Network Working Group                                            S. Legg
Request for Comments: 4911                                       eB2Bcom
Category: Experimental                                         July 2007


                    Encoding Instructions for the
                   Robust XML Encoding Rules (RXER)

Status of This Memo

  This memo defines an Experimental Protocol for the Internet
  community.  It does not specify an Internet standard of any kind.
  Discussion and suggestions for improvement are requested.
  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (C) The IETF Trust (2007).

Abstract

  This document defines encoding instructions that may be used in an
  Abstract Syntax Notation One (ASN.1) specification to alter how ASN.1
  values are encoded by the Robust XML Encoding Rules (RXER) and
  Canonical Robust XML Encoding Rules (CRXER), for example, to encode a
  component of an ASN.1 value as an Extensible Markup Language (XML)
  attribute rather than as a child element.  Some of these encoding
  instructions also affect how an ASN.1 specification is translated
  into an Abstract Syntax Notation X (ASN.X) specification.  Encoding
  instructions that allow an ASN.1 specification to reference
  definitions in other XML schema languages are also defined.




















Legg                          Experimental                      [Page 1]

RFC 4911             Encoding Instructions for RXER            July 2007


Table of Contents

  1. Introduction ....................................................3
  2. Conventions .....................................................3
  3. Definitions .....................................................4
  4. Notation for RXER Encoding Instructions .........................4
  5. Component Encoding Instructions .................................6
  6. Reference Encoding Instructions .................................8
  7. Expanded Names of Components ...................................10
  8. The ATTRIBUTE Encoding Instruction .............................11
  9. The ATTRIBUTE-REF Encoding Instruction .........................12
  10. The COMPONENT-REF Encoding Instruction ........................13
  11. The ELEMENT-REF Encoding Instruction ..........................16
  12. The LIST Encoding Instruction .................................17
  13. The NAME Encoding Instruction .................................19
  14. The REF-AS-ELEMENT Encoding Instruction .......................19
  15. The REF-AS-TYPE Encoding Instruction ..........................20
  16. The SCHEMA-IDENTITY Encoding Instruction ......................22
  17. The SIMPLE-CONTENT Encoding Instruction .......................22
  18. The TARGET-NAMESPACE Encoding Instruction .....................23
  19. The TYPE-AS-VERSION Encoding Instruction ......................24
  20. The TYPE-REF Encoding Instruction .............................25
  21. The UNION Encoding Instruction ................................26
  22. The VALUES Encoding Instruction ...............................27
  23. Insertion Encoding Instructions ...............................29
  24. The VERSION-INDICATOR Encoding Instruction ....................32
  25. The GROUP Encoding Instruction ................................34
     25.1. Unambiguous Encodings ....................................36
          25.1.1. Grammar Construction ..............................37
          25.1.2. Unique Component Attribution ......................47
          25.1.3. Deterministic Grammars ............................52
          25.1.4. Attributes in Unknown Extensions ..................54
  26. Security Considerations .......................................56
  27. References ....................................................56
     27.1. Normative References .....................................56
     27.2. Informative References ...................................57
  Appendix A. GROUP Encoding Instruction Examples ...................58
  Appendix B. Insertion Encoding Instruction Examples ...............74
  Appendix C. Extension and Versioning Examples .....................87












Legg                          Experimental                      [Page 2]

RFC 4911             Encoding Instructions for RXER            July 2007


1.  Introduction

  This document defines encoding instructions [X.680-1] that may be
  used in an Abstract Syntax Notation One (ASN.1) [X.680] specification
  to alter how ASN.1 values are encoded by the Robust XML Encoding
  Rules (RXER) [RXER] and Canonical Robust XML Encoding Rules (CRXER)
  [RXER], for example, to encode a component of an ASN.1 value as an
  Extensible Markup Language (XML) [XML10] attribute rather than as a
  child element.  Some of these encoding instructions also affect how
  an ASN.1 specification is translated into an Abstract Syntax Notation
  X (ASN.X) specification [ASN.X].

  This document also defines encoding instructions that allow an ASN.1
  specification to incorporate the definitions of types, elements, and
  attributes in specifications written in other XML schema languages.
  References to XML Schema [XSD1] types, elements, and attributes,
  RELAX NG [RNG] named patterns and elements, and XML document type
  definition (DTD) [XML10] element types are supported.

  In most cases, the effect of an encoding instruction is only briefly
  mentioned in this document.  The precise effects of these encoding
  instructions are described fully in the specifications for RXER
  [RXER] and ASN.X [ASN.X], at the points where they apply.

2.  Conventions

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED" and "MAY" in this document are
  to be interpreted as described in BCP 14, RFC 2119 [BCP14].  The key
  word "OPTIONAL" is exclusively used with its ASN.1 meaning.

  Throughout this document "type" shall be taken to mean an ASN.1 type,
  and "value" shall be taken to mean an ASN.1 abstract value, unless
  qualified otherwise.

  A reference to an ASN.1 production [X.680] (e.g., Type, NamedType) is
  a reference to text in an ASN.1 specification corresponding to that
  production.  Throughout this document, "component" is synonymous with
  NamedType.

  This document uses the namespace prefix "xsi:" to stand for the
  namespace name [XMLNS10] "http://www.w3.org/2001/XMLSchema-instance".

  Example ASN.1 definitions in this document are assumed to be defined
  in an ASN.1 module with a TagDefault of "AUTOMATIC TAGS" and an
  EncodingReferenceDefault [X.680-1] of "RXER INSTRUCTIONS".





Legg                          Experimental                      [Page 3]

RFC 4911             Encoding Instructions for RXER            July 2007


3.  Definitions

  The following definition of base type is used in specifying a number
  of encoding instructions.

  Definition (base type): If a type, T, is a constrained type, then the
  base type of T is the base type of the type that is constrained; else
  if T is a prefixed type, then the base type of T is the base type of
  the type that is prefixed; else if T is a type notation that
  references or denotes another type (i.e., DefinedType,
  ObjectClassFieldType, SelectionType, TypeFromObject, or
  ValueSetFromObjects), then the base type of T is the base type of the
  type that is referenced or denoted; otherwise, the base type of T is
  T itself.

     Aside: A tagged type is a special case of a prefixed type.

4.  Notation for RXER Encoding Instructions

  The grammar of ASN.1 permits the application of encoding instructions
  [X.680-1], through type prefixes and encoding control sections, that
  modify how abstract values are encoded by nominated encoding rules.

  The generic notation for type prefixes and encoding control sections
  is defined by the ASN.1 basic notation [X.680] [X.680-1], and
  includes an encoding reference to identify the specific encoding
  rules that are affected by the encoding instruction.

  The encoding reference that identifies the Robust XML Encoding rules
  is literally RXER.  An RXER encoding instruction applies equally to
  both RXER and CRXER encodings.

  The specific notation for an encoding instruction for a specific set
  of encoding rules is left to the specification of those encoding
  rules.  Consequently, this companion document to the RXER
  specification [RXER] defines the notation for RXER encoding
  instructions.  Specifically, it elaborates the EncodingInstruction
  and EncodingInstructionAssignmentList placeholder productions of the
  ASN.1 basic notation.

  In the context of the RXER encoding reference, the
  EncodingInstruction production is defined as follows, using the
  conventions of the ASN.1 basic notation:








Legg                          Experimental                      [Page 4]

RFC 4911             Encoding Instructions for RXER            July 2007


     EncodingInstruction ::=
         AttributeInstruction |
         AttributeRefInstruction |
         ComponentRefInstruction |
         ElementRefInstruction |
         GroupInstruction |
         InsertionsInstruction |
         ListInstruction |
         NameInstruction |
         RefAsElementInstruction |
         RefAsTypeInstruction |
         SimpleContentInstruction |
         TypeAsVersionInstruction |
         TypeRefInstruction |
         UnionInstruction |
         ValuesInstruction |
         VersionIndicatorInstruction

  In the context of the RXER encoding reference, the
  EncodingInstructionAssignmentList production (which only appears in
  an encoding control section) is defined as follows:

     EncodingInstructionAssignmentList ::=
         SchemaIdentityInstruction ?
         TargetNamespaceInstruction ?
         TopLevelComponents ?

     TopLevelComponents ::= TopLevelComponent TopLevelComponents ?

     TopLevelComponent ::= "COMPONENT" NamedType

  Definition (top-level NamedType): A NamedType is a top-level
  NamedType (equivalently, a top-level component) if and only if it is
  the NamedType in a TopLevelComponent.  A NamedType nested within the
  Type of the NamedType of a TopLevelComponent is not itself a
  top-level NamedType.

     Aside: Specification writers should note that non-trivial types
     defined within a top-level NamedType will not be visible to ASN.1
     tools that do not understand RXER.

  Although a top-level NamedType only appears in an RXER encoding
  control section, the default encoding reference for the module
  [X.680-1] still applies when parsing a top-level NamedType.

  Each top-level NamedType within a module SHALL have a distinct
  identifier.




Legg                          Experimental                      [Page 5]

RFC 4911             Encoding Instructions for RXER            July 2007


  The NamedType production is defined by the ASN.1 basic notation.  The
  other productions are described in subsequent sections and make use
  of the following productions:

     NCNameValue ::= Value

     AnyURIValue ::= Value

     QNameValue ::= Value

     NameValue ::= Value

  The Value production is defined by the ASN.1 basic notation.

  The governing type for the Value in an NCNameValue is the NCName type
  from the AdditionalBasicDefinitions module [RXER].

  The governing type for the Value in an AnyURIValue is the AnyURI type
  from the AdditionalBasicDefinitions module.

  The governing type for the Value in a QNameValue is the QName type
  from the AdditionalBasicDefinitions module.

  The governing type for the Value in a NameValue is the Name type from
  the AdditionalBasicDefinitions module.

  The Value in an NCNameValue, AnyURIValue, QNameValue, or NameValue
  SHALL NOT be a DummyReference [X.683] and SHALL NOT textually contain
  a nested DummyReference.

     Aside: Thus, encoding instructions are not permitted to be
     parameterized in any way.  This restriction will become important
     if a future specification for ASN.X explicitly represents
     parameterized definitions and parameterized references instead of
     expanding out parameterized references as in the current
     specification.  A parameterized definition could not be directly
     translated into ASN.X if it contained encoding instructions that
     were not fully specified.

5.  Component Encoding Instructions

  Certain of the RXER encoding instructions are categorized as
  component encoding instructions.  The component encoding instructions
  are the ATTRIBUTE, ATTRIBUTE-REF, COMPONENT-REF, GROUP, ELEMENT-REF,
  NAME, REF-AS-ELEMENT, SIMPLE-CONTENT, TYPE-AS-VERSION, and
  VERSION-INDICATOR encoding instructions (whose notations are
  described respectively by AttributeInstruction,
  AttributeRefInstruction, ComponentRefInstruction, GroupInstruction,



Legg                          Experimental                      [Page 6]

RFC 4911             Encoding Instructions for RXER            July 2007


  ElementRefInstruction, NameInstruction, RefAsElementInstruction,
  SimpleContentInstruction, TypeAsVersionInstruction, and
  VersionIndicatorInstruction).

  The Type in the EncodingPrefixedType for a component encoding
  instruction SHALL be either:

  (1) the Type in a NamedType, or

  (2) the Type in an EncodingPrefixedType in a PrefixedType in a
      BuiltinType in a Type that is one of (1) to (4), or

  (3) the Type in an TaggedType in a PrefixedType in a BuiltinType in a
      Type that is one of (1) to (4), or

  (4) the Type in a ConstrainedType (excluding a TypeWithConstraint) in
      a Type that is one of (1) to (4).

     Aside: The effect of this condition is to force the component
     encoding instructions to be textually within the NamedType to
     which they apply.  Only case (2) can be true on the first
     iteration as the Type belongs to an EncodingPrefixedType; however,
     any of (1) to (4) can be true on subsequent iterations.

  Case (4) is not permitted when the encoding instruction is the
  ATTRIBUTE-REF, COMPONENT-REF, ELEMENT-REF, or REF-AS-ELEMENT encoding
  instruction.

  The NamedType in case (1) is said to be "subject to" the component
  encoding instruction.

  A top-level NamedType SHALL NOT be subject to an ATTRIBUTE-REF,
  COMPONENT-REF, GROUP, ELEMENT-REF, REF-AS-ELEMENT, or SIMPLE-CONTENT
  encoding instruction.

     Aside: This condition does not preclude these encoding
     instructions being used on a nested NamedType.

  A NamedType SHALL NOT be subject to two or more component encoding
  instructions of the same kind, e.g., a NamedType is not permitted to
  be subject to two NAME encoding instructions.

  The ATTRIBUTE, ATTRIBUTE-REF, COMPONENT-REF, GROUP, ELEMENT-REF,
  REF-AS-ELEMENT, SIMPLE-CONTENT, and TYPE-AS-VERSION encoding
  instructions are mutually exclusive.  The NAME, ATTRIBUTE-REF,
  COMPONENT-REF, ELEMENT-REF, and REF-AS-ELEMENT encoding instructions
  are mutually exclusive.  A NamedType SHALL NOT be subject to two or
  more encoding instructions that are mutually exclusive.



Legg                          Experimental                      [Page 7]

RFC 4911             Encoding Instructions for RXER            July 2007


  A SelectionType [X.680] SHALL NOT be used to select the Type from a
  NamedType that is subject to an ATTRIBUTE-REF, COMPONENT-REF,
  ELEMENT-REF or REF-AS-ELEMENT encoding instruction.  The other
  component encoding instructions are not inherited by the type denoted
  by a SelectionType.

  Definition (attribute component):  An attribute component is a
  NamedType that is subject to an ATTRIBUTE or ATTRIBUTE-REF encoding
  instruction, or subject to a COMPONENT-REF encoding instruction that
  references a top-level NamedType that is subject to an ATTRIBUTE
  encoding instruction.

  Definition (element component):  An element component is a NamedType
  that is not subject to an ATTRIBUTE, ATTRIBUTE-REF, GROUP, or
  SIMPLE-CONTENT encoding instruction, and not subject to a
  COMPONENT-REF encoding instruction that references a top-level
  NamedType that is subject to an ATTRIBUTE encoding instruction.

     Aside: A NamedType subject to a GROUP or SIMPLE-CONTENT encoding
     instruction is neither an attribute component nor an element
     component.

6.  Reference Encoding Instructions

  Certain of the RXER encoding instructions are categorized as
  reference encoding instructions.  The reference encoding instructions
  are the ATTRIBUTE-REF, COMPONENT-REF, ELEMENT-REF, REF-AS-ELEMENT,
  REF-AS-TYPE, and TYPE-REF encoding instructions (whose notations are
  described respectively by AttributeRefInstruction,
  ComponentRefInstruction, ElementRefInstruction,
  RefAsElementInstruction, RefAsTypeInstruction, and
  TypeRefInstruction).  These encoding instructions (except
  COMPONENT-REF) allow an ASN.1 specification to incorporate the
  definitions of types, elements, and attributes in specifications
  written in other XML schema languages, through implied constraints on
  the markup that may appear in values of the Markup ASN.1 type from
  the AdditionalBasicDefinitions module [RXER] (for ELEMENT-REF,
  REF-AS-ELEMENT, REF-AS-TYPE, and TYPE-REF) or the UTF8String type
  (for ATTRIBUTE-REF).  References to XML Schema [XSD1] types,
  elements, and attributes, RELAX NG [RNG] named patterns and elements,
  and XML document type definition (DTD) [XML10] element types are
  supported.  References to ASN.1 types and top-level components are
  also permitted.  The COMPONENT-REF encoding instruction provides a
  more direct method of referencing a top-level component.

  The Type in the EncodingPrefixedType for an ELEMENT-REF,
  REF-AS-ELEMENT, REF-AS-TYPE, or TYPE-REF encoding instruction SHALL
  be either:



Legg                          Experimental                      [Page 8]

RFC 4911             Encoding Instructions for RXER            July 2007


  (1) a ReferencedType that is a DefinedType that is a typereference
      (not a DummyReference) or ExternalTypeReference that references
      the Markup ASN.1 type from the AdditionalBasicDefinitions module
      [RXER], or

  (2) a BuiltinType that is a PrefixedType that is a TaggedType where
      the Type in the TaggedType is one of (1) to (3), or

  (3) a BuiltinType that is a PrefixedType that is an
      EncodingPrefixedType where the Type in the EncodingPrefixedType
      is one of (1) to (3) and the EncodingPrefix in the
      EncodingPrefixedType does not contain a reference encoding
      instruction.

     Aside: Case (3) and similar cases for the ATTRIBUTE-REF and
     COMPONENT-REF encoding instructions have the effect of making the
     reference encoding instructions mutually exclusive as well as
     singly occurring.

  With respect to the REF-AS-TYPE and TYPE-REF encoding instructions,
  the DefinedType in case (1) is said to be "subject to" the encoding
  instruction.

  The restrictions on the Type in the EncodingPrefixedType for an
  ATTRIBUTE-REF encoding instruction are specified in Section 9.  The
  restrictions on the Type in the EncodingPrefixedType for a
  COMPONENT-REF encoding instruction are specified in Section 10.

  The reference encoding instructions make use of a common production
  defined as follows:

     RefParameters ::= ContextParameter ?

     ContextParameter ::= "CONTEXT" AnyURIValue

  A RefParameters instance provides extra information about a reference
  to a definition.  A ContextParameter is used when a reference is
  ambiguous, i.e., refers to definitions in more than one schema
  document or external DTD subset.  This situation would occur, for
  example, when importing types with the same name from independently
  developed XML Schemas defined without a target namespace [XSD1].
  When used in conjunction with a reference to an element type in an
  external DTD subset, the AnyURIValue in the ContextParameter is the
  system identifier (a Uniform Resource Identifier or URI [URI]) of the
  external DTD subset; otherwise, the AnyURIValue is a URI that
  indicates the intended schema document, either an XML Schema
  specification, a RELAX NG specification, or an ASN.1 or ASN.X
  specification.



Legg                          Experimental                      [Page 9]

RFC 4911             Encoding Instructions for RXER            July 2007


7.  Expanded Names of Components

  Each NamedType has an associated expanded name [XMLNS10], determined
  as follows:

  (1) if the NamedType is subject to a NAME encoding instruction, then
      the local name of the expanded name is the character string
      specified by the NCNameValue of the NAME encoding instruction,

  (2) else if the NamedType is subject to a COMPONENT-REF encoding
      instruction, then the expanded name is the same as the expanded
      name of the referenced top-level NamedType,

  (3) else if the NamedType is subject to an ATTRIBUTE-REF or
      ELEMENT-REF encoding instruction, then the namespace name of the
      expanded name is equal to the namespace-name component of the
      QNameValue of the encoding instruction, and the local name is
      equal to the local-name component of the QNameValue,

  (4) else if the NamedType is subject to a REF-AS-ELEMENT encoding
      instruction, then the local name of the expanded name is the
      LocalPart [XMLNS10] of the qualified name specified by the
      NameValue of the encoding instruction,

  (5) otherwise, the local name of the expanded name is the identifier
      of the NamedType.

  In cases (1) and (5), if the NamedType is a top-level NamedType and
  the module containing the NamedType has a TARGET-NAMESPACE encoding
  instruction, then the namespace name of the expanded name is the
  character string specified by the AnyURIValue of the TARGET-NAMESPACE
  encoding instruction; otherwise, the namespace name has no value.

     Aside: Thus, the TARGET-NAMESPACE encoding instruction applies to
     a top-level NamedType but not to any other NamedType.

  In case (4), if the encoding instruction contains a Namespace, then
  the namespace name of the expanded name is the character string
  specified by the AnyURIValue of the Namespace; otherwise, the
  namespace name has no value.

  The expanded names for the attribute components of a CHOICE,
  SEQUENCE, or SET type MUST be distinct.  The expanded names for the
  components of a CHOICE, SEQUENCE, or SET type that are not attribute
  components MUST be distinct.  These tests are applied after the
  COMPONENTS OF transformation specified in X.680, Clause 24.4 [X.680].





Legg                          Experimental                     [Page 10]

RFC 4911             Encoding Instructions for RXER            July 2007


     Aside: Two components of the same CHOICE, SEQUENCE, or SET type
     may have the same expanded name if one of them is an attribute
     component and the other is not.  Note that the "not" case includes
     components that are subject to a GROUP or SIMPLE-CONTENT encoding
     instruction.

  The expanded name of a top-level NamedType subject to an ATTRIBUTE
  encoding instruction MUST be distinct from the expanded name of every
  other top-level NamedType subject to an ATTRIBUTE encoding
  instruction in the same module.

  The expanded name of a top-level NamedType not subject to an
  ATTRIBUTE encoding instruction MUST be distinct from the expanded
  name of every other top-level NamedType not subject to an ATTRIBUTE
  encoding instruction in the same module.

     Aside: Two top-level components may have the same expanded name if
     one of them is an attribute component and the other is not.

8.  The ATTRIBUTE Encoding Instruction

  The ATTRIBUTE encoding instruction causes an RXER encoder to encode a
  value of the component to which it is applied as an XML attribute
  instead of as a child element.

  The notation for an ATTRIBUTE encoding instruction is defined as
  follows:

     AttributeInstruction ::= "ATTRIBUTE"

  The base type of the type of a NamedType that is subject to an
  ATTRIBUTE encoding instruction SHALL NOT be:

  (1) a CHOICE, SET, or SET OF type, or

  (2) a SEQUENCE type other than the one defining the QName type from
      the AdditionalBasicDefinitions module [RXER] (i.e., QName is
      allowed), or

  (3) a SEQUENCE OF type where the SequenceOfType is not subject to a
      LIST encoding instruction, or

  (4) an open type.








Legg                          Experimental                     [Page 11]

RFC 4911             Encoding Instructions for RXER            July 2007


  Example

     PersonalDetails ::= SEQUENCE {
         firstName   [ATTRIBUTE] UTF8String,
         middleName  [ATTRIBUTE] UTF8String,
         surname     [ATTRIBUTE] UTF8String
     }

9.  The ATTRIBUTE-REF Encoding Instruction

  The ATTRIBUTE-REF encoding instruction causes an RXER encoder to
  encode a value of the component to which it is applied as an XML
  attribute instead of as a child element, where the attribute's name
  is a qualified name of the attribute declaration referenced by the
  encoding instruction.  In addition, the ATTRIBUTE-REF encoding
  instruction causes values of the UTF8String type to be restricted to
  conform to the type of the attribute declaration.

  The notation for an ATTRIBUTE-REF encoding instruction is defined as
  follows:

     AttributeRefInstruction ::=
         "ATTRIBUTE-REF" QNameValue RefParameters

  Taken together, the QNameValue and the ContextParameter in the
  RefParameters (if present) MUST reference an XML Schema attribute
  declaration or a top-level NamedType that is subject to an ATTRIBUTE
  encoding instruction.

  The type of a referenced XML Schema attribute declaration SHALL NOT
  be, either directly or by derivation, the XML Schema type QName,
  NOTATION, ENTITY, ENTITIES, or anySimpleType.

     Aside: Values of these types require information from the context
     of the attribute for interpretation.  Because an ATTRIBUTE-REF
     encoding instruction is restricted to prefixing the ASN.1
     UTF8String type, there is no mechanism to capture such context.

  The type of a referenced top-level NamedType SHALL NOT be, either
  directly or by subtyping, the QName type from the
  AdditionalBasicDefinitions module [RXER].

  The Type in the EncodingPrefixedType for an ATTRIBUTE-REF encoding
  instruction SHALL be either:

  (1) the UTF8String type, or





Legg                          Experimental                     [Page 12]

RFC 4911             Encoding Instructions for RXER            July 2007


  (2) a BuiltinType that is a PrefixedType that is a TaggedType where
      the Type in the TaggedType is one of (1) to (3), or

  (3) a BuiltinType that is a PrefixedType that is an
      EncodingPrefixedType where the Type in the EncodingPrefixedType
      is one of (1) to (3) and the EncodingPrefix in the
      EncodingPrefixedType does not contain a reference encoding
      instruction.

  The identifier of a NamedType subject to an ATTRIBUTE-REF encoding
  instruction does not contribute to the name of attributes in an RXER
  encoding.  For the sake of consistency, the identifier SHOULD, where
  possible, be the same as the local name of the referenced attribute
  declaration.

10.  The COMPONENT-REF Encoding Instruction

  The ASN.1 basic notation does not have a concept of a top-level
  NamedType and therefore does not have a mechanism to reference a
  top-level NamedType.  The COMPONENT-REF encoding instruction provides
  a way to specify that a NamedType within a combining type definition
  is equivalent to a referenced top-level NamedType.

  The notation for a COMPONENT-REF encoding instruction is defined as
  follows:

     ComponentRefInstruction ::= "COMPONENT-REF" ComponentReference

     ComponentReference ::=
         InternalComponentReference |
         ExternalComponentReference

     InternalComponentReference ::= identifier FromModule ?

     FromModule ::= "FROM" GlobalModuleReference

     ExternalComponentReference ::= modulereference "." identifier

  The GlobalModuleReference production is defined by the ASN.1 basic
  notation [X.680].  If the GlobalModuleReference is absent from an
  InternalComponentReference, then the identifier MUST be the
  identifier of a top-level NamedType in the same module.  If the
  GlobalModuleReference is present in an InternalComponentReference,
  then the identifier MUST be the identifier of a top-level NamedType
  in the referenced module.






Legg                          Experimental                     [Page 13]

RFC 4911             Encoding Instructions for RXER            July 2007


  The modulereference in an ExternalComponentReference is used in the
  same way as a modulereference in an ExternalTypeReference.  The
  identifier in an ExternalComponentReference MUST be the identifier of
  a top-level NamedType in the referenced module.

  The Type in the EncodingPrefixedType for a COMPONENT-REF encoding
  instruction SHALL be either:

  (1) a ReferencedType that is a DefinedType that is a typereference
      (not a DummyReference) or an ExternalTypeReference, or

  (2) a BuiltinType or ReferencedType that is one of the productions in
      Table 1 in Section 5 of the specification for RXER [RXER], or

  (3) a BuiltinType that is a PrefixedType that is a TaggedType where
      the Type in the TaggedType is one of (1) to (4), or

  (4) a BuiltinType that is a PrefixedType that is an
      EncodingPrefixedType where the Type in the EncodingPrefixedType
      is one of (1) to (4) and the EncodingPrefix in the
      EncodingPrefixedType does not contain a reference encoding
      instruction.

  The restrictions on the use of RXER encoding instructions are such
  that no other RXER encoding instruction is permitted within a
  NamedType if the NamedType is subject to a COMPONENT-REF encoding
  instruction.

  The Type in the top-level NamedType referenced by the COMPONENT-REF
  encoding instruction MUST be either:

  (a) if the preceding case (1) is used, a ReferencedType that is a
      DefinedType that is a typereference or ExternalTypeReference that
      references the same type as the DefinedType in case (1), or

  (b) if the preceding case (2) is used, a BuiltinType or
      ReferencedType that is the same as the BuiltinType or
      ReferencedType in case (2), or

  (c) a BuiltinType that is a PrefixedType that is an
      EncodingPrefixedType where the Type in the EncodingPrefixedType
      is one of (a) to (c), and the EncodingPrefix in the
      EncodingPrefixedType contains an RXER encoding instruction.

  In principle, the COMPONENT-REF encoding instruction creates a
  notional NamedType where the expanded name is that of the referenced
  top-level NamedType and the Type in case (1) or (2) is substituted by
  the Type of the referenced top-level NamedType.



Legg                          Experimental                     [Page 14]

RFC 4911             Encoding Instructions for RXER            July 2007


  In practice, it is sufficient for non-RXER encoders and decoders to
  use the original NamedType rather than the notional NamedType because
  the Type in case (1) or (2) can only differ from the Type of the
  referenced top-level NamedType by having fewer RXER encoding
  instructions, and RXER encoding instructions are ignored by non-RXER
  encoders and decoders.

  Although any prefixes for the Type in case (1) or (2) would be
  bypassed, it is sufficient for RXER encoders and decoders to use the
  referenced top-level NamedType instead of the notional NamedType
  because these prefixes cannot be RXER encoding instructions (except,
  of course, for the COMPONENT-REF encoding instruction) and can have
  no effect on an RXER encoding.

  Example

     Modules ::= SEQUENCE OF
         module [COMPONENT-REF module
                    FROM AbstractSyntaxNotation-X
                        { 1 3 6 1 4 1 21472 1 0 1 }]
                    ModuleDefinition

     Note that the "module" top-level NamedType in the
     AbstractSyntaxNotation-X module is defined like so:

        COMPONENT module ModuleDefinition

     The ASN.X translation of the SEQUENCE OF type definition provides
     a more natural representation:

        <namedType xmlns:asnx="urn:ietf:params:xml:ns:asnx"
                   name="Modules">
         <sequenceOf>
          <element ref="asnx:module"/>
         </sequenceOf>
        </namedType>

        Aside: The <namedType> element in ASN.X corresponds to a
        TypeAssignment, not a NamedType.

  The identifier of a NamedType subject to a COMPONENT-REF encoding
  instruction does not contribute to an RXER encoding.  For the sake of
  consistency with other encoding rules, the identifier SHOULD be the
  same as the identifier in the ComponentRefInstruction.







Legg                          Experimental                     [Page 15]

RFC 4911             Encoding Instructions for RXER            July 2007


11.  The ELEMENT-REF Encoding Instruction

  The ELEMENT-REF encoding instruction causes an RXER encoder to encode
  a value of the component to which it is applied as an element where
  the element's name is a qualified name of the element declaration
  referenced by the encoding instruction.  In addition, the ELEMENT-REF
  encoding instruction causes values of the Markup ASN.1 type to be
  restricted to conform to the type of the element declaration.

  The notation for an ELEMENT-REF encoding instruction is defined as
  follows:

     ElementRefInstruction ::= "ELEMENT-REF" QNameValue RefParameters

  Taken together, the QNameValue and the ContextParameter in the
  RefParameters (if present) MUST reference an XML Schema element
  declaration, a RELAX NG element definition, or a top-level NamedType
  that is not subject to an ATTRIBUTE encoding instruction.

  A referenced XML Schema element declaration MUST NOT have a type that
  requires the presence of values for the XML Schema ENTITY or ENTITIES
  types.

     Aside: Entity declarations are not supported by CRXER.

  Example

     AnySchema ::= CHOICE {
         module   [ELEMENT-REF {
                      namespace-name
                          "urn:ietf:params:xml:ns:asnx",
                      local-name "module" }]
                  Markup,
         schema   [ELEMENT-REF {
                      namespace-name
                          "http://www.w3.org/2001/XMLSchema",
                      local-name "schema" }]
                  Markup,
         grammar  [ELEMENT-REF {
                      namespace-name
                          "http://relaxng.org/ns/structure/1.0",
                      local-name "grammar" }]
                  Markup
     }

     The ASN.X translation of the choice type definition provides a
     more natural representation:




Legg                          Experimental                     [Page 16]

RFC 4911             Encoding Instructions for RXER            July 2007


        <namedType xmlns:asnx="urn:ietf:params:xml:ns:asnx"
                   xmlns:xs="http://www.w3.org/2001/XMLSchema"
                   xmlns:rng="http://relaxng.org/ns/structure/1.0"
                   name="AnySchema">
         <choice>
          <element ref="asnx:module" embedded="true"/>
          <element ref="xs:schema" embedded="true"/>
          <element ref="rng:grammar" embedded="true"/>
         </choice>
        </namedType>

  The identifier of a NamedType subject to an ELEMENT-REF encoding
  instruction does not contribute to the name of an element in an RXER
  encoding.  For the sake of consistency, the identifier SHOULD, where
  possible, be the same as the local name of the referenced element
  declaration.

12.  The LIST Encoding Instruction

  The LIST encoding instruction causes an RXER encoder to encode a
  value of a SEQUENCE OF type as a white-space-separated list of the
  component values.

  The notation for a LIST encoding instruction is defined as follows:

     ListInstruction ::= "LIST"

  The Type in an EncodingPrefixedType for a LIST encoding instruction
  SHALL be either:

  (1) a BuiltinType that is a SequenceOfType of the
      "SEQUENCE OF NamedType" form, or

  (2) a ConstrainedType that is a TypeWithConstraint of the
      "SEQUENCE Constraint OF NamedType" form or
      "SEQUENCE SizeConstraint OF NamedType" form, or

  (3) a ConstrainedType that is not a TypeWithConstraint where the Type
      in the ConstrainedType is one of (1) to (5), or

  (4) a BuiltinType that is a PrefixedType that is a TaggedType where
      the Type in the TaggedType is one of (1) to (5), or

  (5) a BuiltinType that is a PrefixedType that is an
      EncodingPrefixedType where the Type in the EncodingPrefixedType
      is one of (1) to (5).





Legg                          Experimental                     [Page 17]

RFC 4911             Encoding Instructions for RXER            July 2007


  The effect of this condition is to force the LIST encoding
  instruction to be textually co-located with the SequenceOfType or
  TypeWithConstraint to which it applies.

     Aside: This makes it clear to a reader that the encoding
     instruction applies to every use of the type no matter how it
     might be referenced.

  The SequenceOfType in case (1) and the TypeWithConstraint in case (2)
  are said to be "subject to" the LIST encoding instruction.

  A SequenceOfType or TypeWithConstraint SHALL NOT be subject to more
  than one LIST encoding instruction.

  The base type of the component type of a SequenceOfType or
  TypeWithConstraint that is subject to a LIST encoding instruction
  MUST be one of the following:

  (1) the BOOLEAN, INTEGER, ENUMERATED, REAL, OBJECT IDENTIFIER,
      RELATIVE-OID, GeneralizedTime, or UTCTime type, or

  (2) the NCName, AnyURI, Name, or QName type from the
      AdditionalBasicDefinitions module [RXER].

     Aside: While it would be feasible to allow the component type to
     also be any character string type that is constrained such that
     all its abstract values have a length greater than zero and none
     of its abstract values contain any white space characters, testing
     whether this condition is satisfied can be quite involved.  For
     the sake of simplicity, only certain immediately useful
     constrained UTF8String types, which are known to be suitable, are
     permitted (i.e., NCName, AnyURI, and Name).

  The NamedType in a SequenceOfType or TypeWithConstraint that is
  subject to a LIST encoding instruction MUST NOT be subject to an
  ATTRIBUTE, ATTRIBUTE-REF, COMPONENT-REF, GROUP, ELEMENT-REF,
  REF-AS-ELEMENT, SIMPLE-CONTENT, or TYPE-AS-VERSION encoding
  instruction.

  Example

     UpdateTimes ::= [LIST] SEQUENCE OF updateTime GeneralizedTime









Legg                          Experimental                     [Page 18]

RFC 4911             Encoding Instructions for RXER            July 2007


13.  The NAME Encoding Instruction

  The NAME encoding instruction causes an RXER encoder to use a
  nominated character string instead of a component's identifier
  wherever that identifier would otherwise appear in the encoding
  (e.g., as an element or attribute name).

  The notation for a NAME encoding instruction is defined as follows:

     NameInstruction ::= "NAME" "AS"? NCNameValue

  Example

     CHOICE {
         foo-att   [ATTRIBUTE] [NAME AS "Foo"] INTEGER,
         foo-elem  [NAME "Foo"] INTEGER
     }

14.  The REF-AS-ELEMENT Encoding Instruction

  The REF-AS-ELEMENT encoding instruction causes an RXER encoder to
  encode a value of the component to which it is applied as an element
  where the element's name is the name of the external DTD subset
  element type declaration referenced by the encoding instruction.  In
  addition, the REF-AS-ELEMENT encoding instruction causes values of
  the Markup ASN.1 type to be restricted to conform to the content and
  attributes permitted by that element type declaration and its
  associated attribute-list declarations.

  The notation for a REF-AS-ELEMENT encoding instruction is defined as
  follows:

     RefAsElementInstruction ::=
         "REF-AS-ELEMENT" NameValue Namespace ? RefParameters

     Namespace ::= "NAMESPACE" AnyURIValue

  Taken together, the NameValue and the ContextParameter in the
  RefParameters (if present) MUST reference an element type declaration
  in an external DTD subset that is conformant with Namespaces in XML
  1.0 [XMLNS10].

  The Namespace is present if and only if the Name of the referenced
  element type declaration conforms to a PrefixedName (a QName)
  [XMLNS10], in which case the Namespace specifies the namespace name
  to be associated with the Prefix of the PrefixedName.





Legg                          Experimental                     [Page 19]

RFC 4911             Encoding Instructions for RXER            July 2007


  The referenced element type declaration MUST NOT require the presence
  of attributes of type ENTITY or ENTITIES.

     Aside: Entity declarations are not supported by CRXER.

  Example

     Suppose that the following external DTD subset has been defined
     with a system identifier of "http://www.example.com/inventory":

        <?xml version='1.0'?>
        <!ELEMENT product EMPTY>
        <!ATTLIST product
            name       CDATA #IMPLIED
            partNumber CDATA #REQUIRED
            quantity   CDATA #REQUIRED >

     The product element type declaration can be referenced as an
     element in an ASN.1 type definition:

        CHOICE {
            product  [REF-AS-ELEMENT "product"
                         CONTEXT "http://www.example.com/inventory"]
                     Markup
        }

     Here is the ASN.X translation of this ASN.1 type definition:

        <type>
         <choice>
          <element elementType="product"
                   context="http://www.example.com/inventory"/>
         </choice>
        </type>

  The identifier of a NamedType subject to a REF-AS-ELEMENT encoding
  instruction does not contribute to the name of an element in an RXER
  encoding.  For the sake of consistency, the identifier SHOULD, where
  possible, be the same as the Name of the referenced element type
  declaration (or the LocalPart if the Name conforms to a
  PrefixedName).

15.  The REF-AS-TYPE Encoding Instruction

  The REF-AS-TYPE encoding instruction causes values of the Markup
  ASN.1 type to be restricted to conform to the content and attributes
  permitted by a nominated element type declaration and its associated
  attribute-list declarations in an external DTD subset.



Legg                          Experimental                     [Page 20]

RFC 4911             Encoding Instructions for RXER            July 2007


  The notation for a REF-AS-TYPE encoding instruction is defined as
  follows:

     RefAsTypeInstruction ::= "REF-AS-TYPE" NameValue RefParameters

  Taken together, the NameValue and the ContextParameter of the
  RefParameters (if present) MUST reference an element type declaration
  in an external DTD subset that is conformant with Namespaces in XML
  1.0 [XMLNS10].

  The referenced element type declaration MUST NOT require the presence
  of attributes of type ENTITY or ENTITIES.

     Aside: Entity declarations are not supported by CRXER.

  Example

     The product element type declaration can be referenced as a type
     in an ASN.1 definition:

        SEQUENCE OF
            inventoryItem
                [REF-AS-TYPE "product"
                    CONTEXT "http://www.example.com/inventory"]
                Markup

     Here is the ASN.X translation of this definition:

        <sequenceOf>
         <element name="inventoryItem">
          <type elementType="product"
                context="http://www.example.com/inventory"/>
         </element>
        </sequenceOf>

     Note that when an element type declaration is referenced as a
     type, the Name of the element type declaration does not contribute
     to RXER encodings.  For example, child elements in the RXER
     encoding of values of the above SEQUENCE OF type would resemble
     the following:

        <inventoryItem name="hammer" partNumber="1543" quantity="29"/>









Legg                          Experimental                     [Page 21]

RFC 4911             Encoding Instructions for RXER            July 2007


16.  The SCHEMA-IDENTITY Encoding Instruction

  The SCHEMA-IDENTITY encoding instruction associates a unique
  identifier, a URI [URI], with the ASN.1 module containing the
  encoding instruction.  This encoding instruction has no effect on an
  RXER encoder but does have an effect on the translation of an ASN.1
  specification into an ASN.X representation.

  The notation for a SCHEMA-IDENTITY encoding instruction is defined as
  follows:

     SchemaIdentityInstruction ::= "SCHEMA-IDENTITY" AnyURIValue

  The character string specified by the AnyURIValue of each
  SCHEMA-IDENTITY encoding instruction MUST be distinct.  In
  particular, successive versions of an ASN.1 module must each have a
  different schema identity URI value.

17.  The SIMPLE-CONTENT Encoding Instruction

  The SIMPLE-CONTENT encoding instruction causes an RXER encoder to
  encode a value of a component of a SEQUENCE or SET type without
  encapsulation in a child element.

  The notation for a SIMPLE-CONTENT encoding instruction is defined as
  follows:

     SimpleContentInstruction ::= "SIMPLE-CONTENT"

  A NamedType subject to a SIMPLE-CONTENT encoding instruction SHALL be
  in a ComponentType in a ComponentTypeList in a RootComponentTypeList.
  At most one such NamedType of a SEQUENCE or SET type is permitted to
  be subject to a SIMPLE-CONTENT encoding instruction.  If any
  component is subject to a SIMPLE-CONTENT encoding instruction, then
  all other components in the same SEQUENCE or SET type definition MUST
  be attribute components.  These tests are applied after the
  COMPONENTS OF transformation specified in X.680, Clause 24.4 [X.680].

     Aside: Child elements and simple content are mutually exclusive.
     Specification writers should note that use of the SIMPLE-CONTENT
     encoding instruction on a component of an extensible SEQUENCE or
     SET type means that all future extensions to the SEQUENCE or SET
     type are restricted to being attribute components with the limited
     set of types that are permitted for attribute components.  Using
     an ATTRIBUTE encoding instruction instead of a SIMPLE-CONTENT
     encoding instruction avoids this limitation.





Legg                          Experimental                     [Page 22]

RFC 4911             Encoding Instructions for RXER            July 2007


  The base type of the type of a NamedType that is subject to a
  SIMPLE-CONTENT encoding instruction SHALL NOT be:

  (1) a SET or SET OF type, or

  (2) a CHOICE type where the ChoiceType is not subject to a UNION
      encoding instruction, or

  (3) a SEQUENCE type other than the one defining the QName type from
      the AdditionalBasicDefinitions module [RXER] (i.e., QName is
      allowed), or

  (4) a SEQUENCE OF type where the SequenceOfType is not subject to a
      LIST encoding instruction, or

  (5) an open type.

  If the type of a NamedType subject to a SIMPLE-CONTENT encoding
  instruction has abstract values with an empty character data
  translation [RXER] (i.e., an empty encoding), then the NamedType
  SHALL NOT be marked OPTIONAL or DEFAULT.

  Example

     SEQUENCE {
         units   [ATTRIBUTE] UTF8String,
         amount  [SIMPLE-CONTENT] INTEGER
     }

18.  The TARGET-NAMESPACE Encoding Instruction

  The TARGET-NAMESPACE encoding instruction associates an XML namespace
  name [XMLNS10], a URI [URI], with the type, object class, value,
  object, and object set references defined in the ASN.1 module
  containing the encoding instruction.  In addition, it associates the
  namespace name with each top-level NamedType in the RXER encoding
  control section.

  The notation for a TARGET-NAMESPACE encoding instruction is defined
  as follows:

     TargetNamespaceInstruction ::=
         "TARGET-NAMESPACE" AnyURIValue Prefix ?

     Prefix ::= "PREFIX" NCNameValue

  The AnyURIValue SHALL NOT specify an empty string.




Legg                          Experimental                     [Page 23]

RFC 4911             Encoding Instructions for RXER            July 2007


  Definition (target namespace):  If an ASN.1 module contains a
  TARGET-NAMESPACE encoding instruction, then the target namespace of
  the module is the character string specified by the AnyURIValue of
  the TARGET-NAMESPACE encoding instruction; otherwise, the target
  namespace of the module is said to be absent.

  Two or more ASN.1 modules MAY have the same non-absent target
  namespace if and only if the expanded names of the top-level
  attribute components are distinct across all those modules, the
  expanded names of the top-level element components are distinct
  across all those modules, and the defined type, object class, value,
  object, and object set references are distinct in their category
  across all those modules.

  The Prefix, if present, suggests an NCName to use as the namespace
  prefix in namespace declarations involving the target namespace.  An
  RXER encoder is not obligated to use the nominated namespace prefix.

  If there are no top-level components, then the RXER encodings
  produced using a module with a TARGET-NAMESPACE encoding instruction
  are backward compatible with the RXER encodings produced by the same
  module without the TARGET-NAMESPACE encoding instruction.

19.  The TYPE-AS-VERSION Encoding Instruction

  The TYPE-AS-VERSION encoding instruction causes an RXER encoder to
  include an xsi:type attribute in the encoding of a value of the
  component to which the encoding instruction is applied.  This
  attribute allows an XML Schema [XSD1] validator to select, if
  available, the appropriate XML Schema translation for the version of
  the ASN.1 specification used to create the encoding.

     Aside: Translations of an ASN.1 specification into a compatible
     XML Schema are expected to be slightly different across versions
     because of progressive extensions to the ASN.1 specification.  Any
     incompatibilities between these translations can be accommodated
     if each version uses a different target namespace.  The target
     namespace will be evident in the value of the xsi:type attribute
     and will cause an XML Schema validator to use the appropriate
     version.  This mechanism also accommodates an ASN.1 type that is
     renamed in a later version of the ASN.1 specification.

  The notation for a TYPE-AS-VERSION encoding instruction is defined as
  follows:

     TypeAsVersionInstruction ::= "TYPE-AS-VERSION"





Legg                          Experimental                     [Page 24]

RFC 4911             Encoding Instructions for RXER            July 2007


  The Type in a NamedType that is subject to a TYPE-AS-VERSION encoding
  instruction MUST be a namespace-qualified reference [RXER].

  The addition of a TYPE-AS-VERSION encoding instruction does not
  affect the backward compatibility of RXER encodings.

     Aside: In a translation of an ASN.1 specification into XML Schema,
     any Type in a NamedType that is subject to a TYPE-AS-VERSION
     encoding instruction is expected to be translated into the
     XML Schema anyType so that the xsi:type attribute acts as a switch
     to select the appropriate version.

20.  The TYPE-REF Encoding Instruction

  The TYPE-REF encoding instruction causes values of the Markup ASN.1
  type to be restricted to conform to a specific XML Schema named type,
  RELAX NG named pattern or an ASN.1 defined type.

     Aside: Referencing an ASN.1 type in a TYPE-REF encoding
     instruction does not have the effect of imposing a requirement to
     preserve the Infoset [INFOSET] representation of the RXER encoding
     of an abstract value of the type.  It is still sufficient to
     preserve just the abstract value.

  The notation for a TYPE-REF encoding instruction is defined as
  follows:

     TypeRefInstruction ::= "TYPE-REF" QNameValue RefParameters

  Taken together, the QNameValue and the ContextParameter of the
  RefParameters (if present) MUST reference an XML Schema named type, a
  RELAX NG named pattern, or an ASN.1 defined type.

  A referenced XML Schema type MUST NOT require the presence of values
  for the XML Schema ENTITY or ENTITIES types.

     Aside: Entity declarations are not supported by CRXER.

  The QNameValue SHALL NOT be a direct reference to the XML Schema
  NOTATION type [XSD2] (i.e., the namespace name
  "http://www.w3.org/2001/XMLSchema" and local name "NOTATION");
  however, a reference to an XML Schema type derived from the NOTATION
  type is permitted.

     Aside: This restriction is to ensure that the lexical space [XSD2]
     of the referenced type is actually populated with the names of
     notations [XSD1].




Legg                          Experimental                     [Page 25]

RFC 4911             Encoding Instructions for RXER            July 2007


  Example

     MyDecimal ::=
         [TYPE-REF {
             namespace-name "http://www.w3.org/2001/XMLSchema",
             local-name     "decimal" }]
         Markup

     Note that the ASN.X translation of this ASN.1 type definition
     provides a more natural way to reference the XML Schema decimal
     type:

        <namedType xmlns:xs="http://www.w3.org/2001/XMLSchema"
                   name="MyDecimal">
         <type ref="xs:decimal" embedded="true"/>
        </namedType>

21.  The UNION Encoding Instruction

  The UNION encoding instruction causes an RXER encoder to encode the
  value of an alternative of a CHOICE type without encapsulation in a
  child element.  The chosen alternative is optionally indicated with a
  member attribute.  The optional PrecedenceList also allows a
  specification writer to alter the order in which an RXER decoder will
  consider the alternatives of the CHOICE as it determines which
  alternative has been used (if the actual alternative has not been
  specified through the member attribute).

  The notation for a UNION encoding instruction is defined as follows:

     UnionInstruction ::= "UNION" AlternativesPrecedence ?

     AlternativesPrecedence ::= "PRECEDENCE" PrecedenceList

     PrecedenceList ::= identifier PrecedenceList ?

  The Type in the EncodingPrefixedType for a UNION encoding instruction
  SHALL be either:

  (1) a BuiltinType that is a ChoiceType, or

  (2) a ConstrainedType that is not a TypeWithConstraint where the Type
      in the ConstrainedType is one of (1) to (4), or

  (3) a BuiltinType that is a PrefixedType that is a TaggedType where
      the Type in the TaggedType is one of (1) to (4), or





Legg                          Experimental                     [Page 26]

RFC 4911             Encoding Instructions for RXER            July 2007


  (4) a BuiltinType that is a PrefixedType that is an
      EncodingPrefixedType where the Type in the EncodingPrefixedType
      is one of (1) to (4).

  The ChoiceType in case (1) is said to be "subject to" the UNION
  encoding instruction.

  The base type of the type of each alternative of a ChoiceType that is
  subject to a UNION encoding instruction SHALL NOT be:

  (1) a CHOICE, SET, or SET OF type, or

  (2) a SEQUENCE type other than the one defining the QName type from
      the AdditionalBasicDefinitions module [RXER] (i.e., QName is
      allowed), or

  (3) a SEQUENCE OF type where the SequenceOfType is not subject to a
      LIST encoding instruction, or

  (4) an open type.

  Each identifier in the PrecedenceList MUST be the identifier of a
  NamedType in the ChoiceType.

  A particular identifier SHALL NOT appear more than once in the same
  PrecedenceList.

  Every NamedType in a ChoiceType that is subject to a UNION encoding
  instruction MUST NOT be subject to an ATTRIBUTE, ATTRIBUTE-REF,
  COMPONENT-REF, GROUP, ELEMENT-REF, REF-AS-ELEMENT, SIMPLE-CONTENT, or
  TYPE-AS-VERSION encoding instruction.

  Example

     [UNION PRECEDENCE basicName] CHOICE {
         extendedName  UTF8String,
         basicName     PrintableString
     }

22.  The VALUES Encoding Instruction

  The VALUES encoding instruction causes an RXER encoder to use
  nominated names instead of the identifiers that would otherwise
  appear in the encoding of a value of a BIT STRING, ENUMERATED, or
  INTEGER type.






Legg                          Experimental                     [Page 27]

RFC 4911             Encoding Instructions for RXER            July 2007


  The notation for a VALUES encoding instruction is defined as follows:

     ValuesInstruction ::=
         "VALUES" AllValuesMapped ? ValueMappingList ?

     AllValuesMapped ::= AllCapitalized | AllUppercased

     AllCapitalized ::= "ALL" "CAPITALIZED"

     AllUppercased ::= "ALL" "UPPERCASED"

     ValueMappingList ::= ValueMapping ValueMappingList ?

     ValueMapping ::= "," identifier "AS" NCNameValue

  The Type in the EncodingPrefixedType for a VALUES encoding
  instruction SHALL be either:

  (1) a BuiltinType that is a BitStringType with a NamedBitList, or

  (2) a BuiltinType that is an EnumeratedType, or

  (3) a BuiltinType that is an IntegerType with a NamedNumberList, or

  (4) a ConstrainedType that is not a TypeWithConstraint where the Type
      in the ConstrainedType is one of (1) to (6), or

  (5) a BuiltinType that is a PrefixedType that is a TaggedType where
      the Type in the TaggedType is one of (1) to (6), or

  (6) a BuiltinType that is a PrefixedType that is an
      EncodingPrefixedType where the Type in the EncodingPrefixedType
      is one of (1) to (6).

  The effect of this condition is to force the VALUES encoding
  instruction to be textually co-located with the type definition to
  which it applies.

  The BitStringType, EnumeratedType, or IntegerType in case (1), (2),
  or (3), respectively, is said to be "subject to" the VALUES encoding
  instruction.

  A BitStringType, EnumeratedType, or IntegerType SHALL NOT be subject
  to more than one VALUES encoding instruction.

  Each identifier in a ValueMapping MUST be an identifier appearing in
  the NamedBitList, Enumerations, or NamedNumberList, as the case may
  be.



Legg                          Experimental                     [Page 28]

RFC 4911             Encoding Instructions for RXER            July 2007


  The identifier in a ValueMapping SHALL NOT be the same as the
  identifier in any other ValueMapping for the same ValueMappingList.

  Definition (replacement name):  Each identifier in a BitStringType,
  EnumeratedType, or IntegerType subject to a VALUES encoding
  instruction has a replacement name.  If there is a ValueMapping for
  the identifier, then the replacement name is the character string
  specified by the NCNameValue in the ValueMapping; else if
  AllCapitalized is used, then the replacement name is the identifier
  with the first character uppercased; else if AllUppercased is used,
  then the replacement name is the identifier with all its characters
  uppercased; otherwise, the replacement name is the identifier.

  The replacement names for the identifiers in a BitStringType subject
  to a VALUES encoding instruction MUST be distinct.

  The replacement names for the identifiers in an EnumeratedType
  subject to a VALUES encoding instruction MUST be distinct.

  The replacement names for the identifiers in an IntegerType subject
  to a VALUES encoding instruction MUST be distinct.

  Example

     Traffic-Light ::= [VALUES ALL CAPITALIZED, red AS "RED"]
         ENUMERATED {
             red,    -- Replacement name is RED.
             amber,  -- Replacement name is Amber.
             green   -- Replacement name is Green.
         }

23.  Insertion Encoding Instructions

  Certain of the RXER encoding instructions are categorized as
  insertion encoding instructions.  The insertion encoding instructions
  are the NO-INSERTIONS, HOLLOW-INSERTIONS, SINGULAR-INSERTIONS,
  UNIFORM-INSERTIONS, and MULTIFORM-INSERTIONS encoding instructions
  (whose notations are described respectively by
  NoInsertionsInstruction, HollowInsertionsInstruction,
  SingularInsertionsInstruction, UniformInsertionsInstruction, and
  MultiformInsertionsInstruction).

  The notation for the insertion encoding instructions is defined as
  follows:







Legg                          Experimental                     [Page 29]

RFC 4911             Encoding Instructions for RXER            July 2007


     InsertionsInstruction ::=
         NoInsertionsInstruction |
         HollowInsertionsInstruction |
         SingularInsertionsInstruction |
         UniformInsertionsInstruction |
         MultiformInsertionsInstruction

     NoInsertionsInstruction ::= "NO-INSERTIONS"

     HollowInsertionsInstruction ::= "HOLLOW-INSERTIONS"

     SingularInsertionsInstruction ::= "SINGULAR-INSERTIONS"

     UniformInsertionsInstruction ::= "UNIFORM-INSERTIONS"

     MultiformInsertionsInstruction ::= "MULTIFORM-INSERTIONS"

  Using the GROUP encoding instruction on components with extensible
  types can lead to situations where an unknown extension could be
  associated with more than one extension insertion point.  The
  insertion encoding instructions remove this ambiguity by limiting the
  form that extensions can take.  That is, the insertion encoding
  instructions indicate what extensions can be made to an ASN.1
  specification without breaking forward compatibility for RXER
  encodings.

     Aside: Forward compatibility means the ability for a decoder to
     successfully decode an encoding containing extensions introduced
     into a version of the specification that is more recent than the
     one used by the decoder.

  In the most general case, an extension to a CHOICE, SET, or SEQUENCE
  type will generate zero or more attributes and zero or more elements,
  due to the potential use of the GROUP and ATTRIBUTE encoding
  instructions by the extension.

  The MULTIFORM-INSERTIONS encoding instruction indicates that the RXER
  encodings produced by forward-compatible extensions to a type will
  always consist of one or more elements and zero or more attributes.
  No restriction is placed on the names of the elements.

     Aside: Of necessity, the names of the attributes will all be
     different in any given encoding.

  The UNIFORM-INSERTIONS encoding instruction indicates that the RXER
  encodings produced by forward-compatible extensions to a type will
  always consist of one or more elements having the same expanded name,
  and zero or more attributes.  The expanded name shared by the



Legg                          Experimental                     [Page 30]

RFC 4911             Encoding Instructions for RXER            July 2007


  elements in one particular encoding is not required to be the same as
  the expanded name shared by the elements in any other encoding of the
  extension.  For example, in one encoding of the extension the
  elements might all be called "foo", while in another encoding of the
  extension they might all be called "bar".

  The SINGULAR-INSERTIONS encoding instruction indicates that the RXER
  encodings produced by forward-compatible extensions to a type will
  always consist of a single element and zero or more attributes.  The
  name of the single element is not required to be the same in every
  possible encoding of the extension.

  The HOLLOW-INSERTIONS encoding instruction indicates that the RXER
  encodings produced by forward-compatible extensions to a type will
  always consist of zero elements and zero or more attributes.

  The NO-INSERTIONS encoding instruction indicates that no forward-
  compatible extensions can be made to a type.

  Examples of forward-compatible extensions are provided in Appendix C.

  The Type in the EncodingPrefixedType for an insertion encoding
  instruction SHALL be either:

  (1) a BuiltinType that is a ChoiceType where the ChoiceType is not
      subject to a UNION encoding instruction, or

  (2) a BuiltinType that is a SequenceType or SetType, or

  (3) a ConstrainedType that is not a TypeWithConstraint where the Type
      in the ConstrainedType is one of (1) to (5), or

  (4) a BuiltinType that is a PrefixedType that is a TaggedType where
      the Type in the TaggedType is one of (1) to (5), or

  (5) a BuiltinType that is a PrefixedType that is an
      EncodingPrefixedType where the Type in the EncodingPrefixedType
      is one of (1) to (5).

  Case (2) is not permitted when the insertion encoding instruction is
  the SINGULAR-INSERTIONS, UNIFORM-INSERTIONS, or MULTIFORM-INSERTIONS
  encoding instruction.









Legg                          Experimental                     [Page 31]

RFC 4911             Encoding Instructions for RXER            July 2007


     Aside: Because extensions to a SET or SEQUENCE type are serial and
     effectively optional, the SINGULAR-INSERTIONS, UNIFORM-INSERTIONS,
     and MULTIFORM-INSERTIONS encoding instructions offer no advantage
     over unrestricted extensions (for a SET or SEQUENCE).  For
     example, an optional series of singular insertions generates zero
     or more elements and zero or more attributes, just like an
     unrestricted extension.

  The Type in case (1) or case (2) is said to be "subject to" the
  insertion encoding instruction.

  The Type in case (1) or case (2) MUST be extensible, either
  explicitly or by default.

  A Type SHALL NOT be subject to more than one insertion encoding
  instruction.

  The insertion encoding instructions indicate what kinds of extensions
  can be made to a type without breaking forward compatibility, but
  they do not prohibit extensions that do break forward compatibility.
  That is, it is not an error for a type's base type to contain
  extensions that do not satisfy an insertion encoding instruction
  affecting the type.  However, if any such extensions are made, then a
  new value SHOULD be introduced into the extensible set of permitted
  values for a version indicator attribute, or attributes (see
  Section 24), whose scope encompasses the extensions.  An example is
  provided in Appendix C.

24.  The VERSION-INDICATOR Encoding Instruction

  The VERSION-INDICATOR encoding instruction provides a mechanism for
  RXER decoders to be alerted that an encoding contains extensions that
  break forward compatibility (see the preceding section).

  The notation for a VERSION-INDICATOR encoding instruction is defined
  as follows:

     VersionIndicatorInstruction ::= "VERSION-INDICATOR"

  A NamedType that is subject to a VERSION-INDICATOR encoding
  instruction MUST also be subject to an ATTRIBUTE encoding
  instruction.

  The type of the NamedType that is subject to the VERSION-INDICATOR
  encoding instruction MUST be directly or indirectly a constrained
  type where the set of permitted values is defined to be extensible.
  Each value represents a different version of the ASN.1 specification.
  Ordinarily, an application will set the value of a version indicator



Legg                          Experimental                     [Page 32]

RFC 4911             Encoding Instructions for RXER            July 2007


  attribute to be the last of these permitted values.  An application
  MAY set the value of the version indicator attribute to the value
  corresponding to an earlier version of the specification if it has
  not used any of the extensions added in a subsequent version.

  If an RXER decoder encounters a value of the type that is not one of
  the root values or extension additions (but that is still allowed
  since the set of permitted values is extensible), then this indicates
  that the decoder is using a version of the ASN.1 specification that
  is not compatible with the version used to produce the encoding.  In
  such cases, the decoder SHOULD treat the element containing the
  attribute as having an unknown ASN.1 type.

     Aside: A version indicator attribute only indicates an
     incompatibility with respect to RXER encodings.  Other encodings
     are not affected because the GROUP encoding instruction does not
     apply to them.

  Examples

     In this first example, the decoder is using an incompatible older
     version if the value of the version attribute in a received RXER
     encoding is not 1, 2, or 3.

        SEQUENCE {
            version  [ATTRIBUTE] [VERSION-INDICATOR]
                         INTEGER (1, ..., 2..3),
            message  MessageType
        }

     In this second example, the decoder is using an incompatible older
     version if the value of the format attribute in a received RXER
     encoding is not "1.0", "1.1", or "2.0".

        SEQUENCE {
            format   [ATTRIBUTE] [VERSION-INDICATOR]
                         UTF8String ("1.0", ..., "1.1" | "2.0"),
            message  MessageType
        }

     An extensive example is provided in Appendix C.

  It is not necessary for every extensible type to have its own version
  indicator attribute.  It would be typical for only the types of
  top-level element components to include a version indicator
  attribute, which would serve as the version indicator for all of the
  nested components.




Legg                          Experimental                     [Page 33]

RFC 4911             Encoding Instructions for RXER            July 2007


25.  The GROUP Encoding Instruction

  The GROUP encoding instruction causes an RXER encoder to encode a
  value of the component to which it is applied without encapsulation
  as an element.  It allows the construction of non-trivial content
  models for element content.

  The notation for a GROUP encoding instruction is defined as follows:

     GroupInstruction ::= "GROUP"

  The base type of the type of a NamedType that is subject to a GROUP
  encoding instruction SHALL be either:

  (1) a SEQUENCE, SET, or SET OF type, or

  (2) a CHOICE type where the ChoiceType is not subject to a UNION
      encoding instruction, or

  (3) a SEQUENCE OF type where the SequenceOfType is not subject to a
      LIST encoding instruction.

  The SEQUENCE type in case (1) SHALL NOT be the associated type for a
  built-in type, SHALL NOT be a type from the
  AdditionalBasicDefinitions module [RXER], and SHALL NOT contain a
  component that is subject to a SIMPLE-CONTENT encoding instruction.

     Aside: Thus, the CHARACTER STRING, EMBEDDED PDV, EXTERNAL, REAL,
     and QName types are excluded.

  The CHOICE type in case (2) SHALL NOT be a type from the
  AdditionalBasicDefinitions module.

     Aside: Thus, the Markup type is excluded.

  Definition (visible component): Ignoring all type constraints, the
  visible components for a type that is directly or indirectly a
  combining ASN.1 type (i.e., SEQUENCE, SET, CHOICE, SEQUENCE OF, or
  SET OF) is the set of components of the combining type definition
  plus, for each NamedType (of the combining type definition) that is
  subject to a GROUP encoding instruction, the visible components for
  the type of the NamedType.  The visible components are determined
  after the COMPONENTS OF transformation specified in X.680, Clause
  24.4 [X.680].







Legg                          Experimental                     [Page 34]

RFC 4911             Encoding Instructions for RXER            July 2007


     Aside: The set of visible attribute and element components for a
     type is the set of all the components of the type, and any nested
     types, that describe attributes and child elements appearing in
     the RXER encodings of values of the outer type.

  A GROUP encoding instruction MUST NOT be used where it would cause a
  NamedType to be a visible component of the type of that same
  NamedType (which is only possible if the type definition is
  recursive).

     Aside: Components subject to a GROUP encoding instruction might be
     translated into a compatible XML Schema [XSD1] as group
     definitions.  A NamedType that is visible to its own type is
     analogous to a circular group, which XML Schema disallows.

  Section 25.1 imposes additional conditions on the use of the GROUP
  encoding instruction.

  In any use of the GROUP encoding instruction, there is a type, the
  including type, that contains the component subject to the GROUP
  encoding instruction, and a type, the included type, that is the base
  type of that component.  Either type can have an extensible content
  model, either by directly using ASN.1 extensibility or by including
  through another GROUP encoding instruction some other type that is
  extensible.

  The including and included types may be defined in different ASN.1
  modules, in which case the owner of the including type, i.e., the
  person or organization having the authority to add extensions to the
  including type's definition, may be different from the owner of the
  included type.

  If the owner of the including type is not using the most recent
  version of the included type's definition, then the owner of the
  including type might add an extension to the including type that is
  valid with respect to the older version of the included type, but is
  later found to be invalid when the latest versions of the including
  and included type definitions are brought together (perhaps by a
  third party).  Although the owner of the including type must
  necessarily be aware of the existence of the included type, the
  reverse is not necessarily true.  The owner of the included type
  could add an extension to the included type without realizing that it
  invalidates someone else's including type.








Legg                          Experimental                     [Page 35]

RFC 4911             Encoding Instructions for RXER            July 2007


  To avoid these problems, a GROUP encoding instruction MUST NOT be
  used if:

  (1) the included type is defined in a different module from the
      including type, and

  (2) the included type has an extensible content model, and

  (3) changes to the included type are not coordinated with the owner
      of the including type.

  Changes in the included type are coordinated with the owner of the
  including type if:

  (1) the owner of the included type is also the owner of the including
      type, or

  (2) the owner of the including type is collaborating with the owner
      of the included type, or

  (3) all changes will be vetted by a common third party before being
      approved and published.

25.1.  Unambiguous Encodings

  Unregulated use of the GROUP encoding instruction can easily lead to
  specifications in which distinct abstract values have
  indistinguishable RXER encodings, i.e., ambiguous encodings.  This
  section imposes restrictions on the use of the GROUP encoding
  instruction to ensure that distinct abstract values have distinct
  RXER encodings.  In addition, these restrictions ensure that an
  abstract value can be easily decoded in a single pass without
  back-tracking.

  An RXER decoder for an ASN.1 type can be abstracted as a recognizer
  for a notional language, consisting of element and attribute expanded
  names, where the type definition describes the grammar for that
  language (in fact it is a context-free grammar).  The restrictions on
  a type definition to ensure easy, unambiguous decoding are more
  conveniently, completely, and simply expressed as conditions on this
  associated grammar.  Implementations are not expected to verify type
  definitions exactly in the manner to be described; however, the
  procedure used MUST produce the same result.

  Section 25.1.1 describes the procedure for recasting as a grammar a
  type definition containing components subject to the GROUP encoding
  instruction.  Sections 25.1.2 and 25.1.3 specify conditions that the




Legg                          Experimental                     [Page 36]

RFC 4911             Encoding Instructions for RXER            July 2007


  grammar must satisfy for the type definition to be valid.  Section
  25.1.4 describes how unrecognized attributes are accepted by the
  grammar for an extensible type.

  Appendices A and B have extensive examples.

25.1.1.  Grammar Construction

  A grammar consists of a collection of productions.  A production has
  a left-hand side and a right-hand side (in this document, separated
  by the "::=" symbol).  The left-hand side (in a context-free grammar)
  is a single non-terminal symbol.  The right-hand side is a sequence
  of non-terminal and terminal symbols.  The terminal symbols are the
  lexical items of the language that the grammar describes.  One of the
  non-terminals is nominated to be the start symbol.  A valid sequence
  of terminals for the language can be generated from the grammar by
  beginning with the start symbol and repeatedly replacing any
  non-terminal with the right-hand side of one of the productions where
  that non-terminal is on the production's left-hand side.  The final
  sequence of terminals is achieved when there are no remaining
  non-terminals to replace.

     Aside: X.680 describes the ASN.1 basic notation using a
     context-free grammar.

  Each NamedType has an associated primary and secondary non-terminal.

     Aside: The secondary non-terminal for a NamedType is used when the
     base type of the type in the NamedType is a SEQUENCE OF type or
     SET OF type.

  Each ExtensionAddition and ExtensionAdditionAlternative has an
  associated non-terminal.  There is a non-terminal associated with the
  extension insertion point of each extensible type.  There is also a
  primary start non-terminal (this is the start symbol) and a secondary
  start non-terminal.  The exact nature of the non-terminals is not
  important, however all the non-terminals MUST be mutually distinct.

  It is adequate for most of the examples in this document (though not
  in the most general case) for the primary non-terminal for a
  NamedType to be the identifier of the NamedType, for the primary
  start non-terminal to be S, for the non-terminals for the instances
  of ExtensionAddition and ExtensionAdditionAlternative to be E1, E2,
  E3, and so on, and for the non-terminals for the extension insertion
  points to be I1, I2, I3, and so on.  The secondary non-terminals are
  labelled by appending a "'" character to the primary non-terminal
  label, e.g., the primary and secondary start non-terminals are S and
  S', respectively.



Legg                          Experimental                     [Page 37]

RFC 4911             Encoding Instructions for RXER            July 2007


  Each NamedType and extension insertion point has an associated
  terminal.  There exists a terminal called the general extension
  terminal that is not associated with any specific notation.  The
  general extension terminal and the terminals for the extension
  insertion points are used to represent elements in unknown
  extensions.  The exact nature of the terminals is not important;
  however, the aforementioned terminals MUST be mutually distinct.  The
  terminals are further categorized as either element terminals or
  attribute terminals.  A terminal for a NamedType is an attribute
  terminal if its associated NamedType is an attribute component;
  otherwise, it is an element terminal.  The general extension terminal
  and the terminals for the extension insertion points are categorized
  as element terminals.

  Terminals for attributes in unknown extensions are not explicitly
  provided in the grammar.  Certain productions in the grammar are
  categorized as insertion point productions, and their role in
  accepting unknown attributes is described in Section 25.1.4.

  In the examples in this document, the terminal for a component other
  than an attribute component will be represented as the local name of
  the expanded name of the component enclosed in double quotes, and the
  terminal for an attribute component will be represented as the local
  name of the expanded name of the component prefixed by the '@'
  character and enclosed in double quotes.  The general extension
  terminal will be represented as "*" and the terminals for the
  extension insertion points will be represented as "*1", "*2", "*3",
  and so on.

  The productions generated from a NamedType depend on the base type of
  the type of the NamedType.  The productions for the start
  non-terminals depend on the combining type definition being tested.
  In either case, the procedure for generating productions takes a
  primary non-terminal, a secondary non-terminal (sometimes), and a
  type definition.

  The grammar is constructed beginning with the start non-terminals and
  the combining type definition being tested.

  A grammar is constructed after the COMPONENTS OF transformation
  specified in X.680, Clause 24.4 [X.680].

  Given a primary non-terminal, N, and a type where the base type is a
  SEQUENCE or SET type, a production is added to the grammar with N as
  the left-hand side.  The right-hand side is constructed from an
  initial empty state according to the following cases considered in
  order:




Legg                          Experimental                     [Page 38]

RFC 4911             Encoding Instructions for RXER            July 2007


  (1) If an initial RootComponentTypeList is present in the base type,
      then the sequence of primary non-terminals for the components
      nested in that RootComponentTypeList are appended to the right-
      hand side in the order of their definition.

  (2) If an ExtensionAdditions instance is present in the base type and
      not empty, then the non-terminal for the first ExtensionAddition
      nested in the ExtensionAdditions instance is appended to the
      right-hand side.

  (3) If an ExtensionAdditions instance is empty or not present in the
      base type, and the base type is extensible (explicitly or by
      default), and the base type is not subject to a NO-INSERTIONS or
      HOLLOW-INSERTIONS encoding instruction, then the non-terminal for
      the extension insertion point of the base type is appended to the
      right-hand side.

  (4) If a final RootComponentTypeList is present in the base type,
      then the primary non-terminals for the components nested in that
      RootComponentTypeList are appended to the right-hand side in the
      order of their definition.

  The production is an insertion point production if an
  ExtensionAdditions instance is empty or not present in the base type,
  and the base type is extensible (explicitly or by default), and the
  base type is not subject to a NO-INSERTIONS encoding instruction.

  If a component in a ComponentTypeList (in either a
  RootComponentTypeList or an ExtensionAdditionGroup) is marked
  OPTIONAL or DEFAULT, then a production with the primary non-terminal
  of the component as the left-hand side and an empty right-hand side
  is added to the grammar.

  If a component (regardless of the ASN.1 combining type containing it)
  is subject to a GROUP encoding instruction, then one or more
  productions constructed according to the component's type are added
  to the grammar.  Each of these productions has the primary
  non-terminal of the component as the left-hand side.

  If a component (regardless of the ASN.1 combining type containing it)
  is not subject to a GROUP encoding instruction, then a production is
  added to the grammar with the primary non-terminal of the component
  as the left-hand side and the terminal of the component as the
  right-hand side.







Legg                          Experimental                     [Page 39]

RFC 4911             Encoding Instructions for RXER            July 2007


  Example

     Consider the following ASN.1 type definition:

        SEQUENCE {
            -- Start of initial RootComponentTypeList.
            one    [ATTRIBUTE] UTF8String,
            two    BOOLEAN OPTIONAL,
            three  INTEGER
            -- End of initial RootComponentTypeList.
        }

     Here is the grammar derived from this type:

        S ::= one two three
        one ::= "@one"
        two ::= "two"
        two ::=
        three ::= "three"

  For each ExtensionAddition (of a SEQUENCE or SET base type), a
  production is added to the grammar where the left-hand side is the
  non-terminal for the ExtensionAddition and the right-hand side is
  initially empty.  If the ExtensionAddition is a ComponentType, then
  the primary non-terminal for the NamedType in the ComponentType is
  appended to the right-hand side; otherwise (an
  ExtensionAdditionGroup), the sequence of primary non-terminals for
  the components nested in the ComponentTypeList in the
  ExtensionAdditionGroup are appended to the right-hand side in the
  order of their definition.  If the ExtensionAddition is followed by
  another ExtensionAddition, then the non-terminal for the next
  ExtensionAddition is appended to the right-hand side; otherwise, if
  the base type is not subject to a NO-INSERTIONS or HOLLOW-INSERTIONS
  encoding instruction, then the non-terminal for the extension
  insertion point of the base type is appended to the right-hand side.
  If the ExtensionAddition is not followed by another ExtensionAddition
  and the base type is not subject to a NO-INSERTIONS encoding
  instruction, then the production is an insertion point production.
  If the empty sequence of terminals cannot be generated from the
  production (it may be necessary to wait until the grammar is
  otherwise complete before making this determination), then another
  production is added to the grammar where the left-hand side is the
  non-terminal for the ExtensionAddition and the right-hand side is
  empty.

     Aside: An extension is always effectively optional since a sender
     may be using an earlier version of the ASN.1 specification where
     none, or only some, of the extensions have been defined.



Legg                          Experimental                     [Page 40]

RFC 4911             Encoding Instructions for RXER            July 2007


     Aside: The grammar generated for ExtensionAdditions is structured
     to take account of the condition that an extension can only be
     used if all the earlier extensions are also used [X.680].

  If a SEQUENCE or SET base type is extensible (explicitly or by
  default) and is not subject to a NO-INSERTIONS or HOLLOW-INSERTIONS
  encoding instruction, then:

  (1) a production is added to the grammar where the left-hand side is
      the non-terminal for the extension insertion point of the base
      type and the right-hand side is the general extension terminal
      followed by the non-terminal for the extension insertion point,
      and

  (2) a production is added to the grammar where the left-hand side is
      the non-terminal for the extension insertion point and the
      right-hand side is empty.

  Example

     Consider the following ASN.1 type definition:

        SEQUENCE {
            -- Start of initial RootComponentTypeList.
            one    BOOLEAN,
            two    INTEGER OPTIONAL,
            -- End of initial RootComponentTypeList.
            ...,
            -- Start of ExtensionAdditions.
            four  INTEGER,  -- First ExtensionAddition (E1).
            five  BOOLEAN OPTIONAL,  -- Second ExtensionAddition (E2).
            [[ -- An ExtensionAdditionGroup.
                six    UTF8String,
                seven  INTEGER OPTIONAL
            ]], -- Third ExtensionAddition (E3).
            -- End of ExtensionAdditions.
            -- The extension insertion point is here (I1).
            ...,
            -- Start of final RootComponentTypeList.
            three  INTEGER
        }

     Here is the grammar derived from this type:

        S ::= one two E1 three

        E1 ::= four E2
        E1 ::=



Legg                          Experimental                     [Page 41]

RFC 4911             Encoding Instructions for RXER            July 2007


        E2 ::= five E3
        E3 ::= six seven I1
        E3 ::=

        I1 ::= "*" I1
        I1 ::=

        one ::= "one"
        two ::= "two"
        two ::=
        three ::= "three"
        four ::= "four"
        five ::= "five"
        five ::=
        six ::= "six"
        seven ::= "seven"
        seven ::=

     If the SEQUENCE type were subject to a NO-INSERTIONS or
     HOLLOW-INSERTIONS encoding instruction, then the productions for
     I1 would not appear, and the first production for E3 would be:

        E3 ::= six seven

  Given a primary non-terminal, N, and a type where the base type is a
  CHOICE type:

  (1) A production is added to the grammar for each NamedType nested in
      the RootAlternativeTypeList of the base type, where the left-hand
      side is N and the right-hand side is the primary non-terminal for
      the NamedType.

  (2) A production is added to the grammar for each
      ExtensionAdditionAlternative of the base type, where the left-
      hand side is N and the right-hand side is the non-terminal for
      the ExtensionAdditionAlternative.

  (3) If the base type is extensible (explicitly or by default) and the
      base type is not subject to an insertion encoding instruction,
      then:

      (a) A production is added to the grammar where the left-hand side
          is N and the right-hand side is the non-terminal for the
          extension insertion point of the base type.  This production
          is an insertion point production.






Legg                          Experimental                     [Page 42]

RFC 4911             Encoding Instructions for RXER            July 2007


      (b) A production is added to the grammar where the left-hand side
          is the non-terminal for the extension insertion point of the
          base type and the right-hand side is the general extension
          terminal followed by the non-terminal for the extension
          insertion point.

      (c) A production is added to the grammar where the left-hand side
          is the non-terminal for the extension insertion point of the
          base type and the right-hand side is empty.

  (4) If the base type is subject to a HOLLOW-INSERTIONS encoding
      instruction, then a production is added to the grammar where the
      left-hand side is N and the right-hand side is empty.  This
      production is an insertion point production.

  (5) If the base type is subject to a SINGULAR-INSERTIONS encoding
      instruction, then a production is added to the grammar where the
      left-hand side is N and the right-hand side is the general
      extension terminal.  This production is an insertion point
      production.

  (6) If the base type is subject to a UNIFORM-INSERTIONS encoding
      instruction, then:

      (a) A production is added to the grammar where the left-hand side
          is N and the right-hand side is the general extension
          terminal.

             Aside: This production is used to verify the correctness
             of an ASN.1 type definition, but would not be used in the
             implementation of an RXER decoder.  The next production
             takes precedence over it for accepting an unknown element.

      (b) A production is added to the grammar where the left-hand side
          is N and the right-hand side is the terminal for the
          extension insertion point of the base type followed by the
          non-terminal for the extension insertion point.  This
          production is an insertion point production.

      (c) A production is added to the grammar where the left-hand side
          is the non-terminal for the extension insertion point of the
          base type and the right-hand side is the terminal for the
          extension insertion point followed by the non-terminal for
          the extension insertion point.

      (d) A production is added to the grammar where the left-hand side
          is the non-terminal for the extension insertion point of the
          base type and the right-hand side is empty.



Legg                          Experimental                     [Page 43]

RFC 4911             Encoding Instructions for RXER            July 2007


  (7) If the base type is subject to a MULTIFORM-INSERTIONS encoding
      instruction, then:

      (a) A production is added to the grammar where the left-hand side
          is N and the right-hand side is the general extension
          terminal followed by the non-terminal for the extension
          insertion point of the base type.  This production is an
          insertion point production.

      (b) A production is added to the grammar where the left-hand side
          is the non-terminal for the extension insertion point of the
          base type and the right-hand side is the general extension
          terminal followed by the non-terminal for the extension
          insertion point.

      (c) A production is added to the grammar where the left-hand side
          is the non-terminal for the extension insertion point of the
          base type and the right-hand side is empty.

  If an ExtensionAdditionAlternative is a NamedType, then a production
  is added to the grammar where the left-hand side is the non-terminal
  for the ExtensionAdditionAlternative and the right-hand side is the
  primary non-terminal for the NamedType.

  If an ExtensionAdditionAlternative is an
  ExtensionAdditionAlternativesGroup, then a production is added to the
  grammar for each NamedType nested in the
  ExtensionAdditionAlternativesGroup, where the left-hand side is the
  non-terminal for the ExtensionAdditionAlternative and the right-hand
  side is the primary non-terminal for the NamedType.





















Legg                          Experimental                     [Page 44]

RFC 4911             Encoding Instructions for RXER            July 2007


  Example

     Consider the following ASN.1 type definition:

        CHOICE {
            -- Start of RootAlternativeTypeList.
            one    BOOLEAN,
            two    INTEGER,
            -- End of RootAlternativeTypeList.
            ...,
            -- Start of ExtensionAdditionAlternatives.
            three  INTEGER, -- First ExtensionAdditionAlternative (E1).
            [[ -- An ExtensionAdditionAlternativesGroup.
                four  UTF8String,
                five  INTEGER
            ]] -- Second ExtensionAdditionAlternative (E2).
            -- The extension insertion point is here (I1).
        }

     Here is the grammar derived from this type:

        S ::= one
        S ::= two
        S ::= E1
        S ::= E2
        S ::= I1

        I1 ::= "*" I1
        I1 ::=

        E1 ::= three
        E2 ::= four
        E2 ::= five

        one ::= "one"
        two ::= "two"
        three ::= "three"
        four ::= "four"
        five ::= "five"

     If the CHOICE type were subject to a NO-INSERTIONS encoding
     instruction, then the fifth, sixth, and seventh productions would
     be removed.

     If the CHOICE type were subject to a HOLLOW-INSERTIONS encoding
     instruction, then the fifth, sixth, and seventh productions would
     be replaced by:




Legg                          Experimental                     [Page 45]

RFC 4911             Encoding Instructions for RXER            July 2007


        S ::=

     If the CHOICE type were subject to a SINGULAR-INSERTIONS encoding
     instruction, then the fifth, sixth, and seventh productions would
     be replaced by:

        S ::= "*"

     If the CHOICE type were subject to a UNIFORM-INSERTIONS encoding
     instruction, then the fifth and sixth productions would be
     replaced by:

        S ::= "*"
        S ::= "*1" I1

        I1 ::= "*1" I1

     If the CHOICE type were subject to a MULTIFORM-INSERTIONS encoding
     instruction, then the fifth production would be replaced by:

        S ::= "*" I1

  Constraints on a SEQUENCE, SET, or CHOICE type are ignored.  They do
  not affect the grammar being generated.

     Aside: This avoids an awkward situation where values of a subtype
     have to be decoded differently from values of the parent type.  It
     also simplifies the verification procedure.

  Given a primary non-terminal, N, and a type that has a SEQUENCE OF or
  SET OF base type and that permits a value of size zero (i.e., an
  empty sequence or set):

  (1) a production is added to the grammar where the left-hand side of
      the production is N and the right-hand side is the primary
      non-terminal for the NamedType of the component of the
      SEQUENCE OF or SET OF base type, followed by N, and

  (2) a production is added to the grammar where the left-hand side of
      the production is N and the right-hand side is empty.

  Given a primary non-terminal, N, a secondary non-terminal, N', and a
  type that has a SEQUENCE OF or SET OF base type and that does not
  permit a value of size zero:







Legg                          Experimental                     [Page 46]

RFC 4911             Encoding Instructions for RXER            July 2007


  (1) a production is added to the grammar where the left-hand side of
      the production is N and the right-hand side is the primary
      non-terminal for the NamedType of the component of the
      SEQUENCE OF or SET OF base type, followed by N', and

  (2) a production is added to the grammar where the left-hand side of
      the production is N' and the right-hand side is the primary
      non-terminal for the NamedType of the component of the
      SEQUENCE OF or SET OF base type, followed by N', and

  (3) a production is added to the grammar where the left-hand side of
      the production is N' and the right-hand side is empty.

  Example

     Consider the following ASN.1 type definition:

        SEQUENCE SIZE(1..MAX) OF number INTEGER

     Here is the grammar derived from this type:

        S ::= number S'
        S' ::= number S'
        S' ::=

        number ::= "number"

  All inner subtyping (InnerTypeContraints) is ignored for the purposes
  of deciding whether a value of size zero is permitted by a
  SEQUENCE OF or SET OF type.

  This completes the description of the transformation of ASN.1
  combining type definitions into a grammar.

25.1.2.  Unique Component Attribution

  This section describes conditions that the grammar must satisfy so
  that each element and attribute in a received RXER encoding can be
  uniquely associated with an ASN.1 component definition.

  Definition (used by the grammar):  A non-terminal, N, is used by the
  grammar if:

  (1) N is the start symbol or

  (2) N appears on the right-hand side of a production where the
      non-terminal on the left-hand side is used by the grammar.




Legg                          Experimental                     [Page 47]

RFC 4911             Encoding Instructions for RXER            July 2007


  Definition (multiple derivation paths):  A non-terminal, N, has
  multiple derivation paths if:

  (1) N appears on the right-hand side of a production where the
      non-terminal on the left-hand side has multiple derivation paths,
      or

  (2) N appears on the right-hand side of more than one production
      where the non-terminal on the left-hand side is used by the
      grammar, or

  (3) N is the start symbol and it appears on the right-hand side of a
      production where the non-terminal on the left-hand side is used
      by the grammar.

  For every ASN.1 type with a base type containing components that are
  subject to a GROUP encoding instruction, the grammar derived by the
  method described in this document MUST NOT have:

  (1) two or more primary non-terminals that are used by the grammar
      and are associated with element components having the same
      expanded name, or

  (2) two or more primary non-terminals that are used by the grammar
      and are associated with attribute components having the same
      expanded name, or

  (3) a primary non-terminal that has multiple derivation paths and is
      associated with an attribute component.

     Aside: Case (1) is in response to component referencing notations
     that are evaluated with respect to the XML encoding of an abstract
     value.  Case (1) guarantees, without having to do extensive
     testing (which would necessarily have to take account of encoding
     instructions for all other encoding rules), that all sibling
     elements with the same expanded name will be associated with
     equivalent type definitions.  Such equivalence allows a component
     referenced by element name to be re-encoded using a different set
     of ASN.1 encoding rules without ambiguity as to which type
     definition and encoding instructions apply.

     Cases (2) and (3) ensure that an attribute name is always uniquely
     associated with one component that can occur at most once and is
     always nested in the same part of an abstract value.







Legg                          Experimental                     [Page 48]

RFC 4911             Encoding Instructions for RXER            July 2007


  Example

     The following example types illustrate various uses and misuses of
     the GROUP encoding instruction with respect to unique component
     attribution:

        TA ::= SEQUENCE {
            a  [GROUP] TB,
            b  [GROUP] CHOICE {
                a  [GROUP] TB,
                b  [NAME AS "c"] [ATTRIBUTE] INTEGER,
                c  INTEGER,
                d  TB,
                e  [GROUP] TD,
                f  [ATTRIBUTE] UTF8String
            },
            c  [ATTRIBUTE] INTEGER,
            d  [GROUP] SEQUENCE OF
                a [GROUP] SEQUENCE {
                    a  [ATTRIBUTE] OBJECT IDENTIFIER,
                    b  INTEGER
                },
            e  [NAME AS "c"] INTEGER,
            COMPONENTS OF TD
        }

        TB ::= SEQUENCE {
            a  INTEGER,
            b  [ATTRIBUTE] BOOLEAN,
            COMPONENTS OF TC
        }

        TC ::= SEQUENCE {
            f  OBJECT IDENTIFIER
        }

        TD ::= SEQUENCE {
            g  OBJECT IDENTIFIER
        }

     The grammar for TA is constructed after performing the
     COMPONENTS OF transformation.  The result of this transformation
     is shown next.  This example will depart from the usual convention
     of using just the identifier of a NamedType to represent the
     primary non-terminal for that NamedType.  A label relative to the
     outermost type will be used instead to better illustrate unique
     component attribution.  The labels used for the non-terminals are
     shown down the right-hand side.



Legg                          Experimental                     [Page 49]

RFC 4911             Encoding Instructions for RXER            July 2007


        TA ::= SEQUENCE {
            a  [GROUP] TB,                             -- TA.a
            b  [GROUP] CHOICE {                        -- TA.b
                a  [GROUP] TB,                         -- TA.b.a
                b  [NAME AS "c"] [ATTRIBUTE] INTEGER,  -- TA.b.b
                c  INTEGER,                            -- TA.b.c
                d  TB,                                 -- TA.b.d
                e  [GROUP] TD,                         -- TA.b.e
                f  [ATTRIBUTE] UTF8String              -- TA.b.f
            },
            c  [ATTRIBUTE] INTEGER,                    -- TA.c
            d  [GROUP] SEQUENCE OF                     -- TA.d
                a [GROUP] SEQUENCE {                   -- TA.d.a
                    a  [ATTRIBUTE] OBJECT IDENTIFIER,  -- TA.d.a.a
                    b  INTEGER                         -- TA.d.a.b
                },
            e  [NAME AS "c"] INTEGER,                  -- TA.e
            g  OBJECT IDENTIFIER                       -- TA.g
        }

        TB ::= SEQUENCE {
            a  INTEGER,                                -- TB.a
            b  [ATTRIBUTE] BOOLEAN,                    -- TB.b
            f  OBJECT IDENTIFIER                       -- TB.f
        }

        -- Type TC is no longer of interest. --

        TD ::= SEQUENCE {
            g  OBJECT IDENTIFIER                       -- TD.g
        }

     The associated grammar is:

        S ::= TA.a TA.b TA.c TA.d TA.e TA.g

        TA.a ::= TB.a TB.b TB.f

        TB.a ::= "a"
        TB.b ::= "@b"
        TB.f ::= "f"

        TA.b ::= TA.b.a
        TA.b ::= TA.b.b
        TA.b ::= TA.b.c
        TA.b ::= TA.b.d
        TA.b ::= TA.b.e
        TA.b ::= TA.b.f



Legg                          Experimental                     [Page 50]

RFC 4911             Encoding Instructions for RXER            July 2007


        TA.b.a ::= TB.a TB.b TB.f
        TA.b.b ::= "@c"
        TA.b.c ::= "c"
        TA.b.d ::= "d"
        TA.b.e ::= TD.g
        TA.b.f ::= "@f"

        TD.g ::= "g"

        TA.c ::= "@c"

        TA.d ::= TA.d.a TA.d
        TA.d ::=

        TA.d.a ::= TA.d.a.a TA.d.a.b

        TA.d.a.a := "@a"
        TA.d.a.b ::= "b"

        TA.e ::= "c"

        TA.g ::= "g"

     All the non-terminals are used by the grammar.

     The type definition for TA is invalid because there are two
     instances where two or more primary non-terminals are associated
     with element components having the same expanded name:

     (1) TA.b.c and TA.e (both generate the terminal "c"), and

     (2) TD.g and TA.g (both generate the terminal "g").

     In case (2), TD.g and TA.g are derived from the same instance of
     NamedType notation, but become distinct components following the
     COMPONENTS OF transformation.  AUTOMATIC tagging is applied after
     the COMPONENTS OF transformation, which means that the types of
     the components corresponding to TD.g and TA.g will end up with
     different tags, and therefore the types will not be equivalent.

     The type definition for TA is also invalid because there is one
     instance where two or more primary non-terminals are associated
     with attribute components having the same expanded name:  TA.b.b
     and TA.c (both generate the terminal "@c").







Legg                          Experimental                     [Page 51]

RFC 4911             Encoding Instructions for RXER            July 2007


     The non-terminals with multiple derivation paths are:  TA.d,
     TA.d.a, TA.d.a.a, TA.d.a.b, TB.a, TB.b, and TB.f.  The type
     definition for TA is also invalid because TA.d.a.a and TB.b are
     primary non-terminals that are associated with an attribute
     component.

25.1.3.  Deterministic Grammars

  Let the First Set of a production P, denoted First(P), be the set of
  all element terminals T where T is the first element terminal in a
  sequence of terminals that can be generated from the right-hand side
  of P.  There can be any number of leading attribute terminals before
  T.

  Let the Follow Set of a non-terminal N, denoted Follow(N), be the set
  of all element terminals T where T is the first element terminal
  following N in a sequence of non-terminals and terminals that can be
  generated from the grammar.  There can be any number of attribute
  terminals between N and T.  If a sequence of non-terminals and
  terminals can be generated from the grammar where N is not followed
  by any element terminals, then Follow(N) also contains a special end
  terminal, denoted by "$".

     Aside: If N does not appear on the right-hand side of any
     production, then Follow(N) will be empty.

  For a production P, let the predicate Empty(P) be true if and only if
  the empty sequence of terminals can be generated from P.  Otherwise,
  Empty(P) is false.

  Definition (base grammar):  The base grammar is a rewriting of the
  grammar in which the non-terminals for every ExtensionAddition and
  ExtensionAdditionAlternative are removed from the right-hand side of
  all productions.

  For a production P, let the predicate Preselected(P) be true if and
  only if every sequence of terminals that can be generated from the
  right-hand side of P using only the base grammar contains at least
  one attribute terminal.  Otherwise, Preselected(P) is false.

  The Select Set of a production P, denoted Select(P), is empty if
  Preselected(P) is true; otherwise, it contains First(P).  Let N be
  the non-terminal on the left-hand side of P.  If Empty(P) is true,
  then Select(P) also contains Follow(N).







Legg                          Experimental                     [Page 52]

RFC 4911             Encoding Instructions for RXER            July 2007


     Aside: It may appear somewhat dubious to include the attribute
     components in the grammar because, in reality, attributes appear
     unordered within the start tag of an element, and not interspersed
     with the child elements as the grammar would suggest.  This is why
     attribute terminals are ignored in composing the First Sets and
     Follow Sets.  However, the attribute terminals are important in
     composing the Select Sets because they can preselect a production
     and can prevent a production from being able to generate an empty
     sequence of terminals.  In real terms, this corresponds to an RXER
     decoder using the attributes to determine the presence or absence
     of optional components and to select between the alternatives of a
     CHOICE, even before considering the child elements.

     An attribute appearing in an extension isn't used to preselect a
     production since, in general, a decoder using an earlier version
     of the specification would not be able to associate the attribute
     with any particular extension insertion point.

  Let the Reach Set of a non-terminal N, denoted Reach(N), be the set
  of all element terminals T where T appears in a sequence of terminals
  that can be generated from N.

     Aside: It can be readily shown that all the optional attribute
     components and all but one of the mandatory attribute components
     of a SEQUENCE or SET type can be ignored in constructing the
     grammar because their omission does not alter the First, Follow,
     Select, or Reach Sets, or the evaluation of the Preselected and
     Empty predicates.

  A grammar is deterministic (for the purposes of an RXER decoder) if
  and only if:

  (1) there do not exist two productions P and Q, with the same
      non-terminal on the left-hand side, where the intersection of
      Select(P) and Select(Q) is not empty, and

  (2) there does not exist a non-terminal E for an ExtensionAddition or
      ExtensionAdditionAlternative where the intersection of Reach(E)
      and Follow(E) is not empty.

     Aside: In case (1), if the intersection is not empty, then a
     decoder would have two or more possible ways to attempt to decode
     the input into an abstract value.  In case (2), if the
     intersection is not empty, then a decoder using an earlier version
     of the ASN.1 specification would confuse an element in an unknown
     (to that decoder) extension with a known component following the
     extension.




Legg                          Experimental                     [Page 53]

RFC 4911             Encoding Instructions for RXER            July 2007


     Aside: In the absence of any attribute components, case (1) is the
     test for an LL(1) grammar.

  For every ASN.1 type with a base type containing components that are
  subject to a GROUP encoding instruction, the grammar derived by the
  method described in this document MUST be deterministic.

25.1.4.  Attributes in Unknown Extensions

  An insertion point production is able to accept unknown attributes if
  the non-terminal on the left-hand side of the production does not
  have multiple derivation paths.

     Aside: If the non-terminal has multiple derivation paths, then any
     future extension cannot possibly contain an attribute component
     because that would violate the requirements of Section 25.1.2.

  For a deterministic grammar, there is only one possible way to
  construct a sequence of element terminals matching the element
  content of an element in a correctly formed RXER encoding.  Any
  unknown attributes of the element are accepted if at least one
  insertion point production that is able to accept unknown attributes
  is used in that construction.

  Example

     Consider this type definition:

        CHOICE {
            one  UTF8String,
            two  [GROUP] SEQUENCE {
                 three  INTEGER,
                 ...
            }
        }

     The associated grammar is:

        S ::= one
        S ::= two

        two ::= three I1

        I1 ::= "*" I1
        I1 ::=

        one ::= "one"
        three ::= "three"



Legg                          Experimental                     [Page 54]

RFC 4911             Encoding Instructions for RXER            July 2007


     The third production is an insertion point production, and it is
     able to accept unknown attributes.

     When decoding a value of this type, if the element content
     contains a <one> child element, then any unrecognized attribute
     would be illegal as the insertion point production would not be
     used to recognize the input (the "one" alternative does not admit
     an extension insertion point).  If the element content contains a
     <three> element, then an unrecognized attribute would be accepted
     because the insertion point production would be used to recognize
     the input (the "two" alternative that generates the <three>
     element has an extensible type).

     If the SEQUENCE type were prefixed by a NO-INSERTIONS encoding
     instruction, then the third, fourth, and fifth productions would
     be replaced by:

        two ::= three

     With this change, any unrecognized attribute would be illegal for
     the "two" alternative also, since the replacement production is
     not an insertion point production.

  If more than one insertion point production that is able to accept
  unknown attributes is used in constructing a matching sequence of
  element terminals, then a decoder is free to associate an
  unrecognized attribute with any one of the extension insertion points
  corresponding to those insertion point productions.  The
  justification for doing so comes from the following two observations:

  (1) If the encoding of an abstract value contains an extension where
      the type of the extension is unknown to the receiver, then it is
      generally impossible to re-encode the value using a different set
      of encoding rules, including the canonical variant of the
      received encoding.  This is true no matter which encoding rules
      are being used.  It is desirable for a decoder to be able to
      accept and store the raw encoding of an extension without raising
      an error, and to re-insert the raw encoding of the extension when
      re-encoding the abstract value using the same non-canonical
      encoding rules.  However, there is little more that an
      application can do with an unknown extension.

      An application using RXER can successfully accept, store, and
      re-encode an unrecognized attribute regardless of which extension
      insertion point it might be ascribed to.






Legg                          Experimental                     [Page 55]

RFC 4911             Encoding Instructions for RXER            July 2007


  (2) Even if there is a single extension insertion point, an unknown
      extension could still be the encoding of a value of any one of an
      infinite number of valid type definitions.  For example, an
      attribute or element component could be nested to any arbitrary
      depth within CHOICEs whose components are subject to GROUP
      encoding instructions.

         Aside: A similar series of nested CHOICEs could describe an
         unknown extension in a Basic Encoding Rules (BER) encoding
         [X.690].

26.  Security Considerations

  ASN.1 compiler implementors should take special care to be thorough
  in checking that the GROUP encoding instruction has been correctly
  used; otherwise, ASN.1 specifications with ambiguous RXER encodings
  could be deployed.

  Ambiguous encodings mean that the abstract value recovered by a
  decoder may differ from the original abstract value that was encoded.
  If that is the case, then a digital signature generated with respect
  to the original abstract value (using a canonical encoding other than
  CRXER) will not be successfully verified by a receiver using the
  decoded abstract value.  Also, an abstract value may have
  security-sensitive fields, and in particular, fields used to grant or
  deny access.  If the decoded abstract value differs from the encoded
  abstract value, then a receiver using the decoded abstract value will
  be applying different security policy than that embodied in the
  original abstract value.

27.  References

27.1.  Normative References

  [BCP14]    Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119, March 1997.

  [URI]      Berners-Lee, T., Fielding, R. and L. Masinter, "Uniform
             Resource Identifiers (URI): Generic Syntax", STD 66, RFC
             3986, January 2005.

  [RXER]     Legg, S. and D. Prager, "Robust XML Encoding Rules (RXER)
             for Abstract Syntax Notation One (ASN.1)", RFC 4910, July
             2007.

  [ASN.X]    Legg, S., "Abstract Syntax Notation X (ASN.X)", RFC 4912,
             July 2007.




Legg                          Experimental                     [Page 56]

RFC 4911             Encoding Instructions for RXER            July 2007


  [X.680]    ITU-T Recommendation X.680 (07/02) | ISO/IEC 8824-1,
             Information technology - Abstract Syntax Notation One
             (ASN.1):  Specification of basic notation.

  [X.680-1]  ITU-T Recommendation X.680 (2002) Amendment 1 (10/03) |
             ISO/IEC 8824-1:2002/Amd 1:2004, Support for EXTENDED-XER.

  [X.683]    ITU-T Recommendation X.683 (07/02) | ISO/IEC 8824-4,
             Information technology - Abstract Syntax Notation One
             (ASN.1):  Parameterization of ASN.1 specifications.

  [XML10]    Bray, T., Paoli, J., Sperberg-McQueen, C., Maler, E. and
             F. Yergeau, "Extensible Markup Language (XML) 1.0 (Fourth
             Edition)", W3C Recommendation,
             http://www.w3.org/TR/2006/REC-xml-20060816, August 2006.

  [XMLNS10]  Bray, T., Hollander, D., Layman, A., and R. Tobin,
             "Namespaces in XML 1.0 (Second Edition)", W3C
             Recommendation,
             http://www.w3.org/TR/2006/REC-xml-names-20060816, August
             2006.

  [XSD1]     Thompson, H., Beech, D., Maloney, M. and N. Mendelsohn,
             "XML Schema Part 1: Structures Second Edition", W3C
             Recommendation,
             http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/,
             October 2004.

  [XSD2]     Biron, P. and A. Malhotra, "XML Schema Part 2: Datatypes
             Second Edition", W3C Recommendation,
             http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/,
             October 2004.

  [RNG]      Clark, J. and M. Makoto, "RELAX NG Tutorial", OASIS
             Committee Specification, http://www.oasis-open.org/
             committees/relax-ng/tutorial-20011203.html, December 2001.

27.2.  Informative References

  [INFOSET]  Cowan, J. and R. Tobin, "XML Information Set (Second
             Edition)", W3C Recommendation, http://www.w3.org/
             TR/2004/REC-xml-infoset-20040204, February 2004.

  [X.690]    ITU-T Recommendation X.690 (07/02) | ISO/IEC 8825-1,
             Information technology - ASN.1 encoding rules:
             Specification of Basic Encoding Rules (BER), Canonical
             Encoding Rules (CER) and Distinguished Encoding Rules
             (DER).



Legg                          Experimental                     [Page 57]

RFC 4911             Encoding Instructions for RXER            July 2007


Appendix A.  GROUP Encoding Instruction Examples

  This appendix is non-normative.

  This appendix contains examples of both correct and incorrect use of
  the GROUP encoding instruction, determined with respect to the
  grammars derived from the example type definitions.  The productions
  of the grammars are labeled for convenience.  Sets and predicates for
  non-terminals with only one production will be omitted from the
  examples since they never indicate non-determinism.

  The requirements of Section 25.1.2 ("Unique Component Attribution")
  are satisfied by all the examples in this appendix and the appendices
  that follow it.

A.1.  Example 1

  Consider this type definition:

     SEQUENCE {
         one    [GROUP] SEQUENCE {
             two    UTF8String OPTIONAL
         } OPTIONAL,
         three  INTEGER
     }

  The associated grammar is:

     P1:  S ::= one three
     P2:  one ::= two
     P3:  one ::=
     P4:  two ::= "two"
     P5:  two ::=
     P6:  three ::= "three"

  Select Sets have to be evaluated to test the validity of the type
  definition.  The grammar leads to the following sets and predicates:

     First(P2) = { "two" }
     First(P3) = { }
     Preselected(P2) = Preselected(P3) = false
     Empty(P2) = Empty(P3) = true
     Follow(one) = { "three" }
     Select(P2) = First(P2) + Follow(one) = { "two", "three" }
     Select(P3) = First(P3) + Follow(one) = { "three" }






Legg                          Experimental                     [Page 58]

RFC 4911             Encoding Instructions for RXER            July 2007


     First(P4) = { "two" }
     First(P5) = { }
     Preselected(P4) = Preselected(P5) = Empty(P4) = false
     Empty(P5) = true
     Follow(two) = { "three" }
     Select(P4) = First(P4) = { "two" }
     Select(P5) = First(P5) + Follow(two) = { "three" }

  The intersection of Select(P2) and Select(P3) is not empty; hence,
  the grammar is not deterministic, and the type definition is not
  valid.  If the RXER encoding of a value of the type does not have a
  child element <two>, then it is not possible to determine whether the
  "one" component is present or absent in the value.

  Now consider this type definition with attributes in the "one"
  component:

     SEQUENCE {
         one    [GROUP] SEQUENCE {
             two    UTF8String OPTIONAL,
             four   [ATTRIBUTE] BOOLEAN,
             five   [ATTRIBUTE] BOOLEAN OPTIONAL
         } OPTIONAL,
         three  INTEGER
     }

  The associated grammar is:

     P1:  S ::= one three
     P2:  one ::= two four five
     P3:  one ::=
     P4:  two ::= "two"
     P5:  two ::=
     P6:  four ::= "@four"
     P7:  five ::= "@five"
     P8:  five ::=
     P9:  three ::= "three"

  This grammar leads to the following sets and predicates:

     First(P2) = { "two" }
     First(P3) = { }
     Preselected(P3) = Empty(P2) = false
     Preselected(P2) = Empty(P3) = true
     Follow(one) = { "three" }
     Select(P2) = { }
     Select(P3) = First(P3) + Follow(one) = { "three" }




Legg                          Experimental                     [Page 59]

RFC 4911             Encoding Instructions for RXER            July 2007


     First(P4) = { "two" }
     First(P5) = { }
     Preselected(P4) = Preselected(P5) = Empty(P4) = false
     Empty(P5) = true
     Follow(two) = { "three" }
     Select(P4) = First(P4) = { "two" }
     Select(P5) = First(P5) + Follow(two) = { "three" }

     First(P7) = { }
     First(P8) = { }
     Preselected(P8) = Empty(P7) = false
     Preselected(P7) = Empty(P8) = true
     Follow(five) = { "three" }
     Select(P7) = { }
     Select(P8) = First(P8) + Follow(five) = { "three" }

  The intersection of Select(P2) and Select(P3) is empty, as is the
  intersection of Select(P4) and Select(P5) and the intersection of
  Select(P7) and Select(P8); hence, the grammar is deterministic, and
  the type definition is valid.  In a correct RXER encoding, the "one"
  component will be present if and only if the "four" attribute is
  present.

A.2.  Example 2

  Consider this type definition:

     CHOICE {
         one    [GROUP] SEQUENCE {
             two    [ATTRIBUTE] BOOLEAN OPTIONAL
         },
         three  INTEGER,
         four   [GROUP] SEQUENCE {
             five   BOOLEAN OPTIONAL
         }
     }

  The associated grammar is:

     P1:  S ::= one
     P2:  S ::= three
     P3:  S ::= four
     P4:  one ::= two
     P5:  two ::= "@two"
     P6:  two ::=
     P7:  three ::= "three"
     P8:  four ::= five
     P9:  five ::= "five"



Legg                          Experimental                     [Page 60]

RFC 4911             Encoding Instructions for RXER            July 2007


     P10: five ::=

  This grammar leads to the following sets and predicates:

     First(P1) = { }
     First(P2) = { "three" }
     First(P3) = { "five" }
     Preselected(P1) = Preselected(P2) = Preselected(P3) = false
     Empty(P2) = false
     Empty(P1) = Empty(P3) = true
     Follow(S) = { "$" }
     Select(P1) = First(P1) + Follow(S) = { "$" }
     Select(P2) = First(P2) = { "three" }
     Select(P3) = First(P3) + Follow(S) = { "five", "$" }

     First(P5) = { }
     First(P6) = { }
     Preselected(P6) = Empty(P5) = false
     Preselected(P5) = Empty(P6) = true
     Follow(two) = { "$" }
     Select(P5) = { }
     Select(P6) = First(P6) + Follow(two) = { "$" }

     First(P9) = { "five" }
     First(P10) = { }
     Preselected(P9) = Preselected(P10) = Empty(P9) = false
     Empty(P10) = true
     Follow(five) = { "$" }
     Select(P9) = First(P9) = { "five" }
     Select(P10) = First(P10) + Follow(five) = { "$" }

  The intersection of Select(P1) and Select(P3) is not empty; hence,
  the grammar is not deterministic, and the type definition is not
  valid.  If the RXER encoding of a value of the type is empty, then it
  is not possible to determine whether the "one" alternative or the
  "four" alternative has been chosen.

  Now consider this slightly different type definition:

     CHOICE {
         one    [GROUP] SEQUENCE {
             two    [ATTRIBUTE] BOOLEAN
         },
         three  INTEGER,
         four   [GROUP] SEQUENCE {
             five   BOOLEAN OPTIONAL
         }
     }



Legg                          Experimental                     [Page 61]

RFC 4911             Encoding Instructions for RXER            July 2007


  The associated grammar is:

     P1:  S ::= one
     P2:  S ::= three
     P3:  S ::= four
     P4:  one ::= two
     P5:  two ::= "@two"
     P6:  three ::= "three"
     P7:  four ::= five
     P8:  five ::= "five"
     P9:  five ::=

  This grammar leads to the following sets and predicates:

     First(P1) = { }
     First(P2) = { "three" }
     First(P3) = { "five" }
     Preselected(P2) = Preselected(P3) = false
     Empty(P1) = Empty(P2) = false
     Preselected(P1) = Empty(P3) = true
     Follow(S) = { "$" }
     Select(P1) = { }
     Select(P2) = First(P2) = { "three" }
     Select(P3) = First(P3) + Follow(S) = { "five", "$" }

     First(P8) = { "five" }
     First(P9) = { }
     Preselected(P8) = Preselected(P9) = Empty(P8) = false
     Empty(P9) = true
     Follow(five) = { "$" }
     Select(P8) = First(P8) = { "five" }
     Select(P9) = First(P9) + Follow(five) = { "$" }

  The intersection of Select(P1) and Select(P2) is empty, the
  intersection of Select(P1) and Select(P3) is empty, the intersection
  of Select(P2) and Select(P3) is empty, and the intersection of
  Select(P8) and Select(P9) is empty; hence, the grammar is
  deterministic, and the type definition is valid.  The "one" and
  "four" alternatives can be distinguished because the "one"
  alternative has a mandatory attribute.











Legg                          Experimental                     [Page 62]

RFC 4911             Encoding Instructions for RXER            July 2007


A.3.  Example 3

  Consider this type definition:

     SEQUENCE {
         one  [GROUP] CHOICE {
             two    [ATTRIBUTE] BOOLEAN,
             three  [GROUP] SEQUENCE OF number INTEGER
         } OPTIONAL
     }

  The associated grammar is:

     P1:  S ::= one
     P2:  one ::= two
     P3:  one ::= three
     P4:  one ::=
     P5:  two ::= "@two"
     P6:  three ::= number three
     P7:  three ::=
     P8:  number ::= "number"

  This grammar leads to the following sets and predicates:

     First(P2) = { }
     First(P3) = { "number" }
     First(P4) = { }
     Preselected(P3) = Preselected(P4) = Empty(P2) = false
     Preselected(P2) = Empty(P3) = Empty(P4) = true
     Follow(one) = { "$" }
     Select(P2) = { }
     Select(P3) = First(P3) + Follow(one) = { "number", "$" }
     Select(P4) = First(P4) + Follow(one) = { "$" }

     First(P6) = { "number" }
     First(P7) = { }
     Preselected(P6) = Preselected(P7) = Empty(P6) = false
     Empty(P7) = true
     Follow(three) = { "$" }
     Select(P6) = First(P6) = { "number" }
     Select(P7) = First(P7) + Follow(three) = { "$" }

  The intersection of Select(P3) and Select(P4) is not empty; hence,
  the grammar is not deterministic, and the type definition is not
  valid.  If the RXER encoding of a value of the type is empty, then it
  is not possible to determine whether the "one" component is absent or
  the empty "three" alternative has been chosen.




Legg                          Experimental                     [Page 63]

RFC 4911             Encoding Instructions for RXER            July 2007


A.4.  Example 4

  Consider this type definition:

     SEQUENCE {
         one  [GROUP] CHOICE {
             two    [ATTRIBUTE] BOOLEAN,
             three  [ATTRIBUTE] BOOLEAN
         } OPTIONAL
     }

  The associated grammar is:

     P1:  S ::= one
     P2:  one ::= two
     P3:  one ::= three
     P4:  one ::=
     P5:  two ::= "@two"
     P6:  three ::= "@three"

  This grammar leads to the following sets and predicates:

     First(P2) = { }
     First(P3) = { }
     First(P4) = { }
     Preselected(P4) = Empty(P2) = Empty(P3) = false
     Preselected(P2) = Preselected(P3) = Empty(P4) = true
     Follow(one) = { "$" }
     Select(P2) = { }
     Select(P3) = { }
     Select(P4) = First(P4) + Follow(one) = { "$" }

  The intersection of Select(P2) and Select(P3) is empty, the
  intersection of Select(P2) and Select(P4) is empty, and the
  intersection of Select(P3) and Select(P4) is empty; hence, the
  grammar is deterministic, and the type definition is valid.

A.5.  Example 5

  Consider this type definition:

     SEQUENCE {
         one  [GROUP] SEQUENCE OF number INTEGER OPTIONAL
     }







Legg                          Experimental                     [Page 64]

RFC 4911             Encoding Instructions for RXER            July 2007


  The associated grammar is:

     P1:  S ::= one
     P2:  one ::= number one
     P3:  one ::=
     P4:  one ::=
     P5:  number ::= "number"

  P3 is generated during the processing of the SEQUENCE OF type.  P4 is
  generated because the "one" component is optional.

  This grammar leads to the following sets and predicates:

     First(P2) = { "number" }
     First(P3) = { }
     First(P4) = { }
     Preselected(P2) = Preselected(P3) = Preselected(P4) = false
     Empty(P2) = false
     Empty(P3) = Empty(P4) = true
     Follow(one) = { "$" }
     Select(P2) = First(P2) = { "number" }
     Select(P3) = First(P3) + Follow(one) = { "$" }
     Select(P4) = First(P4) + Follow(one) = { "$" }

  The intersection of Select(P3) and Select(P4) is not empty; hence,
  the grammar is not deterministic, and the type definition is not
  valid.  If the RXER encoding of a value of the type does not have any
  <number> child elements, then it is not possible to determine whether
  the "one" component is present or absent in the value.

  Consider this similar type definition with a SIZE constraint:

     SEQUENCE {
         one  [GROUP] SEQUENCE SIZE(1..MAX) OF number INTEGER OPTIONAL
     }

  The associated grammar is:

     P1:  S ::= one
     P2:  one ::= number one'
     P3:  one' ::= number one'
     P4:  one' ::=
     P5:  one ::=
     P6:  number ::= "number"







Legg                          Experimental                     [Page 65]

RFC 4911             Encoding Instructions for RXER            July 2007


  This grammar leads to the following sets and predicates:

     First(P2) = { "number" }
     First(P5) = { }
     Preselected(P2) = Preselected(P5) = Empty(P2) = false
     Empty(P5) = true
     Follow(one) = { "$" }
     Select(P2) = First(P2) = { "number" }
     Select(P5) = First(P5) + Follow(one) = { "$" }

     First(P3) = { "number" }
     First(P4) = { }
     Preselected(P3) = Preselected(P4) = Empty(P3) = false
     Empty(P4) = true
     Follow(one') = { "$" }
     Select(P3) = First(P3) = { "number" }
     Select(P4) = First(P4) + Follow(one') = { "$" }

  The intersection of Select(P2) and Select(P5) is empty, as is the
  intersection of Select(P3) and Select(P4); hence, the grammar is
  deterministic, and the type definition is valid.  If there are no
  <number> child elements, then the "one" component is necessarily
  absent and there is no ambiguity.

A.6.  Example 6

  Consider this type definition:

     SEQUENCE {
         beginning  [GROUP] List,
         middle     UTF8String OPTIONAL,
         end        [GROUP] List
     }

     List ::= SEQUENCE OF string UTF8String

  The associated grammar is:

     P1:  S ::= beginning middle end
     P2:  beginning ::= string beginning
     P3:  beginning ::=
     P4:  middle ::= "middle"
     P5:  middle ::=
     P6:  end ::= string end
     P7:  end ::=
     P8:  string ::= "string"





Legg                          Experimental                     [Page 66]

RFC 4911             Encoding Instructions for RXER            July 2007


  This grammar leads to the following sets and predicates:

     First(P2) = { "string" }
     First(P3) = { }
     Preselected(P2) = Preselected(P3) = Empty(P2) = false
     Empty(P3) = true
     Follow(beginning) = { "middle", "string", "$" }
     Select(P2) = First(P2) = { "string" }
     Select(P3) = First(P3) + Follow(beginning)
                = { "middle", "string", "$" }

     First(P4) = { "middle" }
     First(P5) = { }
     Preselected(P4) = Preselected(P5) = Empty(P4) = false
     Empty(P5) = true
     Follow(middle) = { "string", "$" }
     Select(P4) = First(P4) = { "middle" }
     Select(P5) = First(P5) + Follow(middle) = { "string", "$" }

     First(P6) = { "string" }
     First(P7) = { }
     Preselected(P6) = Preselected(P7) = Empty(P6) = false
     Empty(P7) = true
     Follow(end) = { "$" }
     Select(P6) = First(P6) = { "string" }
     Select(P7) = First(P7) + Follow(end) = { "$" }

  The intersection of Select(P2) and Select(P3) is not empty; hence,
  the grammar is not deterministic, and the type definition is not
  valid.

  Now consider the following type definition:

     SEQUENCE {
         beginning     [GROUP] List,
         middleAndEnd  [GROUP] SEQUENCE {
             middle        UTF8String,
             end           [GROUP] List
         } OPTIONAL
     }

  The associated grammar is:

     P1:  S ::= beginning middleAndEnd
     P2:  beginning ::= string beginning
     P3:  beginning ::=
     P4:  middleAndEnd ::= middle end
     P5:  middleAndEnd ::=



Legg                          Experimental                     [Page 67]

RFC 4911             Encoding Instructions for RXER            July 2007


     P6:  middle ::= "middle"
     P7:  end ::= string end
     P8:  end ::=
     P9:  string ::= "string"

  This grammar leads to the following sets and predicates:

     First(P2) = { "string" }
     First(P3) = { }
     Preselected(P2) = Preselected(P3) = Empty(P2) = false
     Empty(P3) = true
     Follow(beginning) = { "middle", "$" }
     Select(P2) = First(P2) = { "string" }
     Select(P3) = First(P3) + Follow(beginning) = { "middle", "$" }

     First(P4) = { "middle" }
     First(P5) = { }
     Preselected(P4) = Preselected(P5) = Empty(P4) = false
     Empty(P5) = true
     Follow(middleAndEnd) = { "$" }
     Select(P4) = First(P4) = { "middle" }
     Select(P5) = First(P5) + Follow(middleAndEnd) = { "$" }

     First(P7) = { "string" }
     First(P8) = { }
     Preselected(P7) = Preselected(P8) = Empty(P7) = false
     Empty(P8) = true
     Follow(end) = { "$" }
     Select(P7) = First(P7) = { "string" }
     Select(P8) = First(P8) + Follow(end) = { "$" }

  The intersection of Select(P2) and Select(P3) is empty, as is the
  intersection of Select(P4) and Select(P5) and the intersection of
  Select(P7) and Select(P8); hence, the grammar is deterministic, and
  the type definition is valid.

A.7.  Example 7

  Consider the following type definition:

     SEQUENCE SIZE(1..MAX) OF
         one  [GROUP] SEQUENCE {
             two    INTEGER OPTIONAL
         }







Legg                          Experimental                     [Page 68]

RFC 4911             Encoding Instructions for RXER            July 2007


  The associated grammar is:

     P1:  S ::= one S'
     P2:  S' ::= one S'
     P3:  S' ::=
     P4:  one ::= two
     P5:  two ::= "two"
     P6:  two ::=

  This grammar leads to the following sets and predicates:

     First(P2) = { "two" }
     First(P3) = { }
     Preselected(P2) = Preselected(P3) = false
     Empty(P2) = Empty(P3) = true
     Follow(S') = { "$" }
     Select(P2) = First(P2) + Follow(S') = { "two", "$" }
     Select(P3) = First(P3) + Follow(S') = { "$" }

     First(P5) = { "two" }
     First(P6) = { }
     Preselected(P5) = Preselected(P6) = Empty(P5) = false
     Empty(P6) = true
     Follow(two) = { "two", "$" }
     Select(P5) = First(P5) = { "two" }
     Select(P6) = First(P6) + Follow(two) = { "two", "$" }

  The intersection of Select(P2) and Select(P3) is not empty and the
  intersection of Select(P5) and Select(P6) is not empty; hence, the
  grammar is not deterministic, and the type definition is not valid.
  The encoding of a value of the type contains an indeterminate number
  of empty instances of the component type.

A.8.  Example 8

  Consider the following type definition:

     SEQUENCE OF
         list [GROUP] SEQUENCE SIZE(1..MAX) OF number INTEGER

  The associated grammar is:

     P1:  S ::= list S
     P2:  S ::=
     P3:  list ::= number list'
     P4:  list' ::= number list'
     P5:  list' ::=
     P6:  number ::= "number"



Legg                          Experimental                     [Page 69]

RFC 4911             Encoding Instructions for RXER            July 2007


  This grammar leads to the following sets and predicates:

     First(P1) = { "number" }
     First(P2) = { }
     Preselected(P1) = Preselected(P2) = Empty(P1) = false
     Empty(P2) = true
     Follow(S) = { "$" }
     Select(P1) = First(P1) = { "number" }
     Select(P2) = First(P2) + Follow(S) = { "$" }

     First(P4) = { "number" }
     First(P5) = { }
     Preselected(P4) = Preselected(P5) = Empty(P4) = false
     Empty(P5) = true
     Follow(list') = { "number", "$" }
     Select(P4) = First(P4) = { "number" }
     Select(P5) = First(P5) + Follow(list') = { "number", "$" }

  The intersection of Select(P4) and Select(P5) is not empty; hence,
  the grammar is not deterministic, and the type definition is not
  valid.  The type describes a list of lists, but it is not possible
  for a decoder to determine where the outer lists begin and end.

A.9.  Example 9

  Consider the following type definition:

     SEQUENCE OF item [GROUP] SEQUENCE {
         before  [GROUP] OneAndTwo,
         core    UTF8String,
         after   [GROUP] OneAndTwo OPTIONAL
     }

     OneAndTwo ::= SEQUENCE {
         non-core  UTF8String
     }

  The associated grammar is:

     P1:  S ::= item S
     P2:  S ::=
     P3:  item ::= before core after
     P4:  before ::= non-core
     P5:  non-core ::= "non-core"
     P6:  core ::= "core"
     P7:  after ::= non-core
     P8:  after ::=




Legg                          Experimental                     [Page 70]

RFC 4911             Encoding Instructions for RXER            July 2007


  This grammar leads to the following sets and predicates:

     First(P1) = { "non-core" }
     First(P2) = { }
     Preselected(P1) = Preselected(P2) = Empty(P1) = false
     Empty(P2) = true
     Follow(S) = { "$" }
     Select(P1) = First(P1) = { "non-core" }
     Select(P2) = First(P2) + Follow(S) = { "$" }

     First(P7) = { "non-core" }
     First(P8) = { }
     Preselected(P7) = Preselected(P8) = Empty(P7) = false
     Empty(P8) = true
     Follow(after) = { "non-core", "$" }
     Select(P7) = First(P7) = { "non-core" }
     Select(P8) = First(P8) + Follow(after) = { "non-core", "$" }

  The intersection of Select(P7) and Select(P8) is not empty; hence,
  the grammar is not deterministic, and the type definition is not
  valid.  There is ambiguity between the end of one item and the start
  of the next.  Without looking ahead in an encoding, it is not
  possible to determine whether a <non-core> element belongs with the
  preceding or following <core> element.

A.10.  Example 10

  Consider the following type definition:

     CHOICE {
         one   [GROUP] List,
         two   [GROUP] SEQUENCE {
             three  [ATTRIBUTE] UTF8String,
             four   [GROUP] List
         }
     }

     List ::= SEQUENCE OF string UTF8String

  The associated grammar is:

     P1:  S ::= one
     P2:  S ::= two
     P3:  one ::= string one
     P4:  one ::=
     P5:  two ::= three four
     P6:  three ::= "@three"
     P7:  four ::= string four



Legg                          Experimental                     [Page 71]

RFC 4911             Encoding Instructions for RXER            July 2007


     P8:  four ::=
     P9:  string ::= "string"

  This grammar leads to the following sets and predicates:

     First(P1) = { "string" }
     First(P2) = { "string" }
     Preselected(P1) = Empty(P2) = false
     Preselected(P2) = Empty(P1) = true
     Follow(S) = { "$" }
     Select(P1) = First(P1) + Follow(S) = { "string", "$" }
     Select(P2) = { }

     First(P3) = { "string" }
     First(P4) = { }
     Preselected(P3) = Preselected(P4) = Empty(P3) = false
     Empty(P4) = true
     Follow(one) = { "$" }
     Select(P3) = First(P3) = { "string" }
     Select(P4) = First(P4) + Follow(one) = { "$" }

     First(P7) = { "string" }
     First(P8) = { }
     Preselected(P7) = Preselected(P8) = Empty(P7) = false
     Empty(P8) = true
     Follow(four) = { "$" }
     Select(P7) = First(P7) = { "string" }
     Select(P8) = First(P8) + Follow(four) = { "$" }

  The intersection of Select(P1) and Select(P2) is empty, as is the
  intersection of Select(P3) and Select(P4) and the intersection of
  Select(P7) and Select(P8); hence, the grammar is deterministic, and
  the type definition is valid.  Although both alternatives of the
  CHOICE can begin with a <string> element, an RXER decoder would use
  the presence of a "three" attribute to decide whether to select or
  disregard the "two" alternative.

  However, an attribute in an extension cannot be used to select
  between alternatives.  Consider the following type definition:












Legg                          Experimental                     [Page 72]

RFC 4911             Encoding Instructions for RXER            July 2007


     [SINGULAR-INSERTIONS] CHOICE {
         one   [GROUP] List,
         ...,
         two   [GROUP] SEQUENCE {
             three  [ATTRIBUTE] UTF8String,
             four   [GROUP] List
         } -- ExtensionAdditionAlternative (E1).
         -- The extension insertion point is here (I1).
     }

     List ::= SEQUENCE OF string UTF8String

  The associated grammar is:

     P1:  S ::= one
     P10: S ::= E1
     P11: S ::= "*"
     P12: E1 ::= two
     P3:  one ::= string one
     P4:  one ::=
     P5:  two ::= three four
     P6:  three ::= "@three"
     P7:  four ::= string four
     P8:  four ::=
     P9:  string ::= "string"

  This grammar leads to the following sets and predicates for P1, P10
  and P11:

     First(P1) = { "string" }
     First(P10) = { "string" }
     First(P11) = { "*" }
     Preselected(P1) = Preselected(P10) = Preselected(P11) = false
     Empty(P10) = Empty(P11) = false
     Empty(P1) = true
     Follow(S) = { "$" }
     Select(P1) = First(P1) + Follow(S) = { "string", "$" }
     Select(P10) = First(P10) = { "string" }
     Select(P11) = First(P11) = { "*" }

  Preselected(P10) evaluates to false because Preselected(P10) is
  evaluated on the base grammar, wherein P10 is rewritten as:

     P10: S ::=







Legg                          Experimental                     [Page 73]

RFC 4911             Encoding Instructions for RXER            July 2007


  The intersection of Select(P1) and Select(P10) is not empty; hence,
  the grammar is not deterministic, and the type definition is not
  valid.  An RXER decoder using the original, unextended version of the
  definition would not know that the "three" attribute selects between
  the "one" alternative and the extension.

Appendix B.  Insertion Encoding Instruction Examples

  This appendix is non-normative.

  This appendix contains examples showing the use of insertion encoding
  instructions to remove extension ambiguity arising from use of the
  GROUP encoding instruction.

B.1.  Example 1

  Consider the following type definition:

     SEQUENCE {
         one    [GROUP] SEQUENCE {
             two    UTF8String,
             ... -- Extension insertion point (I1).
         },
         three  INTEGER OPTIONAL,
         ... -- Extension insertion point (I2).
     }

  The associated grammar is:

     P1:  S ::= one three I2
     P2:  one ::= two I1
     P3:  two ::= "two"
     P4:  I1 ::= "*" I1
     P5:  I1 ::=
     P6:  three ::= "three"
     P7:  three ::=
     P8:  I2 ::= "*" I2
     P9:  I2 ::=

  This grammar leads to the following sets and predicates:

     First(P4) = { "*" }
     First(P5) = { }
     Preselected(P4) = Preselected(P5) = Empty(P4) = false
     Empty(P5) = true
     Follow(I1) = { "three", "*", "$" }
     Select(P4) = First(P4) = { "*" }
     Select(P5) = First(P5) + Follow(I1) = { "three", "*", "$" }



Legg                          Experimental                     [Page 74]

RFC 4911             Encoding Instructions for RXER            July 2007


     First(P6) = { "three" }
     First(P7) = { }
     Preselected(P6) = Preselected(P7) = Empty(P6) = false
     Empty(P7) = true
     Follow(three) = { "*", "$" }
     Select(P6) = First(P6) = { "three" }
     Select(P7) = First(P7) + Follow(three) = { "*", "$" }

     First(P8) = { "*" }
     First(P9) = { }
     Preselected(P8) = Preselected(P9) = Empty(P8) = false
     Empty(P9) = true
     Follow(I2) = { "$" }
     Select(P8) = First(P8) = { "*" }
     Select(P9) = First(P9) + Follow(I2) = { "$" }

  The intersection of Select(P4) and Select(P5) is not empty; hence,
  the grammar is not deterministic, and the type definition is not
  valid.  If an RXER decoder encounters an unrecognized element
  immediately after a <two> element, then it will not know whether to
  associate it with extension insertion point I1 or I2.

  The non-determinism can be resolved with either a NO-INSERTIONS or
  HOLLOW-INSERTIONS encoding instruction.  Consider this revised type
  definition:

     SEQUENCE {
         one    [GROUP] [HOLLOW-INSERTIONS] SEQUENCE {
             two    UTF8String,
             ... -- Extension insertion point (I1).
         },
         three  INTEGER OPTIONAL,
         ... -- Extension insertion point (I2).
     }

  The associated grammar is:

     P1:  S ::= one three I2
     P10: one ::= two
     P3:  two ::= "two"
     P6:  three ::= "three"
     P7:  three ::=
     P8:  I2 ::= "*" I2
     P9:  I2 ::=

  With the addition of the HOLLOW-INSERTIONS encoding instruction, the
  P4 and P5 productions are no longer generated, and the conflict
  between Select(P4) and Select(P5) no longer exists.  The Select Sets



Legg                          Experimental                     [Page 75]

RFC 4911             Encoding Instructions for RXER            July 2007


  for P6, P7, P8, and P9 are unchanged.  A decoder will now assume that
  an unrecognized element is to be associated with extension insertion
  point I2.  It is still free to associate an unrecognized attribute
  with either extension insertion point.  If a NO-INSERTIONS encoding
  instruction had been used, then an unrecognized attribute could only
  be associated with extension insertion point I2.

  The non-determinism could also be resolved by adding a NO-INSERTIONS
  or HOLLOW-INSERTIONS encoding instruction to the outer SEQUENCE:

     [HOLLOW-INSERTIONS] SEQUENCE {
         one    [GROUP] SEQUENCE {
             two    UTF8String,
             ... -- Extension insertion point (I1).
         },
         three  INTEGER OPTIONAL,
         ... -- Extension insertion point (I2).
     }

  The associated grammar is:

     P11: S ::= one three
     P2:  one ::= two I1
     P3:  two ::= "two"
     P4:  I1 ::= "*" I1
     P5:  I1 ::=
     P6:  three ::= "three"
     P7:  three ::=

  This grammar leads to the following sets and predicates:

     First(P4) = { "*" }
     First(P5) = { }
     Preselected(P4) = Preselected(P5) = Empty(P4) = false
     Empty(P5) = true
     Follow(I1) = { "three", "$" }
     Select(P4) = First(P4) = { "*" }
     Select(P5) = First(P5) + Follow(I1) = { "three", "$" }

     First(P6) = { "three" }
     First(P7) = { }
     Preselected(P6) = Preselected(P7) = Empty(P6) = false
     Empty(P7) = true
     Follow(three) = { "$" }
     Select(P6) = First(P6) = { "three" }
     Select(P7) = First(P7) + Follow(three) = { "$" }





Legg                          Experimental                     [Page 76]

RFC 4911             Encoding Instructions for RXER            July 2007


  The intersection of Select(P4) and Select(P5) is empty, as is the
  intersection of Select(P6) and Select(P7); hence, the grammar is
  deterministic, and the type definition is valid.  A decoder will now
  assume that an unrecognized element is to be associated with
  extension insertion point I1.  It is still free to associate an
  unrecognized attribute with either extension insertion point.  If a
  NO-INSERTIONS encoding instruction had been used, then an
  unrecognized attribute could only be associated with extension
  insertion point I1.

B.2.  Example 2

  Consider the following type definition:

     SEQUENCE {
         one  [GROUP] CHOICE {
             two  UTF8String,
             ... -- Extension insertion point (I1).
         } OPTIONAL
     }

  The associated grammar is:

     P1:  S ::= one
     P2:  one ::= two
     P3:  one ::= I1
     P4:  one ::=
     P5:  two ::= "two"
     P6:  I1 ::= "*" I1
     P7:  I1 ::=

  This grammar leads to the following sets and predicates:

     First(P2) = { "two" }
     First(P3) = { "*" }
     First(P4) = { }
     Preselected(P2) = Preselected(P3) = Preselected(P4) = false
     Empty(P2) = false
     Empty(P3) = Empty(P4) = true
     Follow(one) = { "$" }
     Select(P2) = First(P2) = { "two" }
     Select(P3) = First(P3) + Follow(one) = { "*", "$" }
     Select(P4) = First(P4) + Follow(one) = { "$" }

     First(P6) = { "*" }
     First(P7) = { }
     Preselected(P6) = Preselected(P7) = Empty(P6) = false
     Empty(P7) = true



Legg                          Experimental                     [Page 77]

RFC 4911             Encoding Instructions for RXER            July 2007


     Follow(I1) = { "$" }
     Select(P6) = First(P6) = { "*" }
     Select(P7) = First(P7) + Follow(I1) = { "$" }

  The intersection of Select(P3) and Select(P4) is not empty; hence,
  the grammar is not deterministic, and the type definition is not
  valid.  If the <two> element is not present, then a decoder cannot
  determine whether the "one" alternative is absent, or present with an
  unknown extension that generates no elements.

  The non-determinism can be resolved with either a
  SINGULAR-INSERTIONS, UNIFORM-INSERTIONS, or MULTIFORM-INSERTIONS
  encoding instruction.  The MULTIFORM-INSERTIONS encoding instruction
  is the least restrictive.  Consider this revised type definition:

     SEQUENCE {
         one  [GROUP] [MULTIFORM-INSERTIONS] CHOICE {
             two  UTF8String,
             ... -- Extension insertion point (I1).
         } OPTIONAL
     }

  The associated grammar is:

     P1:  S ::= one
     P2:  one ::= two
     P8:  one ::= "*" I1
     P4:  one ::=
     P5:  two ::= "two"
     P6:  I1 ::= "*" I1
     P7:  I1 ::=

  This grammar leads to the following sets and predicates:

     First(P2) = { "two" }
     First(P8) = { "*" }
     First(P4) = { }
     Preselected(P2) = Preselected(P8) = Preselected(P4) = false
     Empty(P2) = Empty(P8) = false
     Empty(P4) = true
     Follow(one) = { "$" }
     Select(P2) = First(P2) = { "two" }
     Select(P8) = First(P8) = { "*" }
     Select(P4) = First(P4) + Follow(one) = { "$" }

     First(P6) = { "*" }
     First(P7) = { }
     Preselected(P6) = Preselected(P7) = Empty(P6) = false



Legg                          Experimental                     [Page 78]

RFC 4911             Encoding Instructions for RXER            July 2007


     Empty(P7) = true
     Follow(I1) = { "$" }
     Select(P6) = First(P6) = { "*" }
     Select(P7) = First(P7) + Follow(I1) = { "$" }

  The intersection of Select(P2) and Select(P8) is empty, as is the
  intersection of Select(P2) and Select(P4), the intersection of
  Select(P8) and Select(P4), and the intersection of Select(P6) and
  Select(P7); hence, the grammar is deterministic, and the type
  definition is valid.  A decoder will now assume the "one" alternative
  is present if it sees at least one unrecognized element, and absent
  otherwise.

B.3.  Example 3

  Consider the following type definition:

     SEQUENCE {
         one    [GROUP] CHOICE {
             two    UTF8String,
             ... -- Extension insertion point (I1).
         },
         three  [GROUP] CHOICE {
             four   UTF8String,
             ... -- Extension insertion point (I2).
         }
     }

  The associated grammar is:

     P1:  S ::= one three
     P2:  one ::= two
     P3:  one ::= I1
     P4:  two ::= "two"
     P5:  I1 ::= "*" I1
     P6:  I1 ::=
     P7:  three ::= four
     P8:  three ::= I2
     P9:  four ::= "four"
     P10: I2 ::= "*" I2
     P11: I2 ::=

  This grammar leads to the following sets and predicates:

     First(P2) = { "two" }
     First(P3) = { "*" }
     Preselected(P2) = Preselected(P3) = Empty(P2) = false
     Empty(P3) = true



Legg                          Experimental                     [Page 79]

RFC 4911             Encoding Instructions for RXER            July 2007


     Follow(one) = { "four", "*", "$" }
     Select(P2) = First(P2) = { "two" }
     Select(P3) = First(P3) + Follow(one) = { "*", "four", "$" }

     First(P5) = { "*" }
     First(P6) = { }
     Preselected(P5) = Preselected(P6) = Empty(P5) = false
     Empty(P6) = true
     Follow(I1) = { "four", "*", "$" }
     Select(P5) = First(P5) = { "*" }
     Select(P6) = First(P6) + Follow(I1) = { "four", "*", "$" }

     First(P7) = { "four" }
     First(P8) = { "*" }
     Preselected(P7) = Preselected(P8) = Empty(P7) = false
     Empty(P8) = true
     Follow(three) = { "$" }
     Select(P7) = First(P7) = { "four" }
     Select(P8) = First(P8) + Follow(three) = { "*", "$" }

     First(P10) = { "*" }
     First(P11) = { }
     Preselected(P10) = Preselected(P11) = Empty(P10) = false
     Empty(P11) = true
     Follow(I2) = { "$" }
     Select(P10) = First(P10) = { "*" }
     Select(P11) = First(P11) + Follow(I2) = { "$" }

  The intersection of Select(P5) and Select(P6) is not empty; hence,
  the grammar is not deterministic, and the type definition is not
  valid.  If the first child element is an unrecognized element, then a
  decoder cannot determine whether to associate it with extension
  insertion point I1, or to associate it with extension insertion point
  I2 by assuming that the "one" component has an unknown extension that
  generates no elements.

  The non-determinism can be resolved with either a SINGULAR-INSERTIONS
  or UNIFORM-INSERTIONS encoding instruction.  Consider this revised
  type definition using the SINGULAR-INSERTIONS encoding instruction:












Legg                          Experimental                     [Page 80]

RFC 4911             Encoding Instructions for RXER            July 2007


     SEQUENCE {
         one    [GROUP] [SINGULAR-INSERTIONS] CHOICE {
             two    UTF8String,
             ... -- Extension insertion point (I1).
         },
         three  [GROUP] CHOICE {
             four   UTF8String,
             ... -- Extension insertion point (I2).
         }
     }

  The associated grammar is:

     P1:  S ::= one three
     P2:  one ::= two
     P12: one ::= "*"
     P4:  two ::= "two"
     P7:  three ::= four
     P8:  three ::= I2
     P9:  four ::= "four"
     P10: I2 ::= "*" I2
     P11: I2 ::=

  With the addition of the SINGULAR-INSERTIONS encoding instruction,
  the P5 and P6 productions are no longer generated.  The grammar leads
  to the following sets and predicates for the P2 and P12 productions:

     First(P2) = { "two" }
     First(P12) = { "*" }
     Preselected(P2) = Preselected(P12) = false
     Empty(P2) = Empty(P12) = false
     Follow(one) = { "four", "*", "$" }
     Select(P2) = First(P2) = { "two" }
     Select(P12) = First(P12) = { "*" }

  The sets for P5 and P6 are no longer generated, and the remaining
  sets are unchanged.

  The intersection of Select(P2) and Select(P12) is empty, as is the
  intersection of Select(P7) and Select(P8) and the intersection of
  Select(P10) and Select(P11); hence, the grammar is deterministic, and
  the type definition is valid.  If the first child element is an
  unrecognized element, then a decoder will now assume that it is
  associated with extension insertion point I1.  Whatever follows,
  possibly including another unrecognized element, will belong to the
  "three" component.





Legg                          Experimental                     [Page 81]

RFC 4911             Encoding Instructions for RXER            July 2007


  Now consider the type definition using the UNIFORM-INSERTIONS
  encoding instruction instead:

     SEQUENCE {
         one    [GROUP] [UNIFORM-INSERTIONS] CHOICE {
             two    UTF8String,
             ... -- Extension insertion point (I1).
         },
         three  [GROUP] CHOICE {
             four   UTF8String,
             ... -- Extension insertion point (I2).
         }
     }

  The associated grammar is:

     P1:  S ::= one three
     P2:  one ::= two
     P13: one ::= "*"
     P14: one ::= "*1" I1
     P4:  two ::= "two"
     P15: I1 ::= "*1" I1
     P6:  I1 ::=
     P7:  three ::= four
     P8:  three ::= I2
     P9:  four ::= "four"
     P10: I2 ::= "*" I2
     P11: I2 ::=

  This grammar leads to the following sets and predicates for the P2,
  P13, P14, P15, and P6 productions:

     First(P2) = { "two" }
     First(P13) = { "*" }
     First(P14) = { "*1" }
     Preselected(P2) = Preselected(P13) = Preselected(P14) = false
     Empty(P2) = Empty(P13) = Empty(P14) = false
     Follow(one) = { "four", "*", "$" }
     Select(P2) = First(P2) = { "two" }
     Select(P13) = First(P13) = { "*" }
     Select(P14) = First(P14) = { "*1" }










Legg                          Experimental                     [Page 82]

RFC 4911             Encoding Instructions for RXER            July 2007


     First(P15) = { "*1" }
     First(P6) = { }
     Preselected(P15) = Preselected(P6) = Empty(P15) = false
     Empty(P6) = true
     Follow(I1) = { "four", "*", "$" }
     Select(P15) = First(P15) = { "*1" }
     Select(P6) = First(P6) + Follow(I1) = { "four", "*", "$" }

  The remaining sets are unchanged.

  The intersection of Select(P2) and Select(P13) is empty, as is the
  intersection of Select(P2) and Select(P14), the intersection of
  Select(P13) and Select(P14) and the intersection of Select(P15) and
  Select(P6); hence, the grammar is deterministic, and the type
  definition is valid.  If the first child element is an unrecognized
  element, then a decoder will now assume that it and every subsequent
  unrecognized element with the same name are associated with I1.
  Whatever follows, possibly including another unrecognized element
  with a different name, will belong to the "three" component.

  A consequence of using the UNIFORM-INSERTIONS encoding instruction is
  that any future extension to the "three" component will be required
  to generate elements with names that are different from the names of
  the elements generated by the "one" component.  With the
  SINGULAR-INSERTIONS encoding instruction, extensions to the "three"
  component are permitted to generate elements with names that are the
  same as the names of the elements generated by the "one" component.

B.4.  Example 4

  Consider the following type definition:

     SEQUENCE OF one [GROUP] CHOICE {
         two    UTF8String,
         ... -- Extension insertion point (I1).
     }

  The associated grammar is:

     P1:  S ::= one S
     P2:  S ::=
     P3:  one ::= two
     P4:  one ::= I1
     P5:  two ::= "two"
     P6:  I1 ::= "*" I1
     P7:  I1 ::=





Legg                          Experimental                     [Page 83]

RFC 4911             Encoding Instructions for RXER            July 2007


  This grammar leads to the following sets and predicates:

     First(P1) = { "two", "*" }
     First(P2) = { }
     Preselected(P1) = Preselected(P2) = false
     Empty(P1) = Empty(P2) = true
     Follow(S) = { "$" }
     Select(P1) = First(P1) + Follow(S) = { "two", "*", "$" }
     Select(P2) = First(P2) + Follow(S) = { "$" }

     First(P3) = { "two" }
     First(P4) = { "*" }
     Preselected(P3) = Preselected(P4) = Empty(P3) = false
     Empty(P4) = true
     Follow(one) = { "two", "*", "$" }
     Select(P3) = First(P3) = { "two" }
     Select(P4) = First(P4) + Follow(one) = { "*", "two", "$" }

     First(P6) = { "*" }
     First(P7) = { }
     Preselected(P6) = Preselected(P7) = Empty(P6) = false
     Empty(P7) = true
     Follow(I1) = { "two", "*", "$" }
     Select(P6) = First(P6) = { "*" }
     Select(P7) = First(P7) + Follow(I1) = { "two", "*", "$" }

  The intersection of Select(P1) and Select(P2) is not empty, as is the
  intersection of Select(P3) and Select(P4) and the intersection of
  Select(P6) and Select(P7); hence, the grammar is not deterministic,
  and the type definition is not valid.  If a decoder encounters two or
  more unrecognized elements in a row, then it cannot determine whether
  this represents one instance or more than one instance of the "one"
  component.  Even without unrecognized elements, there is still a
  problem that an encoding could contain an indeterminate number of
  "one" components using an extension that generates no elements.

  The non-determinism cannot be resolved with a UNIFORM-INSERTIONS
  encoding instruction.  Consider this revised type definition using
  the UNIFORM-INSERTIONS encoding instruction:

     SEQUENCE OF one [GROUP] [UNIFORM-INSERTIONS] CHOICE {
         two    UTF8String,
         ... -- Extension insertion point (I1).
     }







Legg                          Experimental                     [Page 84]

RFC 4911             Encoding Instructions for RXER            July 2007


  The associated grammar is:

     P1:  S ::= one S
     P2:  S ::=
     P3:  one ::= two
     P8:  one ::= "*"
     P9:  one ::= "*1" I1
     P5:  two ::= "two"
     P10: I1 ::= "*1" I1
     P7:  I1 ::=

  This grammar leads to the following sets and predicates:

     First(P1) = { "two", "*", "*1" }
     First(P2) = { }
     Preselected(P1) = Preselected(P2) = Empty(P1) = false
     Empty(P2) = true
     Follow(S) = { "$" }
     Select(P1) = First(P1) = { "two", "*", "*1" }
     Select(P2) = First(P2) + Follow(S) = { "$" }

     First(P3) = { "two" }
     First(P8) = { "*" }
     First(P9) = { "*1" }
     Preselected(P3) = Preselected(P8) = Preselected(P9) = false
     Empty(P3) = Empty(P8) = Empty(P9) = false
     Follow(one) = { "two", "*", "*1", "$" }
     Select(P3) = First(P3) = { "two" }
     Select(P8) = First(P8) = { "*" }
     Select(P9) = First(P9) = { "*1" }

     First(P10) = { "*1" }
     First(P7) = { }
     Preselected(P10) = Preselected(P7) = Empty(P10) = false
     Empty(P7) = true
     Follow(I1) = { "two", "*", "*1", "$" }
     Select(P10) = First(P10) = { "*1" }
     Select(P7) = First(P7) + Follow(I1) = { "two", "*", "*1", "$" }

  The intersection of Select(P1) and Select(P2) is now empty, but the
  intersection of Select(P10) and Select(P7) is not; hence, the grammar
  is not deterministic, and the type definition is not valid.  The
  problem of an indeterminate number of "one" components from an
  extension that generates no elements has been solved.  However, if a
  decoder encounters a series of elements with the same name, it cannot
  determine whether this represents one instance or more than one
  instance of the "one" component.




Legg                          Experimental                     [Page 85]

RFC 4911             Encoding Instructions for RXER            July 2007


  The non-determinism can be fully resolved with a SINGULAR-INSERTIONS
  encoding instruction.  Consider this revised type definition:

     SEQUENCE OF one [GROUP] [SINGULAR-INSERTIONS] CHOICE {
         two    UTF8String,
         ... -- Extension insertion point (I1).
     }

  The associated grammar is:

     P1:  S ::= one S
     P2:  S ::=
     P3:  one ::= two
     P8:  one ::= "*"
     P5:  two ::= "two"

  This grammar leads to the following sets and predicates:

     First(P1) = { "two", "*" }
     First(P2) = { }
     Preselected(P1) = Preselected(P2) = Empty(P1) = false
     Empty(P2) = true
     Follow(S) = { "$" }
     Select(P1) = First(P1) = { "two", "*" }
     Select(P2) = First(P2) + Follow(S) = { "$" }

     First(P3) = { "two" }
     First(P8) = { "*" }
     Preselected(P3) = Preselected(P8) = false
     Empty(P3) = Empty(P8) = false
     Follow(one) = { "two", "*", "$" }
     Select(P3) = First(P3) = { "two" }
     Select(P8) = First(P8) = { "*" }

  The intersection of Select(P1) and Select(P2) is empty, as is the
  intersection of Select(P3) and Select(P8); hence, the grammar is
  deterministic, and the type definition is valid.  A decoder now knows
  that every extension to the "one" component will generate a single
  element, so the correct number of "one" components will be decoded.












Legg                          Experimental                     [Page 86]

RFC 4911             Encoding Instructions for RXER            July 2007


Appendix C.  Extension and Versioning Examples

  This appendix is non-normative.

C.1.  Valid Extensions for Insertion Encoding Instructions

  The first example shows extensions that satisfy the HOLLOW-INSERTIONS
  encoding instruction.

     [HOLLOW-INSERTIONS] CHOICE {
         one    BOOLEAN,
         ...,
         two    [ATTRIBUTE] INTEGER,
         three  [GROUP] SEQUENCE {
             four  [ATTRIBUTE] UTF8String,
             five  [ATTRIBUTE] INTEGER OPTIONAL,
             ...
         },
         six    [GROUP] CHOICE {
             seven  [ATTRIBUTE] BOOLEAN,
             eight  [ATTRIBUTE] INTEGER
         }
     }

  The "two" and "six" components generate only attributes.

  The "three" component in its current form does not generate elements.
  Any extension to the "three" component will need to do likewise to
  avoid breaking forward compatibility.

  The second example shows extensions that satisfy the
  SINGULAR-INSERTIONS encoding instruction.

     [SINGULAR-INSERTIONS] CHOICE {
         one    BOOLEAN,
         ...,
         two    INTEGER,
         three  [GROUP] SEQUENCE {
             four   [ATTRIBUTE] UTF8String,
             five   INTEGER
         },
         six    [GROUP] CHOICE {
             seven  BOOLEAN,
             eight  INTEGER
         }
     }





Legg                          Experimental                     [Page 87]

RFC 4911             Encoding Instructions for RXER            July 2007


  The "two" component will always generate a single <two> element.

  The "three" component will always generate a single <five> element.
  It will also generate a "four" attribute, but any number of
  attributes is allowed by the SINGULAR-INSERTIONS encoding
  instruction.

  The "six" component will either generate a single <seven> element or
  a single <eight> element.  Either case will satisfy the requirement
  that there will be a single element in any given encoding of the
  extension.

  The third example shows extensions that satisfy the
  UNIFORM-INSERTIONS encoding instruction.

     [UNIFORM-INSERTIONS] CHOICE {
         one    BOOLEAN,
         ...,
         two    INTEGER,
         three  [GROUP] SEQUENCE SIZE(1..MAX) OF four INTEGER,
         five   [GROUP] SEQUENCE {
             six    [ATTRIBUTE] UTF8String OPTIONAL,
             seven  INTEGER
         },
         eight  [GROUP] CHOICE {
             nine   BOOLEAN,
             ten    [GROUP] SEQUENCE SIZE(1..MAX) OF eleven INTEGER
         }
     }

  The "two" component will always generate a single <two> element.

  The "three" component will always generate one or more <four>
  elements.

  The "five" component will always generate a single <seven> element.
  It may also generate a "six" attribute, but any number of attributes
  is allowed by the UNIFORM-INSERTIONS encoding instruction.

  The "eight" component will either generate a single <nine> element or
  one or more <eleven> elements.  Either case will satisfy the
  requirement that there must be one or more elements with the same
  name in any given encoding of the extension.








Legg                          Experimental                     [Page 88]

RFC 4911             Encoding Instructions for RXER            July 2007


C.2.  Versioning Example

  Making extensions that are not forward compatible is permitted
  provided that the incompatibility is signalled with a version
  indicator attribute.

  Suppose that version 1.0 of a specification contains the following
  type definition:

     MyMessageType ::= SEQUENCE {
        version  [ATTRIBUTE] [VERSION-INDICATOR]
                     UTF8String ("1.0", ...) DEFAULT "1.0",
        one      [GROUP] [SINGULAR-INSERTIONS] CHOICE {
            two  BOOLEAN,
            ...
        },
        ...
     }

  An attribute is to be added to the CHOICE for version 1.1.  This
  change is not forward compatible since it does not satisfy the
  SINGULAR-INSERTIONS encoding instruction.  Therefore, the version
  indicator attribute must be updated at the same time (or added if it
  wasn't already present).  This results in the following new type
  definition for version 1.1:

     MyMessageType ::= SEQUENCE {
        version  [ATTRIBUTE] [VERSION-INDICATOR]
                     UTF8String ("1.0", ..., "1.1") DEFAULT "1.0",
        one      [GROUP] [SINGULAR-INSERTIONS] CHOICE {
            two    BOOLEAN,
            ...,
            three  [ATTRIBUTE] INTEGER -- Added in Version 1.1
        },
        ...
     }

  If a version 1.1 conformant application hasn't used the version 1.1
  extension in a value of MyMessageType, then it is allowed to set the
  value of the version attribute to "1.0".

  A pair of elements is added to the CHOICE for version 1.2.  Again the
  change does not satisfy the SINGULAR-INSERTIONS encoding instruction.
  The type definition for version 1.2 is:







Legg                          Experimental                     [Page 89]

RFC 4911             Encoding Instructions for RXER            July 2007


     MyMessageType ::= SEQUENCE {
        version  [ATTRIBUTE] [VERSION-INDICATOR]
                     UTF8String ("1.0", ..., "1.1" | "1.2")
                         DEFAULT "1.0",
        one      [GROUP] [SINGULAR-INSERTIONS] CHOICE {
            two    BOOLEAN,
            ...,
            three  [ATTRIBUTE] INTEGER, -- Added in Version 1.1
            four   [GROUP] SEQUENCE {
                five  UTF8String,
                six   GeneralizedTime
            } -- Added in version 1.2
        },
        ...
     }

  If a version 1.2 conformant application hasn't used the version 1.2
  extension in a value of MyMessageType, then it is allowed to set the
  value of the version attribute to "1.1".  If it hasn't used either of
  the extensions, then it is allowed to set the value of the version
  attribute to "1.0".

Author's Address

  Dr. Steven Legg
  eB2Bcom
  Suite 3, Woodhouse Corporate Centre
  935 Station Street
  Box Hill North, Victoria 3129
  AUSTRALIA

  Phone: +61 3 9896 7830
  Fax:   +61 3 9896 7801
  EMail: [email protected]

















Legg                          Experimental                     [Page 90]

RFC 4911             Encoding Instructions for RXER            July 2007


Full Copyright Statement

  Copyright (C) The IETF Trust (2007).

  This document is subject to the rights, licenses and restrictions
  contained in BCP 78, and except as set forth therein, the authors
  retain all their rights.

  This document and the information contained herein are provided on an
  "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
  OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
  THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
  OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
  THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
  WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

  The IETF takes no position regarding the validity or scope of any
  Intellectual Property Rights or other rights that might be claimed to
  pertain to the implementation or use of the technology described in
  this document or the extent to which any license under such rights
  might or might not be available; nor does it represent that it has
  made any independent effort to identify any such rights.  Information
  on the procedures with respect to rights in RFC documents can be
  found in BCP 78 and BCP 79.

  Copies of IPR disclosures made to the IETF Secretariat and any
  assurances of licenses to be made available, or the result of an
  attempt made to obtain a general license or permission for the use of
  such proprietary rights by implementers or users of this
  specification can be obtained from the IETF on-line IPR repository at
  http://www.ietf.org/ipr.

  The IETF invites any interested party to bring to its attention any
  copyrights, patents or patent applications, or other proprietary
  rights that may cover technology that may be required to implement
  this standard.  Please address the information to the IETF at
  [email protected].

Acknowledgement

  Funding for the RFC Editor function is currently provided by the
  Internet Society.







Legg                          Experimental                     [Page 91]