path
       between themselves.  Second, the order of links is important in
       determining the circuit path.  Third, the protection switching
       and the number of fibers from a node going into a ring are
       determined by the ring characteristics, for example, 2-fiber vs.
       4-fiber ring and Unidirectional Path Switched Ring (UPSR) vs.
       Bidirectional Line Switched Ring (BLSR).







Srisuresh & Joseph            Experimental                     [Page 36]

RFC 4973           OSPF Traffic Engineering Extension          July 2007


              Type   Description
              __________________________________________________
              1      Point-to-point connection to another router
              2      Connection to a transit network
              3      Connection to a stub network
              4      Virtual link
              5      Positional-Ring type.

  Link ID

       Identifies the object that this router link connects to.  Value
       depends on the link's Type.  For a positional-ring type, the
       Link ID shall be IP Network/Subnet number just as the case with
       a broadcast transit network.  The following table summarizes the
       updated Link ID values.

              Type   Link ID
              ______________________________________
              1      Neighboring router's Router ID
              2      IP address of Designated Router
              3      IP network/subnet number
              4      Neighboring router's Router ID
              5      IP network/subnet number

  Link Data

       This depends on the link's Type field.  For type-5 links, this
       specifies the router interface's IP address.

9.1.1  Router-TE flags - TE Capabilities of a Router

  Flags specific to non-packet TE nodes are described below.

      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |L|L|P|T|L|F|                                           |S|S|S|C|
      |S|E|S|D|S|S|                                           |T|E|I|S|
      |R|R|C|M|C|C|                                           |A|L|G|P|
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |<---- Boolean TE flags ------->|<- TE flags pointing to TLVs ->|

      Bit TDM - Indicates the node is TDM circuit switch capable.

      Bit LSC - Indicates the node is capable of Lambda switching.

      Bit FSC - Indicates the node is capable of fiber-switching (can
          also be a non-fiber link type).





Srisuresh & Joseph            Experimental                     [Page 37]

RFC 4973           OSPF Traffic Engineering Extension          July 2007


9.1.2  Link-TE Options: TE Capabilities of a TE Link

      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |T|N|P|T|L|F|D|                                         |S|L|B|C|
      |E|T|K|D|S|S|B|                                         |R|U|W|O|
      | |E|T|M|C|C|S|                                         |L|G|A|L|
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |<---- Boolean TE flags ------->|<- TE flags pointing to TLVs ->|


      TDM, LSC, FSC bits - Same as defined for router TE options.

9.2.  TE-positional-ring-network LSA (0x82)

  Network LSA is adequate for packet TE networks.  A new TE-
  positional-ring-network LSA is defined to represent type-5 link
  networks, found in non-packet networks such as SONET/SDH TDM rings.
  A type-5 ring is a collection of network elements (NEs) forming a
  closed loop.  Each NE is connected to two adjacent NEs via a duplex
  connection to provide redundancy in the ring.  The sequence in which
  the NEs are placed on the Ring is pertinent.  The NE that provides
  the OSPF-xTE functionality is termed the Gateway Network Element
  (GNE).  The GNE selection criteria is outside the scope of this
  document.  The GNE is also termed the Designated Router for the ring.

  The TE-positional-ring-network LSA (0x82) is modeled after the
  network LSA and has the same flooding scope as the network LSA
  amongst the OSPF-xTE nodes within the area.  Below is the format of
  the TE-Positional-Ring-network LSA.  Unless specified explicitly
  otherwise, the fields carry the same meaning as they do in a network
  LSA.  Only the differences are explained below.

  A TE-positional-ring-network LSA is originated for each Positional-
  Ring type network in the area.  The tuple of (Link State ID, Network
  Mask) below uniquely represents a ring.  The TE option must be set in
  the Options flag while propagating the LSA.















Srisuresh & Joseph            Experimental                     [Page 38]

RFC 4973           OSPF Traffic Engineering Extension          July 2007


       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |            LS age             |      Options  |     0x82      |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                        Link State ID                          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                     Advertising Router                        |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                     LS sequence number                        |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |         LS checksum           |             length            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                         Network Mask                          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |  Ring Type    | Capacity Unit |        Reserved               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                           Ring capacity                       |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                   Network Element Node Id                     |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                              ...                              |

  Link State ID

       This is the IP interface address of the network's Gateway
       Network Element, which is also the designated router.

  Advertising Router

       Router ID of the network's Designated Router.

  Ring type

       There are 8 types of SONET/SDH rings defined as follows.

       1 - A Unidirectional Line Switched 2-fiber ring (2-fiber ULSR)
       2 - A Bidirectional Line switched 2-fiber ring (2-fiber BLSR)
       3 - A Unidirectional Path Switched 2-fiber ring (2-fiber UPSR)
       4 - A Bidirectional Path switched 2-fiber ring (2-fiber BPSR)
       5 - A Unidirectional Line Switched 4-fiber ring (4-fiber ULSR)
       6 - A Bidirectional Line switched 4-fiber ring (4-fiber BLSR)
       7 - A Unidirectional Path Switched 4-fiber ring (4-fiber UPSR)
       8 - A Bidirectional Path switched 4-fiber ring (4-fiber BPSR)







Srisuresh & Joseph            Experimental                     [Page 39]

RFC 4973           OSPF Traffic Engineering Extension          July 2007


  Capacity Unit

       Two units are currently defined, as follows.

       1 - Synchronous Transport Signal (STS), which is the basic
           signal rate for SONET signals.  The rate of an STS signal is
           51.84 Mbps

       2 - Synchronous Transport Multiplexer (STM), which is the basic
           signal rate for SDH signals.  The rate of an STM signal is
           155.52 Mbps

  Ring capacity

       Ring capacity expressed in number of Capacity Units.

  Network Element Node Id

       The Router ID of each of the routers in the positional-ring
       network.  The list must start with the designated router as the
       first element.  The Network Elements (NEs) must be listed in
       strict clockwise order as they appear on the ring, starting with
       the Gateway Network Element (GNE).  The number of NEs in the
       ring can be deduced from the LSA header's length field.

9.3.  TE-Router-Proxy LSA (0x8e)

  This is a variation to the TE-router LSA in that the TE-router LSA is
  not advertised by the network element, but rather by a trusted TE-
  router Proxy.  This is typically the scenario in a non-packet TE
  network, where some of the nodes do not have OSPF functionality and
  count on a helper node to do the advertisement for them.  One such
  example would be the SONET/SDH Add-Drop Multiplexer (ADM) nodes in a
  TDM ring.  The nodes may principally depend upon the GNE (Gateway
  Network Element) to do the advertisement for them.  TE-router-Proxy
  LSA shall not be used to advertise area border routers and/or AS
  border routers.














Srisuresh & Joseph            Experimental                     [Page 40]

RFC 4973           OSPF Traffic Engineering Extension          July 2007


       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |            LS age             |     Options   |     0x8e      |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |      Link State ID  (Router ID of the TE Network Element)     |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                     Advertising Router                        |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                     LS sequence number                        |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |         LS checksum           |             length            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                 0             |       Router-TE flags         |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |  Router-TE flags (contd.)     |       Router-TE TLVs          |
      +---------------------------------------------------------------+
      |                     ....                                      |
      +---------------------------------------------------------------+
      |                     ....      |      # of TE links            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                          Link ID                              |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                         Link Data                             |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |     Type      |        0      |    Link-TE options            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |   Link-TE flags               |  Zero or more Link-TE TLVs    |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                          Link ID                              |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                         Link Data                             |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                              ...                              |

















Srisuresh & Joseph            Experimental                     [Page 41]

RFC 4973           OSPF Traffic Engineering Extension          July 2007


10.  Abstract Topology Representation with TE Support

  Below, we consider a TE network composed of three OSPF areas, Area-1,
  Area-2 and Area-3, attached together through the backbone area.
  Area-1 an has a single area border router, ABR-A1 and no ASBRs.
  Area-2 has an area border router ABR-A2 and an AS border router
  ASBR-S1.  Area-3 has two area border routers ABR-A2 and ABR-A3 and an
  AS border router ASBR-S2.  The following network also assumes a pre-
  engineered TE circuit path between ABR-A1 and ABR-A2; between ABR-A1
  and ABR-A3; between ABR-A2 and ASBR-S1; and between ABR-A3 and ASBR-
  S2.

  The following figure is an inter-area topology abstraction from the
  perspective of routers in Area-1.  The abstraction illustrates
  reachability of TE networks and nodes within area to the external
  areas in the same AS and to the external ASes.  The abstraction also
  illustrates pre-engineered TE circuit paths advertised by ABRs and
  ASBRs.

































Srisuresh & Joseph            Experimental                     [Page 42]

RFC 4973           OSPF Traffic Engineering Extension          July 2007


                         +-------+
                         |Area-1 |
                         +-------+
  +-------------+            |
  |Reachable TE |       +--------+
  |networks in  |-------| ABR-A1 |
  |backbone area|       +--------+
  +-------------+          | | |
            +--------------+ | +-----------------+
            |                |                   |
  +-----------------+        |            +-----------------+
  |Pre-engineered TE|    +----------+     |Pre-engineered TE|
  |circuit path(s)  |    | Backbone |     |circuit path(s)  |
  |to ABR-A2        |    | Area     |     |to ABR-A3        |
  +-----------------+    +----------+     +-----------------+
            |               |   |                 |
            +----------+    |   +--------------+  |
  +-----------+        |    |                  |  |     +-----------+
  |Reachable  |      +--------+             +--------+  |Reachable  |
  |TE networks|------| ABR-A2 |             | ABR-A3 |--|TE networks|
  |in Area A2 |      +--------+             +--------+  |in Area A3 |
  +-----------+       | | | |                   | |     +-----------+
        +-------------+ | | +-----------------+ | +----------+
        |               | +-----------+       | |            |
  +-----------+ +--------------+      |       | |    +--------------+
  |Reachable  | |Pre-engineered|      |       | |    |Pre-engineered|
  |TE networks| |TE Ckt path(s)|  +------+  +------+ |TE Ckt path(s)|
  |in Area A3 | |to ASBR-S1    |  |Area-2|  |Area-3| |to ASBR-S2    |
  +-----------+ +--------------+  +------+  +------+ +--------------+
                         |            |       |              |
                         |   +--------+       |  +-----------+
  +-------------+        |   |                |  |
  |AS external  |    +---------+          +---------+
  |TE-network   |----| ASBR-S1 |          | ASBR-S2 |
  |reachability |    +---------+          +---------+
  |from ASBR-S1 |        |                    |  |
  +-------------+    +---+            +-------+  +-----------+
                     |                |                     |
         +-----------------+   +-------------+   +-----------------+
         |Pre-engineered TE|   |AS External  |   |Pre-engineered TE|
         |circuit path(s)  |   |TE-Network   |   |circuit path(s)  |
         |reachable from   |   |reachability |   |reachable from   |
         |ASBR-S1          |   |from ASBR-S2 |   |ASBR-S2          |
         +-----------------+   +-------------+   +-----------------+

      Figure 3: Inter-Area Abstraction as viewed by Area-1 TE-routers





Srisuresh & Joseph            Experimental                     [Page 43]

RFC 4973           OSPF Traffic Engineering Extension          July 2007


11.  Changes to Data Structures in OSPF-xTE Nodes

11.1.  Changes to Router Data Structure

  An OSPF-xTE router must be able to include the router-TE capabilities
  (as specified in section 8.1) in the router data structure.  OSPF-xTE
  routers providing proxy service to other TE routers must also track
  the router and associated interface data structures for all the TE
  client nodes for which the proxy service is being provided.
  Presumably, the interaction between the Proxy server and the proxy
  clients is out-of-band.

11.2.  Two Sets of Neighbors

  Two sets of neighbor data structures are required.  TE-neighbors set
  is used to advertise TE LSAs.  Only the TE nodes will be members of
  the TE-neighbor set.  Native neighbors set will be used to advertise
  native LSAs.  All neighboring nodes supporting non-TE links are part
  of the Native neighbors set.

11.3.  Changes to Interface Data Structure

  The following new fields are introduced to the interface data
  structure.

  TePermitted

      If the value of the flag is TRUE, the interface may be advertised
      as a TE-enabled interface.

  NonTePermitted

      If the value of the flag is TRUE, the interface permits non-TE
      traffic on the interface.  Specifically, this is applicable to
      packet networks, where data links may permit both TE and IP
      packets.  For FSC and LSC TE networks, this flag is set to FALSE.

  FloodingPermitted

      If the value of the flag is TRUE, the interface may be used for
      OSPF and OSPF-xTE packet exchange to synchronize the LSDB across
      all adjacent neighbors.  This is TRUE by default to all
      NonTePermitted interfaces that are enabled for OSPF.  However, it
      is possible to set this to FALSE for some of the interfaces.







Srisuresh & Joseph            Experimental                     [Page 44]

RFC 4973           OSPF Traffic Engineering Extension          July 2007


  TE-TLVs

      Each interface may define any number of TLVS that describe the
      link characteristics.

  The following existing fields in Interface data structure will take
  on additional values to support TE extensions.

  Type

      The OSPF interface type can also be of type "Positional-Ring".
      The Positional-Ring type is different from other types (such as
      broadcast and NBMA) in that the exact location of the nodes on
      the ring is relevant, even though they are all on the same ring.
      SONET ADM ring is a good example of this.  Complete ring
      positional-ring description may be provided by the GNE on a ring
      as a TE-network LSA for the ring.

  List of Neighbors

      The list may be statically defined for an interface without
      requiring the use of Hello protocol.

12.  IANA Considerations

  The IANA has assigned multicast address 224.0.0.24 to OSPFIGP-TE for
  the exchange of TE database descriptors.

  TE LSA types and TE TLVs will be maintained by the IANA, using the
  following criteria.

12.1.  TE LSA Type Values

  LSA type is an 8-bit field required by each LSA.  TE LSA types will
  have the high bit set to 1.  TE LSAs can range from 0x80 through
  0xFF.  The following values are defined in sections 8.0 and 9.0.  The
  remaining values are available for assignment by the IANA with IETF
  Consensus [RFC2434].













Srisuresh & Joseph            Experimental                     [Page 45]

RFC 4973           OSPF Traffic Engineering Extension          July 2007


     TE LSA Type                        Value
     _________________________________________
     TE-Router LSA                      0x81
     TE-Positional-ring-network LSA     0x82
     TE-Summary Network LSA             0x83
     TE-Summary router LSA              0x84
     TE-AS-external LSAs                0x85
     TE-Circuit-paths LSA               0x8C
     TE-incremental-link-Update LSA     0x8d
     TE-Router-Proxy LSA                0x8e

12.2.  TE TLV Tag Values

  TLV type is a 16-bit field required by each TE TLV.  TLV type shall
  be unique across the router and link TLVs.  A TLV type can range from
  0x0001 through 0xFFFF.  TLV type 0 is reserved and unassigned.  The
  following TLV types are defined in sections 8.0 and 9.0.  The
  remaining values are available for assignment by the IANA with IETF
  Consensus [RFC2434].

  TE TLV Tag                         Reference       Value
                                     Section
  _________________________________________________________

  TE-LINK-TLV-SRLG                 Section 8.1.4.1  0x0001
  TE-LINK-TLV-BANDWIDTH-MAX        Section 8.1.4.2  0x0002
  TE-LINK-TLV-BANDWIDTH-MAX-FOR-TE Section 8.1.4.3  0x0003
  TE-LINK-TLV-BANDWIDTH-TE         Section 8.1.4.4  0x0004
  TE-LINK-TLV-LUG                  Section 8.1.4.5  0x0005
  TE-LINK-TLV-COLOR                Section 8.1.4.6  0x0006
  TE-LINK-TLV-NULL                 Section 8.1.4.7  0x8888
  TE-NODE-TLV-MPLS-SWITCHING       Section 8.1.2.1  0x8001
  TE-NODE-TLV-MPLS-SIG-PROTOCOLS   Section 8.1.2.2  0x8002
  TE-NODE-TLV-CSPF-ALG             Section 8.1.2.3  0x8003
  TE-NODE-TLV-NULL                 Section 8.1.2.4  0x8888

13.  Acknowledgements

  The authors wish to specially thank Chitti Babu and his team for
  implementing the protocol specified in a packet network and verifying
  several portions of the specification in a mixed packet network.  The
  authors also wish to thank Vishwas Manral, Riyad Hartani, and Tricci
  So for their valuable comments and feedback on the document.  Lastly,
  the authors wish to thank Alex Zinin and Mike Shand for their
  document (now defunct) titled "Flooding optimizations in link state
  routing protocols".  The document provided inspiration to the authors
  to be sensitive to the high flooding rate, likely in TE networks.




Srisuresh & Joseph            Experimental                     [Page 46]

RFC 4973           OSPF Traffic Engineering Extension          July 2007


14.  Security Considerations

  Security considerations for the base OSPF protocol are covered in
  [OSPF-V2] and [SEC-OSPF].  This memo does not create any new security
  issues for the OSPF protocol.  Security measures applied to the
  native OSPF (refer [SEC-OSPF]) are directly applicable to the TE LSAs
  described in the document.  Discussed below are the security
  considerations in processing TE LSAs.

  Secure communication between OSPF-xTE nodes has a number of
  components.  Authorization, authentication, integrity and
  confidentiality.  Authorization refers to whether a particular OSPF-
  xTE node is authorized to receive or propagate the TE LSAs to its
  neighbors.  Failing the authorization process might indicate a
  resource theft attempt or unauthorized resource advertisement.  In
  either case, the OSPF-xTE nodes should take proper measures to
  audit/log such attempts so as to alert the administrator to take
  necessary action.  OSPF-xTE nodes may refuse to communicate with the
  neighboring nodes that fail to prompt the required credentials.

  Authentication refers to confirming the identity of an originator for
  the datagrams received from the originator.  Lack of strong
  credentials for authentication of OSPF-xTE LSAs can seriously
  jeopardize the TE service rendered by the network.  A consequence of
  not authenticating a neighbor would be that an attacker could spoof
  the identity of a "legitimate" OSPF-xTE node and manipulate the
  state, and the TE database including the topology and metrics
  collected.  This could potentially cause denial-of-service on the TE
  network.  Another consequence of not authenticating is that an
  attacker could pose as OSPF-xTE neighbor and respond in a manner that
  would divert TE data to the attacker.

  Integrity is required to ensure that an OSPF-xTE message has not been
  accidentally or maliciously altered or destroyed.  The result of a
  lack of data integrity enforcement in an untrusted environment could
  be that an imposter will alter the messages sent by a legitimate
  adjacent neighbor and bring the OSPF-xTE on a node and the whole
  network to a halt or cause a denial of service for the TE circuit
  paths effected by the alteration.

  Confidentiality of OSPF-xTE messages ensures that the TE LSAs are
  accessible only to the authorized entities.  When OSPF-xTE is
  deployed in an untrusted environment, lack of confidentiality will
  allow an intruder to perform traffic flow analysis and snoop the TE
  control network to monitor the traffic metrics and the rate at which
  circuit paths are being setup and torn-down.  The intruder could
  cannibalize a lesser secure OSPF-xTE node and destroy or compromise
  the state and TE-LSDB on the node.  Needless to say, the least secure



Srisuresh & Joseph            Experimental                     [Page 47]

RFC 4973           OSPF Traffic Engineering Extension          July 2007


  OSPF-xTE will become the Achilles heel and make the TE network
  vulnerable to security attacks.

15. Normative References

  [MPLS-ARCH] Rosen, E., Viswanathan, A., and R. Callon, "Multiprotocol
              Label Switching Architecture", RFC 3031, Jaunary 2001.

  [MPLS-TE]   Awduche, D., Malcolm, J., Agogbua, J., O'Dell, M., and J.
              McManus, "Requirements for Traffic Engineering Over
              MPLS", RFC 2702, September 1999.

  [OSPF-V2]   Moy, J., "OSPF Version 2", STD 54, RFC 2328, April 1998.

  [SEC-OSPF]  Murphy, S., Badger, M., and B. Wellington, "OSPF with
              Digital Signatures", RFC 2154, June 1997.

  [OSPF-CAP]  Lindem, A., Ed., Shen, N., Vasseur, J., Aggarwal, R., and
              S.  Schaffer, "Extensions to OSPF for Advertising
              Optional Router Capabilities", RFC 4970, July 2007.

  [RFC2434]   Narten, T. and H. Alvestrand, "Guidelines for Writing an
              IANA Considerations Section in RFCs", BCP 26, RFC 2434,
              October 1998.

16. Informative References

  [BGP-OSPF]  Ferguson, D., "The OSPF External Attribute LSA",
              unpublished.

  [CR-LDP]    Jamoussi, B., Andersson, L., Callon, R., Dantu, R., Wu,
              L., Doolan, P., Worster, T., Feldman, N., Fredette, A.,
              Girish, M., Gray, E., Heinanen, J., Kilty, T., and A.
              Malis, "Constraint-Based LSP Setup using LDP", RFC 3212,
              January 2002.

  [GMPLS-TE]  Berger, L., "Generalized Multi-Protocol Label Switching
              (GMPLS) Signaling Functional Description", RFC 3471,
              January 2003.

  [MOSPF]     Moy, J., "Multicast Extensions to OSPF", RFC 1584, March
              1994.

  [NSSA]      Murphy, P., "The OSPF Not-So-Stubby Area (NSSA) Option",
              RFC 3101, January 2003.

  [OPAQUE]    Coltun, R., "The OSPF Opaque LSA Option", RFC 2370, July
              1998.



Srisuresh & Joseph            Experimental                     [Page 48]

RFC 4973           OSPF Traffic Engineering Extension          July 2007


  [OPQLSA-TE] Katz, D., Yeung, D., and K. Kompella, "Traffic
              Engineering Extensions to OSPF", RFC 3630, September
              2003.

  [RSVP-TE]   Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan, V.,
              and G. Swallow, "RSVP-TE: Extensions to RSVP for LSP
              Tunnels", RFC 3209, December 2001.

  [SONET-SDH] Chow, M.-C., "Understanding SONET/SDH Standards and
              Applications", Holmdel, N.J.: Andan Publisher, 1995.


Authors' Addresses

  Pyda Srisuresh
  Kazeon Systems, Inc.
  1161 San Antonio Rd.
  Mountain View, CA 94043
  U.S.A.

  Phone: (408) 836-4773
  EMail: [email protected]


  Paul Joseph
  Consultant
  10100 Torre Avenue, # 121
  Cupertino, CA 95014
  U.S.A.

  Phone: (408) 777-8493
  EMail: [email protected]



















Srisuresh & Joseph            Experimental                     [Page 49]

RFC 4973           OSPF Traffic Engineering Extension          July 2007


Full Copyright Statement

  Copyright (C) The IETF Trust (2007).

  This document is subject to the rights, licenses and restrictions
  contained in BCP 78 and at www.rfc-editor.org/copyright.html, and
  except as set forth therein, the authors retain all their rights.

  This document and the information contained herein are provided on an
  "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
  OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
  THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
  OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
  THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
  WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

  The IETF takes no position regarding the validity or scope of any
  Intellectual Property Rights or other rights that might be claimed to
  pertain to the implementation or use of the technology described in
  this document or the extent to which any license under such rights
  might or might not be available; nor does it represent that it has
  made any independent effort to identify any such rights.  Information
  on the procedures with respect to rights in RFC documents can be
  found in BCP 78 and BCP 79.

  Copies of IPR disclosures made to the IETF Secretariat and any
  assurances of licenses to be made available, or the result of an
  attempt made to obtain a general license or permission for the use of
  such proprietary rights by implementers or users of this
  specification can be obtained from the IETF on-line IPR repository at
  http://www.ietf.org/ipr.

  The IETF invites any interested party to bring to its attention any
  copyrights, patents or patent applications, or other proprietary
  rights that may cover technology that may be required to implement
  this standard.  Please address the information to the IETF at
  [email protected].

Acknowledgement

  Funding for the RFC Editor function is currently provided by the
  Internet Society.







Srisuresh & Joseph            Experimental                     [Page 50]