Network Working Group                                    R. Stewart, Ed.
Request for Comments: 4960                                September 2007
Obsoletes: 2960, 3309
Category: Standards Track


                 Stream Control Transmission Protocol

Status of This Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Abstract

  This document obsoletes RFC 2960 and RFC 3309.  It describes the
  Stream Control Transmission Protocol (SCTP).  SCTP is designed to
  transport Public Switched Telephone Network (PSTN) signaling messages
  over IP networks, but is capable of broader applications.

  SCTP is a reliable transport protocol operating on top of a
  connectionless packet network such as IP.  It offers the following
  services to its users:

  --  acknowledged error-free non-duplicated transfer of user data,

  --  data fragmentation to conform to discovered path MTU size,

  --  sequenced delivery of user messages within multiple streams, with
      an option for order-of-arrival delivery of individual user
      messages,

  --  optional bundling of multiple user messages into a single SCTP
      packet, and

  --  network-level fault tolerance through supporting of multi-homing
      at either or both ends of an association.

  The design of SCTP includes appropriate congestion avoidance behavior
  and resistance to flooding and masquerade attacks.








Stewart                     Standards Track                     [Page 1]

RFC 4960          Stream Control Transmission Protocol    September 2007


Table of Contents

  1. Introduction ....................................................5
     1.1. Motivation .................................................5
     1.2. Architectural View of SCTP .................................6
     1.3. Key Terms ..................................................6
     1.4. Abbreviations .............................................10
     1.5. Functional View of SCTP ...................................10
          1.5.1. Association Startup and Takedown ...................11
          1.5.2. Sequenced Delivery within Streams ..................12
          1.5.3. User Data Fragmentation ............................12
          1.5.4. Acknowledgement and Congestion Avoidance ...........12
          1.5.5. Chunk Bundling .....................................13
          1.5.6. Packet Validation ..................................13
          1.5.7. Path Management ....................................13
     1.6. Serial Number Arithmetic ..................................14
     1.7. Changes from RFC 2960 .....................................15
  2. Conventions ....................................................15
  3. SCTP Packet Format .............................................15
     3.1. SCTP Common Header Field Descriptions .....................16
     3.2. Chunk Field Descriptions ..................................17
          3.2.1. Optional/Variable-Length Parameter Format ..........19
          3.2.2. Reporting of Unrecognized Parameters ...............21
     3.3. SCTP Chunk Definitions ....................................21
          3.3.1. Payload Data (DATA) (0) ............................22
          3.3.2. Initiation (INIT) (1) ..............................24
                 3.3.2.1. Optional/Variable-Length
                          Parameters in INIT ........................27
          3.3.3. Initiation Acknowledgement (INIT ACK) (2) ..........30
                 3.3.3.1. Optional or Variable-Length Parameters ....33
          3.3.4. Selective Acknowledgement (SACK) (3) ...............34
          3.3.5. Heartbeat Request (HEARTBEAT) (4) ..................38
          3.3.6. Heartbeat Acknowledgement (HEARTBEAT ACK) (5) ......39
          3.3.7. Abort Association (ABORT) (6) ......................40
          3.3.8. Shutdown Association (SHUTDOWN) (7) ................41
          3.3.9. Shutdown Acknowledgement (SHUTDOWN ACK) (8) ........41
          3.3.10. Operation Error (ERROR) (9) .......................42
                 3.3.10.1. Invalid Stream Identifier (1) ............44
                 3.3.10.2. Missing Mandatory Parameter (2) ..........44
                 3.3.10.3. Stale Cookie Error (3) ...................45
                 3.3.10.4. Out of Resource (4) ......................45
                 3.3.10.5. Unresolvable Address (5) .................46
                 3.3.10.6. Unrecognized Chunk Type (6) ..............46
                 3.3.10.7. Invalid Mandatory Parameter (7) ..........47
                 3.3.10.8. Unrecognized Parameters (8) ..............47
                 3.3.10.9. No User Data (9) .........................48
                 3.3.10.10. Cookie Received While Shutting
                            Down (10) ...............................48



Stewart                     Standards Track                     [Page 2]

RFC 4960          Stream Control Transmission Protocol    September 2007


                 3.3.10.11. Restart of an Association with
                            New Addresses (11) ......................49
                 3.3.10.12. User-Initiated Abort (12) ...............49
                 3.3.10.13. Protocol Violation (13) .................50
          3.3.11. Cookie Echo (COOKIE ECHO) (10) ....................50
          3.3.12. Cookie Acknowledgement (COOKIE ACK) (11) ..........51
          3.3.13. Shutdown Complete (SHUTDOWN COMPLETE) (14) ........51
  4. SCTP Association State Diagram .................................52
  5. Association Initialization .....................................56
     5.1. Normal Establishment of an Association ....................56
          5.1.1. Handle Stream Parameters ...........................58
          5.1.2. Handle Address Parameters ..........................58
          5.1.3. Generating State Cookie ............................61
          5.1.4. State Cookie Processing ............................62
          5.1.5. State Cookie Authentication ........................62
          5.1.6. An Example of Normal Association Establishment .....64
     5.2. Handle Duplicate or Unexpected INIT, INIT ACK,
          COOKIE ECHO, and ..........................................65
          5.2.1. INIT Received in COOKIE-WAIT or
                 COOKIE-ECHOED State (Item B) .......................66
          5.2.2. Unexpected INIT in States Other than
                 CLOSED, COOKIE-ECHOED, .............................66
          5.2.3. Unexpected INIT ACK ................................67
          5.2.4. Handle a COOKIE ECHO when a TCB Exists .............67
                 5.2.4.1. An Example of a Association Restart .......69
          5.2.5. Handle Duplicate COOKIE-ACK. .......................71
          5.2.6. Handle Stale COOKIE Error ..........................71
     5.3. Other Initialization Issues ...............................72
          5.3.1. Selection of Tag Value .............................72
     5.4. Path Verification .........................................72
  6. User Data Transfer .............................................73
     6.1. Transmission of DATA Chunks ...............................75
     6.2. Acknowledgement on Reception of DATA Chunks ...............78
          6.2.1. Processing a Received SACK .........................81
     6.3. Management of Retransmission Timer ........................83
          6.3.1. RTO Calculation ....................................83
          6.3.2. Retransmission Timer Rules .........................85
          6.3.3. Handle T3-rtx Expiration ...........................86
     6.4. Multi-Homed SCTP Endpoints ................................87
          6.4.1. Failover from an Inactive Destination Address ......88
     6.5. Stream Identifier and Stream Sequence Number ..............88
     6.6. Ordered and Unordered Delivery ............................88
     6.7. Report Gaps in Received DATA TSNs .........................89
     6.8. CRC32c Checksum Calculation ...............................90
     6.9. Fragmentation and Reassembly ..............................91
     6.10. Bundling .................................................92
  7. Congestion Control .............................................93
     7.1. SCTP Differences from TCP Congestion Control ..............94



Stewart                     Standards Track                     [Page 3]

RFC 4960          Stream Control Transmission Protocol    September 2007


     7.2. SCTP Slow-Start and Congestion Avoidance ..................95
          7.2.1. Slow-Start .........................................96
          7.2.2. Congestion Avoidance ...............................97
          7.2.3. Congestion Control .................................98
          7.2.4. Fast Retransmit on Gap Reports .....................98
     7.3. Path MTU Discovery .......................................100
  8. Fault Management ..............................................100
     8.1. Endpoint Failure Detection ...............................100
     8.2. Path Failure Detection ...................................101
     8.3. Path Heartbeat ...........................................102
     8.4. Handle "Out of the Blue" Packets .........................104
     8.5. Verification Tag .........................................105
          8.5.1. Exceptions in Verification Tag Rules ..............105
  9. Termination of Association ....................................106
     9.1. Abort of an Association ..................................107
     9.2. Shutdown of an Association ...............................107
  10. Interface with Upper Layer ...................................110
     10.1. ULP-to-SCTP .............................................110
     10.2. SCTP-to-ULP .............................................120
  11. Security Considerations ......................................123
     11.1. Security Objectives .....................................123
     11.2. SCTP Responses to Potential Threats .....................124
          11.2.1. Countering Insider Attacks .......................124
          11.2.2. Protecting against Data Corruption in the
                  Network ..........................................124
          11.2.3. Protecting Confidentiality .......................124
          11.2.4. Protecting against Blind
                  Denial-of-Service Attacks ........................125
                 11.2.4.1. Flooding ................................125
                 11.2.4.2. Blind Masquerade ........................126
                 11.2.4.3. Improper Monopolization of Services .....127
     11.3. SCTP Interactions with Firewalls ........................127
     11.4. Protection of Non-SCTP-Capable Hosts ....................128
  12. Network Management Considerations ............................128
  13. Recommended Transmission Control Block (TCB) Parameters ......129
     13.1. Parameters Necessary for the SCTP Instance ..............129
     13.2. Parameters Necessary per Association (i.e., the TCB) ....129
     13.3. Per Transport Address Data ..............................131
     13.4. General Parameters Needed ...............................132
  14. IANA Considerations ..........................................132
     14.1. IETF-defined Chunk Extension ............................132
     14.2. IETF-Defined Chunk Parameter Extension ..................133
     14.3. IETF-Defined Additional Error Causes ....................133
     14.4. Payload Protocol Identifiers ............................134
     14.5. Port Numbers Registry ...................................134
  15. Suggested SCTP Protocol Parameter Values .....................136
  16. Acknowledgements .............................................137
  Appendix A. Explicit Congestion Notification .....................139



Stewart                     Standards Track                     [Page 4]

RFC 4960          Stream Control Transmission Protocol    September 2007


  Appendix B. CRC32c Checksum Calculation ..........................140
  Appendix C. ICMP Handling ........................................142
  References .......................................................149
     Normative References ..........................................149
     Informative References ........................................150

1.  Introduction

  This section explains the reasoning behind the development of the
  Stream Control Transmission Protocol (SCTP), the services it offers,
  and the basic concepts needed to understand the detailed description
  of the protocol.

  This document obsoletes [RFC2960] and [RFC3309].

1.1.  Motivation

  TCP [RFC0793] has performed immense service as the primary means of
  reliable data transfer in IP networks.  However, an increasing number
  of recent applications have found TCP too limiting, and have
  incorporated their own reliable data transfer protocol on top of UDP
  [RFC0768].  The limitations that users have wished to bypass include
  the following:

  -- TCP provides both reliable data transfer and strict order-of-
     transmission delivery of data.  Some applications need reliable
     transfer without sequence maintenance, while others would be
     satisfied with partial ordering of the data.  In both of these
     cases, the head-of-line blocking offered by TCP causes unnecessary
     delay.

  -- The stream-oriented nature of TCP is often an inconvenience.
     Applications must add their own record marking to delineate their
     messages, and must make explicit use of the push facility to
     ensure that a complete message is transferred in a reasonable
     time.

  -- The limited scope of TCP sockets complicates the task of providing
     highly-available data transfer capability using multi-homed hosts.

  -- TCP is relatively vulnerable to denial-of-service attacks, such as
     SYN attacks.

  Transport of PSTN signaling across the IP network is an application
  for which all of these limitations of TCP are relevant.  While this
  application directly motivated the development of SCTP, other
  applications may find SCTP a good match to their requirements.




Stewart                     Standards Track                     [Page 5]

RFC 4960          Stream Control Transmission Protocol    September 2007


1.2.  Architectural View of SCTP

  SCTP is viewed as a layer between the SCTP user application ("SCTP
  user" for short) and a connectionless packet network service such as
  IP.  The remainder of this document assumes SCTP runs on top of IP.
  The basic service offered by SCTP is the reliable transfer of user
  messages between peer SCTP users.  It performs this service within
  the context of an association between two SCTP endpoints.  Section 10
  of this document sketches the API that should exist at the boundary
  between the SCTP and the SCTP user layers.

  SCTP is connection-oriented in nature, but the SCTP association is a
  broader concept than the TCP connection.  SCTP provides the means for
  each SCTP endpoint (Section 1.3) to provide the other endpoint
  (during association startup) with a list of transport addresses
  (i.e., multiple IP addresses in combination with an SCTP port)
  through which that endpoint can be reached and from which it will
  originate SCTP packets.  The association spans transfers over all of
  the possible source/destination combinations that may be generated
  from each endpoint's lists.

      _____________                                      _____________
     |  SCTP User  |                                    |  SCTP User  |
     | Application |                                    | Application |
     |-------------|                                    |-------------|
     |    SCTP     |                                    |    SCTP     |
     |  Transport  |                                    |  Transport  |
     |   Service   |                                    |   Service   |
     |-------------|                                    |-------------|
     |             |One or more    ----      One or more|             |
     | IP Network  |IP address      \/        IP address| IP Network  |
     |   Service   |appearances     /\       appearances|   Service   |
     |_____________|               ----                 |_____________|

       SCTP Node A |<-------- Network transport ------->| SCTP Node B

                        Figure 1: An SCTP Association

1.3.  Key Terms

  Some of the language used to describe SCTP has been introduced in the
  previous sections.  This section provides a consolidated list of the
  key terms and their definitions.

  o  Active destination transport address: A transport address on a
     peer endpoint that a transmitting endpoint considers available for
     receiving user messages.




Stewart                     Standards Track                     [Page 6]

RFC 4960          Stream Control Transmission Protocol    September 2007


  o  Bundling: An optional multiplexing operation, whereby more than
     one user message may be carried in the same SCTP packet.  Each
     user message occupies its own DATA chunk.

  o  Chunk: A unit of information within an SCTP packet, consisting of
     a chunk header and chunk-specific content.

  o  Congestion window (cwnd): An SCTP variable that limits the data,
     in number of bytes, a sender can send to a particular destination
     transport address before receiving an acknowledgement.

  o  Cumulative TSN Ack Point: The TSN of the last DATA chunk
     acknowledged via the Cumulative TSN Ack field of a SACK.

  o  Idle destination address: An address that has not had user
     messages sent to it within some length of time, normally the
     HEARTBEAT interval or greater.

  o  Inactive destination transport address: An address that is
     considered inactive due to errors and unavailable to transport
     user messages.

  o  Message = user message: Data submitted to SCTP by the Upper Layer
     Protocol (ULP).

  o  Message Authentication Code (MAC): An integrity check mechanism
     based on cryptographic hash functions using a secret key.
     Typically, message authentication codes are used between two
     parties that share a secret key in order to validate information
     transmitted between these parties.  In SCTP, it is used by an
     endpoint to validate the State Cookie information that is returned
     from the peer in the COOKIE ECHO chunk.  The term "MAC" has
     different meanings in different contexts.  SCTP uses this term
     with the same meaning as in [RFC2104].

  o  Network Byte Order: Most significant byte first, a.k.a., big
     endian.

  o  Ordered Message: A user message that is delivered in order with
     respect to all previous user messages sent within the stream on
     which the message was sent.

  o  Outstanding TSN (at an SCTP endpoint): A TSN (and the associated
     DATA chunk) that has been sent by the endpoint but for which it
     has not yet received an acknowledgement.






Stewart                     Standards Track                     [Page 7]

RFC 4960          Stream Control Transmission Protocol    September 2007


  o  Path: The route taken by the SCTP packets sent by one SCTP
     endpoint to a specific destination transport address of its peer
     SCTP endpoint.  Sending to different destination transport
     addresses does not necessarily guarantee getting separate paths.

  o  Primary Path: The primary path is the destination and source
     address that will be put into a packet outbound to the peer
     endpoint by default.  The definition includes the source address
     since an implementation MAY wish to specify both destination and
     source address to better control the return path taken by reply
     chunks and on which interface the packet is transmitted when the
     data sender is multi-homed.

  o  Receiver Window (rwnd): An SCTP variable a data sender uses to
     store the most recently calculated receiver window of its peer, in
     number of bytes.  This gives the sender an indication of the space
     available in the receiver's inbound buffer.

  o  SCTP association: A protocol relationship between SCTP endpoints,
     composed of the two SCTP endpoints and protocol state information
     including Verification Tags and the currently active set of
     Transmission Sequence Numbers (TSNs), etc.  An association can be
     uniquely identified by the transport addresses used by the
     endpoints in the association.  Two SCTP endpoints MUST NOT have
     more than one SCTP association between them at any given time.

  o  SCTP endpoint: The logical sender/receiver of SCTP packets.  On a
     multi-homed host, an SCTP endpoint is represented to its peers as
     a combination of a set of eligible destination transport addresses
     to which SCTP packets can be sent and a set of eligible source
     transport addresses from which SCTP packets can be received.  All
     transport addresses used by an SCTP endpoint must use the same
     port number, but can use multiple IP addresses.  A transport
     address used by an SCTP endpoint must not be used by another SCTP
     endpoint.  In other words, a transport address is unique to an
     SCTP endpoint.

  o  SCTP packet (or packet): The unit of data delivery across the
     interface between SCTP and the connectionless packet network
     (e.g., IP).  An SCTP packet includes the common SCTP header,
     possible SCTP control chunks, and user data encapsulated within
     SCTP DATA chunks.

  o  SCTP user application (SCTP user): The logical higher-layer
     application entity which uses the services of SCTP, also called
     the Upper-Layer Protocol (ULP).





Stewart                     Standards Track                     [Page 8]

RFC 4960          Stream Control Transmission Protocol    September 2007


  o  Slow-Start Threshold (ssthresh): An SCTP variable.  This is the
     threshold that the endpoint will use to determine whether to
     perform slow start or congestion avoidance on a particular
     destination transport address.  Ssthresh is in number of bytes.

  o  Stream: A unidirectional logical channel established from one to
     another associated SCTP endpoint, within which all user messages
     are delivered in sequence except for those submitted to the
     unordered delivery service.

  Note: The relationship between stream numbers in opposite directions
  is strictly a matter of how the applications use them.  It is the
  responsibility of the SCTP user to create and manage these
  correlations if they are so desired.

  o  Stream Sequence Number: A 16-bit sequence number used internally
     by SCTP to ensure sequenced delivery of the user messages within a
     given stream.  One Stream Sequence Number is attached to each user
     message.

  o  Tie-Tags: Two 32-bit random numbers that together make a 64-bit
     nonce.  These tags are used within a State Cookie and TCB so that
     a newly restarting association can be linked to the original
     association within the endpoint that did not restart and yet not
     reveal the true Verification Tags of an existing association.

  o  Transmission Control Block (TCB): An internal data structure
     created by an SCTP endpoint for each of its existing SCTP
     associations to other SCTP endpoints.  TCB contains all the status
     and operational information for the endpoint to maintain and
     manage the corresponding association.

  o  Transmission Sequence Number (TSN): A 32-bit sequence number used
     internally by SCTP.  One TSN is attached to each chunk containing
     user data to permit the receiving SCTP endpoint to acknowledge its
     receipt and detect duplicate deliveries.

  o  Transport address: A transport address is traditionally defined by
     a network-layer address, a transport-layer protocol, and a
     transport-layer port number.  In the case of SCTP running over IP,
     a transport address is defined by the combination of an IP address
     and an SCTP port number (where SCTP is the transport protocol).

  o  Unacknowledged TSN (at an SCTP endpoint): A TSN (and the
     associated DATA chunk) that has been received by the endpoint but
     for which an acknowledgement has not yet been sent.  Or in the
     opposite case, for a packet that has been sent but no
     acknowledgement has been received.



Stewart                     Standards Track                     [Page 9]

RFC 4960          Stream Control Transmission Protocol    September 2007


  o  Unordered Message: Unordered messages are "unordered" with respect
     to any other message; this includes both other unordered messages
     as well as other ordered messages.  An unordered message might be
     delivered prior to or later than ordered messages sent on the same
     stream.

  o  User message: The unit of data delivery across the interface
     between SCTP and its user.

  o  Verification Tag: A 32-bit unsigned integer that is randomly
     generated.  The Verification Tag provides a key that allows a
     receiver to verify that the SCTP packet belongs to the current
     association and is not an old or stale packet from a previous
     association.

1.4.  Abbreviations

  MAC    -  Message Authentication Code [RFC2104]

  RTO    -  Retransmission Timeout

  RTT    -  Round-Trip Time

  RTTVAR -  Round-Trip Time Variation

  SCTP   -  Stream Control Transmission Protocol

  SRTT   -  Smoothed RTT

  TCB    -  Transmission Control Block

  TLV    -  Type-Length-Value coding format

  TSN    -  Transmission Sequence Number

  ULP    -  Upper-Layer Protocol

1.5.  Functional View of SCTP

  The SCTP transport service can be decomposed into a number of
  functions.  These are depicted in Figure 2 and explained in the
  remainder of this section.









Stewart                     Standards Track                    [Page 10]

RFC 4960          Stream Control Transmission Protocol    September 2007


                          SCTP User Application

           -----------------------------------------------------
            _____________                  ____________________
           |             |                | Sequenced Delivery |
           | Association |                |   within Streams   |
           |             |                |____________________|
           |   Startup   |
           |             |         ____________________________
           |     and     |        |    User Data Fragmentation |
           |             |        |____________________________|
           |   Takedown  |
           |             |         ____________________________
           |             |        |     Acknowledgement        |
           |             |        |          and               |
           |             |        |    Congestion Avoidance    |
           |             |        |____________________________|
           |             |
           |             |         ____________________________
           |             |        |       Chunk Bundling       |
           |             |        |____________________________|
           |             |
           |             |     ________________________________
           |             |    |      Packet Validation         |
           |             |    |________________________________|
           |             |
           |             |     ________________________________
           |             |    |     Path Management            |
           |_____________|    |________________________________|

             Figure 2: Functional View of the SCTP Transport Service

1.5.1.  Association Startup and Takedown

  An association is initiated by a request from the SCTP user (see the
  description of the ASSOCIATE (or SEND) primitive in Section 10).

  A cookie mechanism, similar to one described by Karn and Simpson in
  [RFC2522], is employed during the initialization to provide
  protection against synchronization attacks.  The cookie mechanism
  uses a four-way handshake, the last two legs of which are allowed to
  carry user data for fast setup.  The startup sequence is described in
  Section 5 of this document.

  SCTP provides for graceful close (i.e., shutdown) of an active
  association on request from the SCTP user.  See the description of
  the SHUTDOWN primitive in Section 10.  SCTP also allows ungraceful
  close (i.e., abort), either on request from the user (ABORT



Stewart                     Standards Track                    [Page 11]

RFC 4960          Stream Control Transmission Protocol    September 2007


  primitive) or as a result of an error condition detected within the
  SCTP layer.  Section 9 describes both the graceful and the ungraceful
  close procedures.

  SCTP does not support a half-open state (like TCP) wherein one side
  may continue sending data while the other end is closed.  When either
  endpoint performs a shutdown, the association on each peer will stop
  accepting new data from its user and only deliver data in queue at
  the time of the graceful close (see Section 9).

1.5.2.  Sequenced Delivery within Streams

  The term "stream" is used in SCTP to refer to a sequence of user
  messages that are to be delivered to the upper-layer protocol in
  order with respect to other messages within the same stream.  This is
  in contrast to its usage in TCP, where it refers to a sequence of
  bytes (in this document, a byte is assumed to be 8 bits).

  The SCTP user can specify at association startup time the number of
  streams to be supported by the association.  This number is
  negotiated with the remote end (see Section 5.1.1).  User messages
  are associated with stream numbers (SEND, RECEIVE primitives, Section
  10).  Internally, SCTP assigns a Stream Sequence Number to each
  message passed to it by the SCTP user.  On the receiving side, SCTP
  ensures that messages are delivered to the SCTP user in sequence
  within a given stream.  However, while one stream may be blocked
  waiting for the next in-sequence user message, delivery from other
  streams may proceed.

  SCTP provides a mechanism for bypassing the sequenced delivery
  service.  User messages sent using this mechanism are delivered to
  the SCTP user as soon as they are received.

1.5.3.  User Data Fragmentation

  When needed, SCTP fragments user messages to ensure that the SCTP
  packet passed to the lower layer conforms to the path MTU.  On
  receipt, fragments are reassembled into complete messages before
  being passed to the SCTP user.

1.5.4.  Acknowledgement and Congestion Avoidance

  SCTP assigns a Transmission Sequence Number (TSN) to each user data
  fragment or unfragmented message.  The TSN is independent of any
  Stream Sequence Number assigned at the stream level.  The receiving
  end acknowledges all TSNs received, even if there are gaps in the
  sequence.  In this way, reliable delivery is kept functionally
  separate from sequenced stream delivery.



Stewart                     Standards Track                    [Page 12]

RFC 4960          Stream Control Transmission Protocol    September 2007


  The acknowledgement and congestion avoidance function is responsible
  for packet retransmission when timely acknowledgement has not been
  received.  Packet retransmission is conditioned by congestion
  avoidance procedures similar to those used for TCP.  See Section 6
  and Section 7 for a detailed description of the protocol procedures
  associated with this function.

1.5.5.  Chunk Bundling

  As described in Section 3, the SCTP packet as delivered to the lower
  layer consists of a common header followed by one or more chunks.
  Each chunk may contain either user data or SCTP control information.
  The SCTP user has the option to request bundling of more than one
  user message into a single SCTP packet.  The chunk bundling function
  of SCTP is responsible for assembly of the complete SCTP packet and
  its disassembly at the receiving end.

  During times of congestion, an SCTP implementation MAY still perform
  bundling even if the user has requested that SCTP not bundle.  The
  user's disabling of bundling only affects SCTP implementations that
  may delay a small period of time before transmission (to attempt to
  encourage bundling).  When the user layer disables bundling, this
  small delay is prohibited but not bundling that is performed during
  congestion or retransmission.

1.5.6.  Packet Validation

  A mandatory Verification Tag field and a 32-bit checksum field (see
  Appendix B for a description of the CRC32c checksum) are included in
  the SCTP common header.  The Verification Tag value is chosen by each
  end of the association during association startup.  Packets received
  without the expected Verification Tag value are discarded, as a
  protection against blind masquerade attacks and against stale SCTP
  packets from a previous association.  The CRC32c checksum should be
  set by the sender of each SCTP packet to provide additional
  protection against data corruption in the network.  The receiver of
  an SCTP packet with an invalid CRC32c checksum silently discards the
  packet.

1.5.7.  Path Management

  The sending SCTP user is able to manipulate the set of transport
  addresses used as destinations for SCTP packets through the
  primitives described in Section 10.  The SCTP path management
  function chooses the destination transport address for each outgoing
  SCTP packet based on the SCTP user's instructions and the currently
  perceived reachability status of the eligible destination set.  The
  path management function monitors reachability through heartbeats



Stewart                     Standards Track                    [Page 13]

RFC 4960          Stream Control Transmission Protocol    September 2007


  when other packet traffic is inadequate to provide this information
  and advises the SCTP user when reachability of any far-end transport
  address changes.  The path management function is also responsible
  for reporting the eligible set of local transport addresses to the
  far end during association startup, and for reporting the transport
  addresses returned from the far end to the SCTP user.

  At association startup, a primary path is defined for each SCTP
  endpoint, and is used for normal sending of SCTP packets.

  On the receiving end, the path management is responsible for
  verifying the existence of a valid SCTP association to which the
  inbound SCTP packet belongs before passing it for further processing.

  Note: Path Management and Packet Validation are done at the same
  time, so although described separately above, in reality they cannot
  be performed as separate items.

1.6.  Serial Number Arithmetic

  It is essential to remember that the actual Transmission Sequence
  Number space is finite, though very large.  This space ranges from 0
  to 2**32 - 1.  Since the space is finite, all arithmetic dealing with
  Transmission Sequence Numbers must be performed modulo 2**32.  This
  unsigned arithmetic preserves the relationship of sequence numbers as
  they cycle from 2**32 - 1 to 0 again.  There are some subtleties to
  computer modulo arithmetic, so great care should be taken in
  programming the comparison of such values.  When referring to TSNs,
  the symbol "=<" means "less than or equal"(modulo 2**32).

  Comparisons and arithmetic on TSNs in this document SHOULD use Serial
  Number Arithmetic as defined in [RFC1982] where SERIAL_BITS = 32.

  An endpoint SHOULD NOT transmit a DATA chunk with a TSN that is more
  than 2**31 - 1 above the beginning TSN of its current send window.
  Doing so will cause problems in comparing TSNs.

  Transmission Sequence Numbers wrap around when they reach 2**32 - 1.
  That is, the next TSN a DATA chunk MUST use after transmitting TSN =
  2*32 - 1 is TSN = 0.

  Any arithmetic done on Stream Sequence Numbers SHOULD use Serial
  Number Arithmetic as defined in [RFC1982] where SERIAL_BITS = 16.
  All other arithmetic and comparisons in this document use normal
  arithmetic.






Stewart                     Standards Track                    [Page 14]

RFC 4960          Stream Control Transmission Protocol    September 2007


1.7.  Changes from RFC 2960

  SCTP was originally defined in [RFC2960], which this document
  obsoletes.  Readers interested in the details of the various changes
  that this document incorporates are asked to consult [RFC4460].

2.  Conventions

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in RFC 2119 [RFC2119].

3.  SCTP Packet Format

  An SCTP packet is composed of a common header and chunks.  A chunk
  contains either control information or user data.

  The SCTP packet format is shown below:

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                        Common Header                          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                          Chunk #1                             |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                           ...                                 |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                          Chunk #n                             |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Multiple chunks can be bundled into one SCTP packet up to the MTU
  size, except for the INIT, INIT ACK, and SHUTDOWN COMPLETE chunks.
  These chunks MUST NOT be bundled with any other chunk in a packet.
  See Section 6.10 for more details on chunk bundling.

  If a user data message doesn't fit into one SCTP packet it can be
  fragmented into multiple chunks using the procedure defined in
  Section 6.9.

  All integer fields in an SCTP packet MUST be transmitted in network
  byte order, unless otherwise stated.









Stewart                     Standards Track                    [Page 15]

RFC 4960          Stream Control Transmission Protocol    September 2007


3.1.  SCTP Common Header Field Descriptions

                      SCTP Common Header Format

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |     Source Port Number        |     Destination Port Number   |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                      Verification Tag                         |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                           Checksum                            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Source Port Number: 16 bits (unsigned integer)

     This is the SCTP sender's port number.  It can be used by the
     receiver in combination with the source IP address, the SCTP
     destination port, and possibly the destination IP address to
     identify the association to which this packet belongs.  The port
     number 0 MUST NOT be used.

  Destination Port Number: 16 bits (unsigned integer)

     This is the SCTP port number to which this packet is destined.
     The receiving host will use this port number to de-multiplex the
     SCTP packet to the correct receiving endpoint/application.  The
     port number 0 MUST NOT be used.

  Verification Tag: 32 bits (unsigned integer)

     The receiver of this packet uses the Verification Tag to validate
     the sender of this SCTP packet.  On transmit, the value of this
     Verification Tag MUST be set to the value of the Initiate Tag
     received from the peer endpoint during the association
     initialization, with the following exceptions:

     -  A packet containing an INIT chunk MUST have a zero Verification
           Tag.

     -  A packet containing a SHUTDOWN COMPLETE chunk with the T bit
        set MUST have the Verification Tag copied from the packet with
        the SHUTDOWN ACK chunk.

     -  A packet containing an ABORT chunk may have the verification
        tag copied from the packet that caused the ABORT to be sent.
        For details see Section 8.4 and Section 8.5.




Stewart                     Standards Track                    [Page 16]

RFC 4960          Stream Control Transmission Protocol    September 2007


  An INIT chunk MUST be the only chunk in the SCTP packet carrying it.

  Checksum: 32 bits (unsigned integer)

     This field contains the checksum of this SCTP packet.  Its
     calculation is discussed in Section 6.8.  SCTP uses the CRC32c
     algorithm as described in Appendix B for calculating the checksum.

3.2.  Chunk Field Descriptions

  The figure below illustrates the field format for the chunks to be
  transmitted in the SCTP packet.  Each chunk is formatted with a Chunk
  Type field, a chunk-specific Flag field, a Chunk Length field, and a
  Value field.

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |   Chunk Type  | Chunk  Flags  |        Chunk Length           |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      \                                                               \
      /                          Chunk Value                          /
      \                                                               \
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Chunk Type: 8 bits (unsigned integer)

     This field identifies the type of information contained in the
     Chunk Value field.  It takes a value from 0 to 254.  The value of
     255 is reserved for future use as an extension field.

     The values of Chunk Types are defined as follows:

  ID Value    Chunk Type
  -----       ----------
  0          - Payload Data (DATA)
  1          - Initiation (INIT)
  2          - Initiation Acknowledgement (INIT ACK)
  3          - Selective Acknowledgement (SACK)
  4          - Heartbeat Request (HEARTBEAT)
  5          - Heartbeat Acknowledgement (HEARTBEAT ACK)
  6          - Abort (ABORT)
  7          - Shutdown (SHUTDOWN)
  8          - Shutdown Acknowledgement (SHUTDOWN ACK)
  9          - Operation Error (ERROR)
  10         - State Cookie (COOKIE ECHO)
  11         - Cookie Acknowledgement (COOKIE ACK)




Stewart                     Standards Track                    [Page 17]

RFC 4960          Stream Control Transmission Protocol    September 2007


  12         - Reserved for Explicit Congestion Notification Echo
               (ECNE)
  13         - Reserved for Congestion Window Reduced (CWR)
  14         - Shutdown Complete (SHUTDOWN COMPLETE)
  15 to 62   - available
  63         - reserved for IETF-defined Chunk Extensions
  64 to 126  - available
  127        - reserved for IETF-defined Chunk Extensions
  128 to 190 - available
  191        - reserved for IETF-defined Chunk Extensions
  192 to 254 - available
  255        - reserved for IETF-defined Chunk Extensions

     Chunk Types are encoded such that the highest-order 2 bits specify
     the action that must be taken if the processing endpoint does not
     recognize the Chunk Type.

     00 -  Stop processing this SCTP packet and discard it, do not
           process any further chunks within it.

     01 -  Stop processing this SCTP packet and discard it, do not
           process any further chunks within it, and report the
           unrecognized chunk in an 'Unrecognized Chunk Type'.

     10 -  Skip this chunk and continue processing.

     11 -  Skip this chunk and continue processing, but report in an
           ERROR chunk using the 'Unrecognized Chunk Type' cause of
           error.

     Note: The ECNE and CWR chunk types are reserved for future use of
     Explicit Congestion Notification (ECN); see Appendix A.

  Chunk Flags: 8 bits

     The usage of these bits depends on the Chunk type as given by the
     Chunk Type field.  Unless otherwise specified, they are set to 0
     on transmit and are ignored on receipt.

  Chunk Length: 16 bits (unsigned integer)

     This value represents the size of the chunk in bytes, including
     the Chunk Type, Chunk Flags, Chunk Length, and Chunk Value fields.
     Therefore, if the Chunk Value field is zero-length, the Length
     field will be set to 4.  The Chunk Length field does not count any
     chunk padding.





Stewart                     Standards Track                    [Page 18]

RFC 4960          Stream Control Transmission Protocol    September 2007


     Chunks (including Type, Length, and Value fields) are padded out
     by the sender with all zero bytes to be a multiple of 4 bytes
     long.  This padding MUST NOT be more than 3 bytes in total.  The
     Chunk Length value does not include terminating padding of the
     chunk.  However, it does include padding of any variable-length
     parameter except the last parameter in the chunk.  The receiver
     MUST ignore the padding.

     Note: A robust implementation should accept the chunk whether or
     not the final padding has been included in the Chunk Length.

  Chunk Value: variable length

     The Chunk Value field contains the actual information to be
     transferred in the chunk.  The usage and format of this field is
     dependent on the Chunk Type.

  The total length of a chunk (including Type, Length, and Value
  fields) MUST be a multiple of 4 bytes.  If the length of the chunk is
  not a multiple of 4 bytes, the sender MUST pad the chunk with all
  zero bytes, and this padding is not included in the Chunk Length
  field.  The sender MUST NOT pad with more than 3 bytes.  The receiver
  MUST ignore the padding bytes.

  SCTP-defined chunks are described in detail in Section 3.3.  The
  guidelines for IETF-defined chunk extensions can be found in Section
  14.1 of this document.

3.2.1.  Optional/Variable-Length Parameter Format

  Chunk values of SCTP control chunks consist of a chunk-type-specific
  header of required fields, followed by zero or more parameters.  The
  optional and variable-length parameters contained in a chunk are
  defined in a Type-Length-Value format as shown below.

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |          Parameter Type       |       Parameter Length        |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      \                                                               \
      /                       Parameter Value                         /
      \                                                               \
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+







Stewart                     Standards Track                    [Page 19]

RFC 4960          Stream Control Transmission Protocol    September 2007


  Chunk Parameter Type: 16 bits (unsigned integer)

     The Type field is a 16-bit identifier of the type of parameter.
     It takes a value of 0 to 65534.

     The value of 65535 is reserved for IETF-defined extensions.
     Values other than those defined in specific SCTP chunk
     descriptions are reserved for use by IETF.

  Chunk Parameter Length: 16 bits (unsigned integer)

     The Parameter Length field contains the size of the parameter in
     bytes, including the Parameter Type, Parameter Length, and
     Parameter Value fields.  Thus, a parameter with a zero-length
     Parameter Value field would have a Length field of 4.  The
     Parameter Length does not include any padding bytes.

  Chunk Parameter Value: variable length

     The Parameter Value field contains the actual information to be
     transferred in the parameter.

     The total length of a parameter (including Type, Parameter Length,
     and Value fields) MUST be a multiple of 4 bytes.  If the length of
     the parameter is not a multiple of 4 bytes, the sender pads the
     parameter at the end (i.e., after the Parameter Value field) with
     all zero bytes.  The length of the padding is not included in the
     Parameter Length field.  A sender MUST NOT pad with more than 3
     bytes.  The receiver MUST ignore the padding bytes.

     The Parameter Types are encoded such that the highest-order 2 bits
     specify the action that must be taken if the processing endpoint
     does not recognize the Parameter Type.

     00 -  Stop processing this parameter; do not process any further
           parameters within this chunk.

     01 -  Stop processing this parameter, do not process any further
           parameters within this chunk, and report the unrecognized
           parameter in an 'Unrecognized Parameter', as described in
           Section 3.2.2.

     10 -  Skip this parameter and continue processing.

     11 -  Skip this parameter and continue processing but report the
           unrecognized parameter in an 'Unrecognized Parameter', as
           described in Section 3.2.2.




Stewart                     Standards Track                    [Page 20]

RFC 4960          Stream Control Transmission Protocol    September 2007


  Please note that in all four cases, an INIT ACK or COOKIE ECHO chunk
  is sent.  In the 00 or 01 case, the processing of the parameters
  after the unknown parameter is canceled, but no processing already
  done is rolled back.

  The actual SCTP parameters are defined in the specific SCTP chunk
  sections.  The rules for IETF-defined parameter extensions are
  defined in Section 14.2.  Note that a parameter type MUST be unique
  across all chunks.  For example, the parameter type '5' is used to
  represent an IPv4 address (see Section 3.3.2.1).  The value '5' then
  is reserved across all chunks to represent an IPv4 address and MUST
  NOT be reused with a different meaning in any other chunk.

3.2.2.  Reporting of Unrecognized Parameters

  If the receiver of an INIT chunk detects unrecognized parameters and
  has to report them according to Section 3.2.1, it MUST put the
  'Unrecognized Parameter' parameter(s) in the INIT ACK chunk sent in
  response to the INIT chunk.  Note that if the receiver of the INIT
  chunk is NOT going to establish an association (e.g., due to lack of
  resources), an 'Unrecognized Parameter' would NOT be included with
  any ABORT being sent to the sender of the INIT.

  If the receiver of an INIT ACK chunk detects unrecognized parameters
  and has to report them according to Section 3.2.1, it SHOULD bundle
  the ERROR chunk containing the 'Unrecognized Parameters' error cause
  with the COOKIE ECHO chunk sent in response to the INIT ACK chunk.
  If the receiver of the INIT ACK cannot bundle the COOKIE ECHO chunk
  with the ERROR chunk, the ERROR chunk MAY be sent separately but not
  before the COOKIE ACK has been received.

  Note: Any time a COOKIE ECHO is sent in a packet, it MUST be the
  first chunk.

3.3.  SCTP Chunk Definitions

  This section defines the format of the different SCTP chunk types.














Stewart                     Standards Track                    [Page 21]

RFC 4960          Stream Control Transmission Protocol    September 2007


3.3.1.  Payload Data (DATA) (0)

  The following format MUST be used for the DATA chunk:

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |   Type = 0    | Reserved|U|B|E|    Length                     |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                              TSN                              |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |      Stream Identifier S      |   Stream Sequence Number n    |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                  Payload Protocol Identifier                  |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      \                                                               \
      /                 User Data (seq n of Stream S)                 /
      \                                                               \
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Reserved: 5 bits

     Should be set to all '0's and ignored by the receiver.

  U bit: 1 bit

     The (U)nordered bit, if set to '1', indicates that this is an
     unordered DATA chunk, and there is no Stream Sequence Number
     assigned to this DATA chunk.  Therefore, the receiver MUST ignore
     the Stream Sequence Number field.

     After reassembly (if necessary), unordered DATA chunks MUST be
     dispatched to the upper layer by the receiver without any attempt
     to reorder.

     If an unordered user message is fragmented, each fragment of the
     message MUST have its U bit set to '1'.

  B bit: 1 bit

     The (B)eginning fragment bit, if set, indicates the first fragment
     of a user message.

  E bit: 1 bit

     The (E)nding fragment bit, if set, indicates the last fragment of
     a user message.




Stewart                     Standards Track                    [Page 22]

RFC 4960          Stream Control Transmission Protocol    September 2007


  An unfragmented user message shall have both the B and E bits set to
  '1'.  Setting both B and E bits to '0' indicates a middle fragment of
  a multi-fragment user message, as summarized in the following table:

              B E                  Description
           ============================================================
           |  1 0 | First piece of a fragmented user message          |
           +----------------------------------------------------------+
           |  0 0 | Middle piece of a fragmented user message         |
           +----------------------------------------------------------+
           |  0 1 | Last piece of a fragmented user message           |
           +----------------------------------------------------------+
           |  1 1 | Unfragmented message                              |
           ============================================================
           |             Table 1: Fragment Description Flags          |
           ============================================================

  When a user message is fragmented into multiple chunks, the TSNs are
  used by the receiver to reassemble the message.  This means that the
  TSNs for each fragment of a fragmented user message MUST be strictly
  sequential.

  Length: 16 bits (unsigned integer)

     This field indicates the length of the DATA chunk in bytes from
     the beginning of the type field to the end of the User Data field
     excluding any padding.  A DATA chunk with one byte of user data
     will have Length set to 17 (indicating 17 bytes).

     A DATA chunk with a User Data field of length L will have the
     Length field set to (16 + L) (indicating 16+L bytes) where L MUST
     be greater than 0.

  TSN: 32 bits (unsigned integer)

     This value represents the TSN for this DATA chunk.  The valid
     range of TSN is from 0 to 4294967295 (2**32 - 1).  TSN wraps back
     to 0 after reaching 4294967295.

  Stream Identifier S: 16 bits (unsigned integer)

     Identifies the stream to which the following user data belongs.

  Stream Sequence Number n: 16 bits (unsigned integer)

     This value represents the Stream Sequence Number of the following
     user data within the stream S.  Valid range is 0 to 65535.




Stewart                     Standards Track                    [Page 23]

RFC 4960          Stream Control Transmission Protocol    September 2007


     When a user message is fragmented by SCTP for transport, the same
     Stream Sequence Number MUST be carried in each of the fragments of
     the message.

  Payload Protocol Identifier: 32 bits (unsigned integer)

     This value represents an application (or upper layer) specified
     protocol identifier.  This value is passed to SCTP by its upper
     layer and sent to its peer.  This identifier is not used by SCTP
     but can be used by certain network entities, as well as by the
     peer application, to identify the type of information being
     carried in this DATA chunk.  This field must be sent even in
     fragmented DATA chunks (to make sure it is available for agents in
     the middle of the network).  Note that this field is NOT touched
     by an SCTP implementation; therefore, its byte order is NOT
     necessarily big endian.  The upper layer is responsible for any
     byte order conversions to this field.

     The value 0 indicates that no application identifier is specified
     by the upper layer for this payload data.

  User Data: variable length

     This is the payload user data.  The implementation MUST pad the
     end of the data to a 4-byte boundary with all-zero bytes.  Any
     padding MUST NOT be included in the Length field.  A sender MUST
     never add more than 3 bytes of padding.

3.3.2.  Initiation (INIT) (1)

  This chunk is used to initiate an SCTP association between two
  endpoints.  The format of the INIT chunk is shown below:



















Stewart                     Standards Track                    [Page 24]

RFC 4960          Stream Control Transmission Protocol    September 2007


       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |   Type = 1    |  Chunk Flags  |      Chunk Length             |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                         Initiate Tag                          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |           Advertised Receiver Window Credit (a_rwnd)          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |  Number of Outbound Streams   |  Number of Inbound Streams    |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                          Initial TSN                          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      \                                                               \
      /              Optional/Variable-Length Parameters              /
      \                                                               \
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  The INIT chunk contains the following parameters.  Unless otherwise
  noted, each parameter MUST only be included once in the INIT chunk.

           Fixed Parameters                     Status
           ----------------------------------------------
           Initiate Tag                        Mandatory
           Advertised Receiver Window Credit   Mandatory
           Number of Outbound Streams          Mandatory
           Number of Inbound Streams           Mandatory
           Initial TSN                         Mandatory

         Variable Parameters                  Status     Type Value
         -------------------------------------------------------------
         IPv4 Address (Note 1)               Optional    5 IPv6 Address
         (Note 1)               Optional    6 Cookie Preservative
         Optional    9 Reserved for ECN Capable (Note 2)   Optional
         32768 (0x8000) Host Name Address (Note 3)          Optional
         11 Supported Address Types (Note 4)    Optional    12

  Note 1: The INIT chunks can contain multiple addresses that can be
  IPv4 and/or IPv6 in any combination.

  Note 2: The ECN Capable field is reserved for future use of Explicit
  Congestion Notification.

  Note 3: An INIT chunk MUST NOT contain more than one Host Name
  Address parameter.  Moreover, the sender of the INIT MUST NOT combine
  any other address types with the Host Name Address in the INIT.  The
  receiver of INIT MUST ignore any other address types if the Host Name
  Address parameter is present in the received INIT chunk.



Stewart                     Standards Track                    [Page 25]

RFC 4960          Stream Control Transmission Protocol    September 2007


  Note 4: This parameter, when present, specifies all the address types
  the sending endpoint can support.  The absence of this parameter
  indicates that the sending endpoint can support any address type.

  IMPLEMENTATION NOTE: If an INIT chunk is received with known
  parameters that are not optional parameters of the INIT chunk, then
  the receiver SHOULD process the INIT chunk and send back an INIT ACK.
  The receiver of the INIT chunk MAY bundle an ERROR chunk with the
  COOKIE ACK chunk later.  However, restrictive implementations MAY
  send back an ABORT chunk in response to the INIT chunk.

  The Chunk Flags field in INIT is reserved, and all bits in it should
  be set to 0 by the sender and ignored by the receiver.  The sequence
  of parameters within an INIT can be processed in any order.

  Initiate Tag: 32 bits (unsigned integer)

     The receiver of the INIT (the responding end) records the value of
     the Initiate Tag parameter.  This value MUST be placed into the
     Verification Tag field of every SCTP packet that the receiver of
     the INIT transmits within this association.

     The Initiate Tag is allowed to have any value except 0.  See
     Section 5.3.1 for more on the selection of the tag value.

     If the value of the Initiate Tag in a received INIT chunk is found
     to be 0, the receiver MUST treat it as an error and close the
     association by transmitting an ABORT.

  Advertised Receiver Window Credit (a_rwnd): 32 bits (unsigned
  integer)

     This value represents the dedicated buffer space, in number of
     bytes, the sender of the INIT has reserved in association with
     this window.  During the life of the association, this buffer
     space SHOULD NOT be lessened (i.e., dedicated buffers taken away
     from this association); however, an endpoint MAY change the value
     of a_rwnd it sends in SACK chunks.

  Number of Outbound Streams (OS): 16 bits (unsigned integer)

     Defines the number of outbound streams the sender of this INIT
     chunk wishes to create in this association.  The value of 0 MUST
     NOT be used.

     Note: A receiver of an INIT with the OS value set to 0 SHOULD
     abort the association.




Stewart                     Standards Track                    [Page 26]

RFC 4960          Stream Control Transmission Protocol    September 2007


  Number of Inbound Streams (MIS): 16 bits (unsigned integer)

     Defines the maximum number of streams the sender of this INIT
     chunk allows the peer end to create in this association.  The
     value 0 MUST NOT be used.

     Note: There is no negotiation of the actual number of streams but
     instead the two endpoints will use the min(requested, offered).
     See Section 5.1.1 for details.

     Note: A receiver of an INIT with the MIS value of 0 SHOULD abort
     the association.

  Initial TSN (I-TSN): 32 bits (unsigned integer)

     Defines the initial TSN that the sender will use.  The valid range
     is from 0 to 4294967295.  This field MAY be set to the value of
     the Initiate Tag field.

3.3.2.1.  Optional/Variable-Length Parameters in INIT

  The following parameters follow the Type-Length-Value format as
  defined in Section 3.2.1.  Any Type-Length-Value fields MUST come
  after the fixed-length fields defined in the previous section.

  IPv4 Address Parameter (5)

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |        Type = 5               |      Length = 8               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                        IPv4 Address                           |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  IPv4 Address: 32 bits (unsigned integer)

     Contains an IPv4 address of the sending endpoint.  It is binary
     encoded.












Stewart                     Standards Track                    [Page 27]

RFC 4960          Stream Control Transmission Protocol    September 2007


  IPv6 Address Parameter (6)

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |            Type = 6           |          Length = 20          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                                                               |
      |                         IPv6 Address                          |
      |                                                               |
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  IPv6 Address: 128 bits (unsigned integer)

     Contains an IPv6 [RFC2460] address of the sending endpoint.  It is
     binary encoded.

     Note: A sender MUST NOT use an IPv4-mapped IPv6 address [RFC4291],
     but should instead use an IPv4 Address parameter for an IPv4
     address.

     Combined with the Source Port Number in the SCTP common header,
     the value passed in an IPv4 or IPv6 Address parameter indicates a
     transport address the sender of the INIT will support for the
     association being initiated.  That is, during the life time of
     this association, this IP address can appear in the source address
     field of an IP datagram sent from the sender of the INIT, and can
     be used as a destination address of an IP datagram sent from the
     receiver of the INIT.

     More than one IP Address parameter can be included in an INIT
     chunk when the INIT sender is multi-homed.  Moreover, a multi-
     homed endpoint may have access to different types of network;
     thus, more than one address type can be present in one INIT chunk,
     i.e., IPv4 and IPv6 addresses are allowed in the same INIT chunk.

     If the INIT contains at least one IP Address parameter, then the
     source address of the IP datagram containing the INIT chunk and
     any additional address(es) provided within the INIT can be used as
     destinations by the endpoint receiving the INIT.  If the INIT does
     not contain any IP Address parameters, the endpoint receiving the
     INIT MUST use the source address associated with the received IP
     datagram as its sole destination address for the association.

     Note that not using any IP Address parameters in the INIT and INIT
     ACK is an alternative to make an association more likely to work
     across a NAT box.



Stewart                     Standards Track                    [Page 28]

RFC 4960          Stream Control Transmission Protocol    September 2007


  Cookie Preservative (9)

  The sender of the INIT shall use this parameter to suggest to the
  receiver of the INIT for a longer life-span of the State Cookie.

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |          Type = 9             |          Length = 8           |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |         Suggested Cookie Life-Span Increment (msec.)          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Suggested Cookie Life-Span Increment: 32 bits (unsigned integer)

     This parameter indicates to the receiver how much increment in
     milliseconds the sender wishes the receiver to add to its default
     cookie life-span.

     This optional parameter should be added to the INIT chunk by the
     sender when it reattempts establishing an association with a peer
     to which its previous attempt of establishing the association
     failed due to a stale cookie operation error.  The receiver MAY
     choose to ignore the suggested cookie life-span increase for its
     own security reasons.

  Host Name Address (11)

  The sender of INIT uses this parameter to pass its Host Name (in
  place of its IP addresses) to its peer.  The peer is responsible for
  resolving the name.  Using this parameter might make it more likely
  for the association to work across a NAT box.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |          Type = 11            |          Length               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      /                          Host Name                            /
      \                                                               \
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Host Name: variable length

     This field contains a host name in "host name syntax" per RFC 1123
     Section 2.1 [RFC1123].  The method for resolving the host name is
     out of scope of SCTP.




Stewart                     Standards Track                    [Page 29]

RFC 4960          Stream Control Transmission Protocol    September 2007


     Note: At least one null terminator is included in the Host Name
     string and must be included in the length.

  Supported Address Types (12)

  The sender of INIT uses this parameter to list all the address types
  it can support.

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |          Type = 12            |          Length               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |        Address Type #1        |        Address Type #2        |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                            ......                             |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-++-+-+-+-+-+-+-+-+-+-+-+-+-+-++-+-+-+

  Address Type: 16 bits (unsigned integer)

     This is filled with the type value of the corresponding address
     TLV (e.g., IPv4 = 5, IPv6 = 6, Host name = 11).

3.3.3.  Initiation Acknowledgement (INIT ACK) (2)

  The INIT ACK chunk is used to acknowledge the initiation of an SCTP
  association.

  The parameter part of INIT ACK is formatted similarly to the INIT
  chunk.  It uses two extra variable parameters: The State Cookie and
  the Unrecognized Parameter:




















Stewart                     Standards Track                    [Page 30]

RFC 4960          Stream Control Transmission Protocol    September 2007


  The format of the INIT ACK chunk is shown below:

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |   Type = 2    |  Chunk Flags  |      Chunk Length             |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                         Initiate Tag                          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |              Advertised Receiver Window Credit                |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |  Number of Outbound Streams   |  Number of Inbound Streams    |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                          Initial TSN                          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      \                                                               \
      /              Optional/Variable-Length Parameters              /
      \                                                               \
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Initiate Tag: 32 bits (unsigned integer)

     The receiver of the INIT ACK records the value of the Initiate Tag
     parameter.  This value MUST be placed into the Verification Tag
     field of every SCTP packet that the INIT ACK receiver transmits
     within this association.

     The Initiate Tag MUST NOT take the value 0.  See Section 5.3.1 for
     more on the selection of the Initiate Tag value.

     If the value of the Initiate Tag in a received INIT ACK chunk is
     found to be 0, the receiver MUST destroy the association
     discarding its TCB.  The receiver MAY send an ABORT for debugging
     purpose.

  Advertised Receiver Window Credit (a_rwnd): 32 bits (unsigned
  integer)

     This value represents the dedicated buffer space, in number of
     bytes, the sender of the INIT ACK has reserved in association with
     this window.  During the life of the association, this buffer
     space SHOULD NOT be lessened (i.e., dedicated buffers taken away
     from this association).

  Number of Outbound Streams (OS): 16 bits (unsigned integer)

     Defines the number of outbound streams the sender of this INIT ACK
     chunk wishes to create in this association.  The value of 0 MUST



Stewart                     Standards Track                    [Page 31]

RFC 4960          Stream Control Transmission Protocol    September 2007


     NOT be used, and the value MUST NOT be greater than the MIS value
     sent in the INIT chunk.

     Note: A receiver of an INIT ACK with the OS value set to 0 SHOULD
     destroy the association discarding its TCB.

  Number of Inbound Streams (MIS): 16 bits (unsigned integer)

     Defines the maximum number of streams the sender of this INIT ACK
     chunk allows the peer end to create in this association.  The
     value 0 MUST NOT be used.

     Note: There is no negotiation of the actual number of streams but
     instead the two endpoints will use the min(requested, offered).
     See Section 5.1.1 for details.

     Note: A receiver of an INIT ACK with the MIS value set to 0 SHOULD
     destroy the association discarding its TCB.

  Initial TSN (I-TSN): 32 bits (unsigned integer)

     Defines the initial TSN that the INIT ACK sender will use.  The
     valid range is from 0 to 4294967295.  This field MAY be set to the
     value of the Initiate Tag field.

        Fixed Parameters                     Status
        ----------------------------------------------
        Initiate Tag                        Mandatory
        Advertised Receiver Window Credit   Mandatory
        Number of Outbound Streams          Mandatory
        Number of Inbound Streams           Mandatory
        Initial TSN                         Mandatory

        Variable Parameters                  Status     Type Value
        -------------------------------------------------------------
        State Cookie                        Mandatory   7
        IPv4 Address (Note 1)               Optional    5
        IPv6 Address (Note 1)               Optional    6
        Unrecognized Parameter              Optional    8
        Reserved for ECN Capable (Note 2)   Optional    32768 (0x8000)
        Host Name Address (Note 3)          Optional    11

  Note 1: The INIT ACK chunks can contain any number of IP address
  parameters that can be IPv4 and/or IPv6 in any combination.

  Note 2: The ECN Capable field is reserved for future use of Explicit
  Congestion Notification.




Stewart                     Standards Track                    [Page 32]

RFC 4960          Stream Control Transmission Protocol    September 2007


  Note 3: The INIT ACK chunks MUST NOT contain more than one Host Name
  Address parameter.  Moreover, the sender of the INIT ACK MUST NOT
  combine any other address types with the Host Name Address in the
  INIT ACK.  The receiver of the INIT ACK MUST ignore any other address
  types if the Host Name Address parameter is present.

  IMPLEMENTATION NOTE: An implementation MUST be prepared to receive an
  INIT ACK that is quite large (more than 1500 bytes) due to the
  variable size of the State Cookie AND the variable address list.  For
  example if a responder to the INIT has 1000 IPv4 addresses it wishes
  to send, it would need at least 8,000 bytes to encode this in the
  INIT ACK.

  IMPLEMENTATION NOTE: If an INIT ACK chunk is received with known
  parameters that are not optional parameters of the INIT ACK chunk,
  then the receiver SHOULD process the INIT ACK chunk and send back a
  COOKIE ECHO.  The receiver of the INIT ACK chunk MAY bundle an ERROR
  chunk with the COOKIE ECHO chunk.  However, restrictive
  implementations MAY send back an ABORT chunk in response to the INIT
  ACK chunk.

  In combination with the Source Port carried in the SCTP common
  header, each IP Address parameter in the INIT ACK indicates to the
  receiver of the INIT ACK a valid transport address supported by the
  sender of the INIT ACK for the life time of the association being
  initiated.

  If the INIT ACK contains at least one IP Address parameter, then the
  source address of the IP datagram containing the INIT ACK and any
  additional address(es) provided within the INIT ACK may be used as
  destinations by the receiver of the INIT ACK.  If the INIT ACK does
  not contain any IP Address parameters, the receiver of the INIT ACK
  MUST use the source address associated with the received IP datagram
  as its sole destination address for the association.

  The State Cookie and Unrecognized Parameters use the Type-Length-
  Value format as defined in Section 3.2.1 and are described below.
  The other fields are defined the same as their counterparts in the
  INIT chunk.

3.3.3.1.  Optional or Variable-Length Parameters

  State Cookie

  Parameter Type Value: 7

     Parameter Length: Variable size, depending on size of Cookie.




Stewart                     Standards Track                    [Page 33]

RFC 4960          Stream Control Transmission Protocol    September 2007


  Parameter Value:

     This parameter value MUST contain all the necessary state and
     parameter information required for the sender of this INIT ACK to
     create the association, along with a Message Authentication Code
     (MAC).  See Section 5.1.3 for details on State Cookie definition.

  Unrecognized Parameter:

     Parameter Type Value: 8

  Parameter Length: Variable size.

  Parameter Value:

     This parameter is returned to the originator of the INIT chunk
     when the INIT contains an unrecognized parameter that has a value
     that indicates it should be reported to the sender.  This
     parameter value field will contain unrecognized parameters copied
     from the INIT chunk complete with Parameter Type, Length, and
     Value fields.

3.3.4.  Selective Acknowledgement (SACK) (3)

  This chunk is sent to the peer endpoint to acknowledge received DATA
  chunks and to inform the peer endpoint of gaps in the received
  subsequences of DATA chunks as represented by their TSNs.

  The SACK MUST contain the Cumulative TSN Ack, Advertised Receiver
  Window Credit (a_rwnd), Number of Gap Ack Blocks, and Number of
  Duplicate TSNs fields.

  By definition, the value of the Cumulative TSN Ack parameter is the
  last TSN received before a break in the sequence of received TSNs
  occurs; the next TSN value following this one has not yet been
  received at the endpoint sending the SACK.  This parameter therefore
  acknowledges receipt of all TSNs less than or equal to its value.

  The handling of a_rwnd by the receiver of the SACK is discussed in
  detail in Section 6.2.1.

  The SACK also contains zero or more Gap Ack Blocks.  Each Gap Ack
  Block acknowledges a subsequence of TSNs received following a break
  in the sequence of received TSNs.  By definition, all TSNs
  acknowledged by Gap Ack Blocks are greater than the value of the
  Cumulative TSN Ack.





Stewart                     Standards Track                    [Page 34]

RFC 4960          Stream Control Transmission Protocol    September 2007


       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |   Type = 3    |Chunk  Flags   |      Chunk Length             |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                      Cumulative TSN Ack                       |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |          Advertised Receiver Window Credit (a_rwnd)           |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      | Number of Gap Ack Blocks = N  |  Number of Duplicate TSNs = X |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |  Gap Ack Block #1 Start       |   Gap Ack Block #1 End        |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      /                                                               /
      \                              ...                              \
      /                                                               /
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |   Gap Ack Block #N Start      |  Gap Ack Block #N End         |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                       Duplicate TSN 1                         |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      /                                                               /
      \                              ...                              \
      /                                                               /
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                       Duplicate TSN X                         |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Chunk Flags: 8 bits

     Set to all '0's on transmit and ignored on receipt.

  Cumulative TSN Ack: 32 bits (unsigned integer)

     This parameter contains the TSN of the last DATA chunk received in
     sequence before a gap.  In the case where no DATA chunk has been
     received, this value is set to the peer's Initial TSN minus one.

  Advertised Receiver Window Credit (a_rwnd): 32 bits (unsigned
  integer)

     This field indicates the updated receive buffer space in bytes of
     the sender of this SACK; see Section 6.2.1 for details.

  Number of Gap Ack Blocks: 16 bits (unsigned integer)

     Indicates the number of Gap Ack Blocks included in this SACK.




Stewart                     Standards Track                    [Page 35]

RFC 4960          Stream Control Transmission Protocol    September 2007


  Number of Duplicate TSNs: 16 bit

     This field contains the number of duplicate TSNs the endpoint has
     received.  Each duplicate TSN is listed following the Gap Ack
     Block list.

  Gap Ack Blocks:

     These fields contain the Gap Ack Blocks.  They are repeated for
     each Gap Ack Block up to the number of Gap Ack Blocks defined in
     the Number of Gap Ack Blocks field.  All DATA chunks with TSNs
     greater than or equal to (Cumulative TSN Ack + Gap Ack Block
     Start) and less than or equal to (Cumulative TSN Ack + Gap Ack
     Block End) of each Gap Ack Block are assumed to have been received
     correctly.

  Gap Ack Block Start: 16 bits (unsigned integer)

     Indicates the Start offset TSN for this Gap Ack Block.  To
     calculate the actual TSN number the Cumulative TSN Ack is added to
     this offset number.  This calculated TSN identifies the first TSN
     in this Gap Ack Block that has been received.

  Gap Ack Block End: 16 bits (unsigned integer)

     Indicates the End offset TSN for this Gap Ack Block.  To calculate
     the actual TSN number, the Cumulative TSN Ack is added to this
     offset number.  This calculated TSN identifies the TSN of the last
     DATA chunk received in this Gap Ack Block.






















Stewart                     Standards Track                    [Page 36]

RFC 4960          Stream Control Transmission Protocol    September 2007


  For example, assume that the receiver has the following DATA chunks
  newly arrived at the time when it decides to send a Selective ACK,

                          ----------
                          | TSN=17 |
                          ----------
                          |        | <- still missing
                          ----------
                          | TSN=15 |
                          ----------
                          | TSN=14 |
                          ----------
                          |        | <- still missing
                          ----------
                          | TSN=12 |
                          ----------
                          | TSN=11 |
                          ----------
                          | TSN=10 |
                          ----------

  then the parameter part of the SACK MUST be constructed as follows
  (assuming the new a_rwnd is set to 4660 by the sender):

                    +--------------------------------+
                    |   Cumulative TSN Ack = 12      |
                    +--------------------------------+
                    |        a_rwnd = 4660           |
                    +----------------+---------------+
                    | num of block=2 | num of dup=0  |
                    +----------------+---------------+
                    |block #1 strt=2 |block #1 end=3 |
                    +----------------+---------------+
                    |block #2 strt=5 |block #2 end=5 |
                    +----------------+---------------+

  Duplicate TSN: 32 bits (unsigned integer)

     Indicates the number of times a TSN was received in duplicate
     since the last SACK was sent.  Every time a receiver gets a
     duplicate TSN (before sending the SACK), it adds it to the list of
     duplicates.  The duplicate count is reinitialized to zero after
     sending each SACK.

  For example, if a receiver were to get the TSN 19 three times it
  would list 19 twice in the outbound SACK.  After sending the SACK, if
  it received yet one more TSN 19 it would list 19 as a duplicate once
  in the next outgoing SACK.



Stewart                     Standards Track                    [Page 37]

RFC 4960          Stream Control Transmission Protocol    September 2007


3.3.5.  Heartbeat Request (HEARTBEAT) (4)

  An endpoint should send this chunk to its peer endpoint to probe the
  reachability of a particular destination transport address defined in
  the present association.

  The parameter field contains the Heartbeat Information, which is a
  variable-length opaque data structure understood only by the sender.

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |   Type = 4    | Chunk  Flags  |      Heartbeat Length         |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      \                                                               \
      /            Heartbeat Information TLV (Variable-Length)        /
      \                                                               \
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Chunk Flags: 8 bits

     Set to 0 on transmit and ignored on receipt.

  Heartbeat Length: 16 bits (unsigned integer)

     Set to the size of the chunk in bytes, including the chunk header
     and the Heartbeat Information field.

  Heartbeat Information: variable length

     Defined as a variable-length parameter using the format described
     in Section 3.2.1, i.e.:

        Variable Parameters                  Status     Type Value
        -------------------------------------------------------------
        Heartbeat Info                       Mandatory   1

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |    Heartbeat Info Type=1      |         HB Info Length        |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      /                  Sender-Specific Heartbeat Info               /
      \                                                               \
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     The Sender-Specific Heartbeat Info field should normally include
     information about the sender's current time when this HEARTBEAT



Stewart                     Standards Track                    [Page 38]

RFC 4960          Stream Control Transmission Protocol    September 2007


     chunk is sent and the destination transport address to which this
     HEARTBEAT is sent (see Section 8.3).  This information is simply
     reflected back by the receiver in the HEARTBEAT ACK message (see
     Section 3.3.6).  Note also that the HEARTBEAT message is both for
     reachability checking and for path verification (see Section 5.4).
     When a HEARTBEAT chunk is being used for path verification
     purposes, it MUST hold a 64-bit random nonce.

3.3.6.  Heartbeat Acknowledgement (HEARTBEAT ACK) (5)

  An endpoint should send this chunk to its peer endpoint as a response
  to a HEARTBEAT chunk (see Section 8.3).  A HEARTBEAT ACK is always
  sent to the source IP address of the IP datagram containing the
  HEARTBEAT chunk to which this ack is responding.

  The parameter field contains a variable-length opaque data structure.

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |   Type = 5    | Chunk  Flags  |    Heartbeat Ack Length       |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      \                                                               \
      /            Heartbeat Information TLV (Variable-Length)        /
      \                                                               \
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Chunk Flags: 8 bits

     Set to 0 on transmit and ignored on receipt.

  Heartbeat Ack Length: 16 bits (unsigned integer)

     Set to the size of the chunk in bytes, including the chunk header
     and the Heartbeat Information field.

  Heartbeat Information: variable length

     This field MUST contain the Heartbeat Information parameter of the
     Heartbeat Request to which this Heartbeat Acknowledgement is
     responding.

        Variable Parameters                  Status     Type Value
        -------------------------------------------------------------
        Heartbeat Info                       Mandatory   1






Stewart                     Standards Track                    [Page 39]

RFC 4960          Stream Control Transmission Protocol    September 2007


3.3.7.  Abort Association (ABORT) (6)

  The ABORT chunk is sent to the peer of an association to close the
  association.  The ABORT chunk may contain Cause Parameters to inform
  the receiver about the reason of the abort.  DATA chunks MUST NOT be
  bundled with ABORT.  Control chunks (except for INIT, INIT ACK, and
  SHUTDOWN COMPLETE) MAY be bundled with an ABORT, but they MUST be
  placed before the ABORT in the SCTP packet or they will be ignored by
  the receiver.

  If an endpoint receives an ABORT with a format error or no TCB is
  found, it MUST silently discard it.  Moreover, under any
  circumstances, an endpoint that receives an ABORT MUST NOT respond to
  that ABORT by sending an ABORT of its own.

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |   Type = 6    |Reserved     |T|           Length              |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      \                                                               \
      /                   zero or more Error Causes                   /
      \                                                               \
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Chunk Flags: 8 bits

     Reserved: 7 bits

     Set to 0 on transmit and ignored on receipt.

     T bit: 1 bit

     The T bit is set to 0 if the sender filled in the Verification Tag
     expected by the peer.  If the Verification Tag is reflected, the T
     bit MUST be set to 1.  Reflecting means that the sent Verification
     Tag is the same as the received one.

     Note: Special rules apply to this chunk for verification; please
     see Section 8.5.1 for details.

  Length: 16 bits (unsigned integer)

     Set to the size of the chunk in bytes, including the chunk header
     and all the Error Cause fields present.

     See Section 3.3.10 for Error Cause definitions.




Stewart                     Standards Track                    [Page 40]

RFC 4960          Stream Control Transmission Protocol    September 2007


3.3.8.  Shutdown Association (SHUTDOWN) (7)

  An endpoint in an association MUST use this chunk to initiate a
  graceful close of the association with its peer.  This chunk has the
  following format.

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |   Type = 7    | Chunk  Flags  |      Length = 8               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                      Cumulative TSN Ack                       |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Chunk Flags: 8 bits

     Set to 0 on transmit and ignored on receipt.

  Length: 16 bits (unsigned integer)

     Indicates the length of the parameter.  Set to 8.

  Cumulative TSN Ack: 32 bits (unsigned integer)

     This parameter contains the TSN of the last chunk received in
     sequence before any gaps.

     Note: Since the SHUTDOWN message does not contain Gap Ack Blocks,
     it cannot be used to acknowledge TSNs received out of order.  In a
     SACK, lack of Gap Ack Blocks that were previously included
     indicates that the data receiver reneged on the associated DATA
     chunks.  Since SHUTDOWN does not contain Gap Ack Blocks, the
     receiver of the SHUTDOWN shouldn't interpret the lack of a Gap Ack
     Block as a renege.  (See Section 6.2 for information on reneging.)

3.3.9.  Shutdown Acknowledgement (SHUTDOWN ACK) (8)

  This chunk MUST be used to acknowledge the receipt of the SHUTDOWN
  chunk at the completion of the shutdown process; see Section 9.2 for
  details.

  The SHUTDOWN ACK chunk has no parameters.









Stewart                     Standards Track                    [Page 41]

RFC 4960          Stream Control Transmission Protocol    September 2007


       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |   Type = 8    |Chunk  Flags   |      Length = 4               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Chunk Flags: 8 bits

     Set to 0 on transmit and ignored on receipt.

3.3.10.  Operation Error (ERROR) (9)

  An endpoint sends this chunk to its peer endpoint to notify it of
  certain error conditions.  It contains one or more error causes.  An
  Operation Error is not considered fatal in and of itself, but may be
  used with an ABORT chunk to report a fatal condition.  It has the
  following parameters:

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |   Type = 9    | Chunk  Flags  |           Length              |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      \                                                               \
      /                    one or more Error Causes                   /
      \                                                               \
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Chunk Flags: 8 bits

     Set to 0 on transmit and ignored on receipt.

  Length: 16 bits (unsigned integer)

     Set to the size of the chunk in bytes, including the chunk header
     and all the Error Cause fields present.















Stewart                     Standards Track                    [Page 42]

RFC 4960          Stream Control Transmission Protocol    September 2007


  Error causes are defined as variable-length parameters using the
  format described in Section 3.2.1, that is:

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |           Cause Code          |       Cause Length            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      /                    Cause-Specific Information                 /
      \                                                               \
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Cause Code: 16 bits (unsigned integer)

     Defines the type of error conditions being reported.

        Cause Code
        Value           Cause Code
        ---------      ----------------
         1              Invalid Stream Identifier
         2              Missing Mandatory Parameter
         3              Stale Cookie Error
         4              Out of Resource
         5              Unresolvable Address
         6              Unrecognized Chunk Type
         7              Invalid Mandatory Parameter
         8              Unrecognized Parameters
         9              No User Data
        10              Cookie Received While Shutting Down
        11              Restart of an Association with New Addresses
        12              User Initiated Abort
        13              Protocol Violation

  Cause Length: 16 bits (unsigned integer)

     Set to the size of the parameter in bytes, including the Cause
     Code, Cause Length, and Cause-Specific Information fields.

  Cause-Specific Information: variable length

     This field carries the details of the error condition.

  Section 3.3.10.1 - Section 3.3.10.13 define error causes for SCTP.
  Guidelines for the IETF to define new error cause values are
  discussed in Section 14.3.






Stewart                     Standards Track                    [Page 43]

RFC 4960          Stream Control Transmission Protocol    September 2007


3.3.10.1.  Invalid Stream Identifier (1)

  Cause of error
  ---------------

  Invalid Stream Identifier: Indicates endpoint received a DATA chunk
  sent to a nonexistent stream.

      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |     Cause Code=1              |      Cause Length=8           |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |        Stream Identifier      |         (Reserved)            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Stream Identifier: 16 bits (unsigned integer)

     Contains the Stream Identifier of the DATA chunk received in
     error.

  Reserved: 16 bits

     This field is reserved.  It is set to all 0's on transmit and
     ignored on receipt.

3.3.10.2.  Missing Mandatory Parameter (2)

  Cause of error
  ---------------

  Missing Mandatory Parameter: Indicates that one or more mandatory TLV
  parameters are missing in a received INIT or INIT ACK.

      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |     Cause Code=2              |      Cause Length=8+N*2       |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                   Number of missing params=N                  |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |   Missing Param Type #1       |   Missing Param Type #2       |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |   Missing Param Type #N-1     |   Missing Param Type #N       |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Number of Missing params: 32 bits (unsigned integer)

     This field contains the number of parameters contained in the
     Cause-Specific Information field.





Stewart                     Standards Track                    [Page 44]

RFC 4960          Stream Control Transmission Protocol    September 2007


  Missing Param Type: 16 bits (unsigned integer)

     Each field will contain the missing mandatory parameter number.

3.3.10.3.  Stale Cookie Error (3)

  Cause of error
  --------------

  Stale Cookie Error: Indicates the receipt of a valid State Cookie
  that has expired.

      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |     Cause Code=3              |       Cause Length=8          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                 Measure of Staleness (usec.)                  |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Measure of Staleness: 32 bits (unsigned integer)

     This field contains the difference, in microseconds, between the
     current time and the time the State Cookie expired.

     The sender of this error cause MAY choose to report how long past
     expiration the State Cookie is by including a non-zero value in
     the Measure of Staleness field.  If the sender does not wish to
     provide this information, it should set the Measure of Staleness
     field to the value of zero.

3.3.10.4.  Out of Resource (4)

  Cause of error
  ---------------

  Out of Resource: Indicates that the sender is out of resource.  This
  is usually sent in combination with or within an ABORT.

      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |     Cause Code=4              |      Cause Length=4           |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+











Stewart                     Standards Track                    [Page 45]

RFC 4960          Stream Control Transmission Protocol    September 2007


3.3.10.5.  Unresolvable Address (5)

  Cause of error
  ---------------

  Unresolvable Address: Indicates that the sender is not able to
  resolve the specified address parameter (e.g., type of address is not
  supported by the sender).  This is usually sent in combination with
  or within an ABORT.

      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |     Cause Code=5              |      Cause Length             |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      /                  Unresolvable Address                         /
      \                                                               \
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Unresolvable Address: variable length

     The Unresolvable Address field contains the complete Type, Length,
     and Value of the address parameter (or Host Name parameter) that
     contains the unresolvable address or host name.

3.3.10.6.  Unrecognized Chunk Type (6)

  Cause of error
  ---------------

  Unrecognized Chunk Type: This error cause is returned to the
  originator of the chunk if the receiver does not understand the chunk
  and the upper bits of the 'Chunk Type' are set to 01 or 11.

      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |     Cause Code=6              |      Cause Length             |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      /                  Unrecognized Chunk                           /
      \                                                               \
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Unrecognized Chunk: variable length

     The Unrecognized Chunk field contains the unrecognized chunk from
     the SCTP packet complete with Chunk Type, Chunk Flags, and Chunk
     Length.







Stewart                     Standards Track                    [Page 46]

RFC 4960          Stream Control Transmission Protocol    September 2007


3.3.10.7.  Invalid Mandatory Parameter (7)

  Cause of error
  ---------------

  Invalid Mandatory Parameter: This error cause is returned to the
  originator of an INIT or INIT ACK chunk when one of the mandatory
  parameters is set to an invalid value.

      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |     Cause Code=7              |      Cause Length=4           |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

3.3.10.8.  Unrecognized Parameters (8)

  Cause of error
  ---------------

  Unrecognized Parameters: This error cause is returned to the
  originator of the INIT ACK chunk if the receiver does not recognize
  one or more Optional TLV parameters in the INIT ACK chunk.

      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |     Cause Code=8              |      Cause Length             |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      /                  Unrecognized Parameters                      /
      \                                                               \
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Unrecognized Parameters: variable length

     The Unrecognized Parameters field contains the unrecognized
     parameters copied from the INIT ACK chunk complete with TLV.  This
     error cause is normally contained in an ERROR chunk bundled with
     the COOKIE ECHO chunk when responding to the INIT ACK, when the
     sender of the COOKIE ECHO chunk wishes to report unrecognized
     parameters.














Stewart                     Standards Track                    [Page 47]

RFC 4960          Stream Control Transmission Protocol    September 2007


3.3.10.9.  No User Data (9)

  Cause of error
  ---------------

  No User Data: This error cause is returned to the originator of a

  DATA chunk if a received DATA chunk has no user data.

      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |     Cause Code=9              |      Cause Length=8           |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      /                  TSN value                                    /
      \                                                               \
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  TSN value: 32 bits (unsigned integer)

     The TSN value field contains the TSN of the DATA chunk received
     with no user data field.

     This cause code is normally returned in an ABORT chunk (see
     Section 6.2).

3.3.10.10.  Cookie Received While Shutting Down (10)

  Cause of error
  ---------------

  Cookie Received While Shutting Down: A COOKIE ECHO was received while
  the endpoint was in the SHUTDOWN-ACK-SENT state.  This error is
  usually returned in an ERROR chunk bundled with the retransmitted
  SHUTDOWN ACK.

      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |     Cause Code=10              |      Cause Length=4          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+














Stewart                     Standards Track                    [Page 48]

RFC 4960          Stream Control Transmission Protocol    September 2007


3.3.10.11.  Restart of an Association with New Addresses (11)

  Cause of error
  --------------

  Restart of an association with new addresses: An INIT was received on
  an existing association.  But the INIT added addresses to the
  association that were previously NOT part of the association.  The
  new addresses are listed in the error code.  This ERROR is normally
  sent as part of an ABORT refusing the INIT (see Section 5.2).

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |         Cause Code=11         |      Cause Length=Variable    |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      /                       New Address TLVs                        /
      \                                                               \
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Note: Each New Address TLV is an exact copy of the TLV that was found
  in the INIT chunk that was new, including the Parameter Type and the
  Parameter Length.

3.3.10.12.  User-Initiated Abort (12)

  Cause of error
  --------------

  This error cause MAY be included in ABORT chunks that are sent
  because of an upper-layer request.  The upper layer can specify an
  Upper Layer Abort Reason that is transported by SCTP transparently
  and MAY be delivered to the upper-layer protocol at the peer.

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |         Cause Code=12         |      Cause Length=Variable    |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      /                    Upper Layer Abort Reason                   /
      \                                                               \
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+









Stewart                     Standards Track                    [Page 49]

RFC 4960          Stream Control Transmission Protocol    September 2007


3.3.10.13.  Protocol Violation (13)

  Cause of error
  --------------

  This error cause MAY be included in ABORT chunks that are sent
  because an SCTP endpoint detects a protocol violation of the peer
  that is not covered by the error causes described in Section 3.3.10.1
  to Section 3.3.10.12.  An implementation MAY provide additional
  information specifying what kind of protocol violation has been
  detected.

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |         Cause Code=13         |      Cause Length=Variable    |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      /                    Additional Information                     /
      \                                                               \
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

3.3.11.  Cookie Echo (COOKIE ECHO) (10)

  This chunk is used only during the initialization of an association.
  It is sent by the initiator of an association to its peer to complete
  the initialization process.  This chunk MUST precede any DATA chunk
  sent within the association, but MAY be bundled with one or more DATA
  chunks in the same packet.

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |   Type = 10   |Chunk  Flags   |         Length                |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      /                     Cookie                                    /
      \                                                               \
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Chunk Flags: 8 bit

     Set to 0 on transmit and ignored on receipt.

  Length: 16 bits (unsigned integer)

     Set to the size of the chunk in bytes, including the 4 bytes of
     the chunk header and the size of the cookie.





Stewart                     Standards Track                    [Page 50]

RFC 4960          Stream Control Transmission Protocol    September 2007


  Cookie: variable size

     This field must contain the exact cookie received in the State
     Cookie parameter from the previous INIT ACK.

     An implementation SHOULD make the cookie as small as possible to
     ensure interoperability.

     Note: A Cookie Echo does NOT contain a State Cookie parameter;
     instead, the data within the State Cookie's Parameter Value
     becomes the data within the Cookie Echo's Chunk Value.  This
     allows an implementation to change only the first 2 bytes of the
     State Cookie parameter to become a COOKIE ECHO chunk.

3.3.12.  Cookie Acknowledgement (COOKIE ACK) (11)

  This chunk is used only during the initialization of an association.
  It is used to acknowledge the receipt of a COOKIE ECHO chunk.  This
  chunk MUST precede any DATA or SACK chunk sent within the
  association, but MAY be bundled with one or more DATA chunks or SACK
  chunk's in the same SCTP packet.

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |   Type = 11   |Chunk  Flags   |     Length = 4                |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Chunk Flags: 8 bits

     Set to 0 on transmit and ignored on receipt.

3.3.13.  Shutdown Complete (SHUTDOWN COMPLETE) (14)

  This chunk MUST be used to acknowledge the receipt of the SHUTDOWN
  ACK chunk at the completion of the shutdown process; see Section 9.2
  for details.

  The SHUTDOWN COMPLETE chunk has no parameters.

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |   Type = 14   |Reserved     |T|      Length = 4               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Chunk Flags: 8 bits




Stewart                     Standards Track                    [Page 51]

RFC 4960          Stream Control Transmission Protocol    September 2007


     Reserved: 7 bits

        Set to 0 on transmit and ignored on receipt.

        T bit: 1 bit

     The T bit is set to 0 if the sender filled in the Verification Tag
     expected by the peer.  If the Verification Tag is reflected, the T
     bit MUST be set to 1.  Reflecting means that the sent Verification
     Tag is the same as the received one.

  Note: Special rules apply to this chunk for verification, please see
  Section 8.5.1 for details.

4.  SCTP Association State Diagram

  During the life time of an SCTP association, the SCTP endpoint's
  association progresses from one state to another in response to
  various events.  The events that may potentially advance an
  association's state include:

  o  SCTP user primitive calls, e.g., [ASSOCIATE], [SHUTDOWN], [ABORT],

  o  Reception of INIT, COOKIE ECHO, ABORT, SHUTDOWN, etc., control
     chunks, or

  o  Some timeout events.

  The state diagram in the figures below illustrates state changes,
  together with the causing events and resulting actions.  Note that
  some of the error conditions are not shown in the state diagram.
  Full descriptions of all special cases are found in the text.

  Note: Chunk names are given in all capital letters, while parameter
  names have the first letter capitalized, e.g., COOKIE ECHO chunk type
  vs. State Cookie parameter.  If more than one event/message can occur
  that causes a state transition, it is labeled (A), (B), etc.














Stewart                     Standards Track                    [Page 52]

RFC 4960          Stream Control Transmission Protocol    September 2007


                     -----          -------- (from any state)
                   /       \      /  rcv ABORT      [ABORT]
  rcv INIT        |         |    |   ----------  or ----------
  --------------- |         v    v   delete TCB     snd ABORT
  generate Cookie  \    +---------+                 delete TCB
  snd INIT ACK       ---|  CLOSED |
                        +---------+
                         /      \      [ASSOCIATE]
                        /        \     ---------------
                       |          |    create TCB
                       |          |    snd INIT
                       |          |    strt init timer
        rcv valid      |          |
      COOKIE  ECHO     |          v
  (1) ---------------- |      +------------+
      create TCB       |      | COOKIE-WAIT| (2)
      snd COOKIE ACK   |      +------------+
                       |          |
                       |          |    rcv INIT ACK
                       |          |    -----------------
                       |          |    snd COOKIE ECHO
                       |          |    stop init timer
                       |          |    strt cookie timer
                       |          v
                       |      +--------------+
                       |      | COOKIE-ECHOED| (3)
                       |      +--------------+
                       |          |
                       |          |    rcv COOKIE ACK
                       |          |    -----------------
                       |          |    stop cookie timer
                       v          v
                     +---------------+
                     |  ESTABLISHED  |
                     +---------------+
















Stewart                     Standards Track                    [Page 53]

RFC 4960          Stream Control Transmission Protocol    September 2007


                   (from the ESTABLISHED state only)
                                 |
                                 |
                        /--------+--------\
    [SHUTDOWN]         /                   \
    -------------------|                   |
    check outstanding  |                   |
    DATA chunks        |                   |
                       v                   |
                  +---------+              |
                  |SHUTDOWN-|              | rcv SHUTDOWN
                  |PENDING  |              |------------------
                  +---------+              | check outstanding
                       |                   | DATA chunks
  No more outstanding  |                   |
  ---------------------|                   |
  snd SHUTDOWN         |                   |
  strt shutdown timer  |                   |
                       v                   v
                  +---------+        +-----------+
              (4) |SHUTDOWN-|        | SHUTDOWN- |  (5,6)
                  |SENT     |        | RECEIVED  |
                  +---------+        +-----------+
                       |  \                |
  (A) rcv SHUTDOWN ACK  |   \               |
  ----------------------|    \              |
  stop shutdown timer   |     \rcv:SHUTDOWN |
  send SHUTDOWN COMPLETE|      \  (B)       |
  delete TCB            |       \           |
                        |        \          | No more outstanding
                        |         \         |-----------------
                        |          \        | send SHUTDOWN ACK
  (B)rcv SHUTDOWN       |           \       | strt shutdown timer
  ----------------------|            \      |
  send SHUTDOWN ACK     |             \     |
  start shutdown timer  |              \    |
  move to SHUTDOWN-     |               \   |
  ACK-SENT              |                |  |
                        |                v  |
                        |             +-----------+
                        |             | SHUTDOWN- | (7)
                        |             | ACK-SENT  |
                        |             +----------+-
                        |                   | (C)rcv SHUTDOWN COMPLETE
                        |                   |-----------------
                        |                   | stop shutdown timer
                        |                   | delete TCB
                        |                   |



Stewart                     Standards Track                    [Page 54]

RFC 4960          Stream Control Transmission Protocol    September 2007


                        |                   | (D)rcv SHUTDOWN ACK
                        |                   |--------------
                        |                   | stop shutdown timer
                        |                   | send SHUTDOWN COMPLETE
                        |                   | delete TCB
                        |                   |
                        \    +---------+    /
                         \-->| CLOSED  |<--/
                             +---------+

               Figure 3: State Transition Diagram of SCTP

  Notes:

  1)  If the State Cookie in the received COOKIE ECHO is invalid (i.e.,
      failed to pass the integrity check), the receiver MUST silently
      discard the packet.  Or, if the received State Cookie is expired
      (see Section 5.1.5), the receiver MUST send back an ERROR chunk.
      In either case, the receiver stays in the CLOSED state.

  2)  If the T1-init timer expires, the endpoint MUST retransmit INIT
      and restart the T1-init timer without changing state.  This MUST
      be repeated up to 'Max.Init.Retransmits' times.  After that, the
      endpoint MUST abort the initialization process and report the
      error to the SCTP user.

  3)  If the T1-cookie timer expires, the endpoint MUST retransmit
      COOKIE ECHO and restart the T1-cookie timer without changing
      state.  This MUST be repeated up to 'Max.Init.Retransmits' times.
      After that, the endpoint MUST abort the initialization process
      and report the error to the SCTP user.

  4)  In the SHUTDOWN-SENT state, the endpoint MUST acknowledge any
      received DATA chunks without delay.

  5)  In the SHUTDOWN-RECEIVED state, the endpoint MUST NOT accept any
      new send requests from its SCTP user.

  6)  In the SHUTDOWN-RECEIVED state, the endpoint MUST transmit or
      retransmit data and leave this state when all data in queue is
      transmitted.

  7)  In the SHUTDOWN-ACK-SENT state, the endpoint MUST NOT accept any
      new send requests from its SCTP user.

  The CLOSED state is used to indicate that an association is not
  created (i.e., doesn't exist).




Stewart                     Standards Track                    [Page 55]

RFC 4960          Stream Control Transmission Protocol    September 2007


5.  Association Initialization

  Before the first data transmission can take place from one SCTP
  endpoint ("A") to another SCTP endpoint ("Z"), the two endpoints must
  complete an initialization process in order to set up an SCTP
  association between them.

  The SCTP user at an endpoint should use the ASSOCIATE primitive to
  initialize an SCTP association to another SCTP endpoint.

  IMPLEMENTATION NOTE: From an SCTP user's point of view, an
  association may be implicitly opened, without an ASSOCIATE primitive
  (see Section 10.1 B) being invoked, by the initiating endpoint's
  sending of the first user data to the destination endpoint.  The
  initiating SCTP will assume default values for all mandatory and
  optional parameters for the INIT/INIT ACK.

  Once the association is established, unidirectional streams are open
  for data transfer on both ends (see Section 5.1.1).

5.1.  Normal Establishment of an Association

  The initialization process consists of the following steps (assuming
  that SCTP endpoint "A" tries to set up an association with SCTP
  endpoint "Z" and "Z" accepts the new association):

  A) "A" first sends an INIT chunk to "Z".  In the INIT, "A" must
     provide its Verification Tag (Tag_A) in the Initiate Tag field.
     Tag_A SHOULD be a random number in the range of 1 to 4294967295
     (see Section 5.3.1 for Tag value selection).  After sending the
     INIT, "A" starts the T1-init timer and enters the COOKIE-WAIT
     state.

  B) "Z" shall respond immediately with an INIT ACK chunk.  The
     destination IP address of the INIT ACK MUST be set to the source
     IP address of the INIT to which this INIT ACK is responding.  In
     the response, besides filling in other parameters, "Z" must set
     the Verification Tag field to Tag_A, and also provide its own
     Verification Tag (Tag_Z) in the Initiate Tag field.

     Moreover, "Z" MUST generate and send along with the INIT ACK a
     State Cookie.  See Section 5.1.3 for State Cookie generation.

     Note: After sending out INIT ACK with the State Cookie parameter,
     "Z" MUST NOT allocate any resources or keep any states for the new
     association.  Otherwise, "Z" will be vulnerable to resource
     attacks.




Stewart                     Standards Track                    [Page 56]

RFC 4960          Stream Control Transmission Protocol    September 2007


  C) Upon reception of the INIT ACK from "Z", "A" shall stop the T1-
     init timer and leave the COOKIE-WAIT state.  "A" shall then send
     the State Cookie received in the INIT ACK chunk in a COOKIE ECHO
     chunk, start the T1-cookie timer, and enter the COOKIE-ECHOED
     state.

     Note: The COOKIE ECHO chunk can be bundled with any pending
     outbound DATA chunks, but it MUST be the first chunk in the packet
     and until the COOKIE ACK is returned the sender MUST NOT send any
     other packets to the peer.

  D) Upon reception of the COOKIE ECHO chunk, endpoint "Z" will reply
     with a COOKIE ACK chunk after building a TCB and moving to the
     ESTABLISHED state.  A COOKIE ACK chunk may be bundled with any
     pending DATA chunks (and/or SACK chunks), but the COOKIE ACK chunk
     MUST be the first chunk in the packet.

     IMPLEMENTATION NOTE: An implementation may choose to send the
     Communication Up notification to the SCTP user upon reception of a
     valid COOKIE ECHO chunk.

  E) Upon reception of the COOKIE ACK, endpoint "A" will move from the
     COOKIE-ECHOED state to the ESTABLISHED state, stopping the T1-
     cookie timer.  It may also notify its ULP about the successful
     establishment of the association with a Communication Up
     notification (see Section 10).

  An INIT or INIT ACK chunk MUST NOT be bundled with any other chunk.
  They MUST be the only chunks present in the SCTP packets that carry
  them.

  An endpoint MUST send the INIT ACK to the IP address from which it
  received the INIT.

  Note: T1-init timer and T1-cookie timer shall follow the same rules
  given in Section 6.3.

  If an endpoint receives an INIT, INIT ACK, or COOKIE ECHO chunk but
  decides not to establish the new association due to missing mandatory
  parameters in the received INIT or INIT ACK, invalid parameter
  values, or lack of local resources, it SHOULD respond with an ABORT
  chunk.  It SHOULD also specify the cause of abort, such as the type
  of the missing mandatory parameters, etc., by including the error
  cause parameters with the ABORT chunk.  The Verification Tag field in
  the common header of the outbound SCTP packet containing the ABORT
  chunk MUST be set to the Initiate Tag value of the peer.





Stewart                     Standards Track                    [Page 57]

RFC 4960          Stream Control Transmission Protocol    September 2007


  Note that a COOKIE ECHO chunk that does NOT pass the integrity check
  is NOT considered an 'invalid parameter' and requires special
  handling; see Section 5.1.5.

  After the reception of the first DATA chunk in an association the
  endpoint MUST immediately respond with a SACK to acknowledge the DATA
  chunk.  Subsequent acknowledgements should be done as described in
  Section 6.2.

  When the TCB is created, each endpoint MUST set its internal
  Cumulative TSN Ack Point to the value of its transmitted Initial TSN
  minus one.

  IMPLEMENTATION NOTE: The IP addresses and SCTP port are generally
  used as the key to find the TCB within an SCTP instance.

5.1.1.  Handle Stream Parameters

  In the INIT and INIT ACK chunks, the sender of the chunk MUST
  indicate the number of outbound streams (OSs) it wishes to have in
  the association, as well as the maximum inbound streams (MISs) it
  will accept from the other endpoint.

  After receiving the stream configuration information from the other
  side, each endpoint MUST perform the following check: If the peer's
  MIS is less than the endpoint's OS, meaning that the peer is
  incapable of supporting all the outbound streams the endpoint wants
  to configure, the endpoint MUST use MIS outbound streams and MAY
  report any shortage to the upper layer.  The upper layer can then
  choose to abort the association if the resource shortage is
  unacceptable.

  After the association is initialized, the valid outbound stream
  identifier range for either endpoint shall be 0 to min(local OS,
  remote MIS)-1.

5.1.2.  Handle Address Parameters

  During the association initialization, an endpoint shall use the
  following rules to discover and collect the destination transport
  address(es) of its peer.

  A) If there are no address parameters present in the received INIT or
     INIT ACK chunk, the endpoint shall take the source IP address from
     which the chunk arrives and record it, in combination with the
     SCTP source port number, as the only destination transport address
     for this peer.




Stewart                     Standards Track                    [Page 58]

RFC 4960          Stream Control Transmission Protocol    September 2007


  B) If there is a Host Name parameter present in the received INIT or
     INIT ACK chunk, the endpoint shall resolve that host name to a
     list of IP address(es) and derive the transport address(es) of
     this peer by combining the resolved IP address(es) with the SCTP
     source port.

     The endpoint MUST ignore any other IP Address parameters if they
     are also present in the received INIT or INIT ACK chunk.

     The time at which the receiver of an INIT resolves the host name
     has potential security implications to SCTP.  If the receiver of
     an INIT resolves the host name upon the reception of the chunk,
     and the mechanism the receiver uses to resolve the host name
     involves potential long delay (e.g., DNS query), the receiver may
     open itself up to resource attacks for the period of time while it
     is waiting for the name resolution results before it can build the
     State Cookie and release local resources.

     Therefore, in cases where the name translation involves potential
     long delay, the receiver of the INIT MUST postpone the name
     resolution till the reception of the COOKIE ECHO chunk from the
     peer.  In such a case, the receiver of the INIT SHOULD build the
     State Cookie using the received Host Name (instead of destination
     transport addresses) and send the INIT ACK to the source IP
     address from which the INIT was received.

     The receiver of an INIT ACK shall always immediately attempt to
     resolve the name upon the reception of the chunk.

     The receiver of the INIT or INIT ACK MUST NOT send user data
     (piggy-backed or stand-alone) to its peer until the host name is
     successfully resolved.

     If the name resolution is not successful, the endpoint MUST
     immediately send an ABORT with "Unresolvable Address" error cause
     to its peer.  The ABORT shall be sent to the source IP address
     from which the last peer packet was received.

  C) If there are only IPv4/IPv6 addresses present in the received INIT
     or INIT ACK chunk, the receiver MUST derive and record all the
     transport addresses from the received chunk AND the source IP
     address that sent the INIT or INIT ACK.  The transport addresses
     are derived by the combination of SCTP source port (from the
     common header) and the IP Address parameter(s) carried in the INIT
     or INIT ACK chunk and the source IP address of the IP datagram.
     The receiver should use only these transport addresses as
     destination transport addresses when sending subsequent packets to
     its peer.



Stewart                     Standards Track                    [Page 59]

RFC 4960          Stream Control Transmission Protocol    September 2007


  D) An INIT or INIT ACK chunk MUST be treated as belonging to an
     already established association (or one in the process of being
     established) if the use of any of the valid address parameters
     contained within the chunk would identify an existing TCB.

  IMPLEMENTATION NOTE: In some cases (e.g., when the implementation
  doesn't control the source IP address that is used for transmitting),
  an endpoint might need to include in its INIT or INIT ACK all
  possible IP addresses from which packets to the peer could be
  transmitted.

  After all transport addresses are derived from the INIT or INIT ACK
  chunk using the above rules, the endpoint shall select one of the
  transport addresses as the initial primary path.

  Note: The INIT ACK MUST be sent to the source address of the INIT.

  The sender of INIT may include a 'Supported Address Types' parameter
  in the INIT to indicate what types of address are acceptable.  When
  this parameter is present, the receiver of INIT (initiate) MUST
  either use one of the address types indicated in the Supported
  Address Types parameter when responding to the INIT, or abort the
  association with an "Unresolvable Address" error cause if it is
  unwilling or incapable of using any of the address types indicated by
  its peer.

  IMPLEMENTATION NOTE: In the case that the receiver of an INIT ACK
  fails to resolve the address parameter due to an unsupported type, it
  can abort the initiation process and then attempt a reinitiation by
  using a 'Supported Address Types' parameter in the new INIT to
  indicate what types of address it prefers.

  IMPLEMENTATION NOTE: If an SCTP endpoint that only supports either
  IPv4 or IPv6 receives IPv4 and IPv6 addresses in an INIT or INIT ACK
  chunk from its peer, it MUST use all the addresses belonging to the
  supported address family.  The other addresses MAY be ignored.  The
  endpoint SHOULD NOT respond with any kind of error indication.

  IMPLEMENTATION NOTE: If an SCTP endpoint lists in the 'Supported
  Address Types' parameter either IPv4 or IPv6, but uses the other
  family for sending the packet containing the INIT chunk, or if it
  also lists addresses of the other family in the INIT chunk, then the
  address family that is not listed in the 'Supported Address Types'
  parameter SHOULD also be considered as supported by the receiver of
  the INIT chunk.  The receiver of the INIT chunk SHOULD NOT respond
  with any kind of error indication.





Stewart                     Standards Track                    [Page 60]

RFC 4960          Stream Control Transmission Protocol    September 2007


5.1.3.  Generating State Cookie

  When sending an INIT ACK as a response to an INIT chunk, the sender
  of INIT ACK creates a State Cookie and sends it in the State Cookie
  parameter of the INIT ACK.  Inside this State Cookie, the sender
  should include a MAC (see [RFC2104] for an example), a timestamp on
  when the State Cookie is created, and the lifespan of the State
  Cookie, along with all the information necessary for it to establish
  the association.

  The following steps SHOULD be taken to generate the State Cookie:

  1)  Create an association TCB using information from both the
      received INIT and the outgoing INIT ACK chunk,

  2)  In the TCB, set the creation time to the current time of day, and
      the lifespan to the protocol parameter 'Valid.Cookie.Life' (see
      Section 15),

  3)  From the TCB, identify and collect the minimal subset of
      information needed to re-create the TCB, and generate a MAC using
      this subset of information and a secret key (see [RFC2104] for an
      example of generating a MAC), and

  4)  Generate the State Cookie by combining this subset of information
      and the resultant MAC.

  After sending the INIT ACK with the State Cookie parameter, the
  sender SHOULD delete the TCB and any other local resource related to
  the new association, so as to prevent resource attacks.

  The hashing method used to generate the MAC is strictly a private
  matter for the receiver of the INIT chunk.  The use of a MAC is
  mandatory to prevent denial-of-service attacks.  The secret key
  SHOULD be random ([RFC4086] provides some information on randomness
  guidelines); it SHOULD be changed reasonably frequently, and the
  timestamp in the State Cookie MAY be used to determine which key
  should be used to verify the MAC.

  An implementation SHOULD make the cookie as small as possible to
  ensure interoperability.










Stewart                     Standards Track                    [Page 61]

RFC 4960          Stream Control Transmission Protocol    September 2007


5.1.4.  State Cookie Processing

  When an endpoint (in the COOKIE-WAIT state) receives an INIT ACK
  chunk with a State Cookie parameter, it MUST immediately send a
  COOKIE ECHO chunk to its peer with the received State Cookie.  The
  sender MAY also add any pending DATA chunks to the packet after the
  COOKIE ECHO chunk.

  The endpoint shall also start the T1-cookie timer after sending out
  the COOKIE ECHO chunk.  If the timer expires, the endpoint shall
  retransmit the COOKIE ECHO chunk and restart the T1-cookie timer.
  This is repeated until either a COOKIE ACK is received or
  'Max.Init.Retransmits' (see Section 15) is reached causing the peer
  endpoint to be marked unreachable (and thus the association enters
  the CLOSED state).

5.1.5.  State Cookie Authentication

  When an endpoint receives a COOKIE ECHO chunk from another endpoint
  with which it has no association, it shall take the following
  actions:

  1)  Compute a MAC using the TCB data carried in the State Cookie and
      the secret key (note the timestamp in the State Cookie MAY be
      used to determine which secret key to use).  [RFC2104] can be
      used as a guideline for generating the MAC,

  2)  Authenticate the State Cookie as one that it previously generated
      by comparing the computed MAC against the one carried in the
      State Cookie.  If this comparison fails, the SCTP packet,
      including the COOKIE ECHO and any DATA chunks, should be silently
      discarded,

  3)  Compare the port numbers and the Verification Tag contained
      within the COOKIE ECHO chunk to the actual port numbers and the
      Verification Tag within the SCTP common header of the received
      packet.  If these values do not match, the packet MUST be
      silently discarded.

  4)  Compare the creation timestamp in the State Cookie to the current
      local time.  If the elapsed time is longer than the lifespan
      carried in the State Cookie, then the packet, including the
      COOKIE ECHO and any attached DATA chunks, SHOULD be discarded,
      and the endpoint MUST transmit an ERROR chunk with a "Stale
      Cookie" error cause to the peer endpoint.






Stewart                     Standards Track                    [Page 62]

RFC 4960          Stream Control Transmission Protocol    September 2007


  5)  If the State Cookie is valid, create an association to the sender
      of the COOKIE ECHO chunk with the information in the TCB data
      carried in the COOKIE ECHO and enter the ESTABLISHED state.

  6)  Send a COOKIE ACK chunk to the peer acknowledging receipt of the
      COOKIE ECHO.  The COOKIE ACK MAY be bundled with an outbound DATA
      chunk or SACK chunk; however, the COOKIE ACK MUST be the first
      chunk in the SCTP packet.

  7)  Immediately acknowledge any DATA chunk bundled with the COOKIE
      ECHO with a SACK (subsequent DATA chunk acknowledgement should
      follow the rules defined in Section 6.2).  As mentioned in step
      6, if the SACK is bundled with the COOKIE ACK, the COOKIE ACK
      MUST appear first in the SCTP packet.

  If a COOKIE ECHO is received from an endpoint with which the receiver
  of the COOKIE ECHO has an existing association, the procedures in
  Section 5.2 should be followed.

































Stewart                     Standards Track                    [Page 63]

RFC 4960          Stream Control Transmission Protocol    September 2007


5.1.6.  An Example of Normal Association Establishment

  In the following example, "A" initiates the association and then
  sends a user message to "Z", then "Z" sends two user messages to "A"
  later (assuming no bundling or fragmentation occurs):

   Endpoint A                                          Endpoint Z
   {app sets association with Z}
   (build TCB)
   INIT [I-Tag=Tag_A
         & other info]  ------\
   (Start T1-init timer)       \
   (Enter COOKIE-WAIT state)    \---> (compose temp TCB and Cookie_Z)
                                   /-- INIT ACK [Veri Tag=Tag_A,
                                  /             I-Tag=Tag_Z,
   (Cancel T1-init timer) <------/              Cookie_Z, & other info]
                                        (destroy temp TCB)
   COOKIE ECHO [Cookie_Z] ------\
   (Start T1-init timer)         \
   (Enter COOKIE-ECHOED state)    \---> (build TCB enter ESTABLISHED
                                         state)
                                  /---- COOKIE-ACK
                                 /
   (Cancel T1-init timer, <-----/
    Enter ESTABLISHED state)
   {app sends 1st user data; strm 0}
   DATA [TSN=initial TSN_A
       Strm=0,Seq=0 & user data]--\
   (Start T3-rtx timer)            \
                                    \->
                                  /----- SACK [TSN Ack=init
                                 /           TSN_A,Block=0]
   (Cancel T3-rtx timer) <------/
                                         ...
                                        {app sends 2 messages;strm 0}
                                  /---- DATA
                                 /        [TSN=init TSN_Z
                             <--/          Strm=0,Seq=0 & user data 1]
   SACK [TSN Ack=init TSN_Z,      /---- DATA
         Block=0]     --------\  /        [TSN=init TSN_Z +1,
                               \/          Strm=0,Seq=1 & user data 2]
                        <------/\
                                 \
                                  \------>

                       Figure 4: INITIATION Example





Stewart                     Standards Track                    [Page 64]

RFC 4960          Stream Control Transmission Protocol    September 2007


  If the T1-init timer expires at "A" after the INIT or COOKIE ECHO
  chunks are sent, the same INIT or COOKIE ECHO chunk with the same
  Initiate Tag (i.e., Tag_A) or State Cookie shall be retransmitted and
  the timer restarted.  This shall be repeated Max.Init.Retransmits
  times before "A" considers "Z" unreachable and reports the failure to
  its upper layer (and thus the association enters the CLOSED state).

  When retransmitting the INIT, the endpoint MUST follow the rules
  defined in Section 6.3 to determine the proper timer value.

5.2.  Handle Duplicate or Unexpected INIT, INIT ACK, COOKIE ECHO, and
     COOKIE ACK

  During the life time of an association (in one of the possible
  states), an endpoint may receive from its peer endpoint one of the
  setup chunks (INIT, INIT ACK, COOKIE ECHO, and COOKIE ACK).  The
  receiver shall treat such a setup chunk as a duplicate and process it
  as described in this section.

  Note: An endpoint will not receive the chunk unless the chunk was
  sent to an SCTP transport address and is from an SCTP transport
  address associated with this endpoint.  Therefore, the endpoint
  processes such a chunk as part of its current association.

  The following scenarios can cause duplicated or unexpected chunks:

  A) The peer has crashed without being detected, restarted itself, and
     sent out a new INIT chunk trying to restore the association,

  B) Both sides are trying to initialize the association at about the
     same time,

  C) The chunk is from a stale packet that was used to establish the
     present association or a past association that is no longer in
     existence,

  D) The chunk is a false packet generated by an attacker, or

  E) The peer never received the COOKIE ACK and is retransmitting its
     COOKIE ECHO.

  The rules in the following sections shall be applied in order to
  identify and correctly handle these cases.








Stewart                     Standards Track                    [Page 65]

RFC 4960          Stream Control Transmission Protocol    September 2007


5.2.1.  INIT Received in COOKIE-WAIT or COOKIE-ECHOED State (Item B)

  This usually indicates an initialization collision, i.e., each
  endpoint is attempting, at about the same time, to establish an
  association with the other endpoint.

  Upon receipt of an INIT in the COOKIE-WAIT state, an endpoint MUST
  respond with an INIT ACK using the same parameters it sent in its
  original INIT chunk (including its Initiate Tag, unchanged).  When
  responding, the endpoint MUST send the INIT ACK back to the same
  address that the original INIT (sent by this endpoint) was sent.

  Upon receipt of an INIT in the COOKIE-ECHOED state, an endpoint MUST
  respond with an INIT ACK using the same parameters it sent in its
  original INIT chunk (including its Initiate Tag, unchanged), provided
  that no NEW address has been added to the forming association.  If
  the INIT message indicates that a new address has been added to the
  association, then the entire INIT MUST be discarded, and NO changes
  should be made to the existing association.  An ABORT SHOULD be sent
  in response that MAY include the error 'Restart of an association
  with new addresses'.  The error SHOULD list the addresses that were
  added to the restarting association.

  When responding in either state (COOKIE-WAIT or COOKIE-ECHOED) with
  an INIT ACK, the original parameters are combined with those from the
  newly received INIT chunk.  The endpoint shall also generate a State
  Cookie with the INIT ACK.  The endpoint uses the parameters sent in
  its INIT to calculate the State Cookie.

  After that, the endpoint MUST NOT change its state, the T1-init timer
  shall be left running, and the corresponding TCB MUST NOT be
  destroyed.  The normal procedures for handling State Cookies when a
  TCB exists will resolve the duplicate INITs to a single association.

  For an endpoint that is in the COOKIE-ECHOED state, it MUST populate
  its Tie-Tags within both the association TCB and inside the State
  Cookie (see Section 5.2.2 for a description of the Tie-Tags).

5.2.2.  Unexpected INIT in States Other than CLOSED, COOKIE-ECHOED,
       COOKIE-WAIT, and SHUTDOWN-ACK-SENT

  Unless otherwise stated, upon receipt of an unexpected INIT for this
  association, the endpoint shall generate an INIT ACK with a State
  Cookie.  Before responding, the endpoint MUST check to see if the
  unexpected INIT adds new addresses to the association.  If new
  addresses are added to the association, the endpoint MUST respond
  with an ABORT, copying the 'Initiate Tag' of the unexpected INIT into
  the 'Verification Tag' of the outbound packet carrying the ABORT.  In



Stewart                     Standards Track                    [Page 66]

RFC 4960          Stream Control Transmission Protocol    September 2007


  the ABORT response, the cause of error MAY be set to 'restart of an
  association with new addresses'.  The error SHOULD list the addresses
  that were added to the restarting association.  If no new addresses
  are added, when responding to the INIT in the outbound INIT ACK, the
  endpoint MUST copy its current Tie-Tags to a reserved place within
  the State Cookie and the association's TCB.  We shall refer to these
  locations inside the cookie as the Peer's-Tie-Tag and the Local-Tie-
  Tag.  We will refer to the copy within an association's TCB as the
  Local Tag and Peer's Tag.  The outbound SCTP packet containing this
  INIT ACK MUST carry a Verification Tag value equal to the Initiate
  Tag found in the unexpected INIT.  And the INIT ACK MUST contain a
  new Initiate Tag (randomly generated; see Section 5.3.1).  Other
  parameters for the endpoint SHOULD be copied from the existing
  parameters of the association (e.g., number of outbound streams) into
  the INIT ACK and cookie.

  After sending out the INIT ACK or ABORT, the endpoint shall take no
  further actions; i.e., the existing association, including its
  current state, and the corresponding TCB MUST NOT be changed.

  Note: Only when a TCB exists and the association is not in a COOKIE-
  WAIT or SHUTDOWN-ACK-SENT state are the Tie-Tags populated with a
  value other than 0.  For a normal association INIT (i.e., the
  endpoint is in the CLOSED state), the Tie-Tags MUST be set to 0
  (indicating that no previous TCB existed).

5.2.3.  Unexpected INIT ACK

  If an INIT ACK is received by an endpoint in any state other than the
  COOKIE-WAIT state, the endpoint should discard the INIT ACK chunk.
  An unexpected INIT ACK usually indicates the processing of an old or
  duplicated INIT chunk.

5.2.4.  Handle a COOKIE ECHO when a TCB Exists

  When a COOKIE ECHO chunk is received by an endpoint in any state for
  an existing association (i.e., not in the CLOSED state) the following
  rules shall be applied:

  1)  Compute a MAC as described in step 1 of Section 5.1.5,

  2)  Authenticate the State Cookie as described in step 2 of Section
      5.1.5 (this is case C or D above).

  3)  Compare the timestamp in the State Cookie to the current time.
      If the State Cookie is older than the lifespan carried in the
      State Cookie and the Verification Tags contained in the State
      Cookie do not match the current association's Verification Tags,



Stewart                     Standards Track                    [Page 67]

RFC 4960          Stream Control Transmission Protocol    September 2007


      the packet, including the COOKIE ECHO and any DATA chunks, should
      be discarded.  The endpoint also MUST transmit an ERROR chunk
      with a "Stale Cookie" error cause to the peer endpoint (this is
      case C or D in Section 5.2).

      If both Verification Tags in the State Cookie match the
      Verification Tags of the current association, consider the State
      Cookie valid (this is case E in Section 5.2) even if the lifespan
      is exceeded.

  4)  If the State Cookie proves to be valid, unpack the TCB into a
      temporary TCB.

  5)  Refer to Table 2 to determine the correct action to be taken.

+------------+------------+---------------+--------------+-------------+
|  Local Tag | Peer's Tag | Local-Tie-Tag |Peer's-Tie-Tag|   Action/   |
|            |            |               |              | Description |
+------------+------------+---------------+--------------+-------------+
|    X       |     X      |      M        |      M       |     (A)     |
+------------+------------+---------------+--------------+-------------+
|    M       |     X      |      A        |      A       |     (B)     |
+------------+------------+---------------+--------------+-------------+
|    M       |     0      |      A        |      A       |     (B)     |
+------------+------------+---------------+--------------+-------------+
|    X       |     M      |      0        |      0       |     (C)     |
+------------+------------+---------------+--------------+-------------+
|    M       |     M      |      A        |      A       |     (D)     |
+======================================================================+
|       Table 2: Handling of a COOKIE ECHO when a TCB Exists           |
+======================================================================+

  Legend:

     X - Tag does not match the existing TCB.
     M - Tag matches the existing TCB.
     0 - No Tie-Tag in cookie (unknown).
     A - All cases, i.e., M, X, or 0.

  Note: For any case not shown in Table 2, the cookie should be
  silently discarded.

  Action

  A) In this case, the peer may have restarted.  When the endpoint
     recognizes this potential 'restart', the existing session is
     treated the same as if it received an ABORT followed by a new
     COOKIE ECHO with the following exceptions:



Stewart                     Standards Track                    [Page 68]

RFC 4960          Stream Control Transmission Protocol    September 2007


     -  Any SCTP DATA chunks MAY be retained (this is an
        implementation-specific option).

     -  A notification of RESTART SHOULD be sent to the ULP instead of
        a "COMMUNICATION LOST" notification.

     All the congestion control parameters (e.g., cwnd, ssthresh)
     related to this peer MUST be reset to their initial values (see
     Section 6.2.1).

     After this, the endpoint shall enter the ESTABLISHED state.

     If the endpoint is in the SHUTDOWN-ACK-SENT state and recognizes
     that the peer has restarted (Action A), it MUST NOT set up a new
     association but instead resend the SHUTDOWN ACK and send an ERROR
     chunk with a "Cookie Received While Shutting Down" error cause to
     its peer.

  B) In this case, both sides may be attempting to start an association
     at about the same time, but the peer endpoint started its INIT
     after responding to the local endpoint's INIT.  Thus, it may have
     picked a new Verification Tag, not being aware of the previous tag
     it had sent this endpoint.  The endpoint should stay in or enter
     the ESTABLISHED state, but it MUST update its peer's Verification
     Tag from the State Cookie, stop any init or cookie timers that may
     be running, and send a COOKIE ACK.

  C) In this case, the local endpoint's cookie has arrived late.
     Before it arrived, the local endpoint sent an INIT and received an
     INIT ACK and finally sent a COOKIE ECHO with the peer's same tag
     but a new tag of its own.  The cookie should be silently
     discarded.  The endpoint SHOULD NOT change states and should leave
     any timers running.

  D) When both local and remote tags match, the endpoint should enter
     the ESTABLISHED state, if it is in the COOKIE-ECHOED state.  It
     should stop any cookie timer that may be running and send a COOKIE
     ACK.

  Note: The "peer's Verification Tag" is the tag received in the
  Initiate Tag field of the INIT or INIT ACK chunk.

5.2.4.1.  An Example of a Association Restart

  In the following example, "A" initiates the association after a
  restart has occurred.  Endpoint "Z" had no knowledge of the restart
  until the exchange (i.e., Heartbeats had not yet detected the failure
  of "A") (assuming no bundling or fragmentation occurs):



Stewart                     Standards Track                    [Page 69]

RFC 4960          Stream Control Transmission Protocol    September 2007


  Endpoint A                                          Endpoint Z
  <-------------- Association is established---------------------->
  Tag=Tag_A                                             Tag=Tag_Z
  <--------------------------------------------------------------->
  {A crashes and restarts}
  {app sets up a association with Z}
  (build TCB)
  INIT [I-Tag=Tag_A'
        & other info]  --------\
  (Start T1-init timer)         \
  (Enter COOKIE-WAIT state)      \---> (find an existing TCB
                                        compose temp TCB and Cookie_Z
                                        with Tie-Tags to previous
                                        association)
                                  /--- INIT ACK [Veri Tag=Tag_A',
                                 /               I-Tag=Tag_Z',
  (Cancel T1-init timer) <------/                Cookie_Z[TieTags=
                                                 Tag_A,Tag_Z
                                                  & other info]
                                       (destroy temp TCB,leave original
                                        in place)
  COOKIE ECHO [Veri=Tag_Z',
               Cookie_Z
               Tie=Tag_A,
               Tag_Z]----------\
  (Start T1-init timer)         \
  (Enter COOKIE-ECHOED state)    \---> (Find existing association,
                                        Tie-Tags match old tags,
                                        Tags do not match, i.e.,
                                        case X X M M above,
                                        Announce Restart to ULP
                                        and reset association).
                                 /---- COOKIE ACK
  (Cancel T1-init timer, <------/
   Enter ESTABLISHED state)
  {app sends 1st user data; strm 0}
  DATA [TSN=initial TSN_A
      Strm=0,Seq=0 & user data]--\
  (Start T3-rtx timer)            \
                                   \->
                                /--- SACK [TSN Ack=init TSN_A,Block=0]
  (Cancel T3-rtx timer) <------/

                       Figure 5: A Restart Example







Stewart                     Standards Track                    [Page 70]

RFC 4960          Stream Control Transmission Protocol    September 2007


5.2.5.  Handle Duplicate COOKIE-ACK.

  At any state other than COOKIE-ECHOED, an endpoint should silently
  discard a received COOKIE ACK chunk.

5.2.6.  Handle Stale COOKIE Error

  Receipt of an ERROR chunk with a "Stale Cookie" error cause indicates
  one of a number of possible events:

  A) The association failed to completely setup before the State Cookie
     issued by the sender was processed.

  B) An old State Cookie was processed after setup completed.

  C) An old State Cookie is received from someone that the receiver is
     not interested in having an association with and the ABORT chunk
     was lost.

  When processing an ERROR chunk with a "Stale Cookie" error cause an
  endpoint should first examine if an association is in the process of
  being set up, i.e., the association is in the COOKIE-ECHOED state.
  In all cases, if the association is not in the COOKIE-ECHOED state,
  the ERROR chunk should be silently discarded.

  If the association is in the COOKIE-ECHOED state, the endpoint may
  elect one of the following three alternatives.

  1)  Send a new INIT chunk to the endpoint to generate a new State
      Cookie and reattempt the setup procedure.

  2)  Discard the TCB and report to the upper layer the inability to
      set up the association.

  3)  Send a new INIT chunk to the endpoint, adding a Cookie
      Preservative parameter requesting an extension to the life time
      of the State Cookie.  When calculating the time extension, an
      implementation SHOULD use the RTT information measured based on
      the previous COOKIE ECHO / ERROR exchange, and should add no more
      than 1 second beyond the measured RTT, due to long State Cookie
      life times making the endpoint more subject to a replay attack.










Stewart                     Standards Track                    [Page 71]

RFC 4960          Stream Control Transmission Protocol    September 2007


5.3.  Other Initialization Issues

5.3.1.  Selection of Tag Value

  Initiate Tag values should be selected from the range of 1 to 2**32 -
  1.  It is very important that the Initiate Tag value be randomized to
  help protect against "man in the middle" and "sequence number"
  attacks.  The methods described in [RFC4086] can be used for the
  Initiate Tag randomization.  Careful selection of Initiate Tags is
  also necessary to prevent old duplicate packets from previous
  associations being mistakenly processed as belonging to the current
  association.

  Moreover, the Verification Tag value used by either endpoint in a
  given association MUST NOT change during the life time of an
  association.  A new Verification Tag value MUST be used each time the
  endpoint tears down and then reestablishes an association to the same
  peer.

5.4.  Path Verification

  During association establishment, the two peers exchange a list of
  addresses.  In the predominant case, these lists accurately represent
  the addresses owned by each peer.  However, it is possible that a
  misbehaving peer may supply addresses that it does not own.  To
  prevent this, the following rules are applied to all addresses of the
  new association:

  1)  Any address passed to the sender of the INIT by its upper layer
     is automatically considered to be CONFIRMED.

  2)  For the receiver of the COOKIE ECHO, the only CONFIRMED address
     is the one to which the INIT-ACK was sent.

  3)  All other addresses not covered by rules 1 and 2 are considered
     UNCONFIRMED and are subject to probing for verification.

  To probe an address for verification, an endpoint will send
  HEARTBEATs including a 64-bit random nonce and a path indicator (to
  identify the address that the HEARTBEAT is sent to) within the
  HEARTBEAT parameter.

  Upon receipt of the HEARTBEAT ACK, a verification is made that the
  nonce included in the HEARTBEAT parameter is the one sent to the
  address indicated inside the HEARTBEAT parameter.  When this match
  occurs, the address that the original HEARTBEAT was sent to is now
  considered CONFIRMED and available for normal data transfer.




Stewart                     Standards Track                    [Page 72]

RFC 4960          Stream Control Transmission Protocol    September 2007


  These probing procedures are started when an association moves to the
  ESTABLISHED state and are ended when all paths are confirmed.

  In each RTO, a probe may be sent on an active UNCONFIRMED path in an
  attempt to move it to the CONFIRMED state.  If during this probing
  the path becomes inactive, this rate is lowered to the normal
  HEARTBEAT rate.  At the expiration of the RTO timer, the error
  counter of any path that was probed but not CONFIRMED is incremented
  by one and subjected to path failure detection, as defined in Section
  8.2.  When probing UNCONFIRMED addresses, however, the association
  overall error count is NOT incremented.

  The number of HEARTBEATS sent at each RTO SHOULD be limited by the
  HB.Max.Burst parameter.  It is an implementation decision as to how
  to distribute HEARTBEATS to the peer's addresses for path
  verification.

  Whenever a path is confirmed, an indication MAY be given to the upper
  layer.

  An endpoint MUST NOT send any chunks to an UNCONFIRMED address, with
  the following exceptions:

  -  A HEARTBEAT including a nonce MAY be sent to an UNCONFIRMED
     address.

  -  A HEARTBEAT ACK MAY be sent to an UNCONFIRMED address.

  -  A COOKIE ACK MAY be sent to an UNCONFIRMED address, but it MUST be
     bundled with a HEARTBEAT including a nonce.  An implementation
     that does NOT support bundling MUST NOT send a COOKIE ACK to an
     UNCONFIRMED address.

  -  A COOKIE ECHO MAY be sent to an UNCONFIRMED address, but it MUST
     be bundled with a HEARTBEAT including a nonce, and the packet MUST
     NOT exceed the path MTU.  If the implementation does NOT support
     bundling or if the bundled COOKIE ECHO plus HEARTBEAT (including
     nonce) would exceed the path MTU, then the implementation MUST NOT
     send a COOKIE ECHO to an UNCONFIRMED address.

6.  User Data Transfer

  Data transmission MUST only happen in the ESTABLISHED, SHUTDOWN-
  PENDING, and SHUTDOWN-RECEIVED states.  The only exception to this is
  that DATA chunks are allowed to be bundled with an outbound COOKIE
  ECHO chunk when in the COOKIE-WAIT state.





Stewart                     Standards Track                    [Page 73]

RFC 4960          Stream Control Transmission Protocol    September 2007


  DATA chunks MUST only be received according to the rules below in
  ESTABLISHED, SHUTDOWN-PENDING, and SHUTDOWN-SENT.  A DATA chunk
  received in CLOSED is out of the blue and SHOULD be handled per
  Section 8.4.  A DATA chunk received in any other state SHOULD be
  discarded.

  A SACK MUST be processed in ESTABLISHED, SHUTDOWN-PENDING, and
  SHUTDOWN-RECEIVED.  An incoming SACK MAY be processed in COOKIE-
  ECHOED.  A SACK in the CLOSED state is out of the blue and SHOULD be
  processed according to the rules in Section 8.4.  A SACK chunk
  received in any other state SHOULD be discarded.

  An SCTP receiver MUST be able to receive a minimum of 1500 bytes in
  one SCTP packet.  This means that an SCTP endpoint MUST NOT indicate
  less than 1500 bytes in its initial a_rwnd sent in the INIT or INIT
  ACK.

  For transmission efficiency, SCTP defines mechanisms for bundling of
  small user messages and fragmentation of large user messages.  The
  following diagram depicts the flow of user messages through SCTP.

  In this section, the term "data sender" refers to the endpoint that
  transmits a DATA chunk and the term "data receiver" refers to the
  endpoint that receives a DATA chunk.  A data receiver will transmit
  SACK chunks.


























Stewart                     Standards Track                    [Page 74]

RFC 4960          Stream Control Transmission Protocol    September 2007


                +--------------------------+
                |      User Messages       |
                +--------------------------+
      SCTP user        ^  |
     ==================|==|=======================================
                       |  v (1)
            +------------------+    +--------------------+
            | SCTP DATA Chunks |    |SCTP Control Chunks |
            +------------------+    +--------------------+
                       ^  |             ^  |
                       |  v (2)         |  v (2)
                    +--------------------------+
                    |      SCTP packets        |
                    +--------------------------+
      SCTP                      ^  |
     ===========================|==|===========================
                                |  v
            Connectionless Packet Transfer Service (e.g., IP)

  Notes:

     1) When converting user messages into DATA chunks, an endpoint
        will fragment user messages larger than the current association
        path MTU into multiple DATA chunks.  The data receiver will
        normally reassemble the fragmented message from DATA chunks
        before delivery to the user (see Section 6.9 for details).

     2) Multiple DATA and control chunks may be bundled by the sender
        into a single SCTP packet for transmission, as long as the
        final size of the packet does not exceed the current path MTU.
        The receiver will unbundle the packet back into the original
        chunks.  Control chunks MUST come before DATA chunks in the
        packet.

               Figure 6: Illustration of User Data Transfer

  The fragmentation and bundling mechanisms, as detailed in Section 6.9
  and Section 6.10, are OPTIONAL to implement by the data sender, but
  they MUST be implemented by the data receiver, i.e., an endpoint MUST
  properly receive and process bundled or fragmented data.

6.1.  Transmission of DATA Chunks

  This document is specified as if there is a single retransmission
  timer per destination transport address, but implementations MAY have
  a retransmission timer for each DATA chunk.





Stewart                     Standards Track                    [Page 75]

RFC 4960          Stream Control Transmission Protocol    September 2007


  The following general rules MUST be applied by the data sender for
  transmission and/or retransmission of outbound DATA chunks:

  A) At any given time, the data sender MUST NOT transmit new data to
     any destination transport address if its peer's rwnd indicates
     that the peer has no buffer space (i.e., rwnd is 0; see Section
     6.2.1).  However, regardless of the value of rwnd (including if it
     is 0), the data sender can always have one DATA chunk in flight to
     the receiver if allowed by cwnd (see rule B, below).  This rule
     allows the sender to probe for a change in rwnd that the sender
     missed due to the SACK's having been lost in transit from the data
     receiver to the data sender.

     When the receiver's advertised window is zero, this probe is
     called a zero window probe.  Note that a zero window probe SHOULD
     only be sent when all outstanding DATA chunks have been
     cumulatively acknowledged and no DATA chunks are in flight.  Zero
     window probing MUST be supported.

     If the sender continues to receive new packets from the receiver
     while doing zero window probing, the unacknowledged window probes
     should not increment the error counter for the association or any
     destination transport address.  This is because the receiver MAY
     keep its window closed for an indefinite time.  Refer to Section
     6.2 on the receiver behavior when it advertises a zero window.
     The sender SHOULD send the first zero window probe after 1 RTO
     when it detects that the receiver has closed its window and SHOULD
     increase the probe interval exponentially afterwards.  Also note
     that the cwnd SHOULD be adjusted according to Section 7.2.1.  Zero
     window probing does not affect the calculation of cwnd.

     The sender MUST also have an algorithm for sending new DATA chunks
     to avoid silly window syndrome (SWS) as described in [RFC0813].
     The algorithm can be similar to the one described in Section
     4.2.3.4 of [RFC1122].

     However, regardless of the value of rwnd (including if it is 0),
     the data sender can always have one DATA chunk in flight to the
     receiver if allowed by cwnd (see rule B below).  This rule allows
     the sender to probe for a change in rwnd that the sender missed
     due to the SACK having been lost in transit from the data receiver
     to the data sender.

  B) At any given time, the sender MUST NOT transmit new data to a
     given transport address if it has cwnd or more bytes of data
     outstanding to that transport address.





Stewart                     Standards Track                    [Page 76]

RFC 4960          Stream Control Transmission Protocol    September 2007


  C) When the time comes for the sender to transmit, before sending new
     DATA chunks, the sender MUST first transmit any outstanding DATA
     chunks that are marked for retransmission (limited by the current
     cwnd).

  D) When the time comes for the sender to transmit new DATA chunks,
     the protocol parameter Max.Burst SHOULD be used to limit the
     number of packets sent.  The limit MAY be applied by adjusting
     cwnd as follows:

     if((flightsize + Max.Burst*MTU) < cwnd) cwnd = flightsize +
     Max.Burst*MTU

     Or it MAY be applied by strictly limiting the number of packets
     emitted by the output routine.

  E) Then, the sender can send out as many new DATA chunks as rule A
     and rule B allow.

  Multiple DATA chunks committed for transmission MAY be bundled in a
  single packet.  Furthermore, DATA chunks being retransmitted MAY be
  bundled with new DATA chunks, as long as the resulting packet size
  does not exceed the path MTU.  A ULP may request that no bundling is
  performed, but this should only turn off any delays that an SCTP
  implementation may be using to increase bundling efficiency.  It does
  not in itself stop all bundling from occurring (i.e., in case of
  congestion or retransmission).

  Before an endpoint transmits a DATA chunk, if any received DATA
  chunks have not been acknowledged (e.g., due to delayed ack), the
  sender should create a SACK and bundle it with the outbound DATA
  chunk, as long as the size of the final SCTP packet does not exceed
  the current MTU.  See Section 6.2.

  IMPLEMENTATION NOTE: When the window is full (i.e., transmission is
  disallowed by rule A and/or rule B), the sender MAY still accept send
  requests from its upper layer, but MUST transmit no more DATA chunks
  until some or all of the outstanding DATA chunks are acknowledged and
  transmission is allowed by rule A and rule B again.

  Whenever a transmission or retransmission is made to any address, if
  the T3-rtx timer of that address is not currently running, the sender
  MUST start that timer.  If the timer for that address is already
  running, the sender MUST restart the timer if the earliest (i.e.,
  lowest TSN) outstanding DATA chunk sent to that address is being
  retransmitted.  Otherwise, the data sender MUST NOT restart the
  timer.




Stewart                     Standards Track                    [Page 77]

RFC 4960          Stream Control Transmission Protocol    September 2007


  When starting or restarting the T3-rtx timer, the timer value must be
  adjusted according to the timer rules defined in Sections 6.3.2 and
  6.3.3.

  Note: The data sender SHOULD NOT use a TSN that is more than 2**31 -
  1 above the beginning TSN of the current send window.

6.2.  Acknowledgement on Reception of DATA Chunks

  The SCTP endpoint MUST always acknowledge the reception of each valid
  DATA chunk when the DATA chunk received is inside its receive window.

  When the receiver's advertised window is 0, the receiver MUST drop
  any new incoming DATA chunk with a TSN larger than the largest TSN
  received so far.  If the new incoming DATA chunk holds a TSN value
  less than the largest TSN received so far, then the receiver SHOULD
  drop the largest TSN held for reordering and accept the new incoming
  DATA chunk.  In either case, if such a DATA chunk is dropped, the
  receiver MUST immediately send back a SACK with the current receive
  window showing only DATA chunks received and accepted so far.  The
  dropped DATA chunk(s) MUST NOT be included in the SACK, as they were
  not accepted.  The receiver MUST also have an algorithm for
  advertising its receive window to avoid receiver silly window
  syndrome (SWS), as described in [RFC0813].  The algorithm can be
  similar to the one described in Section 4.2.3.3 of [RFC1122].

  The guidelines on delayed acknowledgement algorithm specified in
  Section 4.2 of [RFC2581] SHOULD be followed.  Specifically, an
  acknowledgement SHOULD be generated for at least every second packet
  (not every second DATA chunk) received, and SHOULD be generated
  within 200 ms of the arrival of any unacknowledged DATA chunk.  In
  some situations, it may be beneficial for an SCTP transmitter to be
  more conservative than the algorithms detailed in this document
  allow.  However, an SCTP transmitter MUST NOT be more aggressive than
  the following algorithms allow.

  An SCTP receiver MUST NOT generate more than one SACK for every
  incoming packet, other than to update the offered window as the
  receiving application consumes new data.

  IMPLEMENTATION NOTE: The maximum delay for generating an
  acknowledgement may be configured by the SCTP administrator, either
  statically or dynamically, in order to meet the specific timing
  requirement of the protocol being carried.

  An implementation MUST NOT allow the maximum delay to be configured
  to be more than 500 ms.  In other words, an implementation MAY lower
  this value below 500 ms but MUST NOT raise it above 500 ms.



Stewart                     Standards Track                    [Page 78]

RFC 4960          Stream Control Transmission Protocol    September 2007


  Acknowledgements MUST be sent in SACK chunks unless shutdown was
  requested by the ULP, in which case an endpoint MAY send an
  acknowledgement in the SHUTDOWN chunk.  A SACK chunk can acknowledge
  the reception of multiple DATA chunks.  See Section 3.3.4 for SACK
  chunk format.  In particular, the SCTP endpoint MUST fill in the
  Cumulative TSN Ack field to indicate the latest sequential TSN (of a
  valid DATA chunk) it has received.  Any received DATA chunks with TSN
  greater than the value in the Cumulative TSN Ack field are reported
  in the Gap Ack Block fields.  The SCTP endpoint MUST report as many
  Gap Ack Blocks as can fit in a single SACK chunk limited by the
  current path MTU.

  Note: The SHUTDOWN chunk does not contain Gap Ack Block fields.
  Therefore, the endpoint should use a SACK instead of the SHUTDOWN
  chunk to acknowledge DATA chunks received out of order.

  When a packet arrives with duplicate DATA chunk(s) and with no new
  DATA chunk(s), the endpoint MUST immediately send a SACK with no
  delay.  If a packet arrives with duplicate DATA chunk(s) bundled with
  new DATA chunks, the endpoint MAY immediately send a SACK.  Normally,
  receipt of duplicate DATA chunks will occur when the original SACK
  chunk was lost and the peer's RTO has expired.  The duplicate TSN
  number(s) SHOULD be reported in the SACK as duplicate.

  When an endpoint receives a SACK, it MAY use the duplicate TSN
  information to determine if SACK loss is occurring.  Further use of
  this data is for future study.

  The data receiver is responsible for maintaining its receive buffers.
  The data receiver SHOULD notify the data sender in a timely manner of
  changes in its ability to receive data.  How an implementation
  manages its receive buffers is dependent on many factors (e.g.,
  operating system, memory management system, amount of memory, etc.).
  However, the data sender strategy defined in Section 6.2.1 is based
  on the assumption of receiver operation similar to the following:

  A) At initialization of the association, the endpoint tells the peer
     how much receive buffer space it has allocated to the association
     in the INIT or INIT ACK.  The endpoint sets a_rwnd to this value.

  B) As DATA chunks are received and buffered, decrement a_rwnd by the
     number of bytes received and buffered.  This is, in effect,
     closing rwnd at the data sender and restricting the amount of data
     it can transmit.







Stewart                     Standards Track                    [Page 79]

RFC 4960          Stream Control Transmission Protocol    September 2007


  C) As DATA chunks are delivered to the ULP and released from the
     receive buffers, increment a_rwnd by the number of bytes delivered
     to the upper layer.  This is, in effect, opening up rwnd on the
     data sender and allowing it to send more data.  The data receiver
     SHOULD NOT increment a_rwnd unless it has released bytes from its
     receive buffer.  For example, if the receiver is holding
     fragmented DATA chunks in a reassembly queue, it should not
     increment a_rwnd.

  D) When sending a SACK, the data receiver SHOULD place the current
     value of a_rwnd into the a_rwnd field.  The data receiver SHOULD
     take into account that the data sender will not retransmit DATA
     chunks that are acked via the Cumulative TSN Ack (i.e., will drop
     from its retransmit queue).

  Under certain circumstances, the data receiver may need to drop DATA
  chunks that it has received but hasn't released from its receive
  buffers (i.e., delivered to the ULP).  These DATA chunks may have
  been acked in Gap Ack Blocks.  For example, the data receiver may be
  holding data in its receive buffers while reassembling a fragmented
  user message from its peer when it runs out of receive buffer space.
  It may drop these DATA chunks even though it has acknowledged them in
  Gap Ack Blocks.  If a data receiver drops DATA chunks, it MUST NOT
  include them in Gap Ack Blocks in subsequent SACKs until they are
  received again via retransmission.  In addition, the endpoint should
  take into account the dropped data when calculating its a_rwnd.

  An endpoint SHOULD NOT revoke a SACK and discard data.  Only in
  extreme circumstances should an endpoint use this procedure (such as
  out of buffer space).  The data receiver should take into account
  that dropping data that has been acked in Gap Ack Blocks can result
  in suboptimal retransmission strategies in the data sender and thus
  in suboptimal performance.


















Stewart                     Standards Track                    [Page 80]

RFC 4960          Stream Control Transmission Protocol    September 2007


  The following example illustrates the use of delayed
  acknowledgements:

   Endpoint A                                      Endpoint Z

   {App sends 3 messages; strm 0}
   DATA [TSN=7,Strm=0,Seq=3] ------------> (ack delayed)
   (Start T3-rtx timer)

   DATA [TSN=8,Strm=0,Seq=4] ------------> (send ack)
                                 /------- SACK [TSN Ack=8,block=0]
   (cancel T3-rtx timer)  <-----/

   DATA [TSN=9,Strm=0,Seq=5] ------------> (ack delayed)
   (Start T3-rtx timer)
                                          ...
                                          {App sends 1 message; strm 1}
                                          (bundle SACK with DATA)
                                   /----- SACK [TSN Ack=9,block=0] \
                                  /         DATA [TSN=6,Strm=1,Seq=2]
   (cancel T3-rtx timer)  <------/        (Start T3-rtx timer)

   (ack delayed)
   (send ack)
   SACK [TSN Ack=6,block=0] -------------> (cancel T3-rtx timer)

          Figure 7:  Delayed Acknowledgement Example

  If an endpoint receives a DATA chunk with no user data (i.e., the
  Length field is set to 16), it MUST send an ABORT with error cause
  set to "No User Data".

  An endpoint SHOULD NOT send a DATA chunk with no user data part.

6.2.1.  Processing a Received SACK

  Each SACK an endpoint receives contains an a_rwnd value.  This value
  represents the amount of buffer space the data receiver, at the time
  of transmitting the SACK, has left of its total receive buffer space
  (as specified in the INIT/INIT ACK).  Using a_rwnd, Cumulative TSN
  Ack, and Gap Ack Blocks, the data sender can develop a representation
  of the peer's receive buffer space.

  One of the problems the data sender must take into account when
  processing a SACK is that a SACK can be received out of order.  That
  is, a SACK sent by the data receiver can pass an earlier SACK and be
  received first by the data sender.  If a SACK is received out of




Stewart                     Standards Track                    [Page 81]

RFC 4960          Stream Control Transmission Protocol    September 2007


  order, the data sender can develop an incorrect view of the peer's
  receive buffer space.

  Since there is no explicit identifier that can be used to detect
  out-of-order SACKs, the data sender must use heuristics to determine
  if a SACK is new.

  An endpoint SHOULD use the following rules to calculate the rwnd,
  using the a_rwnd value, the Cumulative TSN Ack, and Gap Ack Blocks in
  a received SACK.

  A) At the establishment of the association, the endpoint initializes
     the rwnd to the Advertised Receiver Window Credit (a_rwnd) the
     peer specified in the INIT or INIT ACK.

  B) Any time a DATA chunk is transmitted (or retransmitted) to a peer,
     the endpoint subtracts the data size of the chunk from the rwnd of
     that peer.

  C) Any time a DATA chunk is marked for retransmission, either via
     T3-rtx timer expiration (Section 6.3.3) or via Fast Retransmit
     (Section 7.2.4), add the data size of those chunks to the rwnd.

     Note: If the implementation is maintaining a timer on each DATA
     chunk, then only DATA chunks whose timer expired would be marked
     for retransmission.

  D) Any time a SACK arrives, the endpoint performs the following:

       i) If Cumulative TSN Ack is less than the Cumulative TSN Ack
          Point, then drop the SACK.  Since Cumulative TSN Ack is
          monotonically increasing, a SACK whose Cumulative TSN Ack is
          less than the Cumulative TSN Ack Point indicates an out-of-
          order SACK.

      ii) Set rwnd equal to the newly received a_rwnd minus the number
          of bytes still outstanding after processing the Cumulative
          TSN Ack and the Gap Ack Blocks.

     iii) If the SACK is missing a TSN that was previously acknowledged
          via a Gap Ack Block (e.g., the data receiver reneged on the
          data), then consider the corresponding DATA that might be
          possibly missing: Count one miss indication towards Fast
          Retransmit as described in Section 7.2.4, and if no
          retransmit timer is running for the destination address to
          which the DATA chunk was originally transmitted, then T3-rtx
          is started for that destination address.




Stewart                     Standards Track                    [Page 82]

RFC 4960          Stream Control Transmission Protocol    September 2007


      iv) If the Cumulative TSN Ack matches or exceeds the Fast
          Recovery exitpoint (Section 7.2.4), Fast Recovery is exited.

6.3.  Management of Retransmission Timer

  An SCTP endpoint uses a retransmission timer T3-rtx to ensure data
  delivery in the absence of any feedback from its peer.  The duration
  of this timer is referred to as RTO (retransmission timeout).

  When an endpoint's peer is multi-homed, the endpoint will calculate a
  separate RTO for each different destination transport address of its
  peer endpoint.

  The computation and management of RTO in SCTP follow closely how TCP
  manages its retransmission timer.  To compute the current RTO, an
  endpoint maintains two state variables per destination transport
  address: SRTT (smoothed round-trip time) and RTTVAR (round-trip time
  variation).

6.3.1.  RTO Calculation

  The rules governing the computation of SRTT, RTTVAR, and RTO are as
  follows:

  C1)  Until an RTT measurement has been made for a packet sent to the
       given destination transport address, set RTO to the protocol
       parameter 'RTO.Initial'.

  C2)  When the first RTT measurement R is made, set

       SRTT <- R,

       RTTVAR <- R/2, and

       RTO <- SRTT + 4 * RTTVAR.

  C3)  When a new RTT measurement R' is made, set

       RTTVAR <- (1 - RTO.Beta) * RTTVAR + RTO.Beta * |SRTT - R'|

       and

       SRTT <- (1 - RTO.Alpha) * SRTT + RTO.Alpha * R'

       Note: The value of SRTT used in the update to RTTVAR is its
       value before updating SRTT itself using the second assignment.

       After the computation, update RTO <- SRTT + 4 * RTTVAR.



Stewart                     Standards Track                    [Page 83]

RFC 4960          Stream Control Transmission Protocol    September 2007


  C4)  When data is in flight and when allowed by rule C5 below, a new
       RTT measurement MUST be made each round trip.  Furthermore, new
       RTT measurements SHOULD be made no more than once per round trip
       for a given destination transport address.  There are two
       reasons for this recommendation: First, it appears that
       measuring more frequently often does not in practice yield any
       significant benefit [ALLMAN99]; second, if measurements are made
       more often, then the values of RTO.Alpha and RTO.Beta in rule C3
       above should be adjusted so that SRTT and RTTVAR still adjust to
       changes at roughly the same rate (in terms of how many round
       trips it takes them to reflect new values) as they would if
       making only one measurement per round-trip and using RTO.Alpha
       and RTO.Beta as given in rule C3.  However, the exact nature of
       these adjustments remains a research issue.

  C5)  Karn's algorithm: RTT measurements MUST NOT be made using
       packets that were retransmitted (and thus for which it is
       ambiguous whether the reply was for the first instance of the
       chunk or for a later instance)

       IMPLEMENTATION NOTE: RTT measurements should only be made using
       a chunk with TSN r if no chunk with TSN less than or equal to r
       is retransmitted since r is first sent.

  C6)  Whenever RTO is computed, if it is less than RTO.Min seconds
       then it is rounded up to RTO.Min seconds.  The reason for this
       rule is that RTOs that do not have a high minimum value are
       susceptible to unnecessary timeouts [ALLMAN99].

  C7)  A maximum value may be placed on RTO provided it is at least
       RTO.max seconds.

  There is no requirement for the clock granularity G used for
  computing RTT measurements and the different state variables, other
  than:

  G1) Whenever RTTVAR is computed, if RTTVAR = 0, then adjust RTTVAR <-
  G.

  Experience [ALLMAN99] has shown that finer clock granularities (<=
  100 msec) perform somewhat better than more coarse granularities.










Stewart                     Standards Track                    [Page 84]

RFC 4960          Stream Control Transmission Protocol    September 2007


6.3.2.  Retransmission Timer Rules

  The rules for managing the retransmission timer are as follows:

  R1)  Every time a DATA chunk is sent to any address (including a
       retransmission), if the T3-rtx timer of that address is not
       running, start it running so that it will expire after the RTO
       of that address.  The RTO used here is that obtained after any
       doubling due to previous T3-rtx timer expirations on the
       corresponding destination address as discussed in rule E2 below.

  R2)  Whenever all outstanding data sent to an address have been
       acknowledged, turn off the T3-rtx timer of that address.

  R3)  Whenever a SACK is received that acknowledges the DATA chunk
       with the earliest outstanding TSN for that address, restart the
       T3-rtx timer for that address with its current RTO (if there is
       still outstanding data on that address).

  R4)  Whenever a SACK is received missing a TSN that was previously
       acknowledged via a Gap Ack Block, start the T3-rtx for the
       destination address to which the DATA chunk was originally
       transmitted if it is not already running.

  The following example shows the use of various timer rules (assuming
  that the receiver uses delayed acks).

  Endpoint A                                         Endpoint Z
  {App begins to send}
  Data [TSN=7,Strm=0,Seq=3] ------------> (ack delayed)
  (Start T3-rtx timer)
                                          {App sends 1 message; strm 1}
                                          (bundle ack with data)
  DATA [TSN=8,Strm=0,Seq=4] ----\     /-- SACK [TSN Ack=7,Block=0]
                                 \   /      DATA [TSN=6,Strm=1,Seq=2]
                                  \ /     (Start T3-rtx timer)
                                   \
                                  / \
  (Restart T3-rtx timer)  <------/   \--> (ack delayed)
  (ack delayed)
  {send ack}
  SACK [TSN Ack=6,Block=0] --------------> (Cancel T3-rtx timer)
                                          ..
                                          (send ack)
  (Cancel T3-rtx timer)  <-------------- SACK [TSN Ack=8,Block=0]

                      Figure 8: Timer Rule Examples




Stewart                     Standards Track                    [Page 85]

RFC 4960          Stream Control Transmission Protocol    September 2007


6.3.3.  Handle T3-rtx Expiration

  Whenever the retransmission timer T3-rtx expires for a destination
  address, do the following:

  E1)  For the destination address for which the timer expires, adjust
       its ssthresh with rules defined in Section 7.2.3 and set the
       cwnd <- MTU.

  E2)  For the destination address for which the timer expires, set RTO
       <- RTO * 2 ("back off the timer").  The maximum value discussed
       in rule C7 above (RTO.max) may be used to provide an upper bound
       to this doubling operation.

  E3)  Determine how many of the earliest (i.e., lowest TSN)
       outstanding DATA chunks for the address for which the T3-rtx has
       expired will fit into a single packet, subject to the MTU
       constraint for the path corresponding to the destination
       transport address to which the retransmission is being sent
       (this may be different from the address for which the timer
       expires; see Section 6.4).  Call this value K.  Bundle and
       retransmit those K DATA chunks in a single packet to the
       destination endpoint.

  E4)  Start the retransmission timer T3-rtx on the destination address
       to which the retransmission is sent, if rule R1 above indicates
       to do so.  The RTO to be used for starting T3-rtx should be the
       one for the destination address to which the retransmission is
       sent, which, when the receiver is multi-homed, may be different
       from the destination address for which the timer expired (see
       Section 6.4 below).

  After retransmitting, once a new RTT measurement is obtained (which
  can happen only when new data has been sent and acknowledged, per
  rule C5, or for a measurement made from a HEARTBEAT; see Section
  8.3), the computation in rule C3 is performed, including the
  computation of RTO, which may result in "collapsing" RTO back down
  after it has been subject to doubling (rule E2).

  Note: Any DATA chunks that were sent to the address for which the
  T3-rtx timer expired but did not fit in one MTU (rule E3 above)
  should be marked for retransmission and sent as soon as cwnd allows
  (normally, when a SACK arrives).

  The final rule for managing the retransmission timer concerns
  failover (see Section 6.4.1):





Stewart                     Standards Track                    [Page 86]

RFC 4960          Stream Control Transmission Protocol    September 2007


  F1)  Whenever an endpoint switches from the current destination
       transport address to a different one, the current retransmission
       timers are left running.  As soon as the endpoint transmits a
       packet containing DATA chunk(s) to the new transport address,
       start the timer on that transport address, using the RTO value
       of the destination address to which the data is being sent, if
       rule R1 indicates to do so.

6.4.  Multi-Homed SCTP Endpoints

  An SCTP endpoint is considered multi-homed if there are more than one
  transport address that can be used as a destination address to reach
  that endpoint.

  Moreover, the ULP of an endpoint shall select one of the multiple
  destination addresses of a multi-homed peer endpoint as the primary
  path (see Section 5.1.2 and Section 10.1 for details).

  By default, an endpoint SHOULD always transmit to the primary path,
  unless the SCTP user explicitly specifies the destination transport
  address (and possibly source transport address) to use.

  An endpoint SHOULD transmit reply chunks (e.g., SACK, HEARTBEAT ACK,
  etc.) to the same destination transport address from which it
  received the DATA or control chunk to which it is replying.  This
  rule should also be followed if the endpoint is bundling DATA chunks
  together with the reply chunk.

  However, when acknowledging multiple DATA chunks received in packets
  from different source addresses in a single SACK, the SACK chunk may
  be transmitted to one of the destination transport addresses from
  which the DATA or control chunks being acknowledged were received.

  When a receiver of a duplicate DATA chunk sends a SACK to a multi-
  homed endpoint, it MAY be beneficial to vary the destination address
  and not use the source address of the DATA chunk.  The reason is that
  receiving a duplicate from a multi-homed endpoint might indicate that
  the return path (as specified in the source address of the DATA
  chunk) for the SACK is broken.

  Furthermore, when its peer is multi-homed, an endpoint SHOULD try to
  retransmit a chunk that timed out to an active destination transport
  address that is different from the last destination address to which
  the DATA chunk was sent.

  Retransmissions do not affect the total outstanding data count.
  However, if the DATA chunk is retransmitted onto a different
  destination address, both the outstanding data counts on the new



Stewart                     Standards Track                    [Page 87]

RFC 4960          Stream Control Transmission Protocol    September 2007


  destination address and the old destination address to which the data
  chunk was last sent shall be adjusted accordingly.

6.4.1.  Failover from an Inactive Destination Address

  Some of the transport addresses of a multi-homed SCTP endpoint may
  become inactive due to either the occurrence of certain error
  conditions (see Section 8.2) or adjustments from the SCTP user.

  When there is outbound data to send and the primary path becomes
  inactive (e.g., due to failures), or where the SCTP user explicitly
  requests to send data to an inactive destination transport address,
  before reporting an error to its ULP, the SCTP endpoint should try to
  send the data to an alternate active destination transport address if
  one exists.

  When retransmitting data that timed out, if the endpoint is multi-
  homed, it should consider each source-destination address pair in its
  retransmission selection policy.  When retransmitting timed-out data,
  the endpoint should attempt to pick the most divergent source-
  destination pair from the original source-destination pair to which
  the packet was transmitted.

  Note: Rules for picking the most divergent source-destination pair
  are an implementation decision and are not specified within this
  document.

6.5.  Stream Identifier and Stream Sequence Number

  Every DATA chunk MUST carry a valid stream identifier.  If an
  endpoint receives a DATA chunk with an invalid stream identifier, it
  shall acknowledge the reception of the DATA chunk following the
  normal procedure, immediately send an ERROR chunk with cause set to
  "Invalid Stream Identifier" (see Section 3.3.10), and discard the
  DATA chunk.  The endpoint may bundle the ERROR chunk in the same
  packet as the SACK as long as the ERROR follows the SACK.

  The Stream Sequence Number in all the streams MUST start from 0 when
  the association is established.  Also, when the Stream Sequence
  Number reaches the value 65535 the next Stream Sequence Number MUST
  be set to 0.

6.6.  Ordered and Unordered Delivery

  Within a stream, an endpoint MUST deliver DATA chunks received with
  the U flag set to 0 to the upper layer according to the order of
  their Stream Sequence Number.  If DATA chunks arrive out of order of




Stewart                     Standards Track                    [Page 88]

RFC 4960          Stream Control Transmission Protocol    September 2007


  their Stream Sequence Number, the endpoint MUST hold the received
  DATA chunks from delivery to the ULP until they are reordered.

  However, an SCTP endpoint can indicate that no ordered delivery is
  required for a particular DATA chunk transmitted within the stream by
  setting the U flag of the DATA chunk to 1.

  When an endpoint receives a DATA chunk with the U flag set to 1, it
  must bypass the ordering mechanism and immediately deliver the data
  to the upper layer (after reassembly if the user data is fragmented
  by the data sender).

  This provides an effective way of transmitting "out-of-band" data in
  a given stream.  Also, a stream can be used as an "unordered" stream
  by simply setting the U flag to 1 in all DATA chunks sent through
  that stream.

  IMPLEMENTATION NOTE: When sending an unordered DATA chunk, an
  implementation may choose to place the DATA chunk in an outbound
  packet that is at the head of the outbound transmission queue if
  possible.

  The 'Stream Sequence Number' field in a DATA chunk with U flag set to
  1 has no significance.  The sender can fill it with arbitrary value,
  but the receiver MUST ignore the field.

  Note: When transmitting ordered and unordered data, an endpoint does
  not increment its Stream Sequence Number when transmitting a DATA
  chunk with U flag set to 1.

6.7.  Report Gaps in Received DATA TSNs

  Upon the reception of a new DATA chunk, an endpoint shall examine the
  continuity of the TSNs received.  If the endpoint detects a gap in
  the received DATA chunk sequence, it SHOULD send a SACK with Gap Ack
  Blocks immediately.  The data receiver continues sending a SACK after
  receipt of each SCTP packet that doesn't fill the gap.

  Based on the Gap Ack Block from the received SACK, the endpoint can
  calculate the missing DATA chunks and make decisions on whether to
  retransmit them (see Section 6.2.1 for details).

  Multiple gaps can be reported in one single SACK (see Section 3.3.4).

  When its peer is multi-homed, the SCTP endpoint SHOULD always try to
  send the SACK to the same destination address from which the last
  DATA chunk was received.




Stewart                     Standards Track                    [Page 89]

RFC 4960          Stream Control Transmission Protocol    September 2007


  Upon the reception of a SACK, the endpoint MUST remove all DATA
  chunks that have been acknowledged by the SACK's Cumulative TSN Ack
  from its transmit queue.  The endpoint MUST also treat all the DATA
  chunks with TSNs not included in the Gap Ack Blocks reported by the
  SACK as "missing".  The number of "missing" reports for each
  outstanding DATA chunk MUST be recorded by the data sender in order
  to make retransmission decisions.  See Section 7.2.4 for details.

  The following example shows the use of SACK to report a gap.

      Endpoint A                                    Endpoint Z {App
      sends 3 messages; strm 0} DATA [TSN=6,Strm=0,Seq=2] ----------
      -----> (ack delayed) (Start T3-rtx timer)

      DATA [TSN=7,Strm=0,Seq=3] --------> X (lost)

      DATA [TSN=8,Strm=0,Seq=4] ---------------> (gap detected,
                                                  immediately send ack)
                                      /----- SACK [TSN Ack=6,Block=1,
                                     /             Start=2,End=2]
                              <-----/ (remove 6 from out-queue,
       and mark 7 as "1" missing report)

                 Figure 9: Reporting a Gap using SACK

  The maximum number of Gap Ack Blocks that can be reported within a
  single SACK chunk is limited by the current path MTU.  When a single
  SACK cannot cover all the Gap Ack Blocks needed to be reported due to
  the MTU limitation, the endpoint MUST send only one SACK, reporting
  the Gap Ack Blocks from the lowest to highest TSNs, within the size
  limit set by the MTU, and leave the remaining highest TSN numbers
  unacknowledged.

6.8.  CRC32c Checksum Calculation

  When sending an SCTP packet, the endpoint MUST strengthen the data
  integrity of the transmission by including the CRC32c checksum value
  calculated on the packet, as described below.

  After the packet is constructed (containing the SCTP common header
  and one or more control or DATA chunks), the transmitter MUST

  1)  fill in the proper Verification Tag in the SCTP common header and
      initialize the checksum field to '0's,

  2)  calculate the CRC32c checksum of the whole packet, including the
      SCTP common header and all the chunks (refer to Appendix B for
      details of the CRC32c algorithm); and



Stewart                     Standards Track                    [Page 90]

RFC 4960          Stream Control Transmission Protocol    September 2007


  3)  put the resultant value into the checksum field in the common
      header, and leave the rest of the bits unchanged.

  When an SCTP packet is received, the receiver MUST first check the
  CRC32c checksum as follows:

  1)  Store the received CRC32c checksum value aside.

  2)  Replace the 32 bits of the checksum field in the received SCTP
      packet with all '0's and calculate a CRC32c checksum value of the
      whole received packet.

  3)  Verify that the calculated CRC32c checksum is the same as the
      received CRC32c checksum.  If it is not, the receiver MUST treat
      the packet as an invalid SCTP packet.

  The default procedure for handling invalid SCTP packets is to
  silently discard them.

  Any hardware implementation SHOULD be done in a way that is
  verifiable by the software.

6.9.  Fragmentation and Reassembly

  An endpoint MAY support fragmentation when sending DATA chunks, but
  it MUST support reassembly when receiving DATA chunks.  If an
  endpoint supports fragmentation, it MUST fragment a user message if
  the size of the user message to be sent causes the outbound SCTP
  packet size to exceed the current MTU.  If an implementation does not
  support fragmentation of outbound user messages, the endpoint MUST
  return an error to its upper layer and not attempt to send the user
  message.

  Note: If an implementation that supports fragmentation makes
  available to its upper layer a mechanism to turn off fragmentation,
  it may do so.  However, in so doing, it MUST react just like an
  implementation that does NOT support fragmentation, i.e., it MUST
  reject sends that exceed the current Path MTU (P-MTU).

  IMPLEMENTATION NOTE: In this error case, the Send primitive discussed
  in Section 10.1 would need to return an error to the upper layer.

  If its peer is multi-homed, the endpoint shall choose a size no
  larger than the association Path MTU.  The association Path MTU is
  the smallest Path MTU of all destination addresses.






Stewart                     Standards Track                    [Page 91]

RFC 4960          Stream Control Transmission Protocol    September 2007


  Note: Once a message is fragmented, it cannot be re-fragmented.
  Instead, if the PMTU has been reduced, then IP fragmentation must be
  used.  Please see Section 7.3 for details of PMTU discovery.

  When determining when to fragment, the SCTP implementation MUST take
  into account the SCTP packet header as well as the DATA chunk
  header(s).  The implementation MUST also take into account the space
  required for a SACK chunk if bundling a SACK chunk with the DATA
  chunk.

  Fragmentation takes the following steps:

  1)  The data sender MUST break the user message into a series of DATA
      chunks such that each chunk plus SCTP overhead fits into an IP
      datagram smaller than or equal to the association Path MTU.

  2)  The transmitter MUST then assign, in sequence, a separate TSN to
      each of the DATA chunks in the series.  The transmitter assigns
      the same SSN to each of the DATA chunks.  If the user indicates
      that the user message is to be delivered using unordered
      delivery, then the U flag of each DATA chunk of the user message
      MUST be set to 1.

  3)  The transmitter MUST also set the B/E bits of the first DATA
      chunk in the series to '10', the B/E bits of the last DATA chunk
      in the series to '01', and the B/E bits of all other DATA chunks
      in the series to '00'.

  An endpoint MUST recognize fragmented DATA chunks by examining the
  B/E bits in each of the received DATA chunks, and queue the
  fragmented DATA chunks for reassembly.  Once the user message is
  reassembled, SCTP shall pass the reassembled user message to the
  specific stream for possible reordering and final dispatching.

  Note: If the data receiver runs out of buffer space while still
  waiting for more fragments to complete the reassembly of the message,
  it should dispatch part of its inbound message through a partial
  delivery API (see Section 10), freeing some of its receive buffer
  space so that the rest of the message may be received.

6.10.  Bundling

  An endpoint bundles chunks by simply including multiple chunks in one
  outbound SCTP packet.  The total size of the resultant IP datagram,

  including the SCTP packet and IP headers, MUST be less that or equal
  to the current Path MTU.




Stewart                     Standards Track                    [Page 92]

RFC 4960          Stream Control Transmission Protocol    September 2007


  If its peer endpoint is multi-homed, the sending endpoint shall
  choose a size no larger than the latest MTU of the current primary
  path.

  When bundling control chunks with DATA chunks, an endpoint MUST place
  control chunks first in the outbound SCTP packet.  The transmitter
  MUST transmit DATA chunks within an SCTP packet in increasing order
  of TSN.

  Note: Since control chunks must be placed first in a packet and since
  DATA chunks must be transmitted before SHUTDOWN or SHUTDOWN ACK
  chunks, DATA chunks cannot be bundled with SHUTDOWN or SHUTDOWN ACK
  chunks.

  Partial chunks MUST NOT be placed in an SCTP packet.  A partial chunk
  is a chunk that is not completely contained in the SCTP packet; i.e.,
  the SCTP packet is too short to contain all the bytes of the chunk as
  indicated by the chunk length.

  An endpoint MUST process received chunks in their order in the
  packet.  The receiver uses the Chunk Length field to determine the
  end of a chunk and beginning of the next chunk taking account of the
  fact that all chunks end on a 4-byte boundary.  If the receiver
  detects a partial chunk, it MUST drop the chunk.

  An endpoint MUST NOT bundle INIT, INIT ACK, or SHUTDOWN COMPLETE with
  any other chunks.

7.  Congestion Control

  Congestion control is one of the basic functions in SCTP.  For some
  applications, it may be likely that adequate resources will be
  allocated to SCTP traffic to ensure prompt delivery of time-critical
  data -- thus, it would appear to be unlikely, during normal
  operations, that transmissions encounter severe congestion
  conditions.  However, SCTP must operate under adverse operational
  conditions, which can develop upon partial network failures or
  unexpected traffic surges.  In such situations, SCTP must follow
  correct congestion control steps to recover from congestion quickly
  in order to get data delivered as soon as possible.  In the absence
  of network congestion, these preventive congestion control algorithms
  should show no impact on the protocol performance.

  IMPLEMENTATION NOTE: As far as its specific performance requirements
  are met, an implementation is always allowed to adopt a more
  conservative congestion control algorithm than the one defined below.





Stewart                     Standards Track                    [Page 93]

RFC 4960          Stream Control Transmission Protocol    September 2007


  The congestion control algorithms used by SCTP are based on
  [RFC2581].  This section describes how the algorithms defined in
  [RFC2581] are adapted for use in SCTP.  We first list differences in
  protocol designs between TCP and SCTP, and then describe SCTP's
  congestion control scheme.  The description will use the same
  terminology as in TCP congestion control whenever appropriate.

  SCTP congestion control is always applied to the entire association,
  and not to individual streams.

7.1.  SCTP Differences from TCP Congestion Control

  Gap Ack Blocks in the SCTP SACK carry the same semantic meaning as
  the TCP SACK.  TCP considers the information carried in the SACK as
  advisory information only.  SCTP considers the information carried in
  the Gap Ack Blocks in the SACK chunk as advisory.  In SCTP, any DATA
  chunk that has been acknowledged by SACK, including DATA that arrived
  at the receiving end out of order, is not considered fully delivered
  until the Cumulative TSN Ack Point passes the TSN of the DATA chunk
  (i.e., the DATA chunk has been acknowledged by the Cumulative TSN Ack
  field in the SACK).  Consequently, the value of cwnd controls the
  amount of outstanding data, rather than (as in the case of non-SACK
  TCP) the upper bound between the highest acknowledged sequence number
  and the latest DATA chunk that can be sent within the congestion
  window.  SCTP SACK leads to different implementations of Fast
  Retransmit and Fast Recovery than non-SACK TCP.  As an example, see
  [FALL96].

  The biggest difference between SCTP and TCP, however, is multi-
  homing.  SCTP is designed to establish robust communication
  associations between two endpoints each of which may be reachable by
  more than one transport address.  Potentially different addresses may
  lead to different data paths between the two endpoints; thus, ideally
  one may need a separate set of congestion control parameters for each
  of the paths.  The treatment here of congestion control for multi-
  homed receivers is new with SCTP and may require refinement in the
  future.  The current algorithms make the following assumptions:

  o  The sender usually uses the same destination address until being
     instructed by the upper layer to do otherwise; however, SCTP may
     change to an alternate destination in the event an address is
     marked inactive (see Section 8.2).  Also, SCTP may retransmit to a
     different transport address than the original transmission.

  o  The sender keeps a separate congestion control parameter set for
     each of the destination addresses it can send to (not each
     source-destination pair but for each destination).  The parameters




Stewart                     Standards Track                    [Page 94]

RFC 4960          Stream Control Transmission Protocol    September 2007


     should decay if the address is not used for a long enough time
     period.

  o  For each of the destination addresses, an endpoint does slow start
     upon the first transmission to that address.

  Note: TCP guarantees in-sequence delivery of data to its upper-layer
  protocol within a single TCP session.  This means that when TCP
  notices a gap in the received sequence number, it waits until the gap
  is filled before delivering the data that was received with sequence
  numbers higher than that of the missing data.  On the other hand,
  SCTP can deliver data to its upper-layer protocol even if there is a
  gap in TSN if the Stream Sequence Numbers are in sequence for a
  particular stream (i.e., the missing DATA chunks are for a different
  stream) or if unordered delivery is indicated.  Although this does
  not affect cwnd, it might affect rwnd calculation.

7.2.  SCTP Slow-Start and Congestion Avoidance

  The slow-start and congestion avoidance algorithms MUST be used by an
  endpoint to control the amount of data being injected into the
  network.  The congestion control in SCTP is employed in regard to the
  association, not to an individual stream.  In some situations, it may
  be beneficial for an SCTP sender to be more conservative than the
  algorithms allow; however, an SCTP sender MUST NOT be more aggressive
  than the following algorithms allow.

  Like TCP, an SCTP endpoint uses the following three control variables
  to regulate its transmission rate.

  o  Receiver advertised window size (rwnd, in bytes), which is set by
     the receiver based on its available buffer space for incoming
     packets.

     Note: This variable is kept on the entire association.

  o  Congestion control window (cwnd, in bytes), which is adjusted by
     the sender based on observed network conditions.

     Note: This variable is maintained on a per-destination-address
     basis.

  o  Slow-start threshold (ssthresh, in bytes), which is used by the
     sender to distinguish slow-start and congestion avoidance phases.

     Note: This variable is maintained on a per-destination-address
     basis.




Stewart                     Standards Track                    [Page 95]

RFC 4960          Stream Control Transmission Protocol    September 2007


  SCTP also requires one additional control variable,
  partial_bytes_acked, which is used during congestion avoidance phase
  to facilitate cwnd adjustment.

  Unlike TCP, an SCTP sender MUST keep a set of these control variables
  cwnd, ssthresh, and partial_bytes_acked for EACH destination address
  of its peer (when its peer is multi-homed).  Only one rwnd is kept
  for the whole association (no matter if the peer is multi-homed or
  has a single address).

7.2.1.  Slow-Start

  Beginning data transmission into a network with unknown conditions or
  after a sufficiently long idle period requires SCTP to probe the
  network to determine the available capacity.  The slow-start
  algorithm is used for this purpose at the beginning of a transfer, or
  after repairing loss detected by the retransmission timer.

  o  The initial cwnd before DATA transmission or after a sufficiently
     long idle period MUST be set to min(4*MTU, max (2*MTU, 4380
     bytes)).

  o  The initial cwnd after a retransmission timeout MUST be no more
     than 1*MTU.

  o  The initial value of ssthresh MAY be arbitrarily high (for
     example, implementations MAY use the size of the receiver
     advertised window).

  o  Whenever cwnd is greater than zero, the endpoint is allowed to
     have cwnd bytes of data outstanding on that transport address.

  o  When cwnd is less than or equal to ssthresh, an SCTP endpoint MUST
     use the slow-start algorithm to increase cwnd only if the current
     congestion window is being fully utilized, an incoming SACK
     advances the Cumulative TSN Ack Point, and the data sender is not
     in Fast Recovery.  Only when these three conditions are met can
     the cwnd be increased; otherwise, the cwnd MUST not be increased.
     If these conditions are met, then cwnd MUST be increased by, at
     most, the lesser of 1) the total size of the previously
     outstanding DATA chunk(s) acknowledged, and 2) the destination's
     path MTU.  This upper bound protects against the ACK-Splitting
     attack outlined in [SAVAGE99].

  In instances where its peer endpoint is multi-homed, if an endpoint
  receives a SACK that advances its Cumulative TSN Ack Point, then it
  should update its cwnd (or cwnds) apportioned to the destination
  addresses to which it transmitted the acknowledged data.  However, if



Stewart                     Standards Track                    [Page 96]

RFC 4960          Stream Control Transmission Protocol    September 2007


  the received SACK does not advance the Cumulative TSN Ack Point, the
  endpoint MUST NOT adjust the cwnd of any of the destination
  addresses.

  Because an endpoint's cwnd is not tied to its Cumulative TSN Ack
  Point, as duplicate SACKs come in, even though they may not advance
  the Cumulative TSN Ack Point an endpoint can still use them to clock
  out new data.  That is, the data newly acknowledged by the SACK
  diminishes the amount of data now in flight to less than cwnd, and so
  the current, unchanged value of cwnd now allows new data to be sent.
  On the other hand, the increase of cwnd must be tied to the
  Cumulative TSN Ack Point advancement as specified above.  Otherwise,
  the duplicate SACKs will not only clock out new data, but also will
  adversely clock out more new data than what has just left the
  network, during a time of possible congestion.

  o  When the endpoint does not transmit data on a given transport
     address, the cwnd of the transport address should be adjusted to
     max(cwnd/2, 4*MTU) per RTO.

7.2.2.  Congestion Avoidance

  When cwnd is greater than ssthresh, cwnd should be incremented by
  1*MTU per RTT if the sender has cwnd or more bytes of data
  outstanding for the corresponding transport address.

  In practice, an implementation can achieve this goal in the following
  way:

  o  partial_bytes_acked is initialized to 0.

  o  Whenever cwnd is greater than ssthresh, upon each SACK arrival
     that advances the Cumulative TSN Ack Point, increase
     partial_bytes_acked by the total number of bytes of all new chunks
     acknowledged in that SACK including chunks acknowledged by the new
     Cumulative TSN Ack and by Gap Ack Blocks.

  o  When partial_bytes_acked is equal to or greater than cwnd and
     before the arrival of the SACK the sender had cwnd or more bytes
     of data outstanding (i.e., before arrival of the SACK, flightsize
     was greater than or equal to cwnd), increase cwnd by MTU, and
     reset partial_bytes_acked to (partial_bytes_acked - cwnd).

  o  Same as in the slow start, when the sender does not transmit DATA
     on a given transport address, the cwnd of the transport address
     should be adjusted to max(cwnd / 2, 4*MTU) per RTO.





Stewart                     Standards Track                    [Page 97]

RFC 4960          Stream Control Transmission Protocol    September 2007


  o  When all of the data transmitted by the sender has been
     acknowledged by the receiver, partial_bytes_acked is initialized
     to 0.

7.2.3.  Congestion Control

  Upon detection of packet losses from SACK (see Section 7.2.4), an
  endpoint should do the following:

     ssthresh = max(cwnd/2, 4*MTU)
     cwnd = ssthresh
     partial_bytes_acked = 0

  Basically, a packet loss causes cwnd to be cut in half.

  When the T3-rtx timer expires on an address, SCTP should perform slow
  start by:

     ssthresh = max(cwnd/2, 4*MTU)
     cwnd = 1*MTU

  and ensure that no more than one SCTP packet will be in flight for
  that address until the endpoint receives acknowledgement for
  successful delivery of data to that address.

7.2.4.  Fast Retransmit on Gap Reports

  In the absence of data loss, an endpoint performs delayed
  acknowledgement.  However, whenever an endpoint notices a hole in the
  arriving TSN sequence, it SHOULD start sending a SACK back every time
  a packet arrives carrying data until the hole is filled.

  Whenever an endpoint receives a SACK that indicates that some TSNs
  are missing, it SHOULD wait for two further miss indications (via
  subsequent SACKs for a total of three missing reports) on the same
  TSNs before taking action with regard to Fast Retransmit.

  Miss indications SHOULD follow the HTNA (Highest TSN Newly
  Acknowledged) algorithm.  For each incoming SACK, miss indications
  are incremented only for missing TSNs prior to the highest TSN newly
  acknowledged in the SACK.  A newly acknowledged DATA chunk is one not
  previously acknowledged in a SACK.  If an endpoint is in Fast
  Recovery and a SACK arrives that advances the Cumulative TSN Ack
  Point, the miss indications are incremented for all TSNs reported
  missing in the SACK.

  When the third consecutive miss indication is received for a TSN(s),
  the data sender shall do the following:



Stewart                     Standards Track                    [Page 98]

RFC 4960          Stream Control Transmission Protocol    September 2007


  1)  Mark the DATA chunk(s) with three miss indications for
      retransmission.

  2)  If not in Fast Recovery, adjust the ssthresh and cwnd of the
      destination address(es) to which the missing DATA chunks were
      last sent, according to the formula described in Section 7.2.3.

  3)  Determine how many of the earliest (i.e., lowest TSN) DATA chunks
      marked for retransmission will fit into a single packet, subject
      to constraint of the path MTU of the destination transport
      address to which the packet is being sent.  Call this value K.
      Retransmit those K DATA chunks in a single packet.  When a Fast
      Retransmit is being performed, the sender SHOULD ignore the value
      of cwnd and SHOULD NOT delay retransmission for this single
      packet.

  4)  Restart the T3-rtx timer only if the last SACK acknowledged the
      lowest outstanding TSN number sent to that address, or the
      endpoint is retransmitting the first outstanding DATA chunk sent
      to that address.

  5)  Mark the DATA chunk(s) as being fast retransmitted and thus
      ineligible for a subsequent Fast Retransmit.  Those TSNs marked
      for retransmission due to the Fast-Retransmit algorithm that did
      not fit in the sent datagram carrying K other TSNs are also
      marked as ineligible for a subsequent Fast Retransmit.  However,
      as they are marked for retransmission they will be retransmitted
      later on as soon as cwnd allows.

  6)  If not in Fast Recovery, enter Fast Recovery and mark the highest
      outstanding TSN as the Fast Recovery exit point.  When a SACK
      acknowledges all TSNs up to and including this exit point, Fast
      Recovery is exited.  While in Fast Recovery, the ssthresh and
      cwnd SHOULD NOT change for any destinations due to a subsequent
      Fast Recovery event (i.e., one SHOULD NOT reduce the cwnd further
      due to a subsequent Fast Retransmit).

  Note: Before the above adjustments, if the received SACK also
  acknowledges new DATA chunks and advances the Cumulative TSN Ack
  Point, the cwnd adjustment rules defined in Section 7.2.1 and Section
  7.2.2 must be applied first.

  A straightforward implementation of the above keeps a counter for
  each TSN hole reported by a SACK.  The counter increments for each
  consecutive SACK reporting the TSN hole.  After reaching 3 and
  starting the Fast-Retransmit procedure, the counter resets to 0.





Stewart                     Standards Track                    [Page 99]

RFC 4960          Stream Control Transmission Protocol    September 2007


  Because cwnd in SCTP indirectly bounds the number of outstanding
  TSN's, the effect of TCP Fast Recovery is achieved automatically with
  no adjustment to the congestion control window size.

7.3.  Path MTU Discovery

  [RFC4821], [RFC1981], and [RFC1191] specify "Packetization Layer Path
  MTU Discovery", whereby an endpoint maintains an estimate of the
  maximum transmission unit (MTU) along a given Internet path and
  refrains from sending packets along that path that exceed the MTU,
  other than occasional attempts to probe for a change in the Path MTU
  (PMTU).  [RFC4821] is thorough in its discussion of the MTU discovery
  mechanism and strategies for determining the current end-to-end MTU
  setting as well as detecting changes in this value.

  An endpoint SHOULD apply these techniques, and SHOULD do so on a
  per-destination-address basis.

  There are two important SCTP-specific points regarding Path MTU
  discovery:

  1)  SCTP associations can span multiple addresses.  An endpoint MUST
      maintain separate MTU estimates for each destination address of
      its peer.

  2)  The sender should track an association PMTU that will be the
      smallest PMTU discovered for all of the peer's destination
      addresses.  When fragmenting messages into multiple parts this
      association PMTU should be used to calculate the size of each
      fragment.  This will allow retransmissions to be seamlessly sent
      to an alternate address without encountering IP fragmentation.

8.  Fault Management

8.1.  Endpoint Failure Detection

  An endpoint shall keep a counter on the total number of consecutive
  retransmissions to its peer (this includes retransmissions to all the
  destination transport addresses of the peer if it is multi-homed),
  including unacknowledged HEARTBEAT chunks.  If the value of this
  counter exceeds the limit indicated in the protocol parameter
  'Association.Max.Retrans', the endpoint shall consider the peer
  endpoint unreachable and shall stop transmitting any more data to it
  (and thus the association enters the CLOSED state).  In addition, the
  endpoint MAY report the failure to the upper layer and optionally
  report back all outstanding user data remaining in its outbound
  queue.  The association is automatically closed when the peer
  endpoint becomes unreachable.



Stewart                     Standards Track                   [Page 100]

RFC 4960          Stream Control Transmission Protocol    September 2007


  The counter shall be reset each time a DATA chunk sent to that peer
  endpoint is acknowledged (by the reception of a SACK) or a HEARTBEAT
  ACK is received from the peer endpoint.

8.2.  Path Failure Detection

  When its peer endpoint is multi-homed, an endpoint should keep an
  error counter for each of the destination transport addresses of the
  peer endpoint.

  Each time the T3-rtx timer expires on any address, or when a
  HEARTBEAT sent to an idle address is not acknowledged within an RTO,
  the error counter of that destination address will be incremented.
  When the value in the error counter exceeds the protocol parameter
  'Path.Max.Retrans' of that destination address, the endpoint should
  mark the destination transport address as inactive, and a
  notification SHOULD be sent to the upper layer.

  When an outstanding TSN is acknowledged or a HEARTBEAT sent to that
  address is acknowledged with a HEARTBEAT ACK, the endpoint shall
  clear the error counter of the destination transport address to which
  the DATA chunk was last sent (or HEARTBEAT was sent).  When the peer
  endpoint is multi-homed and the last chunk sent to it was a
  retransmission to an alternate address, there exists an ambiguity as
  to whether or not the acknowledgement should be credited to the
  address of the last chunk sent.  However, this ambiguity does not
  seem to bear any significant consequence to SCTP behavior.  If this
  ambiguity is undesirable, the transmitter may choose not to clear the
  error counter if the last chunk sent was a retransmission.

  Note: When configuring the SCTP endpoint, the user should avoid
  having the value of 'Association.Max.Retrans' larger than the
  summation of the 'Path.Max.Retrans' of all the destination addresses
  for the remote endpoint.  Otherwise, all the destination addresses
  may become inactive while the endpoint still considers the peer
  endpoint reachable.  When this condition occurs, how SCTP chooses to
  function is implementation specific.

  When the primary path is marked inactive (due to excessive
  retransmissions, for instance), the sender MAY automatically transmit
  new packets to an alternate destination address if one exists and is
  active.  If more than one alternate address is active when the
  primary path is marked inactive, only ONE transport address SHOULD be
  chosen and used as the new destination transport address.







Stewart                     Standards Track                   [Page 101]

RFC 4960          Stream Control Transmission Protocol    September 2007


8.3.  Path Heartbeat

  By default, an SCTP endpoint SHOULD monitor the reachability of the
  idle destination transport address(es) of its peer by sending a
  HEARTBEAT chunk periodically to the destination transport
  address(es).  HEARTBEAT sending MAY begin upon reaching the
  ESTABLISHED state and is discontinued after sending either SHUTDOWN
  or SHUTDOWN-ACK.  A receiver of a HEARTBEAT MUST respond to a
  HEARTBEAT with a HEARTBEAT-ACK after entering the COOKIE-ECHOED state
  (INIT sender) or the ESTABLISHED state (INIT receiver), up until
  reaching the SHUTDOWN-SENT state (SHUTDOWN sender) or the SHUTDOWN-
  ACK-SENT state (SHUTDOWN receiver).

  A destination transport address is considered "idle" if no new chunk
  that can be used for updating path RTT (usually including first
  transmission DATA, INIT, COOKIE ECHO, HEARTBEAT, etc.) and no
  HEARTBEAT has been sent to it within the current heartbeat period of
  that address.  This applies to both active and inactive destination
  addresses.

  The upper layer can optionally initiate the following functions:

  A) Disable heartbeat on a specific destination transport address of a
     given association,

  B) Change the HB.interval,

  C) Re-enable heartbeat on a specific destination transport address of
     a given association, and

  D) Request an on-demand HEARTBEAT on a specific destination transport
     address of a given association.

  The endpoint should increment the respective error counter of the
  destination transport address each time a HEARTBEAT is sent to that
  address and not acknowledged within one RTO.

  When the value of this counter reaches the protocol parameter
  'Path.Max.Retrans', the endpoint should mark the corresponding
  destination address as inactive if it is not so marked, and may also
  optionally report to the upper layer the change of reachability of
  this destination address.  After this, the endpoint should continue
  HEARTBEAT on this destination address but should stop increasing the
  counter.

  The sender of the HEARTBEAT chunk should include in the Heartbeat
  Information field of the chunk the current time when the packet is
  sent out and the destination address to which the packet is sent.



Stewart                     Standards Track                   [Page 102]

RFC 4960          Stream Control Transmission Protocol    September 2007


  IMPLEMENTATION NOTE: An alternative implementation of the heartbeat
  mechanism that can be used is to increment the error counter variable
  every time a HEARTBEAT is sent to a destination.  Whenever a
  HEARTBEAT ACK arrives, the sender SHOULD clear the error counter of
  the destination that the HEARTBEAT was sent to.  This in effect would
  clear the previously stroked error (and any other error counts as
  well).

  The receiver of the HEARTBEAT should immediately respond with a
  HEARTBEAT ACK that contains the Heartbeat Information TLV, together
  with any other received TLVs, copied unchanged from the received
  HEARTBEAT chunk.

  Upon the receipt of the HEARTBEAT ACK, the sender of the HEARTBEAT
  should clear the error counter of the destination transport address
  to which the HEARTBEAT was sent, and mark the destination transport
  address as active if it is not so marked.  The endpoint may
  optionally report to the upper layer when an inactive destination
  address is marked as active due to the reception of the latest
  HEARTBEAT ACK.  The receiver of the HEARTBEAT ACK must also clear the
  association overall error count as well (as defined in Section 8.1).

  The receiver of the HEARTBEAT ACK should also perform an RTT
  measurement for that destination transport address using the time
  value carried in the HEARTBEAT ACK chunk.

  On an idle destination address that is allowed to heartbeat, it is
  recommended that a HEARTBEAT chunk is sent once per RTO of that
  destination address plus the protocol parameter 'HB.interval', with
  jittering of +/- 50% of the RTO value, and exponential backoff of the
  RTO if the previous HEARTBEAT is unanswered.

  A primitive is provided for the SCTP user to change the HB.interval
  and turn on or off the heartbeat on a given destination address.  The
  heartbeat interval set by the SCTP user is added to the RTO of that
  destination (including any exponential backoff).  Only one heartbeat
  should be sent each time the heartbeat timer expires (if multiple
  destinations are idle).  It is an implementation decision on how to
  choose which of the candidate idle destinations to heartbeat to (if
  more than one destination is idle).

  Note: When tuning the heartbeat interval, there is a side effect that
  SHOULD be taken into account.  When this value is increased, i.e.,
  the HEARTBEAT takes longer, the detection of lost ABORT messages
  takes longer as well.  If a peer endpoint ABORTs the association for
  any reason and the ABORT chunk is lost, the local endpoint will only
  discover the lost ABORT by sending a DATA chunk or HEARTBEAT chunk
  (thus causing the peer to send another ABORT).  This must be



Stewart                     Standards Track                   [Page 103]

RFC 4960          Stream Control Transmission Protocol    September 2007


  considered when tuning the HEARTBEAT timer.  If the HEARTBEAT is
  disabled, only sending DATA to the association will discover a lost
  ABORT from the peer.

8.4.  Handle "Out of the Blue" Packets

  An SCTP packet is called an "out of the blue" (OOTB) packet if it is
  correctly formed (i.e., passed the receiver's CRC32c check; see
  Section 6.8), but the receiver is not able to identify the
  association to which this packet belongs.

  The receiver of an OOTB packet MUST do the following:

  1)  If the OOTB packet is to or from a non-unicast address, a
      receiver SHOULD silently discard the packet.  Otherwise,

  2)  If the OOTB packet contains an ABORT chunk, the receiver MUST
      silently discard the OOTB packet and take no further action.
      Otherwise,

  3)  If the packet contains an INIT chunk with a Verification Tag set
      to '0', process it as described in Section 5.1.  If, for whatever
      reason, the INIT cannot be processed normally and an ABORT has to
      be sent in response, the Verification Tag of the packet
      containing the ABORT chunk MUST be the Initiate Tag of the
      received INIT chunk, and the T bit of the ABORT chunk has to be
      set to 0, indicating that the Verification Tag is NOT reflected.

  4)  If the packet contains a COOKIE ECHO in the first chunk, process
      it as described in Section 5.1.  Otherwise,

  5)  If the packet contains a SHUTDOWN ACK chunk, the receiver should
      respond to the sender of the OOTB packet with a SHUTDOWN
      COMPLETE.  When sending the SHUTDOWN COMPLETE, the receiver of
      the OOTB packet must fill in the Verification Tag field of the
      outbound packet with the Verification Tag received in the
      SHUTDOWN ACK and set the T bit in the Chunk Flags to indicate
      that the Verification Tag is reflected.  Otherwise,

  6)  If the packet contains a SHUTDOWN COMPLETE chunk, the receiver
      should silently discard the packet and take no further action.
      Otherwise,

  7)  If the packet contains a "Stale Cookie" ERROR or a COOKIE ACK,
      the SCTP packet should be silently discarded.  Otherwise,






Stewart                     Standards Track                   [Page 104]

RFC 4960          Stream Control Transmission Protocol    September 2007


  8)  The receiver should respond to the sender of the OOTB packet with
      an ABORT.  When sending the ABORT, the receiver of the OOTB
      packet MUST fill in the Verification Tag field of the outbound
      packet with the value found in the Verification Tag field of the
      OOTB packet and set the T bit in the Chunk Flags to indicate that
      the Verification Tag is reflected.  After sending this ABORT, the
      receiver of the OOTB packet shall discard the OOTB packet and
      take no further action.

8.5.  Verification Tag

  The Verification Tag rules defined in this section apply when sending
  or receiving SCTP packets that do not contain an INIT, SHUTDOWN
  COMPLETE, COOKIE ECHO (see Section 5.1), ABORT, or SHUTDOWN ACK
  chunk.  The rules for sending and receiving SCTP packets containing
  one of these chunk types are discussed separately in Section 8.5.1.

  When sending an SCTP packet, the endpoint MUST fill in the
  Verification Tag field of the outbound packet with the tag value in
  the Initiate Tag parameter of the INIT or INIT ACK received from its
  peer.

  When receiving an SCTP packet, the endpoint MUST ensure that the
  value in the Verification Tag field of the received SCTP packet
  matches its own tag.  If the received Verification Tag value does not
  match the receiver's own tag value, the receiver shall silently
  discard the packet and shall not process it any further except for
  those cases listed in Section 8.5.1 below.

8.5.1.  Exceptions in Verification Tag Rules

  A) Rules for packet carrying INIT:

  -   The sender MUST set the Verification Tag of the packet to 0.

  -   When an endpoint receives an SCTP packet with the Verification
      Tag set to 0, it should verify that the packet contains only an
      INIT chunk.  Otherwise, the receiver MUST silently discard the
      packet.

  B) Rules for packet carrying ABORT:

  -   The endpoint MUST always fill in the Verification Tag field of
      the outbound packet with the destination endpoint's tag value, if
      it is known.

  -   If the ABORT is sent in response to an OOTB packet, the endpoint
      MUST follow the procedure described in Section 8.4.



Stewart                     Standards Track                   [Page 105]

RFC 4960          Stream Control Transmission Protocol    September 2007


  -   The receiver of an ABORT MUST accept the packet if the
      Verification Tag field of the packet matches its own tag and the
      T bit is not set OR if it is set to its peer's tag and the T bit
      is set in the Chunk Flags.  Otherwise, the receiver MUST silently
      discard the packet and take no further action.

  C) Rules for packet carrying SHUTDOWN COMPLETE:

  -   When sending a SHUTDOWN COMPLETE, if the receiver of the SHUTDOWN
      ACK has a TCB, then the destination endpoint's tag MUST be used,
      and the T bit MUST NOT be set.  Only where no TCB exists should
      the sender use the Verification Tag from the SHUTDOWN ACK, and
      MUST set the T bit.

  -   The receiver of a SHUTDOWN COMPLETE shall accept the packet if
      the Verification Tag field of the packet matches its own tag and
      the T bit is not set OR if it is set to its peer's tag and the T
      bit is set in the Chunk Flags.  Otherwise, the receiver MUST
      silently discard the packet and take no further action.  An
      endpoint MUST ignore the SHUTDOWN COMPLETE if it is not in the
      SHUTDOWN-ACK-SENT state.

  D) Rules for packet carrying a COOKIE ECHO

  -   When sending a COOKIE ECHO, the endpoint MUST use the value of
      the Initiate Tag received in the INIT ACK.

  -   The receiver of a COOKIE ECHO follows the procedures in Section
      5.

  E) Rules for packet carrying a SHUTDOWN ACK

  -   If the receiver is in COOKIE-ECHOED or COOKIE-WAIT state the
      procedures in Section 8.4 SHOULD be followed; in other words, it
      should be treated as an Out Of The Blue packet.

9.  Termination of Association

  An endpoint should terminate its association when it exits from
  service.  An association can be terminated by either abort or
  shutdown.  An abort of an association is abortive by definition in
  that any data pending on either end of the association is discarded
  and not delivered to the peer.  A shutdown of an association is
  considered a graceful close where all data in queue by either
  endpoint is delivered to the respective peers.  However, in the case
  of a shutdown, SCTP does not support a half-open state (like TCP)
  wherein one side may continue sending data while the other end is
  closed.  When either endpoint performs a shutdown, the association on



Stewart                     Standards Track                   [Page 106]

RFC 4960          Stream Control Transmission Protocol    September 2007


  each peer will stop accepting new data from its user and only deliver
  data in queue at the time of sending or receiving the SHUTDOWN chunk.

9.1.  Abort of an Association

  When an endpoint decides to abort an existing association, it MUST
  send an ABORT chunk to its peer endpoint.  The sender MUST fill in
  the peer's Verification Tag in the outbound packet and MUST NOT
  bundle any DATA chunk with the ABORT.  If the association is aborted
  on request of the upper layer, a User-Initiated Abort error cause
  (see Section 3.3.10.12) SHOULD be present in the ABORT chunk.

  An endpoint MUST NOT respond to any received packet that contains an
  ABORT chunk (also see Section 8.4).

  An endpoint receiving an ABORT MUST apply the special Verification
  Tag check rules described in Section 8.5.1.

  After checking the Verification Tag, the receiving endpoint MUST
  remove the association from its record and SHOULD report the
  termination to its upper layer.  If a User-Initiated Abort error
  cause is present in the ABORT chunk, the Upper Layer Abort Reason
  SHOULD be made available to the upper layer.

9.2.  Shutdown of an Association

  Using the SHUTDOWN primitive (see Section 10.1), the upper layer of
  an endpoint in an association can gracefully close the association.
  This will allow all outstanding DATA chunks from the peer of the
  shutdown initiator to be delivered before the association terminates.

  Upon receipt of the SHUTDOWN primitive from its upper layer, the
  endpoint enters the SHUTDOWN-PENDING state and remains there until
  all outstanding data has been acknowledged by its peer.  The endpoint
  accepts no new data from its upper layer, but retransmits data to the
  far end if necessary to fill gaps.

  Once all its outstanding data has been acknowledged, the endpoint
  shall send a SHUTDOWN chunk to its peer including in the Cumulative
  TSN Ack field the last sequential TSN it has received from the peer.
  It shall then start the T2-shutdown timer and enter the SHUTDOWN-SENT
  state.  If the timer expires, the endpoint must resend the SHUTDOWN
  with the updated last sequential TSN received from its peer.

  The rules in Section 6.3 MUST be followed to determine the proper
  timer value for T2-shutdown.  To indicate any gaps in TSN, the
  endpoint may also bundle a SACK with the SHUTDOWN chunk in the same
  SCTP packet.



Stewart                     Standards Track                   [Page 107]

RFC 4960          Stream Control Transmission Protocol    September 2007


  An endpoint should limit the number of retransmissions of the
  SHUTDOWN chunk to the protocol parameter 'Association.Max.Retrans'.
  If this threshold is exceeded, the endpoint should destroy the TCB
  and MUST report the peer endpoint unreachable to the upper layer (and
  thus the association enters the CLOSED state).  The reception of any
  packet from its peer (i.e., as the peer sends all of its queued DATA
  chunks) should clear the endpoint's retransmission count and restart
  the T2-shutdown timer, giving its peer ample opportunity to transmit
  all of its queued DATA chunks that have not yet been sent.

  Upon reception of the SHUTDOWN, the peer endpoint shall

  -  enter the SHUTDOWN-RECEIVED state,

  -  stop accepting new data from its SCTP user, and

  -  verify, by checking the Cumulative TSN Ack field of the chunk,
     that all its outstanding DATA chunks have been received by the
     SHUTDOWN sender.

  Once an endpoint has reached the SHUTDOWN-RECEIVED state, it MUST NOT
  send a SHUTDOWN in response to a ULP request, and should discard
  subsequent SHUTDOWN chunks.

  If there are still outstanding DATA chunks left, the SHUTDOWN
  receiver MUST continue to follow normal data transmission procedures
  defined in Section 6, until all outstanding DATA chunks are
  acknowledged; however, the SHUTDOWN receiver MUST NOT accept new data
  from its SCTP user.

  While in the SHUTDOWN-SENT state, the SHUTDOWN sender MUST
  immediately respond to each received packet containing one or more
  DATA chunks with a SHUTDOWN chunk and restart the T2-shutdown timer.
  If a SHUTDOWN chunk by itself cannot acknowledge all of the received
  DATA chunks (i.e., there are TSNs that can be acknowledged that are
  larger than the cumulative TSN, and thus gaps exist in the TSN
  sequence), or if duplicate TSNs have been received, then a SACK chunk
  MUST also be sent.

  The sender of the SHUTDOWN MAY also start an overall guard timer
  'T5-shutdown-guard' to bound the overall time for the shutdown
  sequence.  At the expiration of this timer, the sender SHOULD abort
  the association by sending an ABORT chunk.  If the 'T5-shutdown-
  guard' timer is used, it SHOULD be set to the recommended value of 5
  times 'RTO.Max'.

  If the receiver of the SHUTDOWN has no more outstanding DATA chunks,
  the SHUTDOWN receiver MUST send a SHUTDOWN ACK and start a T2-



Stewart                     Standards Track                   [Page 108]

RFC 4960          Stream Control Transmission Protocol    September 2007


  shutdown timer of its own, entering the SHUTDOWN-ACK-SENT state.  If
  the timer expires, the endpoint must resend the SHUTDOWN ACK.

  The sender of the SHUTDOWN ACK should limit the number of
  retransmissions of the SHUTDOWN ACK chunk to the protocol parameter
  'Association.Max.Retrans'.  If this threshold is exceeded, the
  endpoint should destroy the TCB and may report the peer endpoint
  unreachable to the upper layer (and thus the association enters the
  CLOSED state).

  Upon the receipt of the SHUTDOWN ACK, the SHUTDOWN sender shall stop
  the T2-shutdown timer, send a SHUTDOWN COMPLETE chunk to its peer,
  and remove all record of the association.

  Upon reception of the SHUTDOWN COMPLETE chunk, the endpoint will
  verify that it is in the SHUTDOWN-ACK-SENT state; if it is not, the
  chunk should be discarded.  If the endpoint is in the SHUTDOWN-ACK-
  SENT state, the endpoint should stop the T2-shutdown timer and remove
  all knowledge of the association (and thus the association enters the
  CLOSED state).

  An endpoint SHOULD ensure that all its outstanding DATA chunks have
  been acknowledged before initiating the shutdown procedure.

  An endpoint should reject any new data request from its upper layer
  if it is in the SHUTDOWN-PENDING, SHUTDOWN-SENT, SHUTDOWN-RECEIVED,
  or SHUTDOWN-ACK-SENT state.

  If an endpoint is in the SHUTDOWN-ACK-SENT state and receives an INIT
  chunk (e.g., if the SHUTDOWN COMPLETE was lost) with source and
  destination transport addresses (either in the IP addresses or in the
  INIT chunk) that belong to this association, it should discard the
  INIT chunk and retransmit the SHUTDOWN ACK chunk.

  Note: Receipt of an INIT with the same source and destination IP
  addresses as used in transport addresses assigned to an endpoint but
  with a different port number indicates the initialization of a
  separate association.

  The sender of the INIT or COOKIE ECHO should respond to the receipt
  of a SHUTDOWN ACK with a stand-alone SHUTDOWN COMPLETE in an SCTP
  packet with the Verification Tag field of its common header set to
  the same tag that was received in the SHUTDOWN ACK packet.  This is
  considered an Out of the Blue packet as defined in Section 8.4.  The
  sender of the INIT lets T1-init continue running and remains in the
  COOKIE-WAIT or COOKIE-ECHOED state.  Normal T1-init timer expiration
  will cause the INIT or COOKIE chunk to be retransmitted and thus
  start a new association.



Stewart                     Standards Track                   [Page 109]

RFC 4960          Stream Control Transmission Protocol    September 2007


  If a SHUTDOWN is received in the COOKIE-WAIT or COOKIE ECHOED state,
  the SHUTDOWN chunk SHOULD be silently discarded.

  If an endpoint is in the SHUTDOWN-SENT state and receives a SHUTDOWN
  chunk from its peer, the endpoint shall respond immediately with a
  SHUTDOWN ACK to its peer, and move into the SHUTDOWN-ACK-SENT state
  restarting its T2-shutdown timer.

  If an endpoint is in the SHUTDOWN-ACK-SENT state and receives a
  SHUTDOWN ACK, it shall stop the T2-shutdown timer, send a SHUTDOWN
  COMPLETE chunk to its peer, and remove all record of the association.

10.  Interface with Upper Layer

  The Upper Layer Protocols (ULPs) shall request services by passing
  primitives to SCTP and shall receive notifications from SCTP for
  various events.

  The primitives and notifications described in this section should be
  used as a guideline for implementing SCTP.  The following functional
  description of ULP interface primitives is shown for illustrative
  purposes.  Different SCTP implementations may have different ULP
  interfaces.  However, all SCTPs must provide a certain minimum set of
  services to guarantee that all SCTP implementations can support the
  same protocol hierarchy.

10.1.  ULP-to-SCTP

  The following sections functionally characterize a ULP/SCTP
  interface.  The notation used is similar to most procedure or
  function calls in high-level languages.

  The ULP primitives described below specify the basic functions that
  SCTP must perform to support inter-process communication.  Individual
  implementations must define their own exact format, and may provide
  combinations or subsets of the basic functions in single calls.

  A) Initialize

     Format: INITIALIZE ([local port],[local eligible address list])->
     local SCTP instance name

  This primitive allows SCTP to initialize its internal data structures
  and allocate necessary resources for setting up its operation
  environment.  Once SCTP is initialized, ULP can communicate directly
  with other endpoints without re-invoking this primitive.

  SCTP will return a local SCTP instance name to the ULP.



Stewart                     Standards Track                   [Page 110]

RFC 4960          Stream Control Transmission Protocol    September 2007


  Mandatory attributes:

  None.

  Optional attributes:

  The following types of attributes may be passed along with the
  primitive:

  o  local port - SCTP port number, if ULP wants it to be specified.

  o  local eligible address list - an address list that the local SCTP
     endpoint should bind.  By default, if an address list is not
     included, all IP addresses assigned to the host should be used by
     the local endpoint.

  IMPLEMENTATION NOTE: If this optional attribute is supported by an
  implementation, it will be the responsibility of the implementation
  to enforce that the IP source address field of any SCTP packets sent
  out by this endpoint contains one of the IP addresses indicated in
  the local eligible address list.

  B) Associate

     Format: ASSOCIATE(local SCTP instance name,
             destination transport addr, outbound stream count)
     -> association id [,destination transport addr list]
           [,outbound stream count]

  This primitive allows the upper layer to initiate an association to a
  specific peer endpoint.

  The peer endpoint shall be specified by one of the transport
  addresses that defines the endpoint (see Section 1.3).  If the local
  SCTP instance has not been initialized, the ASSOCIATE is considered
  an error.

  An association id, which is a local handle to the SCTP association,
  will be returned on successful establishment of the association.  If
  SCTP is not able to open an SCTP association with the peer endpoint,
  an error is returned.

  Other association parameters may be returned, including the complete
  destination transport addresses of the peer as well as the outbound
  stream count of the local endpoint.  One of the transport addresses
  from the returned destination addresses will be selected by the local
  endpoint as default primary path for sending SCTP packets to this
  peer.  The returned "destination transport addr list" can be used by



Stewart                     Standards Track                   [Page 111]

RFC 4960          Stream Control Transmission Protocol    September 2007


  the ULP to change the default primary path or to force sending a
  packet to a specific transport address.

  IMPLEMENTATION NOTE: If ASSOCIATE primitive is implemented as a
  blocking function call, the ASSOCIATE primitive can return
  association parameters in addition to the association id upon
  successful establishment.  If ASSOCIATE primitive is implemented as a
  non-blocking call, only the association id shall be returned and
  association parameters shall be passed using the COMMUNICATION UP
  notification.

  Mandatory attributes:

  o  local SCTP instance name - obtained from the INITIALIZE operation.

  o  destination transport addr - specified as one of the transport
     addresses of the peer endpoint with which the association is to be
     established.

  o  outbound stream count - the number of outbound streams the ULP
     would like to open towards this peer endpoint.

  Optional attributes:

  None.

  C) Shutdown

     Format: SHUTDOWN(association id)
     -> result

  Gracefully closes an association.  Any locally queued user data will
  be delivered to the peer.  The association will be terminated only
  after the peer acknowledges all the SCTP packets sent.  A success
  code will be returned on successful termination of the association.
  If attempting to terminate the association results in a failure, an
  error code shall be returned.

  Mandatory attributes:

  o association id - local handle to the SCTP association.

  Optional attributes:

  None.






Stewart                     Standards Track                   [Page 112]

RFC 4960          Stream Control Transmission Protocol    September 2007


  D) Abort

     Format: ABORT(association id [, Upper Layer Abort Reason]) ->
     result

  Ungracefully closes an association.  Any locally queued user data
  will be discarded, and an ABORT chunk is sent to the peer.  A success
  code will be returned on successful abort of the association.  If
  attempting to abort the association results in a failure, an error
  code shall be returned.

  Mandatory attributes:

  o association id - local handle to the SCTP association.

  Optional attributes:

  o Upper Layer Abort Reason - reason of the abort to be passed to the
  peer.

  None.

  E) Send

   Format: SEND(association id, buffer address, byte count [,context]
           [,stream id] [,life time] [,destination transport address]
           [,unordered flag] [,no-bundle flag] [,payload protocol-id] )
   -> result

  This is the main method to send user data via SCTP.

  Mandatory attributes:

  o  association id - local handle to the SCTP association.

  o  buffer address - the location where the user message to be
     transmitted is stored.

  o  byte count - the size of the user data in number of bytes.

  Optional attributes:

  o  context - an optional 32-bit integer that will be carried in the
     sending failure notification to the ULP if the transportation of
     this user message fails.

  o  stream id - to indicate which stream to send the data on.  If not
     specified, stream 0 will be used.



Stewart                     Standards Track                   [Page 113]

RFC 4960          Stream Control Transmission Protocol    September 2007


  o  life time - specifies the life time of the user data.  The user
     data will not be sent by SCTP after the life time expires.  This
     parameter can be used to avoid efforts to transmit stale user
     messages.  SCTP notifies the ULP if the data cannot be initiated
     to transport (i.e., sent to the destination via SCTP's send
     primitive) within the life time variable.  However, the user data
     will be transmitted if SCTP has attempted to transmit a chunk
     before the life time expired.

  IMPLEMENTATION NOTE: In order to better support the data life time
  option, the transmitter may hold back the assigning of the TSN number
  to an outbound DATA chunk to the last moment.  And, for
  implementation simplicity, once a TSN number has been assigned the
  sender should consider the send of this DATA chunk as committed,
  overriding any life time option attached to the DATA chunk.

  o  destination transport address - specified as one of the
     destination transport addresses of the peer endpoint to which this
     packet should be sent.  Whenever possible, SCTP should use this
     destination transport address for sending the packets, instead of
     the current primary path.

  o  unordered flag - this flag, if present, indicates that the user
     would like the data delivered in an unordered fashion to the peer
     (i.e., the U flag is set to 1 on all DATA chunks carrying this
     message).

  o  no-bundle flag - instructs SCTP not to bundle this user data with
     other outbound DATA chunks.  SCTP MAY still bundle even when this
     flag is present, when faced with network congestion.

  o  payload protocol-id - a 32-bit unsigned integer that is to be
     passed to the peer indicating the type of payload protocol data
     being transmitted.  This value is passed as opaque data by SCTP.

  F) Set Primary

     Format: SETPRIMARY(association id, destination transport address,
                        [source transport address] )
     -> result

  Instructs the local SCTP to use the specified destination transport
  address as the primary path for sending packets.

  The result of attempting this operation shall be returned.  If the
  specified destination transport address is not present in the
  "destination transport address list" returned earlier in an associate
  command or communication up notification, an error shall be returned.



Stewart                     Standards Track                   [Page 114]

RFC 4960          Stream Control Transmission Protocol    September 2007


  Mandatory attributes:

  o  association id - local handle to the SCTP association.

  o  destination transport address - specified as one of the transport
     addresses of the peer endpoint, which should be used as the
     primary address for sending packets.  This overrides the current
     primary address information maintained by the local SCTP endpoint.

  Optional attributes:

  o  source transport address - optionally, some implementations may
     allow you to set the default source address placed in all outgoing
     IP datagrams.

  G) Receive

   Format: RECEIVE(association id, buffer address, buffer size
           [,stream id])
   -> byte count [,transport address] [,stream id] [,stream sequence
      number] [,partial flag] [,delivery number] [,payload protocol-id]

  This primitive shall read the first user message in the SCTP in-queue
  into the buffer specified by ULP, if there is one available.  The
  size of the message read, in bytes, will be returned.  It may,
  depending on the specific implementation, also return other
  information such as the sender's address, the stream id on which it
  is received, whether there are more messages available for retrieval,
  etc.  For ordered messages, their Stream Sequence Number may also be
  returned.

  Depending upon the implementation, if this primitive is invoked when
  no message is available the implementation should return an
  indication of this condition or should block the invoking process
  until data does become available.

  Mandatory attributes:

  o  association id - local handle to the SCTP association

  o  buffer address - the memory location indicated by the ULP to store
     the received message.

  o  buffer size - the maximum size of data to be received, in bytes.

  Optional attributes:

  o  stream id - to indicate which stream to receive the data on.



Stewart                     Standards Track                   [Page 115]

RFC 4960          Stream Control Transmission Protocol    September 2007


  o  Stream Sequence Number - the Stream Sequence Number assigned by
     the sending SCTP peer.

  o  partial flag - if this returned flag is set to 1, then this
     Receive contains a partial delivery of the whole message.  When
     this flag is set, the stream id and Stream Sequence Number MUST
     accompany this receive.  When this flag is set to 0, it indicates
     that no more deliveries will be received for this Stream Sequence
     Number.

  o  payload protocol-id - a 32-bit unsigned integer that is received
     from the peer indicating the type of payload protocol of the
     received data.  This value is passed as opaque data by SCTP.

  H) Status

     Format: STATUS(association id)
     -> status data

  This primitive should return a data block containing the following
  information:

     association connection state,
     destination transport address list,
     destination transport address reachability states,
     current receiver window size,
     current congestion window sizes,
     number of unacknowledged DATA chunks,
     number of DATA chunks pending receipt,
     primary path,
     most recent SRTT on primary path,
     RTO on primary path,
     SRTT and RTO on other destination addresses, etc.

  Mandatory attributes:

  o association id - local handle to the SCTP association.

  Optional attributes:

  None.

  I) Change Heartbeat

     Format: CHANGE HEARTBEAT(association id,
             destination transport address, new state [,interval])
     -> result




Stewart                     Standards Track                   [Page 116]

RFC 4960          Stream Control Transmission Protocol    September 2007


  Instructs the local endpoint to enable or disable heartbeat on the
  specified destination transport address.

  The result of attempting this operation shall be returned.

  Note: Even when enabled, heartbeat will not take place if the
  destination transport address is not idle.

  Mandatory attributes:

  o  association id - local handle to the SCTP association.

  o  destination transport address - specified as one of the transport
     addresses of the peer endpoint.

  o  new state - the new state of heartbeat for this destination
     transport address (either enabled or disabled).

  Optional attributes:

  o  interval - if present, indicates the frequency of the heartbeat if
     this is to enable heartbeat on a destination transport address.
     This value is added to the RTO of the destination transport
     address.  This value, if present, affects all destinations.

  J) Request HeartBeat

     Format: REQUESTHEARTBEAT(association id, destination transport
             address)
     -> result

  Instructs the local endpoint to perform a HeartBeat on the specified
  destination transport address of the given association.  The returned
  result should indicate whether the transmission of the HEARTBEAT
  chunk to the destination address is successful.

  Mandatory attributes:

  o  association id - local handle to the SCTP association.

  o  destination transport address - the transport address of the
     association on which a heartbeat should be issued.

  K) Get SRTT Report

     Format: GETSRTTREPORT(association id,
                           destination transport address)
     -> srtt result



Stewart                     Standards Track                   [Page 117]

RFC 4960          Stream Control Transmission Protocol    September 2007


  Instructs the local SCTP to report the current SRTT measurement on
  the specified destination transport address of the given association.
  The returned result can be an integer containing the most recent SRTT
  in milliseconds.

  Mandatory attributes:

  o  association id - local handle to the SCTP association.

  o  destination transport address - the transport address of the
     association on which the SRTT measurement is to be reported.

  L) Set Failure Threshold

     Format: SETFAILURETHRESHOLD(association id, destination transport
             address, failure threshold)

     -> result

  This primitive allows the local SCTP to customize the reachability
  failure detection threshold 'Path.Max.Retrans' for the specified
  destination address.

  Mandatory attributes:

  o  association id - local handle to the SCTP association.

  o  destination transport address - the transport address of the
     association on which the failure detection threshold is to be set.

  o  failure threshold - the new value of 'Path.Max.Retrans' for the
     destination address.

  M) Set Protocol Parameters

     Format: SETPROTOCOLPARAMETERS(association id,
             [,destination transport address,]
             protocol parameter list)
     -> result

  This primitive allows the local SCTP to customize the protocol
  parameters.

  Mandatory attributes:

  o  association id - local handle to the SCTP association.





Stewart                     Standards Track                   [Page 118]

RFC 4960          Stream Control Transmission Protocol    September 2007


  o  protocol parameter list - the specific names and values of the
     protocol parameters (e.g., Association.Max.Retrans; see Section
     15) that the SCTP user wishes to customize.

  Optional attributes:

  o  destination transport address - some of the protocol parameters
     may be set on a per destination transport address basis.

  N) Receive Unsent Message

     Format: RECEIVE_UNSENT(data retrieval id, buffer address, buffer
             size [,stream id] [, stream sequence number] [,partial
             flag] [,payload protocol-id])

  o  data retrieval id - the identification passed to the ULP in the
     failure notification.

  o  buffer address - the memory location indicated by the ULP to store
     the received message.

  o  buffer size - the maximum size of data to be received, in bytes.

  Optional attributes:

  o  stream id - this is a return value that is set to indicate which
     stream the data was sent to.

  o  Stream Sequence Number - this value is returned indicating the
     Stream Sequence Number that was associated with the message.

  o  partial flag - if this returned flag is set to 1, then this
     message is a partial delivery of the whole message.  When this
     flag is set, the stream id and Stream Sequence Number MUST
     accompany this receive.  When this flag is set to 0, it indicates
     that no more deliveries will be received for this Stream Sequence
     Number.

  o  payload protocol-id - The 32 bit unsigned integer that was sent to
     be sent to the peer indicating the type of payload protocol of the
     received data.

  o  Receive Unacknowledged Message

     Format: RECEIVE_UNACKED(data retrieval id, buffer address, buffer
             size, [,stream id] [, stream sequence number] [,partial
             flag] [,payload protocol-id])




Stewart                     Standards Track                   [Page 119]

RFC 4960          Stream Control Transmission Protocol    September 2007


  o  data retrieval id - the identification passed to the ULP in the
     failure notification.

  o  buffer address - the memory location indicated by the ULP to store
     the received message.

  o  buffer size - the maximum size of data to be received, in bytes.

  Optional attributes:

  o  stream id - this is a return value that is set to indicate which
     stream the data was sent to.

  o  Stream Sequence Number - this value is returned indicating the
     Stream Sequence Number that was associated with the message.

  o  partial flag - if this returned flag is set to 1, then this
     message is a partial delivery of the whole message.  When this
     flag is set, the stream id and Stream Sequence Number MUST
     accompany this receive.  When this flag is set to 0, it indicates
     that no more deliveries will be received for this Stream Sequence
     Number.

  o  payload protocol-id - the 32-bit unsigned integer that was sent to
     the peer indicating the type of payload protocol of the received
     data.

  P) Destroy SCTP Instance

     Format: DESTROY(local SCTP instance name)

  o  local SCTP instance name - this is the value that was passed to
     the application in the initialize primitive and it indicates which
     SCTP instance is to be destroyed.

10.2.  SCTP-to-ULP

  It is assumed that the operating system or application environment
  provides a means for the SCTP to asynchronously signal the ULP
  process.  When SCTP does signal a ULP process, certain information is
  passed to the ULP.

  IMPLEMENTATION NOTE: In some cases, this may be done through a
  separate socket or error channel.







Stewart                     Standards Track                   [Page 120]

RFC 4960          Stream Control Transmission Protocol    September 2007


  A) DATA ARRIVE notification

  SCTP shall invoke this notification on the ULP when a user message is
  successfully received and ready for retrieval.

  The following may optionally be passed with the notification:

  o  association id - local handle to the SCTP association.

  o  stream id - to indicate which stream the data is received on.

  B) SEND FAILURE notification

  If a message cannot be delivered, SCTP shall invoke this notification
  on the ULP.

  The following may optionally be passed with the notification:

  o  association id - local handle to the SCTP association.

  o  data retrieval id - an identification used to retrieve unsent and
     unacknowledged data.

  o  cause code - indicating the reason of the failure, e.g., size too
     large, message life time expiration, etc.

  o  context - optional information associated with this message (see D
     in Section 10.1).

  C) NETWORK STATUS CHANGE notification

  When a destination transport address is marked inactive (e.g., when
  SCTP detects a failure) or marked active (e.g., when SCTP detects a
  recovery), SCTP shall invoke this notification on the ULP.

  The following shall be passed with the notification:

  o  association id - local handle to the SCTP association.

  o  destination transport address - this indicates the destination
     transport address of the peer endpoint affected by the change.

  o  new-status - this indicates the new status.








Stewart                     Standards Track                   [Page 121]

RFC 4960          Stream Control Transmission Protocol    September 2007


  D) COMMUNICATION UP notification

  This notification is used when SCTP becomes ready to send or receive
  user messages, or when a lost communication to an endpoint is
  restored.

  IMPLEMENTATION NOTE: If the ASSOCIATE primitive is implemented as a
  blocking function call, the association parameters are returned as a
  result of the ASSOCIATE primitive itself.  In that case,
  COMMUNICATION UP notification is optional at the association
  initiator's side.

  The following shall be passed with the notification:

  o  association id -  local handle to the SCTP association.

  o  status -  This indicates what type of event has occurred.

  o  destination transport address list -  the complete set of
     transport addresses of the peer.

  o  outbound stream count -  the maximum number of streams allowed to
     be used in this association by the ULP.

  o  inbound stream count -  the number of streams the peer endpoint
     has requested with this association (this may not be the same
     number as 'outbound stream count').

  E) COMMUNICATION LOST notification

  When SCTP loses communication to an endpoint completely (e.g., via
  Heartbeats) or detects that the endpoint has performed an abort
  operation, it shall invoke this notification on the ULP.

  The following shall be passed with the notification:

  o  association id -  local handle to the SCTP association.

  o  status -  this indicates what type of event has occurred; the
               status may indicate that a failure OR a normal
               termination event occurred in response to a shutdown or
               abort request.

  The following may be passed with the notification:

  o  data retrieval id -  an identification used to retrieve unsent and
     unacknowledged data.




Stewart                     Standards Track                   [Page 122]

RFC 4960          Stream Control Transmission Protocol    September 2007


  o  last-acked -  the TSN last acked by that peer endpoint.

  o  last-sent -  the TSN last sent to that peer endpoint.

  o  Upper Layer Abort Reason -  the abort reason specified in case of
     a user-initiated abort.

  F) COMMUNICATION ERROR notification

  When SCTP receives an ERROR chunk from its peer and decides to notify
  its ULP, it can invoke this notification on the ULP.

  The following can be passed with the notification:

  o  association id -  local handle to the SCTP association.

  o  error info -  this indicates the type of error and optionally some
     additional information received through the ERROR chunk.

  G) RESTART notification

  When SCTP detects that the peer has restarted, it may send this
  notification to its ULP.

  The following can be passed with the notification:

  o  association id -  local handle to the SCTP association.

  H) SHUTDOWN COMPLETE notification

  When SCTP completes the shutdown procedures (Section 9.2), this
  notification is passed to the upper layer.

  The following can be passed with the notification:

  o  association id -  local handle to the SCTP association.

11.  Security Considerations

11.1.  Security Objectives

  As a common transport protocol designed to reliably carry time-
  sensitive user messages, such as billing or signaling messages for
  telephony services, between two networked endpoints, SCTP has the
  following security objectives.

  -  availability of reliable and timely data transport services




Stewart                     Standards Track                   [Page 123]

RFC 4960          Stream Control Transmission Protocol    September 2007


  -  integrity of the user-to-user information carried by SCTP

11.2.  SCTP Responses to Potential Threats

  SCTP may potentially be used in a wide variety of risk situations.
  It is important for operators of systems running SCTP to analyze
  their particular situations and decide on the appropriate counter-
  measures.

  Operators of systems running SCTP should consult [RFC2196] for
  guidance in securing their site.

11.2.1.  Countering Insider Attacks

  The principles of [RFC2196] should be applied to minimize the risk of
  theft of information or sabotage by insiders.  Such procedures
  include publication of security policies, control of access at the
  physical, software, and network levels, and separation of services.

11.2.2.  Protecting against Data Corruption in the Network

  Where the risk of undetected errors in datagrams delivered by the
  lower-layer transport services is considered to be too great,
  additional integrity protection is required.  If this additional
  protection were provided in the application layer, the SCTP header
  would remain vulnerable to deliberate integrity attacks.  While the
  existing SCTP mechanisms for detection of packet replays are
  considered sufficient for normal operation, stronger protections are
  needed to protect SCTP when the operating environment contains
  significant risk of deliberate attacks from a sophisticated
  adversary.

  The SCTP Authentication extension SCTP-AUTH [RFC4895] MAY be used
  when the threat environment requires stronger integrity protections,
  but does not require confidentiality.

11.2.3.  Protecting Confidentiality

  In most cases, the risk of breach of confidentiality applies to the
  signaling data payload, not to the SCTP or lower-layer protocol
  overheads.  If that is true, encryption of the SCTP user data only
  might be considered.  As with the supplementary checksum service,
  user data encryption MAY be performed by the SCTP user application.
  Alternately, the user application MAY use an implementation-specific
  API to request that the IP Encapsulating Security Payload (ESP)
  [RFC4303] be used to provide confidentiality and integrity.





Stewart                     Standards Track                   [Page 124]

RFC 4960          Stream Control Transmission Protocol    September 2007


  Particularly for mobile users, the requirement for confidentiality
  might include the masking of IP addresses and ports.  In this case,
  ESP SHOULD be used instead of application-level confidentiality.  If
  ESP is used to protect confidentiality of SCTP traffic, an ESP
  cryptographic transform that includes cryptographic integrity
  protection MUST be used, because if there is a confidentiality threat
  there will also be a strong integrity threat.

  Whenever ESP is in use, application-level encryption is not generally
  required.

  Regardless of where confidentiality is provided, the Internet Key
  Exchange Protocol version 2 (IKEv2) [RFC4306] SHOULD be used for key
  management.

  Operators should consult [RFC4301] for more information on the
  security services available at and immediately above the Internet
  Protocol layer.

11.2.4.  Protecting against Blind Denial-of-Service Attacks

  A blind attack is one where the attacker is unable to intercept or
  otherwise see the content of data flows passing to and from the
  target SCTP node.  Blind denial-of-service attacks may take the form
  of flooding, masquerade, or improper monopolization of services.

11.2.4.1.  Flooding

  The objective of flooding is to cause loss of service and incorrect
  behavior at target systems through resource exhaustion, interference
  with legitimate transactions, and exploitation of buffer-related
  software bugs.  Flooding may be directed either at the SCTP node or
  at resources in the intervening IP Access Links or the Internet.
  Where the latter entities are the target, flooding will manifest
  itself as loss of network services, including potentially the breach
  of any firewalls in place.

  In general, protection against flooding begins at the equipment
  design level, where it includes measures such as:

  -  avoiding commitment of limited resources before determining that
     the request for service is legitimate.

  -  giving priority to completion of processing in progress over the
     acceptance of new work.

  -  identification and removal of duplicate or stale queued requests
     for service.



Stewart                     Standards Track                   [Page 125]

RFC 4960          Stream Control Transmission Protocol    September 2007


  -  not responding to unexpected packets sent to non-unicast
     addresses.

  Network equipment should be capable of generating an alarm and log if
  a suspicious increase in traffic occurs.  The log should provide
  information such as the identity of the incoming link and source
  address(es) used, which will help the network or SCTP system operator
  to take protective measures.  Procedures should be in place for the
  operator to act on such alarms if a clear pattern of abuse emerges.

  The design of SCTP is resistant to flooding attacks, particularly in
  its use of a four-way startup handshake, its use of a cookie to defer
  commitment of resources at the responding SCTP node until the
  handshake is completed, and its use of a Verification Tag to prevent
  insertion of extraneous packets into the flow of an established
  association.

  The IP Authentication Header and Encapsulating Security Payload might
  be useful in reducing the risk of certain kinds of denial-of-service
  attacks.

  The use of the host name feature in the INIT chunk could be used to
  flood a target DNS server.  A large backlog of DNS queries, resolving
  the host name received in the INIT chunk to IP addresses, could be
  accomplished by sending INITs to multiple hosts in a given domain.
  In addition, an attacker could use the host name feature in an
  indirect attack on a third party by sending large numbers of INITs to
  random hosts containing the host name of the target.  In addition to
  the strain on DNS resources, this could also result in large numbers
  of INIT ACKs being sent to the target.  One method to protect against
  this type of attack is to verify that the IP addresses received from
  DNS include the source IP address of the original INIT.  If the list
  of IP addresses received from DNS does not include the source IP
  address of the INIT, the endpoint MAY silently discard the INIT.
  This last option will not protect against the attack against the DNS.

11.2.4.2.  Blind Masquerade

  Masquerade can be used to deny service in several ways:

  -  by tying up resources at the target SCTP node to which the
     impersonated node has limited access.  For example, the target
     node may by policy permit a maximum of one SCTP association with
     the impersonated SCTP node.  The masquerading attacker may attempt
     to establish an association purporting to come from the
     impersonated node so that the latter cannot do so when it requires
     it.




Stewart                     Standards Track                   [Page 126]

RFC 4960          Stream Control Transmission Protocol    September 2007


  -  by deliberately allowing the impersonation to be detected, thereby
     provoking counter-measures that cause the impersonated node to be
     locked out of the target SCTP node.

  -  by interfering with an established association by inserting
     extraneous content such as a SHUTDOWN request.

  SCTP reduces the risk of blind masquerade attacks through IP spoofing
  by use of the four-way startup handshake.  Because the initial
  exchange is memory-less, no lockout mechanism is triggered by blind
  masquerade attacks.  In addition, the INIT ACK containing the State
  Cookie is transmitted back to the IP address from which it received
  the INIT.  Thus, the attacker would not receive the INIT ACK
  containing the State Cookie.  SCTP protects against insertion of
  extraneous packets into the flow of an established association by use
  of the Verification Tag.

  Logging of received INIT requests and abnormalities such as
  unexpected INIT ACKs might be considered as a way to detect patterns
  of hostile activity.  However, the potential usefulness of such
  logging must be weighed against the increased SCTP startup processing
  it implies, rendering the SCTP node more vulnerable to flooding
  attacks.  Logging is pointless without the establishment of operating
  procedures to review and analyze the logs on a routine basis.

11.2.4.3.  Improper Monopolization of Services

  Attacks under this heading are performed openly and legitimately by
  the attacker.  They are directed against fellow users of the target
  SCTP node or of the shared resources between the attacker and the
  target node.  Possible attacks include the opening of a large number
  of associations between the attacker's node and the target, or
  transfer of large volumes of information within a legitimately
  established association.

  Policy limits should be placed on the number of associations per
  adjoining SCTP node.  SCTP user applications should be capable of
  detecting large volumes of illegitimate or "no-op" messages within a
  given association and either logging or terminating the association
  as a result, based on local policy.

11.3.  SCTP Interactions with Firewalls

  It is helpful for some firewalls if they can inspect just the first
  fragment of a fragmented SCTP packet and unambiguously determine
  whether it corresponds to an INIT chunk (for further information,
  please refer to [RFC1858]).  Accordingly, we stress the requirements,
  stated in Section 3.1, that (1) an INIT chunk MUST NOT be bundled



Stewart                     Standards Track                   [Page 127]

RFC 4960          Stream Control Transmission Protocol    September 2007


  with any other chunk in a packet, and (2) a packet containing an INIT
  chunk MUST have a zero Verification Tag.  Furthermore, we require
  that the receiver of an INIT chunk MUST enforce these rules by
  silently discarding an arriving packet  with an INIT chunk that is
  bundled with other chunks or has a non-zero verification tag and
  contains an INIT-chunk.

11.4.  Protection of Non-SCTP-Capable Hosts

  To provide a non-SCTP-capable host with the same level of protection
  against attacks as for SCTP-capable ones, all SCTP stacks MUST
  implement the ICMP handling described in Appendix C.

  When an SCTP stack receives a packet containing multiple control or
  DATA chunks and the processing of the packet requires the sending of
  multiple chunks in response, the sender of the response chunk(s) MUST
  NOT send more than one packet.  If bundling is supported, multiple
  response chunks that fit into a single packet MAY be bundled together
  into one single response packet.  If bundling is not supported, then
  the sender MUST NOT send more than one response chunk and MUST
  discard all other responses.  Note that this rule does NOT apply to a
  SACK chunk, since a SACK chunk is, in itself, a response to DATA and
  a SACK does not require a response of more DATA.

  An SCTP implementation SHOULD abort the association if it receives a
  SACK acknowledging a TSN that has not been sent.

  An SCTP implementation that receives an INIT that would require a
  large packet in response, due to the inclusion of multiple ERROR
  parameters, MAY (at its discretion) elect to omit some or all of the
  ERROR parameters to reduce the size of the INIT ACK.  Due to a
  combination of the size of the COOKIE parameter and the number of
  addresses a receiver of an INIT may be indicating to a peer, it is
  always possible that the INIT ACK will be larger than the original
  INIT.  An SCTP implementation SHOULD attempt to make the INIT ACK as
  small as possible to reduce the possibility of byte amplification
  attacks.

12.  Network Management Considerations

  The MIB module for SCTP defined in [RFC3873] applies for the version
  of the protocol specified in this document.









Stewart                     Standards Track                   [Page 128]

RFC 4960          Stream Control Transmission Protocol    September 2007


13.  Recommended Transmission Control Block (TCB) Parameters

  This section details a recommended set of parameters that should be
  contained within the TCB for an implementation.  This section is for
  illustrative purposes and should not be deemed as requirements on an
  implementation or as an exhaustive list of all parameters inside an
  SCTP TCB.  Each implementation may need its own additional parameters
  for optimization.

13.1.  Parameters Necessary for the SCTP Instance

  Associations: A list of current associations and mappings to the data
                consumers for each association.  This may be in the
                form of a hash table or other implementation-dependent
                structure.  The data consumers may be process
                identification information such as file descriptors,
                named pipe pointer, or table pointers dependent on how
                SCTP is implemented.

  Secret Key:   A secret key used by this endpoint to compute the MAC.
                This SHOULD be a cryptographic quality random number
                with a sufficient length.  Discussion in RFC 4086 can
                be helpful in selection of the key.

  Address List: The list of IP addresses that this instance has bound.
                This information is passed to one's peer(s) in INIT and
                INIT ACK chunks.

  SCTP Port:    The local SCTP port number to which the endpoint is
                bound.

13.2.  Parameters Necessary per Association (i.e., the TCB)

  Peer        : Tag value to be sent in every packet and is received
  Verification: in the INIT or INIT ACK chunk.
  Tag         :

  My          : Tag expected in every inbound packet and sent in the
  Verification: INIT or INIT ACK chunk.
  Tag         :

  State       : A state variable indicating what state the association
              : is in, i.e., COOKIE-WAIT, COOKIE-ECHOED, ESTABLISHED,
              : SHUTDOWN-PENDING, SHUTDOWN-SENT, SHUTDOWN-RECEIVED,
              : SHUTDOWN-ACK-SENT.

                Note: No "CLOSED" state is illustrated since if a
                association is "CLOSED" its TCB SHOULD be removed.



Stewart                     Standards Track                   [Page 129]

RFC 4960          Stream Control Transmission Protocol    September 2007


  Peer        : A list of SCTP transport addresses to which the peer
  Transport   : is bound.  This information is derived from the INIT or
  Address     : INIT ACK and is used to associate an inbound packet
  List        : with a given association.  Normally, this information
              : is hashed or keyed for quick lookup and access of the
              : TCB.

  Primary     : This is the current primary destination transport
  Path        : address of the peer endpoint.  It may also specify a
              : source transport address on this endpoint.

  Overall     : The overall association error count.
  Error Count :

  Overall     : The threshold for this association that if the Overall
  Error       : Error Count reaches will cause this association to be
  Threshold   : torn down.

  Peer Rwnd   : Current calculated value of the peer's rwnd.

  Next TSN    : The next TSN number to be assigned to a new DATA chunk.
              : This is sent in the INIT or INIT ACK chunk to the peer
              : and incremented each time a DATA chunk is assigned a
              : TSN (normally just prior to transmit or during
              : fragmentation).

  Last Rcvd   : This is the last TSN received in sequence.  This value
  TSN         : is set initially by taking the peer's initial TSN,
              : received in the INIT or INIT ACK chunk, and
              : subtracting one from it.

  Mapping     : An array of bits or bytes indicating which out-of-
  Array       : order TSNs have been received (relative to the
              : Last Rcvd TSN).  If no gaps exist, i.e., no out-of-
              : order packets have been received, this array will
              : be set to all zero.  This structure may be in the
              : form of a circular buffer or bit array.

  Ack State   : This flag indicates if the next received packet
              : is to be responded to with a SACK.  This is initialized
              : to 0.  When a packet is received it is incremented.
              : If this value reaches 2 or more, a SACK is sent and the
              : value is reset to 0.  Note: This is used only when no
              : DATA chunks are received out of order.  When DATA
              : chunks are out of order, SACKs are not delayed (see
              : Section 6).





Stewart                     Standards Track                   [Page 130]

RFC 4960          Stream Control Transmission Protocol    September 2007


  Inbound     : An array of structures to track the inbound streams,
  Streams     : normally including the next sequence number expected
              : and possibly the stream number.

  Outbound    : An array of structures to track the outbound streams,
  Streams     : normally including the next sequence number to
              : be sent on the stream.

  Reasm Queue : A reassembly queue.

  Local       : The list of local IP addresses bound in to this
  Transport   : association.
  Address     :
  List        :

  Association : The smallest PMTU discovered for all of the
  PMTU        : peer's transport addresses.

13.3.  Per Transport Address Data

  For each destination transport address in the peer's address list
  derived from the INIT or INIT ACK chunk, a number of data elements
  need to be maintained including:

  Error Count : The current error count for this destination.

  Error       : Current error threshold for this destination, i.e.,
  Threshold   : what value marks the destination down if error count
              : reaches this value.

  cwnd        : The current congestion window.

  ssthresh    : The current ssthresh value.

  RTO         : The current retransmission timeout value.

  SRTT        : The current smoothed round-trip time.

  RTTVAR      : The current RTT variation.

  partial     : The tracking method for increase of cwnd when in
  bytes acked : congestion avoidance mode (see Section 7.2.2).

  state       : The current state of this destination, i.e., DOWN, UP,
              : ALLOW-HB, NO-HEARTBEAT, etc.






Stewart                     Standards Track                   [Page 131]

RFC 4960          Stream Control Transmission Protocol    September 2007


  PMTU        : The current known path MTU.

  Per         : A timer used by each destination.
  Destination :
  Timer       :

  RTO-Pending : A flag used to track if one of the DATA chunks sent to
              : this address is currently being used to compute an
              : RTT.  If this flag is 0, the next DATA chunk sent to
              : this destination should be used to compute an RTT and
              : this flag should be set.  Every time the RTT
              : calculation completes (i.e., the DATA chunk is SACK'd),
              : clear this flag.

  last-time   : The time to which this destination was last sent.
              : This can be to determine if a HEARTBEAT is needed.

13.4.  General Parameters Needed

  Out Queue : A queue of outbound DATA chunks.

  In Queue  : A queue of inbound DATA chunks.

14.  IANA Considerations

  SCTP defines three registries that IANA maintains:

  -  through definition of additional chunk types,
  -  through definition of additional parameter types, or
  -  through definition of additional cause codes within ERROR chunks.

  SCTP requires that the IANA Port Numbers registry be opened for SCTP
  port registrations, Section 14.5 describes how.  An IESG-appointed
  Expert Reviewer supports IANA in evaluating SCTP port allocation
  requests.

14.1.  IETF-Defined Chunk Extension

  The assignment of new chunk parameter type codes is done through an
  IETF Consensus action, as defined in [RFC2434].  Documentation of the
  chunk parameter MUST contain the following information:

  a) A long and short name for the new chunk type.

  b) A detailed description of the structure of the chunk, which MUST
     conform to the basic structure defined in Section 3.2.





Stewart                     Standards Track                   [Page 132]

RFC 4960          Stream Control Transmission Protocol    September 2007


  c) A detailed definition and description of intended use of each
     field within the chunk, including the chunk flags if any.

  d) A detailed procedural description of the use of the new chunk type
     within the operation of the protocol.

  The last chunk type (255) is reserved for future extension if
  necessary.

14.2.  IETF-Defined Chunk Parameter Extension

  The assignment of new chunk parameter type codes is done through an
  IETF Consensus action as defined in [RFC2434].  Documentation of the
  chunk parameter MUST contain the following information:

  a) Name of the parameter type.

  b) Detailed description of the structure of the parameter field.
     This structure MUST conform to the general Type-Length-Value
     format described in Section 3.2.1.

  c) Detailed definition of each component of the parameter value.

  d) Detailed description of the intended use of this parameter type,
     and an indication of whether and under what circumstances multiple
     instances of this parameter type may be found within the same
     chunk.

  e) Each parameter type MUST be unique across all chunks.

14.3.  IETF-Defined Additional Error Causes

  Additional cause codes may be allocated in the range 11 to 65535
  through a Specification Required action as defined in [RFC2434].
  Provided documentation must include the following information:

  a) Name of the error condition.

  b) Detailed description of the conditions under which an SCTP
     endpoint should issue an ERROR (or ABORT) with this cause code.

  c) Expected action by the SCTP endpoint that receives an ERROR (or
     ABORT) chunk containing this cause code.

  d) Detailed description of the structure and content of data fields
     that accompany this cause code.





Stewart                     Standards Track                   [Page 133]

RFC 4960          Stream Control Transmission Protocol    September 2007


  The initial word (32 bits) of a cause code parameter MUST conform to
  the format shown in Section 3.3.10, i.e.:

  -  first 2 bytes contain the cause code value
  -  last 2 bytes contain the length of the cause parameter.

14.4.  Payload Protocol Identifiers

  Except for value 0, which is reserved by SCTP to indicate an
  unspecified payload protocol identifier in a DATA chunk, SCTP will
  not be responsible for standardizing or verifying any payload
  protocol identifiers; SCTP simply receives the identifier from the
  upper layer and carries it with the corresponding payload data.

  The upper layer, i.e., the SCTP user, SHOULD standardize any specific
  protocol identifier with IANA if it is so desired.  The use of any
  specific payload protocol identifier is out of the scope of SCTP.

14.5.  Port Numbers Registry

  SCTP services may use contact port numbers to provide service to
  unknown callers, as in TCP and UDP.  IANA is therefore requested to
  open the existing Port Numbers registry for SCTP using the following
  rules, which we intend to mesh well with existing Port Numbers
  registration procedures.  An IESG-appointed Expert Reviewer supports
  IANA in evaluating SCTP port allocation requests, according to the
  procedure defined in [RFC2434].

  Port numbers are divided into three ranges.  The Well Known Ports are
  those from 0 through 1023, the Registered Ports are those from 1024
  through 49151, and the Dynamic and/or Private Ports are those from
  49152 through 65535.  Well Known and Registered Ports are intended
  for use by server applications that desire a default contact point on
  a system.  On most systems, Well Known Ports can only be used by
  system (or root) processes or by programs executed by privileged
  users, while Registered Ports can be used by ordinary user processes
  or programs executed by ordinary users.  Dynamic and/or Private Ports
  are intended for temporary use, including client-side ports, out-of-
  band negotiated ports, and application testing prior to registration
  of a dedicated port; they MUST NOT be registered.

  The Port Numbers registry should accept registrations for SCTP ports
  in the Well Known Ports and Registered Ports ranges.  Well Known and
  Registered Ports SHOULD NOT be used without registration.  Although
  in some cases -- such as porting an application from TCP to SCTP --
  it may seem natural to use an SCTP port before registration
  completes, we emphasize that IANA will not guarantee registration of




Stewart                     Standards Track                   [Page 134]

RFC 4960          Stream Control Transmission Protocol    September 2007


  particular Well Known and Registered Ports.  Registrations should be
  requested as early as possible.

  Each port registration SHALL include the following information:

  o  A short port name, consisting entirely of letters (A-Z and a-z),
     digits (0-9), and punctuation characters from "-_+./*" (not
     including the quotes).

  o  The port number that is requested for registration.

  o  A short English phrase describing the port's purpose.

  o  Name and contact information for the person or entity performing
     the registration, and possibly a reference to a document defining
     the port's use.  Registrations coming from IETF working groups
     need only name the working group, but indicating a contact person
     is recommended.

  Registrants are encouraged to follow these guidelines when submitting
  a registration.

  o  A port name SHOULD NOT be registered for more than one SCTP port
     number.

  o  A port name registered for TCP MAY be registered for SCTP as well.
     Any such registration SHOULD use the same port number as the
     existing TCP registration.

  o  Concrete intent to use a port SHOULD precede port registration.
     For example, existing TCP ports SHOULD NOT be registered in
     advance of any intent to use those ports for SCTP.

     This document registers the following ports.  (These registrations
     should be considered models to follow for future allocation
     requests.)

        discard    9/sctp  Discard  # IETF TSVWG
                                    # Randall Stewart <[email protected]>
                                    # [RFC4960]

           The discard service, which accepts SCTP connections on port
           9, discards all incoming application data and sends no data
           in response.  Thus, SCTP's discard port is analogous to
           TCP's discard port, and might be used to check the health
           of an SCTP stack.





Stewart                     Standards Track                   [Page 135]

RFC 4960          Stream Control Transmission Protocol    September 2007


        ftp-data  20/sctp  FTP      # IETF TSVWG
                                    # Randall Stewart <[email protected]>
                                    # [RFC4960]

        ftp       21/sctp  FTP      # IETF TSVWG
                                    # Randall Stewart <[email protected]>
                                    # [RFC4960]

           File Transfer Protocol (FTP) data (20) and control ports
           (21).

        ssh       22/sctp  SSH      # IETF TSVWG
                                    # Randall Stewart <[email protected]>
                                    # [RFC4960]

           The Secure Shell (SSH) remote login service, which allows
           secure shell logins to a host.

        http      80/sctp  HTTP     # IETF TSVWG
                                    # Randall Stewart <[email protected]>
                                    # [RFC4960]

           World Wide Web HTTP over SCTP.

        bgp      179/sctp  BGP      # IETF TSVWG
                                    # Randall Stewart <[email protected]>
                                    # [RFC4960]

           Border Gateway Protocol over SCTP.

        https    443/sctp  HTTPS    # IETF TSVWG
                                    # Randall Stewart <[email protected]>
                                    # [RFC4960]

           World Wide Web HTTP over TLS/SSL over SCTP.

15.  Suggested SCTP Protocol Parameter Values

  The following protocol parameters are RECOMMENDED:

     RTO.Initial - 3 seconds
     RTO.Min - 1 second
     RTO.Max - 60 seconds
     Max.Burst - 4
     RTO.Alpha - 1/8
     RTO.Beta - 1/4
     Valid.Cookie.Life - 60 seconds
     Association.Max.Retrans - 10 attempts



Stewart                     Standards Track                   [Page 136]

RFC 4960          Stream Control Transmission Protocol    September 2007


     Path.Max.Retrans - 5 attempts (per destination address)
     Max.Init.Retransmits - 8 attempts
     HB.interval - 30 seconds
     HB.Max.Burst - 1

  IMPLEMENTATION NOTE: The SCTP implementation may allow ULP to
  customize some of these protocol parameters (see Section 10).

  Note: RTO.Min SHOULD be set as recommended above.

16.  Acknowledgements

  An undertaking represented by this updated document is not a small
  feat and represents the summation of the initial authors of RFC 2960:
  Q. Xie, K. Morneault, C. Sharp, H. Schwarzbauer, T. Taylor, I.
  Rytina, M. Kalla, L. Zhang, and V. Paxson.

  Add to that, the comments from everyone who contributed to the
  original RFC:

  Mark Allman, R.J. Atkinson, Richard Band, Scott Bradner, Steve
  Bellovin, Peter Butler, Ram Dantu, R. Ezhirpavai, Mike Fisk, Sally
  Floyd, Atsushi Fukumoto, Matt Holdrege, Henry Houh, Christian
  Huitema, Gary Lehecka, Jonathan Lee, David Lehmann, John Loughney,
  Daniel Luan, Barry Nagelberg, Thomas Narten, Erik Nordmark, Lyndon
  Ong, Shyamal Prasad, Kelvin Porter, Heinz Prantner, Jarno Rajahalme,
  Raymond E. Reeves, Renee Revis, Ivan Arias Rodriguez, A. Sankar, Greg
  Sidebottom, Brian Wyld, La Monte Yarroll, and many others for their
  invaluable comments.

  Then, add the authors of the SCTP implementor's guide, I. Arias-
  Rodriguez, K. Poon, A. Caro, and M. Tuexen.

  Then add to these the efforts of all the subsequent seven SCTP
  interoperability tests and those who commented on RFC 4460 as shown
  in its acknowledgements:

  Barry Zuckerman, La Monte Yarroll, Qiaobing Xie, Wang Xiaopeng,
  Jonathan Wood, Jeff Waskow, Mike Turner, John Townsend, Sabina
  Torrente, Cliff Thomas, Yuji Suzuki, Manoj Solanki, Sverre Slotte,
  Keyur Shah, Jan Rovins, Ben Robinson, Renee Revis, Ian Periam, RC
  Monee, Sanjay Rao, Sujith Radhakrishnan, Heinz Prantner, Biren Patel,
  Nathalie Mouellic, Mitch Miers, Bernward Meyknecht, Stan McClellan,
  Oliver Mayor, Tomas Orti Martin, Sandeep Mahajan, David Lehmann,
  Jonathan Lee, Philippe Langlois, Karl Knutson, Joe Keller, Gareth
  Keily, Andreas Jungmaier, Janardhan Iyengar, Mutsuya Irie, John
  Hebert, Kausar Hassan, Fred Hasle, Dan Harrison, Jon Grim, Laurent
  Glaude, Steven Furniss, Atsushi Fukumoto, Ken Fujita, Steve Dimig,



Stewart                     Standards Track                   [Page 137]

RFC 4960          Stream Control Transmission Protocol    September 2007


  Thomas Curran, Serkan Cil, Melissa Campbell, Peter Butler, Rob
  Brennan, Harsh Bhondwe, Brian Bidulock, Caitlin Bestler, Jon Berger,
  Robby Benedyk, Stephen Baucke, Sandeep Balani, and Ronnie Sellar.

  A special thanks to Mark Allman, who should actually be a co-author
  for his work on the max-burst, but managed to wiggle out due to a
  technicality.  Also, we would like to acknowledge Lyndon Ong and Phil
  Conrad for their valuable input and many contributions.

  And finally, you have this document, and those who have commented
  upon that including Alfred Hoenes and Ronnie Sellars.

  My thanks cannot be adequately expressed to all of you who have
  participated in the coding, testing, and updating process of this
  document.  All I can say is, Thank You!

  Randall Stewart - Editor


































Stewart                     Standards Track                   [Page 138]

RFC 4960          Stream Control Transmission Protocol    September 2007


Appendix A.  Explicit Congestion Notification

  ECN [RFC3168] describes a proposed extension to IP that details a
  method to become aware of congestion outside of datagram loss.  This
  is an optional feature that an implementation MAY choose to add to
  SCTP.  This appendix details the minor differences implementers will
  need to be aware of if they choose to implement this feature.  In
  general, [RFC3168] should be followed with the following exceptions.

  Negotiation:

  [RFC3168] details negotiation of ECN during the SYN and SYN-ACK
  stages of a TCP connection.  The sender of the SYN sets 2 bits in the
  TCP flags, and the sender of the SYN-ACK sets only 1 bit.  The
  reasoning behind this is to ensure that both sides are truly ECN
  capable.  For SCTP, this is not necessary.  To indicate that an
  endpoint is ECN capable, an endpoint SHOULD add to the INIT and or
  INIT ACK chunk the TLV reserved for ECN.  This TLV contains no
  parameters, and thus has the following format:

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |   Parameter Type = 32768      |     Parameter Length = 4      |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  ECN-Echo:

  [RFC3168] details a specific bit for a receiver to send back in its
  TCP acknowledgements to notify the sender of the Congestion
  Experienced (CE) bit having arrived from the network.  For SCTP, this
  same indication is made by including the ECNE chunk.  This chunk
  contains one data element, i.e., the lowest TSN associated with the
  IP datagram marked with the CE bit, and looks as follows:

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      | Chunk Type=12 | Flags=00000000|    Chunk Length = 8           |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                      Lowest TSN Number                        |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

      Note: The ECNE is considered a Control chunk.







Stewart                     Standards Track                   [Page 139]

RFC 4960          Stream Control Transmission Protocol    September 2007


  CWR:

  [RFC3168] details a specific bit for a sender to send in the header
  of its next outbound TCP segment to indicate to its peer that it has
  reduced its congestion window.  This is termed the CWR bit.  For
  SCTP, the same indication is made by including the CWR chunk.  This
  chunk contains one data element, i.e., the TSN number that was sent
  in the ECNE chunk.  This element represents the lowest TSN number in
  the datagram that was originally marked with the CE bit.

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      | Chunk Type=13 | Flags=00000000|    Chunk Length = 8           |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                      Lowest TSN Number                        |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

      Note: The CWR is considered a Control chunk.

Appendix B.  CRC32c Checksum Calculation

  We define a 'reflected value' as one that is the opposite of the
  normal bit order of the machine.  The 32-bit CRC (Cyclic Redundancy
  Check) is calculated as described for CRC32c and uses the polynomial
  code 0x11EDC6F41 (Castagnoli93) or x^32+x^28+x^27+x^26+x^25
  +x^23+x^22+x^20+x^19+x^18+ x^14+x^13+x^11+x^10+x^9+x^8+x^6+x^0.  The
  CRC is computed using a procedure similar to ETHERNET CRC [ITU32],
  modified to reflect transport-level usage.

  CRC computation uses polynomial division.  A message bit-string M is
  transformed to a polynomial, M(X), and the CRC is calculated from
  M(X) using polynomial arithmetic.

  When CRCs are used at the link layer, the polynomial is derived from
  on-the-wire bit ordering: the first bit 'on the wire' is the high-
  order coefficient.  Since SCTP is a transport-level protocol, it
  cannot know the actual serial-media bit ordering.  Moreover,
  different links in the path between SCTP endpoints may use different
  link-level bit orders.

  A convention must therefore be established for mapping SCTP transport
  messages to polynomials for purposes of CRC computation.  The bit-
  ordering for mapping SCTP messages to polynomials is that bytes are
  taken most-significant first, but within each byte, bits are taken
  least-significant first.  The first byte of the message provides the
  eight highest coefficients.  Within each byte, the least-significant
  SCTP bit gives the most-significant polynomial coefficient within



Stewart                     Standards Track                   [Page 140]

RFC 4960          Stream Control Transmission Protocol    September 2007


  that byte, and the most-significant SCTP bit is the least-significant
  polynomial coefficient in that byte.  (This bit ordering is sometimes
  called 'mirrored' or 'reflected' [WILLIAMS93].)  CRC polynomials are
  to be transformed back into SCTP transport-level byte values, using a
  consistent mapping.

  The SCTP transport-level CRC value should be calculated as follows:

  -  CRC input data are assigned to a byte stream, numbered from 0 to
     N-1.

  -  The transport-level byte stream is mapped to a polynomial value.
     An N-byte PDU with j bytes numbered 0 to N-1 is considered as
     coefficients of a polynomial M(x) of order 8N-1, with bit 0 of
     byte j being coefficient x^(8(N-j)-8), and bit 7 of byte j being
     coefficient x^(8(N-j)-1).

  -  The CRC remainder register is initialized with all 1s and the CRC
     is computed with an algorithm that simultaneously multiplies by
     x^32 and divides by the CRC polynomial.

  -  The polynomial is multiplied by x^32 and divided by G(x), the
     generator polynomial, producing a remainder R(x) of degree less
     than or equal to 31.

  -  The coefficients of R(x) are considered a 32-bit sequence.

  -  The bit sequence is complemented.  The result is the CRC
     polynomial.

  -  The CRC polynomial is mapped back into SCTP transport-level bytes.
     The coefficient of x^31 gives the value of bit 7 of SCTP byte 0,
     and the coefficient of x^24 gives the value of bit 0 of byte 0.
     The coefficient of x^7 gives bit 7 of byte 3, and the coefficient
     of x^0 gives bit 0 of byte 3.  The resulting 4-byte transport-
     level sequence is the 32-bit SCTP checksum value.

  IMPLEMENTATION NOTE: Standards documents, textbooks, and vendor
  literature on CRCs often follow an alternative formulation, in which
  the register used to hold the remainder of the long-division
  algorithm is initialized to zero rather than all-1s, and instead the
  first 32 bits of the message are complemented.  The long-division
  algorithm used in our formulation is specified such that the initial
  multiplication by 2^32 and the long-division are combined into one
  simultaneous operation.  For such algorithms, and for messages longer
  than 64 bits, the two specifications are precisely equivalent.  That
  equivalence is the intent of this document.




Stewart                     Standards Track                   [Page 141]

RFC 4960          Stream Control Transmission Protocol    September 2007


  Implementors of SCTP are warned that both specifications are to be
  found in the literature, sometimes with no restriction on the long-
  division algorithm.  The choice of formulation in this document is to
  permit non-SCTP usage, where the same CRC algorithm may be used to
  protect messages shorter than 64 bits.

  There may be a computational advantage in validating the association
  against the Verification Tag, prior to performing a checksum, as
  invalid tags will result in the same action as a bad checksum in most
  cases.  The exceptions for this technique would be INIT and some
  SHUTDOWN-COMPLETE exchanges, as well as a stale COOKIE ECHO.  These
  special-case exchanges must represent small packets and will minimize
  the effect of the checksum calculation.

Appendix C.  ICMP Handling

  Whenever an ICMP message is received by an SCTP endpoint, the
  following procedures MUST be followed to ensure proper utilization of
  the information being provided by layer 3.

  ICMP1) An implementation MAY ignore all ICMPv4 messages where the
         type field is not set to "Destination Unreachable".

  ICMP2) An implementation MAY ignore all ICMPv6 messages where the
         type field is not "Destination Unreachable", "Parameter
         Problem",, or "Packet Too Big".

  ICMP3) An implementation MAY ignore any ICMPv4 messages where the
         code does not indicate "Protocol Unreachable" or
         "Fragmentation Needed".

  ICMP4) An implementation MAY ignore all ICMPv6 messages of type
         "Parameter Problem" if the code is not "Unrecognized Next
         Header Type Encountered".

  ICMP5) An implementation MUST use the payload of the ICMP message (v4
         or v6) to locate the association that sent the message to
         which ICMP is responding.  If the association cannot be found,
         an implementation SHOULD ignore the ICMP message.

  ICMP6) An implementation MUST validate that the Verification Tag
         contained in the ICMP message matches the Verification Tag of
         the peer.  If the Verification Tag is not 0 and does NOT
         match, discard the ICMP message.  If it is 0 and the ICMP
         message contains enough bytes to verify that the chunk type is
         an INIT chunk and that the Initiate Tag matches the tag of the





Stewart                     Standards Track                   [Page 142]

RFC 4960          Stream Control Transmission Protocol    September 2007


         peer, continue with ICMP7.  If the ICMP message is too short
         or the chunk type or the Initiate Tag does not match, silently
         discard the packet.

  ICMP7) If the ICMP message is either a v6 "Packet Too Big" or a v4
         "Fragmentation Needed", an implementation MAY process this
         information as defined for PATH MTU discovery.

  ICMP8) If the ICMP code is an "Unrecognized Next Header Type
         Encountered" or a "Protocol Unreachable", an implementation
         MUST treat this message as an abort with the T bit set if it
         does not contain an INIT chunk.  If it does contain an INIT
         chunk and the association is in the COOKIE-WAIT state, handle
         the ICMP message like an ABORT.

  ICMP9) If the ICMPv6 code is "Destination Unreachable", the
         implementation MAY mark the destination into the unreachable
         state or alternatively increment the path error counter.

  Note that these procedures differ from [RFC1122] and from its
  requirements for processing of port-unreachable messages and the
  requirements that an implementation MUST abort associations in
  response to a "protocol unreachable" message.  Port-unreachable
  messages are not processed, since an implementation will send an
  ABORT, not a port unreachable.  The stricter handling of the
  "protocol unreachable" message is due to security concerns for hosts
  that do NOT support SCTP.

  The following non-normative sample code is taken from an open-source
  CRC generator [WILLIAMS93], using the "mirroring" technique and
  yielding a lookup table for SCTP CRC32c with 256 entries, each 32
  bits wide.  While neither especially slow nor especially fast, as
  software table-lookup CRCs go, it has the advantage of working on
  both big-endian and little-endian CPUs, using the same (host-order)
  lookup tables, and using only the predefined ntohl() and htonl()
  operations.  The code is somewhat modified from [WILLIAMS93], to
  ensure portability between big-endian and little-endian
  architectures.  (Note that if the byte endian-ness of the target
  architecture is known to be little-endian, the final bit-reversal and
  byte-reversal steps can be folded into a single operation.)

  /*************************************************************/
  /* Note Definition for Ross Williams table generator would   */
  /* be: TB_WIDTH=4, TB_POLLY=0x1EDC6F41, TB_REVER=TRUE        */
  /* For Mr. Williams direct calculation code use the settings */
  /* cm_width=32, cm_poly=0x1EDC6F41, cm_init=0xFFFFFFFF,      */
  /* cm_refin=TRUE, cm_refot=TRUE, cm_xorort=0x00000000        */
  /*************************************************************/



Stewart                     Standards Track                   [Page 143]

RFC 4960          Stream Control Transmission Protocol    September 2007


  /* Example of the crc table file */
  #ifndef __crc32cr_table_h__
  #define __crc32cr_table_h__

  #define CRC32C_POLY 0x1EDC6F41
  #define CRC32C(c,d) (c=(c>>8)^crc_c[(c^(d))&0xFF])

  unsigned long  crc_c[256] =
  {
  0x00000000L, 0xF26B8303L, 0xE13B70F7L, 0x1350F3F4L,
  0xC79A971FL, 0x35F1141CL, 0x26A1E7E8L, 0xD4CA64EBL,
  0x8AD958CFL, 0x78B2DBCCL, 0x6BE22838L, 0x9989AB3BL,
  0x4D43CFD0L, 0xBF284CD3L, 0xAC78BF27L, 0x5E133C24L,
  0x105EC76FL, 0xE235446CL, 0xF165B798L, 0x030E349BL,
  0xD7C45070L, 0x25AFD373L, 0x36FF2087L, 0xC494A384L,
  0x9A879FA0L, 0x68EC1CA3L, 0x7BBCEF57L, 0x89D76C54L,
  0x5D1D08BFL, 0xAF768BBCL, 0xBC267848L, 0x4E4DFB4BL,
  0x20BD8EDEL, 0xD2D60DDDL, 0xC186FE29L, 0x33ED7D2AL,
  0xE72719C1L, 0x154C9AC2L, 0x061C6936L, 0xF477EA35L,
  0xAA64D611L, 0x580F5512L, 0x4B5FA6E6L, 0xB93425E5L,
  0x6DFE410EL, 0x9F95C20DL, 0x8CC531F9L, 0x7EAEB2FAL,
  0x30E349B1L, 0xC288CAB2L, 0xD1D83946L, 0x23B3BA45L,

  0xF779DEAEL, 0x05125DADL, 0x1642AE59L, 0xE4292D5AL,
  0xBA3A117EL, 0x4851927DL, 0x5B016189L, 0xA96AE28AL,
  0x7DA08661L, 0x8FCB0562L, 0x9C9BF696L, 0x6EF07595L,
  0x417B1DBCL, 0xB3109EBFL, 0xA0406D4BL, 0x522BEE48L,
  0x86E18AA3L, 0x748A09A0L, 0x67DAFA54L, 0x95B17957L,
  0xCBA24573L, 0x39C9C670L, 0x2A993584L, 0xD8F2B687L,
  0x0C38D26CL, 0xFE53516FL, 0xED03A29BL, 0x1F682198L,
  0x5125DAD3L, 0xA34E59D0L, 0xB01EAA24L, 0x42752927L,
  0x96BF4DCCL, 0x64D4CECFL, 0x77843D3BL, 0x85EFBE38L,
  0xDBFC821CL, 0x2997011FL, 0x3AC7F2EBL, 0xC8AC71E8L,
  0x1C661503L, 0xEE0D9600L, 0xFD5D65F4L, 0x0F36E6F7L,
  0x61C69362L, 0x93AD1061L, 0x80FDE395L, 0x72966096L,
  0xA65C047DL, 0x5437877EL, 0x4767748AL, 0xB50CF789L,
  0xEB1FCBADL, 0x197448AEL, 0x0A24BB5AL, 0xF84F3859L,
  0x2C855CB2L, 0xDEEEDFB1L, 0xCDBE2C45L, 0x3FD5AF46L,
  0x7198540DL, 0x83F3D70EL, 0x90A324FAL, 0x62C8A7F9L,
  0xB602C312L, 0x44694011L, 0x5739B3E5L, 0xA55230E6L,
  0xFB410CC2L, 0x092A8FC1L, 0x1A7A7C35L, 0xE811FF36L,
  0x3CDB9BDDL, 0xCEB018DEL, 0xDDE0EB2AL, 0x2F8B6829L,
  0x82F63B78L, 0x709DB87BL, 0x63CD4B8FL, 0x91A6C88CL,
  0x456CAC67L, 0xB7072F64L, 0xA457DC90L, 0x563C5F93L,
  0x082F63B7L, 0xFA44E0B4L, 0xE9141340L, 0x1B7F9043L,
  0xCFB5F4A8L, 0x3DDE77ABL, 0x2E8E845FL, 0xDCE5075CL,
  0x92A8FC17L, 0x60C37F14L, 0x73938CE0L, 0x81F80FE3L,
  0x55326B08L, 0xA759E80BL, 0xB4091BFFL, 0x466298FCL,



Stewart                     Standards Track                   [Page 144]

RFC 4960          Stream Control Transmission Protocol    September 2007


  0x1871A4D8L, 0xEA1A27DBL, 0xF94AD42FL, 0x0B21572CL,
  0xDFEB33C7L, 0x2D80B0C4L, 0x3ED04330L, 0xCCBBC033L,
  0xA24BB5A6L, 0x502036A5L, 0x4370C551L, 0xB11B4652L,
  0x65D122B9L, 0x97BAA1BAL, 0x84EA524EL, 0x7681D14DL,
  0x2892ED69L, 0xDAF96E6AL, 0xC9A99D9EL, 0x3BC21E9DL,
  0xEF087A76L, 0x1D63F975L, 0x0E330A81L, 0xFC588982L,
  0xB21572C9L, 0x407EF1CAL, 0x532E023EL, 0xA145813DL,
  0x758FE5D6L, 0x87E466D5L, 0x94B49521L, 0x66DF1622L,
  0x38CC2A06L, 0xCAA7A905L, 0xD9F75AF1L, 0x2B9CD9F2L,
  0xFF56BD19L, 0x0D3D3E1AL, 0x1E6DCDEEL, 0xEC064EEDL,
  0xC38D26C4L, 0x31E6A5C7L, 0x22B65633L, 0xD0DDD530L,
  0x0417B1DBL, 0xF67C32D8L, 0xE52CC12CL, 0x1747422FL,
  0x49547E0BL, 0xBB3FFD08L, 0xA86F0EFCL, 0x5A048DFFL,
  0x8ECEE914L, 0x7CA56A17L, 0x6FF599E3L, 0x9D9E1AE0L,
  0xD3D3E1ABL, 0x21B862A8L, 0x32E8915CL, 0xC083125FL,
  0x144976B4L, 0xE622F5B7L, 0xF5720643L, 0x07198540L,
  0x590AB964L, 0xAB613A67L, 0xB831C993L, 0x4A5A4A90L,
  0x9E902E7BL, 0x6CFBAD78L, 0x7FAB5E8CL, 0x8DC0DD8FL,
  0xE330A81AL, 0x115B2B19L, 0x020BD8EDL, 0xF0605BEEL,
  0x24AA3F05L, 0xD6C1BC06L, 0xC5914FF2L, 0x37FACCF1L,
  0x69E9F0D5L, 0x9B8273D6L, 0x88D28022L, 0x7AB90321L,
  0xAE7367CAL, 0x5C18E4C9L, 0x4F48173DL, 0xBD23943EL,
  0xF36E6F75L, 0x0105EC76L, 0x12551F82L, 0xE03E9C81L,

  0x34F4F86AL, 0xC69F7B69L, 0xD5CF889DL, 0x27A40B9EL,
  0x79B737BAL, 0x8BDCB4B9L, 0x988C474DL, 0x6AE7C44EL,
  0xBE2DA0A5L, 0x4C4623A6L, 0x5F16D052L, 0xAD7D5351L,
  };

  #endif

   /* Example of table build routine */

  #include <stdio.h>
  #include <stdlib.h>

  #define OUTPUT_FILE   "crc32cr.h"
  #define CRC32C_POLY    0x1EDC6F41L
  FILE *tf;
  unsigned long
  reflect_32 (unsigned long b)
  {
    int i;
    unsigned long rw = 0L;

    for (i = 0; i < 32; i++){
        if (b & 1)
          rw |= 1 << (31 - i);



Stewart                     Standards Track                   [Page 145]

RFC 4960          Stream Control Transmission Protocol    September 2007


        b >>= 1;
    }
    return (rw);
  }

  unsigned long
  build_crc_table (int index)
  {
    int i;
    unsigned long rb;

    rb = reflect_32 (index);

    for (i = 0; i < 8; i++){
        if (rb & 0x80000000L)
         rb = (rb << 1) ^ CRC32C_POLY;
        else
         rb <<= 1;
    }
    return (reflect_32 (rb));
  }

  main ()
  {
    int i;

    printf ("\nGenerating CRC-32c table file <%s>\n",
    OUTPUT_FILE);
    if ((tf = fopen (OUTPUT_FILE, "w")) == NULL){
        printf ("Unable to open %s\n", OUTPUT_FILE);
        exit (1);
    }
    fprintf (tf, "#ifndef __crc32cr_table_h__\n");
    fprintf (tf, "#define __crc32cr_table_h__\n\n");
    fprintf (tf, "#define CRC32C_POLY 0x%08lX\n",
    CRC32C_POLY);
    fprintf (tf,
    "#define CRC32C(c,d) (c=(c>>8)^crc_c[(c^(d))&0xFF])\n");
    fprintf (tf, "\nunsigned long  crc_c[256] =\n{\n");
    for (i = 0; i < 256; i++){
        fprintf (tf, "0x%08lXL, ", build_crc_table (i));
        if ((i & 3) == 3)
          fprintf (tf, "\n");
    }
    fprintf (tf, "};\n\n#endif\n");

    if (fclose (tf) != 0)
      printf ("Unable to close <%s>." OUTPUT_FILE);



Stewart                     Standards Track                   [Page 146]

RFC 4960          Stream Control Transmission Protocol    September 2007


    else
      printf ("\nThe CRC-32c table has been written to <%s>.\n",
        OUTPUT_FILE);
  }

  /* Example of crc insertion */

  #include "crc32cr.h"

  unsigned long
  generate_crc32c(unsigned char *buffer, unsigned int length)
  {
    unsigned int i;
    unsigned long crc32 = ~0L;
    unsigned long result;
    unsigned char byte0,byte1,byte2,byte3;

    for (i = 0; i < length; i++){
        CRC32C(crc32, buffer[i]);
    }

    result = ~crc32;

    /*  result now holds the negated polynomial remainder;
     *  since the table and algorithm is "reflected" [williams95].
     *  That is, result has the same value as if we mapped the message
     *  to a polynomial, computed the host-bit-order polynomial
     *  remainder, performed final negation, then did an end-for-end
     *  bit-reversal.
     *  Note that a 32-bit bit-reversal is identical to four inplace
     *  8-bit reversals followed by an end-for-end byteswap.
     *  In other words, the bytes of each bit are in the right order,
     *  but the bytes have been byteswapped.  So we now do an explicit
     *  byteswap.  On a little-endian machine, this byteswap and
     *  the final ntohl cancel out and could be elided.
     */

    byte0 = result & 0xff;
    byte1 = (result>>8) & 0xff;
    byte2 = (result>>16) & 0xff;
    byte3 = (result>>24) & 0xff;
    crc32 = ((byte0 << 24) |
             (byte1 << 16) |
             (byte2 << 8)  |
             byte3);
    return ( crc32 );
  }




Stewart                     Standards Track                   [Page 147]

RFC 4960          Stream Control Transmission Protocol    September 2007


  int
  insert_crc32(unsigned char *buffer, unsigned int length)
  {
    SCTP_message *message;
    unsigned long crc32;
    message = (SCTP_message *) buffer;
    message->common_header.checksum = 0L;
    crc32 = generate_crc32c(buffer,length);
    /* and insert it into the message */
    message->common_header.checksum = htonl(crc32);
    return 1;
  }

  int
  validate_crc32(unsigned char *buffer, unsigned int length)
  {
    SCTP_message *message;
    unsigned int i;
    unsigned long original_crc32;
    unsigned long crc32 = ~0L;

    /* save and zero checksum */
    message = (SCTP_message *) buffer;
    original_crc32 = ntohl(message->common_header.checksum);
    message->common_header.checksum = 0L;
    crc32 = generate_crc32c(buffer,length);
    return ((original_crc32 == crc32)? 1 : -1);
  }























Stewart                     Standards Track                   [Page 148]

RFC 4960          Stream Control Transmission Protocol    September 2007


References

Normative References

  [ITU32]      "ITU-T Recommendation V.42, "Error-correcting procedures
               for DCEs using asynchronous-to-synchronous
               conversion".", ITU-T section 8.1.1.6.2.

  [RFC0768]    Postel, J., "User Datagram Protocol", STD 6, RFC 768,
               August 1980.

  [RFC0793]    Postel, J., "Transmission Control Protocol", STD 7, RFC
               793, September 1981.

  [RFC1122]    Braden, R., Ed., "Requirements for Internet Hosts -
               Communication Layers", STD 3, RFC 1122, October 1989.

  [RFC1123]    Braden, R., Ed., "Requirements for Internet Hosts -
               Application and Support", STD 3, RFC 1123, October 1989.

  [RFC1191]    Mogul, J. and S. Deering, "Path MTU discovery", RFC
               1191, November 1990.

  [RFC1981]    McCann, J., Deering, S., and J. Mogul, "Path MTU
               Discovery for IP version 6", RFC 1981, August 1996.

  [RFC1982]    Elz, R. and R. Bush, "Serial Number Arithmetic", RFC
               1982, August 1996.

  [RFC2119]    Bradner, S., "Key words for use in RFCs to Indicate
               Requirement Levels", BCP 14, RFC 2119, March 1997.

  [RFC2434]    Narten, T. and H. Alvestrand, "Guidelines for Writing an
               IANA Considerations Section in RFCs", BCP 26, RFC 2434,
               October 1998.

  [RFC2460]    Deering, S. and R. Hinden, "Internet Protocol, Version 6
               (IPv6) Specification", RFC 2460, December 1998.

  [RFC2581]    Allman, M., Paxson, V., and W. Stevens, "TCP Congestion
               Control", RFC 2581, April 1999.

  [RFC3873]    Pastor, J. and M. Belinchon, "Stream Control
               Transmission Protocol (SCTP) Management Information Base
               (MIB)", RFC 3873, September 2004.

  [RFC4291]    Hinden, R. and S. Deering, "IP Version 6 Addressing
               Architecture", RFC 4291, February 2006.



Stewart                     Standards Track                   [Page 149]

RFC 4960          Stream Control Transmission Protocol    September 2007


  [RFC4301]    Kent, S. and K. Seo, "Security Architecture for the
               Internet Protocol", RFC 4301, December 2005.

  [RFC4303]    Kent, S., "IP Encapsulating Security Payload (ESP)", RFC
               4303, December 2005.

  [RFC4306]    Kaufman, C., Ed., "Internet Key Exchange (IKEv2)
               Protocol", RFC 4306, December 2005.

  [RFC4821]    Mathis, M. and J. Heffner, "Packetization Layer Path MTU
               Discovery", RFC 4821, March 2007.

Informative References

  [FALL96]     Fall, K. and S. Floyd, "Simulation-based Comparisons of
               Tahoe, Reno, and SACK TCP", SIGCOMM'99 V. 26 N. 3 pp 5-
               21, July 1996.

  [SAVAGE99]   Savage, S., Cardwell, N., Wetherall, D., and T.
               Anderson, "TCP Congestion Control with a Misbehaving
               Receiver", ACM Computer Communications Review 29(5),
               October 1999.

  [ALLMAN99]   Allman, M. and V. Paxson, "On Estimating End-to-End
               Network Path Properties", SIGCOMM'99 , 1999.

  [WILLIAMS93] Williams, R., "A PAINLESS GUIDE TO CRC ERROR DETECTION
               ALGORITHMS", Internet publication,
               http://www.geocities.com/SiliconValley/Pines/
               8659/crc.htm, August 1993.

  [RFC0813]    Clark, D., "Window and Acknowledgement Strategy in TCP",
               RFC 813, July 1982.

  [RFC1858]    Ziemba, G., Reed, D., and P. Traina, "Security
               Considerations for IP Fragment Filtering", RFC 1858,
               October 1995.

  [RFC2104]    Krawczyk, H., Bellare, M., and R. Canetti, "HMAC:
               Keyed-Hashing for Message Authentication", RFC 2104,
               February 1997.

  [RFC2196]    Fraser, B., "Site Security Handbook", FYI 8, RFC 2196,
               September 1997.

  [RFC2522]    Karn, P. and W. Simpson, "Photuris: Session-Key
               Management Protocol", RFC 2522, March 1999.




Stewart                     Standards Track                   [Page 150]

RFC 4960          Stream Control Transmission Protocol    September 2007


  [RFC2960]    Stewart, R., Xie, Q., Morneault, K., Sharp, C.,
               Schwarzbauer, H., Taylor, T., Rytina, I., Kalla, M.,
               Zhang, L., and V. Paxson, "Stream Control Transmission
               Protocol", RFC 2960, October 2000.

  [RFC3309]    Stone, J., Stewart, R., and D. Otis, "Stream Control
               Transmission Protocol (SCTP) Checksum Change", RFC 3309,
               September 2002.

  [RFC3168]    Ramakrishnan, K., Floyd, S., and D. Black, "The Addition
               of Explicit Congestion Notification (ECN) to IP", RFC
               3168, September 2001.

  [RFC4086]    Eastlake, D., 3rd, Schiller, J., and S. Crocker,
               "Randomness Requirements for Security", BCP 106, RFC
               4086, June 2005.

  [RFC4460]    Stewart, R., Arias-Rodriguez, I., Poon, K., Caro, A.,
               and M. Tuexen, "Stream Control Transmission Protocol
               (SCTP) Specification Errata and Issues", RFC 4460, April
               2006.

  [RFC4895]    Tuexen, M., Stewart, R., Lei, P., and E. Rescorla,
               "Authenticated Chunks for Stream Control Transmission
               Protocol (SCTP)", RFC 4895, August 2007.

Editor's Address

  Randall R. Stewart
  4875 Forest Drive
  Suite 200
  Columbia, SC  29206
  US

  EMail: [email protected]
















Stewart                     Standards Track                   [Page 151]

RFC 4960          Stream Control Transmission Protocol    September 2007


Full Copyright Statement

  Copyright (C) The IETF Trust (2007).

  This document is subject to the rights, licenses and restrictions
  contained in BCP 78, and except as set forth therein, the authors
  retain all their rights.

  This document and the information contained herein are provided on an
  "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
  OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
  THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
  OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
  THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
  WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

  The IETF takes no position regarding the validity or scope of any
  Intellectual Property Rights or other rights that might be claimed to
  pertain to the implementation or use of the technology described in
  this document or the extent to which any license under such rights
  might or might not be available; nor does it represent that it has
  made any independent effort to identify any such rights.  Information
  on the procedures with respect to rights in RFC documents can be
  found in BCP 78 and BCP 79.

  Copies of IPR disclosures made to the IETF Secretariat and any
  assurances of licenses to be made available, or the result of an
  attempt made to obtain a general license or permission for the use of
  such proprietary rights by implementers or users of this
  specification can be obtained from the IETF on-line IPR repository at
  http://www.ietf.org/ipr.

  The IETF invites any interested party to bring to its attention any
  copyrights, patents or patent applications, or other proprietary
  rights that may cover technology that may be required to implement
  this standard.  Please address the information to the IETF at
  [email protected].












Stewart                     Standards Track                   [Page 152]