Network Working Group                                        J. Ash, Ed.
Request for Comments: 4901                                  J. Hand, Ed.
Category: Standards Track                                           AT&T
                                                          A. Malis, Ed.
                                                 Verizon Communications
                                                              June 2007


         Protocol Extensions for Header Compression over MPLS

Status of This Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (C) The IETF Trust (2007).

Abstract

  This specification defines how to use Multi-Protocol Label Switching
  (MPLS) to route Header-Compressed (HC) packets over an MPLS label
  switched path.  HC can significantly reduce packet-header overhead
  and, in combination with MPLS, can also increases bandwidth
  efficiency and processing scalability in terms of the maximum number
  of simultaneous compressed flows that use HC at each router).  Here
  we define how MPLS pseudowires are used to transport the HC context
  and control messages between the ingress and egress MPLS label
  switching routers.  This is defined for a specific set of existing HC
  mechanisms that might be used, for example, to support voice over IP.
  This specification also describes extension mechanisms to allow
  support for future, as yet to be defined, HC protocols.  In this
  specification, each HC protocol operates independently over a single
  pseudowire instance, very much as it would over a single point-to-
  point link.












Ash, et al.                 Standards Track                     [Page 1]

RFC 4901         Header Compression over MPLS Protocol         June 2007


Table of Contents

  1. Introduction ....................................................3
  2. Terminology .....................................................3
  3. Header Compression over MPLS Protocol Overview ..................6
  4. Protocol Specifications ........................................11
     4.1. MPLS Pseudowire Setup and Signaling .......................13
     4.2. Header Compression Scheme Setup, Negotiation, and
          Signaling .................................................14
          4.2.1. Configuration Option Format [RFC3544] ..............15
          4.2.2. RTP-Compression Suboption [RFC3544] ................17
          4.2.3. Enhanced RTP-Compression Suboption [RFC3544] .......18
          4.2.4. Negotiating Header Compression for Only TCP
                 or Only Non-TCP Packets [RFC3544] ..................19
          4.2.5. Configuration Option Format [RFC3241] ..............20
          4.2.6. PROFILES Suboption [RFC3241] .......................21
     4.3. Encapsulation of Header Compressed Packets ................22
     4.4. Packet Reordering .........................................23
  5. HC Pseudowire Setup Example ....................................24
  6. Security Considerations ........................................29
  7. Acknowledgements ...............................................29
  8. IANA Considerations ............................................29
  9. Normative References ...........................................30
  10. Informative References ........................................31
  11. Contributors ..................................................33


























Ash, et al.                 Standards Track                     [Page 2]

RFC 4901         Header Compression over MPLS Protocol         June 2007


1.  Introduction

  Voice over IP (VoIP) typically uses the encapsulation
  voice/RTP/UDP/IP.  When MPLS labels [RFC3031] are added, this becomes
  voice/RTP/UDP/IP/MPLS-labels.  MPLS VPNs (e.g., [RFC4364]) use label
  stacking, and in the simplest case of IPv4 the total packet header is
  at least 48 bytes, while the voice payload is often no more than 30
  bytes, for example.  When IPv6 is used, the relative size of the
  header in comparison to the payload is even greater.  The interest in
  header compression (HC) is to exploit the possibility of
  significantly reducing the overhead through various compression
  mechanisms, such as with enhanced compressed RTP (ECRTP) [RFC3545]
  and robust header compression (ROHC) [RFC3095, RFC3095bis, RFC4815],
  and also to increase scalability of HC.  MPLS is used to route HC
  packets over an MPLS label switched path (LSP) without
  compression/decompression cycles at each router.  Such an HC over
  MPLS capability can increase bandwidth efficiency as well as the
  processing scalability of the maximum number of simultaneous
  compressed flows that use HC at each router.  Goals and requirements
  for HC over MPLS are discussed in [RFC4247].  The solution using MPLS
  pseudowire (PW) technology put forth in this document has been
  designed to address these goals and requirements.

2.  Terminology

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in RFC 2119 [RFC2119].

  Context: the state associated with a flow subject to IP header
  compression.  While the exact nature of the context is specific to a
  particular HC protocol (CRTP, ECRTP, ROHC, etc.), this state
  typically includes:

     - the values of all of the fields in all of the headers (IP, UDP,
       TCP, RTP, Encapsulating Security Payload (ESP), etc.) that the
       particular header compression protocol operates on for the last
       packet of the flow sent (by the compressor) or received (by the
       decompressor).

     - the change in the value of some of the fields in the IP, UDP,
       TCP, etc. headers between the last two consecutive sent packets
       (compressor) or received packets (decompressor) of the flow.
       Some of the fields in the header change by a constant amount
       between subsequent packets in the flow most of the time.  Saving
       the changes in these fields from packet to packet allows





Ash, et al.                 Standards Track                     [Page 3]

RFC 4901         Header Compression over MPLS Protocol         June 2007


       verification that a constant rate of change is taking place, and
       to take appropriate action when a deviation from the normal
       changes are encountered.

  For most HC protocols, a copy of the context of each compressed flow
  is maintained at both the compressor and the decompressor.

  compressed Real-time Transport Protocol (CRTP): a particular HC
  protocol described in [RFC2508].

  Context ID (CID): a small number, typically 8 or 16 bits, used to
  identify a particular flow, and the context associated with the flow.
  Most HC protocols in essence work by sending the CID across the link
  in place of the full header, along with any unexpected changes in the
  values in the various fields of the headers.

  Enhanced Compressed Real-time Protocol (ECRTP): a particular HC
  protocol described in [RFC3545].

  Forwarding Equivalence Class (FEC): a group of packets that are
  forwarded in the same manner (e.g., over the same LSP, with the same
  forwarding treatment)

  Header Compression scheme (HC scheme):  a particular method of
  performing HC and its associated protocol.  Multiple methods of HC
  have been defined, including Robust Header Compression (ROHC
  [RFC3095, RFC3095bis]), compressed RTP (CRTP, [RFC2508]), enhanced
  CRTP (ECRTP, [RFC3545]), and IP Header Compression (IPHC, [RFC2507]).
  This document explicitly supports all of the HC schemes listed above,
  and is intended to be extensible to others that may be developed.

  Header Compression channel (HC channel): a session established
  between a header compressor and a header decompressor using a single
  HC scheme, over which multiple individual flows may be compressed.
  From this perspective, every PPP link over which HC is operating
  defines a single HC channel, and based on this specification, every
  HC PW defines a single HC channel.  HC PWs are bi-directional, which
  means that a unidirectional leg of the PW is set up in each
  direction.  One leg of the bi-directional PW may be set up to carry
  only compression feedback, not header compressed traffic.  An HC
  channel should not be confused with the individual traffic flows that
  may be compressed using a single Context ID.  Each HC channel manages
  a set of unique CIDs.

  IP Header Compression (IPHC): a particular HC protocol described in
  [RFC2507]





Ash, et al.                 Standards Track                     [Page 4]

RFC 4901         Header Compression over MPLS Protocol         June 2007


  Label: a short fixed length physically contiguous identifier that is
  used to identify a FEC, usually of local significance

  Label Stack: an ordered set of labels

  Label Switched Path (LSP): the path through one or more LSRs at one
  level of the hierarchy followed by a packet in a particular
  forwarding equivalence class (FEC)

  Label Switching Router (LSR): an MPLS node that is capable of
  forwarding native L3 packets

  MPLS domain: a contiguous set of nodes that operate MPLS routing and
  forwarding and which are also in one Routing or Administrative Domain

  MPLS label: a label that is carried in a packet header, and that
  represents the packet's FEC

  MPLS node: a node that is running MPLS.  An MPLS node will be aware
  of MPLS control protocols, will operate one or more L3 routing
  protocols, and will be capable of forwarding packets based on labels.
  An MPLS node may also optionally be capable of forwarding native L3
  packets.

  Multiprotocol Label Switching (MPLS): an IETF working group and the
  effort associated with the working group, including the technology
  (signaling, encapsulation, etc.) itself

  Packet Switched Network (PSN): Within the context of Pseudowire PWE3,
  this is a network using IP or MPLS as the mechanism for packet
  forwarding.

  Protocol Data Unit (PDU): the unit of data output to, or received
  from, the network by a protocol layer.

  Pseudowire (PW): a mechanism that carries the essential elements of
  an emulated service from one provider edge router to one or more
  other provider edge routers over a PSN

  Pseudowire Emulation Edge to Edge (PWE3): a mechanism that emulates
  the essential attributes of service (such as a T1 leased line or
  Frame Relay) over a PSN

  Pseudowire PDU (PW-PDU): a PDU sent on the PW that contains all of
  the data and control information necessary to emulate the desired
  service





Ash, et al.                 Standards Track                     [Page 5]

RFC 4901         Header Compression over MPLS Protocol         June 2007


  PSN Tunnel: a tunnel across a PSN, inside which one or more PWs can
  be carried

  PSN Tunnel Signaling: a protocol used to set up, maintain, and tear
  down the underlying PSN tunnel

  PW Demultiplexer: data-plane method of identifying a PW terminating
  at a provider edge router

  Real Time Transport Protocol (RTP): a protocol for end-to-end network
  transport for applications transmitting real-time data, such as audio
  or video [RFC3550].

  Robust Header Compression (ROHC): a particular HC protocol consisting
  of a framework [RFC3095bis] and a number of profiles for different
  protocols, e.g., for RTP, UDP, ESP [RFC3095], and IP [RFC3843]

  Tunnel: a method of transparently carrying information over a network

3.  Header Compression over MPLS Protocol Overview

  To implement HC over MPLS, after the ingress router applies the HC
  algorithm to the IP packet, the compressed packet is forwarded on an
  MPLS LSP using MPLS labels, and then the egress router restores the
  uncompressed header.  Any of a number of HC algorithms/protocols can
  be used.  These algorithms have generally been designed for operation
  over a single point-to-point link-layer hop.  MPLS PWs [RFC3985],
  which are used to provide emulation of many point-to-point link layer
  services (such as frame relay permanent virtual circuits (PVCs) and
  ATM PVCs) are used here to provide emulation of a single, point-to-
  point link layer hop over which HC traffic may be transported.

  Figure 1 illustrates an HC over MPLS channel established on an LSP
  that traverses several LSRs, from R1/HC --> R2 --> R3 --> R4/HD,
  where R1/HC is the ingress router performing HC, and R4/HD is the
  egress router performing header decompression (HD).  This example
  assumes that the packet flow being compressed has RTP/UDP/IP headers
  and is using a HC scheme such as ROHC, CRTP, or ECRTP.  Compression
  of the RTP/UDP/IP header is performed at R1/HC, and the compressed
  packets are routed using MPLS labels from R1/HC to R2, to R3, and
  finally to R4/HD, without further decompression/recompression cycles.
  The RTP/UDP/IP header is decompressed at R4/HD and can be forwarded
  to other routers, as needed.  This example assumes that the
  application is VoIP and that the HC algorithm operates on the RTP,
  UDP, and IP headers of the VoIP flows.  This is an extremely common
  application of HC, but need not be the only one.  The HC algorithms
  supported by the protocol extensions specified in this document may
  operate on TCP or IPsec ESP headers as well.



Ash, et al.                 Standards Track                     [Page 6]

RFC 4901         Header Compression over MPLS Protocol         June 2007


                     |
                     | data (e.g., voice)/RTP/UDP/IP/link layer
                     V
                   _____
                  |     |
                  |R1/HC| Header Compression (HC) Performed
                  |_____|
                     |
                     | data (e.g., voice)/compressed-header/MPLS-labels
                     V
                   _____
                  |     |
                  | R2  | Label Switching
                  |_____| (no compression/decompression)
                     |
                     | data (e.g., voice)/compressed-header/MPLS-labels
                     V
                   _____
                  |     |
                  | R3  | Label Switching
                  |_____| (no compression/decompression)
                     |
                     | data (e.g., voice)/compressed-header/MPLS-labels
                     V
                   _____
                  |     |
                  |R4/HD| Header Decompression (HD) Performed
                  |_____|
                     |
                     | data (e.g., voice)/RTP/UDP/IP/link layer
                     V

     Figure 1: Example of HC over MPLS over Routers R1 --> R4

  In the example scenario, HC therefore takes place between R1 and R4,
  and the MPLS LSP transports data/compressed-header/MPLS-labels
  instead of data/RTP/UDP/IP/MPLS-labels, often saving more than 90% of
  the RTP/UDP/IP overhead.  Typically there are two MPLS labels (8
  octets) and a link-layer HC control parameter (2 octets).  The MPLS
  label stack and link-layer headers are not compressed.  Therefore, HC
  over MPLS can significantly reduce the header overhead through
  compression mechanisms.

  HC reduces the IP/UDP/RTP headers to 2-4 bytes for most packets.
  Half of the reduction in header size comes from the observation that
  half of the bytes in the IP/UDP/RTP headers remain constant over the
  life of the flow.  After sending the uncompressed header template
  once, these fields may be removed from the compressed headers that



Ash, et al.                 Standards Track                     [Page 7]

RFC 4901         Header Compression over MPLS Protocol         June 2007


  follow.  The remaining compression comes from the observation that
  although several fields change in every packet, the difference from
  packet to packet is often constant or at least limited, and therefore
  the second-order difference is zero.

  The compressor and decompressor both maintain a context for each
  compressed flow.  The context is the session state shared between the
  compressor and decompressor.  The details of what is included in the
  context may vary between HC schemes.  The context at the compressor
  would typically include the uncompressed headers of the last packet
  sent on the flow, and some measure of the differences in selected
  header field values between the last packet transmitted and the
  packet(s) transmitted just before it.  The context at the
  decompressor would include similar information about received
  packets.  With this information, all that must be communicated across
  the wire is an indication of which flow a packet is associated with
  (the CID), and some compact encoding of the second order differences
  (i.e., the harder to predict differences) between packets.

  MPLS PWs [RFC3985] are used to transport the HC packets between the
  ingress and egress MPLS LSRs.  Each PW acts like a logical point-to-
  point link between the compressor and the decompressor.  Each PW
  supports a single HC channel, which, from the perspective of the HC
  scheme operation, is similar to a single PPP link or a single frame
  relay PVC.  One exception to this general model is that PWs carry
  only packets with compressed headers, and do not share the PW with
  uncompressed packets.

  The PW architecture specifies the use of a label stack with at least
  2 levels.  The label at the bottom of the stack is called the PW
  label.  The PW label acts as an identifier for a particular PW.  With
  HC PWs, the compressor adds the label at the bottom of the stack and
  the decompressor removes this label.  No LSRs between the compressor
  and decompressor inspect or modify this label.  Labels higher in the
  stack are called the packet switch network (PSN) labels, and are used
  to forward the packet through the MPLS network as described in
  [RFC3031].  The decompressor uses the incoming MPLS PW label (the
  label at the bottom of the stack), along with the CID to locate the
  proper decompression context.  Standard HC methods (e.g., ECRTP,
  ROHC, etc.) are used to determine the contexts.  The CIDs are
  assigned by the HC as normal, and there would be no problem if
  duplicate CIDs are received at the HD for different PWs, which
  support different compressed channels.  For example, if two different
  compressors, HCa and HCb, both assign the same CID to each of 2
  separate flows destined to decompressor HDc, HDc can still
  differentiate the flows and locate the proper decompression context
  for each, because the tuples <PWlabel-HCa, CID> and <PWlabel-HCb,
  CID> are still unique.



Ash, et al.                 Standards Track                     [Page 8]

RFC 4901         Header Compression over MPLS Protocol         June 2007


  In addition to the PW label and PSN label(s), HC over MPLS packets
  also carry a HC control parameter.  The HC control parameter contains
  both a packet type field and a packet length field.  The packet type
  field is needed because each HC scheme supported by this
  specification defines multiple packet types, for example, "full
  header" packets, which are used to initialize and/or re-synchronize
  the context between compressor and decompressor, vs. normal HC
  packets.  And most of the HC schemes require that the underlying link
  layer protocols provide the differentiation between packet types.
  Similarly, one of the assumptions that is part of most of the HC
  schemes is that the packet length fields in the RTP/UDP/IP, etc.
  headers need not be explicitly sent across the network, because the
  IP datagram length can be implicitly determined from the lower
  layers.  This specification assumes that, with one exception, the
  length of an HC IP datagram can be determined from the link layers of
  the packets transmitted across the MPLS network.  The exception is
  for packets that traverse an Ethernet link.  Ethernet requires
  padding for packets whose payload size is less than 46 bytes in
  length.  So the HC control parameter contains a length field of 6
  bits to encode the lengths of any HC packets less than 64 bytes in
  length.

  HC PWs are set up by the PW signaling protocol [RFC4447].  [RFC4447]
  actually defines a set of extensions to the MPLS label distribution
  protocol (LDP) [RFC3036].  As defined in [RFC4447], LDP signaling to
  set up, tear down, and manage PWs is performed directly between the
  PW endpoints, in this case, the compressor and the decompressor.  PW
  signaling is used only to set up the PW label at the bottom of the
  stack, and is used independently of any other signaling that may be
  used to set up PSN labels.  So, for example, in Figure 1, LDP PW
  signaling would be performed directly between R1/HC and R4/HD.
  Router R2 and R3 would not participate in PW signaling.

  [RFC4447] provides extensions to LDP for PWs, and this document
  provides further extensions specific to HC.  Since PWs provide a
  logical point-to-point connection over which HC can be run, the
  extensions specified in this document reuse elements of the protocols
  used to negotiate HC over the Point-to-Point Protocol [RFC1661].
  [RFC3241] specifies how ROHC is used over PPP and [RFC3544] specifies
  how several other HC schemes (CRTP, ECRTP, IPHC) are used over PPP.
  Both of these RFCs provide configuration options for negotiating HC
  over PPP.  The formats of these configuration options are reused here
  for setting up HC over PWs.  When used in the PPP environment, these
  configuration options are used as extensions to PPP's IP Control
  Protocol [RFC1332] and the detailed PPP options negotiations process
  described in [RFC1661].  This is necessary because a PPP link may
  support multiple protocols, each with its own addressing scheme and
  options.  Achieving interoperability requires a negotiation process



Ash, et al.                 Standards Track                     [Page 9]

RFC 4901         Header Compression over MPLS Protocol         June 2007


  so that the nodes at each end of the link can agree on a set of
  protocols and options that both support.  However, a single HC PW
  supports only HC traffic using a single HC scheme.  So while the
  formats of configuration options from [RFC3241] and [RFC3544] are
  reused here, the detailed PPP negotiation process is not.  Instead,
  these options are reused here just as descriptors (TLVs in the
  specific terminology of LDP and [RFC4447]) of basic parameters of an
  HC PW.  These parameters are further described in Section 4.  The HC
  configuration parameters are initially generated by the decompressor
  and describe what the decompressor is prepared to receive.

  Most HC schemes use a feedback mechanism which requires bi-
  directional flow of HC packets, even if the flow of compressed IP
  packets is in one direction only.  The basic signaling process of
  [RFC4447] sets up unidirectional PWs, and must be repeated in each
  direction in order to set up the bi-directional flow needed for HC.

  Figure 1 illustrates an example data flow set up from R1/HC --> R2
  --> R3 --> R4/HD, where R1/HC is the ingress router where header
  compression is performed, and R4/HD is the egress router where header
  decompression is done.  Each router functions as an LSR and supports
  signaling of LSP/PWs.  See Section 5 for a detailed example of how
  the flow depicted in Figure 1 is established.

  All the HC schemes used here are built so that if an uncompressible
  packet is seen, it should just be sent uncompressed.  For some types
  of compression (e.g., IPHC-TCP), a non-compressed path is required.
  For IPHC-TCP compression, uncompressible packets occur for every TCP
  flow.  Another way that this kind of issue can occur is if MAX_HEADER
  is configured lower than the longest header, in which case,
  compression might not be possible in some cases.

  The uncompressed packets associated with HC flows (e.g., uncompressed
  IPHC-TCP packets) can be sent through the same MPLS tunnel along with
  all other non-HC (non-PW) IP packets.  MPLS tunnels can transport
  many types of packets simultaneously, including non-PW IP packets,
  layer 3 VPN packets, and PW (e.g., HC flow) packets.  In the
  specification, we assume that there is a path for uncompressed
  traffic, and it is a compressor decision as to what would or would
  not go in the HC-PW.











Ash, et al.                 Standards Track                    [Page 10]

RFC 4901         Header Compression over MPLS Protocol         June 2007


4.  Protocol Specifications

  Figure 2 illustrates the PW stack reference model to support PW
  emulated services.

  +-------------+                                +-------------+
  |  Layer2     |                                |  Layer2     |
  |  Emulated   |                                |  Emulated   |
  |  Services   |         Emulated Service       |  Services   |
  |             |<==============================>|             |
  +-------------+                                +-------------+
  |     HC      |           Pseudowire           |     HD      |
  |Demultiplexer|<==============================>|Demultiplexer|
  +-------------+                                +-------------+
  |    PSN      |            PSN Tunnel          |    PSN      |
  |   MPLS      |<==============================>|   MPLS      |
  +-------------+                                +-------------+
  |  Physical   |                                |  Physical   |
  +-----+-------+                                +-----+-------+

            Figure 2: Pseudowire Protocol Stack Reference Model

  Each HC-HD compressed channel is mapped to a single PW and associated
  with 2 PW labels, one in each direction.  A single PW label MUST be
  used for many HC flows (could be 100's or 1000's) rather than
  assigning a different PW label to each flow.  The latter approach
  would involve a complex mechanism for PW label assignment, freeing up
  of labels after a flow terminates, etc., for potentially 1000's of
  simultaneous HC flows.  On the other hand, the mechanism for CID
  assignment, freeing up, etc., is in place and there is no need to
  duplicate it with PW assignment/deassignment for individual HC flows.

  Multiple PWs SHOULD be established in case different quality of
  service (QoS) requirements are needed for different compressed
  streams.  The QoS received by the flow would be determined by the EXP
  bit marking in the PW label.  Normally, all RTP packets would get the
  same EXP marking [RFC3270], equivalent to expedited forwarding (EF)
  treatment [RFC3246] in Diffserv.  However, the protocol specified in
  this document applies to several different types of streams, not just
  RTP streams, and QoS treatment other than EF may be required for
  those streams.

  Figure 3 shows the HC over MPLS protocol stack (with uncompressed
  header):







Ash, et al.                 Standards Track                    [Page 11]

RFC 4901         Header Compression over MPLS Protocol         June 2007


  Media stream
  RTP
  UDP
  IP
  HC control parameter
  MPLS label stack (at least 2 labels for this application)
  Link layer under MPLS (PPP, PoS, Ethernet)
  Physical layer (SONET/SDH, fiber, copper)


                                                       +--------------+
                                                       | Media stream |
                                                       +--------------+
                                                       \_______ ______/
                                               2-4 octets      V
                                                +------+--------------+
                        Compressed /RTP/UDP/IP/ |header|              |
                                                +------+--------------+
                                                \__________ __________/
                                         2 octets          V
                                         +------+---------------------+
                    HC Control Parameter |header|                     |
                                         +------+---------------------+
                                         \______________ _____________/
                                  8 octets              V
                                  +------+----------------------------+
                      MPLS Labels |header|                            |
                                  +------+----------------------------+
                                  \_________________ _________________/
                                                    V
                           +------------------------------------------+
     Link Layer under MPLS |                                          |
                           +------------------------------------------+
                           \____________________ _____________________/
                                                V
                    +-------------------------------------------------+
     Physical Layer |                                                 |
                    +-------------------------------------------------+

    Figure 3: Header Compression over MPLS Media Stream Transport

  The HC control parameter MUST be used to identify the packet types
  for the HC scheme in use.  The MPLS labels technically define two
  layers: the PW identifier and the MPLS tunnel identifier.  The PW
  label MUST be used as the demultiplexer field by the HD, where the PW
  label appears at the bottom label of an MPLS label stack.  The LSR
  that will be performing decompression MUST ensure that the label it
  distributes (e.g., via LDP) for a channel is unique.  There can also



Ash, et al.                 Standards Track                    [Page 12]

RFC 4901         Header Compression over MPLS Protocol         June 2007


  be other MPLS labels, for example, to identify an MPLS VPN.  The
  IP/UDP/RTP headers are compressed before transmission, leaving the
  rest of the stack alone, as shown in Figure 3.

4.1.  MPLS Pseudowire Setup and Signaling

  PWs MUST be set up in advance for the transport of media streams
  using [RFC4447] control messages exchanged by the HC-HD endpoints.
  Furthermore, a PW type MUST be used to indicate the HC scheme being
  used on the PW.  [RFC4447] specifies the MPLS label distribution
  protocol (LDP) [RFC3036] extensions to set up and maintain the PWs,
  and defines new LDP objects to identify and signal attributes of PWs.
  Any acceptable method of MPLS label distribution MAY be used for
  distributing the MPLS tunnel label [RFC3031].  These methods include
  LDP [RFC3036], RSVP-TE [RFC3209], or configuration.

  To assign and distribute the PW labels, an LDP session MUST be set up
  between the PW endpoints using the extended discovery mechanism
  described in [RFC3036].  The PW label bindings are distributed using
  the LDP downstream unsolicited mode described in [RFC3036].  An LDP
  label mapping message contains a FEC object, a label object, and
  possible other optional objects.  The FEC object indicates the
  meaning of the label, identifies the PW type, and identifies the PW
  that the PW label is bound to.  See [RFC4447] for further explanation
  of PW signaling.

  This specification defines new PW type values to be carried within
  the FEC object to identify HC PWs for each HC scheme.  The PW type is
  a 15-bit parameter assigned by IANA, as specified in the [RFC4446]
  registry, and MUST be used to indicate the HC scheme being used on
  the PW.  IANA has set aside the following PW type values for
  assignment according to the registry specified in RFC 4446, Section
  3.2:

  PW type Description                                 Reference
  =============================================================
  0x001A  ROHC Transport Header-compressed Packets    [RFC3095bis]
  0x001B  ECRTP Transport Header-compressed Packets   [RFC3545]
  0x001C  IPHC Transport Header-compressed Packets    [RFC2507]
  0x001D  CRTP Transport Header-compressed Packets    [RFC2508]

  The HC control parameter enables distinguishing between various
  packets types (e.g., uncompressed, UDP compressed, RTP compressed,
  context-state, etc.).  However, the HC control parameter indications
  are not unique across HC schemes, and therefore the PW type value
  allows the HC scheme to be identified.





Ash, et al.                 Standards Track                    [Page 13]

RFC 4901         Header Compression over MPLS Protocol         June 2007


4.2.  Header Compression Scheme Setup, Negotiation, and Signaling

  As described in the previous section, the HC PW MUST be used for
  compressed packets only, which is configured at PW setup.  If a flow
  is not compressed, it MUST NOT be placed on the HC PW.  HC PWs MUST
  be bi-directional, which means that a unidirectional leg of the PW
  MUST be set up in each direction.  One leg of the bi-directional PW
  MAY be set up to carry only compression feedback, not header
  compressed traffic.  The same PW type MUST be used for PW signaling
  in both directions.

  HC scheme parameters MAY be manually configured, but if so, manual
  configuration MUST be done in both directions.  If HC scheme
  parameters are signaled, the Interface Parameters Sub-TLV MUST be
  used on any unidirectional legs of a PW that will carry HC traffic.
  For a unidirectional leg of a PW that will carry only compression
  feedback, the components of the Interface Parameters Sub-TLV
  described below are not relevant and MUST NOT be used.

  The PW HC approach relies on the PW/MPLS layer to convey HC channel
  configuration information.  The Interface Parameters Sub-TLV [IANA,
  RFC4447] must be used to signal HC channel setup and specify HC
  parameters.  That is, the configuration options specified in
  [RFC3241, RFC3544] are reused in this specification to specify PW-
  specific parameters, and to configure the HC and HD ports at the
  edges of the PW so that they have the necessary capabilities to
  interoperate with each other.

  Pseudowire Interface Parameter Sub-TLV type values are specified in
  [RFC4446].  IANA has set aside the following Pseudowire Interface
  Parameter Sub-TLV type values according to the registry specified in
  RFC 4446, Section 3.3:

  Parameter  ID Length        Description                   Reference
  ---------  ---------------  ----------------------------  ---------
  0x0D       up to 256 bytes  ROHC over MPLS configuration  RFC 4901
                               RFC 3241
  0x0F       up to 256 bytes  CRTP/ECRTP/IPHC HC over MPLS  RFC 4901
                               configuration RFC 3544

  TLVs identified in [RFC3241] and [RFC3544] MUST be encapsulated in
  the PW Interface Parameters Sub-TLV and used to negotiate header
  compression session setup and parameter negotiation for their
  respective protocols.  The TLVs supported in this manner MUST include
  the following:






Ash, et al.                 Standards Track                    [Page 14]

RFC 4901         Header Compression over MPLS Protocol         June 2007


  o  Configuration Option Format, RTP-Compression Suboption, Enhanced
     RTP-Compression Suboption, TCP/non-TCP Compression Suboptions, as
     specified in [RFC3544]

  o  Configuration Option Format, PROFILES Suboption, as specified in
     [RFC3241]

  These TLVs are now specified in the following sections.

4.2.1.  Configuration Option Format [RFC3544]

  Both the network control protocol for IPv4, IPCP [RFC1332] and the
  IPv6 Network Control Protocol (NCP), IPV6CP [RFC2472] may be used to
  negotiate IP HC parameters for their respective controlled protocols.
  The format of the configuration option is the same for both IPCP and
  IPV6CP.  This configuration option MUST be included for ECRTP, CRTP
  and IPHC PW types and MUST NOT be included for ROHC PW types.  A
  decompressor MUST reject this option (if misconfigured) for ROHC PW
  types and send an explicit error message to the compressor [RFC3544].

  Description

     This NCP configuration option is used to negotiate parameters for
     IP HC.  Successful negotiation of parameters enables the use of
     Protocol Identifiers FULL_HEADER, COMPRESSED_TCP,
     COMPRESSED_TCP_NODELTA, COMPRESSED_NON_TCP, and CONTEXT_STATE as
     specified in [RFC2507].  The option format is summarized below.
     The fields are transmitted from left to right.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |     Type      |    Length     |    IP-Compression-Protocol    |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |           TCP_SPACE           |         NON_TCP_SPACE         |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |         F_MAX_PERIOD          |          F_MAX_TIME           |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |           MAX_HEADER          |          suboptions...        |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Type
        2








Ash, et al.                 Standards Track                    [Page 15]

RFC 4901         Header Compression over MPLS Protocol         June 2007


     Length
        >= 14

        The length may be increased if the presence of additional
        parameters is indicated by additional suboptions.

     IP-Compression-Protocol
        0061 (hex)

     TCP_SPACE
        The TCP_SPACE field is two octets and indicates the maximum
        value of a context identifier in the space of context
        identifiers allocated for TCP.

           Suggested value: 15

        TCP_SPACE must be at least 0 and at most 255 (the value 0
        implies having one context).  This field is not used for CRTP
        (PW type 0x001B) and ECRTP (PW type 0x001B) PWs.  For these PW
        types, it should be set to its suggested value by the sender
        and ignored by the receiver.

     NON_TCP_SPACE
        The NON_TCP_SPACE field is two octets and indicates the maximum
        value of a context identifier in the space of context
        identifiers allocated for non-TCP.  These context identifiers
        are carried in COMPRESSED_NON_TCP, COMPRESSED_UDP and
        COMPRESSED_RTP packet headers.

           Suggested value: 15

        NON_TCP_SPACE must be at least 0 and at most 65535 (the value 0
        implies having one context).

     F_MAX_PERIOD
        Maximum interval between full headers.  No more than
        F_MAX_PERIOD COMPRESSED_NON_TCP headers may be sent between
        FULL_HEADER headers.

           Suggested value: 256

        A value of zero implies infinity, i.e., there is no limit to
        the number of consecutive COMPRESSED_NON_TCP headers.  This
        field is not used for CRTP (PW type 0x001B) and ECRTP (PW type
        0x001B) PWs.  For these PW types, it should be set to its
        suggested value by the sender and ignored by the receiver.





Ash, et al.                 Standards Track                    [Page 16]

RFC 4901         Header Compression over MPLS Protocol         June 2007


     F_MAX_TIME
        Maximum time interval between full headers.  COMPRESSED_NON_TCP
        headers may not be sent more than F_MAX_TIME seconds after
        sending the last FULL_HEADER header.

        Suggested value: 5 seconds

        A value of zero implies infinity.  This field is not used for
        CRTP (PW type 0x001B) and ECRTP (PW type 0x001B) PWs.  For
        these PW types, it should be set to its suggested value by the
        sender and ignored by the receiver.

     MAX_HEADER
        The largest header size in octets that may be compressed.

        Suggested value: 168 octets

        The value of MAX_HEADER should be large enough so that at least
        the outer network layer header can be compressed.  To increase
        compression efficiency MAX_HEADER should be set to a value
        large enough to cover common combinations of network and
        transport layer headers.

     suboptions
        The suboptions field consists of zero or more suboptions.  Each
        suboption consists of a type field, a length field and zero or
        more parameter octets, as defined by the suboption type.  The
        value of the length field indicates the length of the suboption
        in its entirety, including the lengths of the type and length
        fields.

      0                   1                   2
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |     Type      |    Length     |  Parameters...|
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

4.2.2.  RTP-Compression Suboption [RFC3544]

  The RTP-Compression suboption is included in the NCP IP-Compression-
  Protocol option for IPHC if IP/UDP/RTP compression is to be enabled.
  This suboption MUST be included for CRTP PWs (0x001C) and MUST NOT be
  included for other PW types.

  Inclusion of the RTP-Compression suboption enables use of additional
  Protocol Identifiers COMPRESSED_RTP and COMPRESSED_UDP along with
  additional forms of CONTEXT_STATE as specified in [RFC2508].




Ash, et al.                 Standards Track                    [Page 17]

RFC 4901         Header Compression over MPLS Protocol         June 2007


  Description

     Enables the use of Protocol Identifiers COMPRESSED_RTP,
     COMPRESSED_UDP, and CONTEXT_STATE as specified in [RFC2508].

         0                   1
         0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
        +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        |     Type      |    Length     |
        +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

        Type
           1

        Length
           2

4.2.3.  Enhanced RTP-Compression Suboption [RFC3544]

  To use the enhanced RTP HC defined in [RFC3545], a new suboption 2 is
  added.  Suboption 2 is negotiated instead of, not in addition to,
  suboption 1.  This suboption MUST be included for ECRTP PWs (0x001B)
  and MUST NOT be included for other PW types.

  Note that suboption 1 refers to the RTP-Compression Suboption, as
  specified in Section 4.2.2, and suboption 2 refers to the Enhanced
  RTP-Compression Suboption, as specified in Section 4.2.3.  These
  suboptions MUST NOT occur together.  If they do (e.g., if
  misconfigured), a decompressor MUST reject this option and send an
  explicit error message to the compressor [RFC3544].

  Description

     Enables the use of Protocol Identifiers COMPRESSED_RTP and
     CONTEXT_STATE as specified in [RFC2508].  In addition, it enables
     the use of [RFC3545] compliant compression including the use of
     Protocol Identifier COMPRESSED_UDP with additional flags and use
     of the C flag with the FULL_HEADER Protocol Identifier to indicate
     use of HDRCKSUM with COMPRESSED_RTP and COMPRESSED_UDP packets.

         0                   1
         0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
        +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        |     Type      |    Length     |
        +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Type
        2



Ash, et al.                 Standards Track                    [Page 18]

RFC 4901         Header Compression over MPLS Protocol         June 2007


     Length
        2

4.2.4.  Negotiating Header Compression for Only TCP or Only Non-TCP
       Packets [RFC3544]

  In [RFC3544] it was not possible to negotiate only TCP HC or only
  non-TCP HC because a value of 0 in the TCP_SPACE or the NON_TCP_SPACE
  fields actually means that 1 context is negotiated.

  A new suboption 3 is added to allow specifying that the number of
  contexts for TCP_SPACE or NON_TCP_SPACE is zero, disabling use of the
  corresponding compression.  This suboption MUST be included for IPHC
  PWs (0x001C) and MUST NOT be included for other PW types.

  Description

     Enable HC for only TCP or only non-TCP packets.

      0                   1                   2
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |     Type      |    Length     |   Parameter   |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Type
        3

     Length
        3

     Parameter

        The parameter is 1 byte with one of the following values:

        1 = the number of contexts for TCP_SPACE is 0
        2 = the number of contexts for NON_TCP_SPACE is 0

  This suboption overrides the values that were previously assigned to
  TCP_SPACE and NON_TCP_SPACE in the IP HC option.

  If suboption 3 is included multiple times with parameter 1 and 2,
  compression is disabled for all packets.








Ash, et al.                 Standards Track                    [Page 19]

RFC 4901         Header Compression over MPLS Protocol         June 2007


4.2.5.  Configuration Option Format [RFC3241]

  Both the network control protocol for IPv4, IPCP [RFC1332] and the
  IPv6 NCP, IPV6CP [RFC2472] may be used to negotiate IP HC parameters
  for their respective controlled protocols.  The format of the
  configuration option is the same for both IPCP and IPV6CP.  This
  configuration option MUST be included for ROHC PW types and MUST NOT
  be included for ECRTP, CRTP, and IPHC PW types.  A decompressor MUST
  reject this option (if misconfigured) for ECRTP, CRTP, and IPHC PW
  types, and send an explicit error message to the compressor
  [RFC3544].

  Description

     This NCP configuration option is used to negotiate parameters for
     ROHC.  The option format is summarized below.  The fields are
     transmitted from left to right.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Type      |    Length     |    IP-Compression-Protocol    |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |            MAX_CID            |             MRRU              |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |           MAX_HEADER          |          suboptions...        |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Type
     2

  Length
     >= 10

     The length may be increased if the presence of additional
     parameters is indicated by additional suboptions.

  IP-Compression-Protocol
     0003 (hex)

  MAX_CID
     The MAX_CID field is two octets and indicates the maximum value of
     a context identifier.

     Suggested value: 15

     MAX_CID must be at least 0 and at most 16383 (The value 0 implies
     having one context).



Ash, et al.                 Standards Track                    [Page 20]

RFC 4901         Header Compression over MPLS Protocol         June 2007


  MRRU
     The MRRU field is two octets and indicates the maximum
     reconstructed reception unit (see [RFC3095bis], Section 5.1.2).

     Suggested value: 0

  MAX_HEADER
     The largest header size in octets that may be compressed.

           Suggested value: 168 octets

     The value of MAX_HEADER should be large enough so that at least
     the outer network layer header can be compressed.  To increase
     compression efficiency MAX_HEADER should be set to a value large
     enough to cover common combinations of network and transport layer
     headers.

     NOTE: The four ROHC profiles defined in RFC 3095 do not provide
     for a MAX_HEADER parameter.  The parameter MAX_HEADER defined by
     this document is therefore without consequence in these profiles
     because the maximum compressible header size is unspecified.
     Other profiles (e.g., ones based on RFC 2507) can make use of the
     parameter by explicitly referencing it.

  suboptions
     The suboptions field consists of zero or more suboptions.  Each
     suboption consists of a type field, a length field, and zero or
     more parameter octets, as defined by the suboption type.  The
     value of the length field indicates the length of the suboption in
     its entirety, including the lengths of the type and length fields.

            0                   1                   2
            0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3
           +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
           |     Type      |    Length     |  Parameters...|
           +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

4.2.6.  PROFILES Suboption [RFC3241]

  The set of profiles to be enabled is subject to negotiation.  Most
  initial implementations of ROHC implement profiles 0x0000 to 0x0003.
  This option MUST be supplied.

  Description

     Define the set of profiles supported by the decompressor.





Ash, et al.                 Standards Track                    [Page 21]

RFC 4901         Header Compression over MPLS Protocol         June 2007


            0                   1                   2
            0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3
           +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
           |     Type      |    Length     |  Profiles...  |
           +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Type
        1

     Length
        2n+2

     Value
        n octet-pairs in ascending order, each octet-pair specifying a
        ROHC profile supported.

  HC flow identification is being done now in many ways.  Since there
  are multiple possible approaches to the problem, no specific method
  is specified in this document.

4.3.  Encapsulation of Header Compressed Packets

  The HC control parameter is used to identify the packet types for
  IPHC [RFC2507], CRTP [RFC2508], and ECRTP [RFC3545], as shown in
  Figure 4:

                                   1
               0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
              +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
              |0 0 0 0|Pkt Typ|  Length   |Res|
              +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                Figure 4: HC Control Parameter

  where:

  "Packet Type" encoding:
  0: ROHC Small-CIDs
  1: ROHC Large-CIDs
  2: FULL_HEADER
  3: COMPRESSED_TCP
  4: COMPRESSED_TCP_NODELTA
  5: COMPRESSED_NON_TCP
  6: COMPRESSED_RTP_8
  7: COMPRESSED_RTP_16
  8: COMPRESSED_UDP_8
  9: COMPRESSED_UDP_16
  10: CONTEXT_STATE



Ash, et al.                 Standards Track                    [Page 22]

RFC 4901         Header Compression over MPLS Protocol         June 2007


  11-15: Not yet assigned.  (See Section 8, "IANA Considerations",
         for discussion of the registration rules.)

  As discussed in [ECMP-AVOID], since this MPLS payload type is not IP,
  the first nibble is set to 0000 to avoid being mistaken for IP.  This
  is also consistent with the encoding of the PW MPLS control word
  (PWMCW) described in [RFC4385]; however, the HC control parameter is
  not intended to be a PWMCW.

  Note that ROHC [RFC3095, RFC3095bis] provides its own packet type
  within the protocol; however, the HC control parameter MUST still be
  used to avoid the problems identified above.  Since the "Packet Type"
  will be there anyway, it is used to indicate ROHC CID size, in the
  same way as with PPP.

  The HC control parameter length field is ONLY used for short packets
  because padding may be appended by the Ethernet Data Link Layer.  If
  the length is greater than or equal to 64 octets, the length field
  MUST be set to zero.  If the MPLS payload is less than 64 bytes, then
  the length field MUST be set to the length of the PW payload plus the
  length of the HC control parameter.  Note that the last 2 bits in the
  HC control parameter are reserved.

4.4.  Packet Reordering

  Packet reordering for ROHC is discussed in [RFC4224], which is a
  useful source of information.  In case of lossy links and other
  reasons for reordering, implementation adaptations are needed to
  allow all the schemes to be used in this case.  Although CRTP is
  viewed as having risks for a number of PW environments due to
  reordering and loss, it is still the protocol of choice in many
  cases.  CRTP was designed for reliable point to point links with
  short delays.  It does not perform well over links with a high rate
  of packet loss, packet reordering, and long delays.  In such cases,
  ECRTP [RFC3545] may be considered to increase robustness to both
  packet loss and misordering between the compressor and the
  decompressor.  This is achieved by repeating updates and sending of
  absolute (uncompressed) values in addition to delta values for
  selected context parameters.  IPHC should use TCP_NODELTA, ECRTP
  should send absolute values, ROHC should be adapted as discussed in
  [RFC4224].  An evaluation and simulation of ECRTP and ROHC reordering
  is given in [REORDER-EVAL].









Ash, et al.                 Standards Track                    [Page 23]

RFC 4901         Header Compression over MPLS Protocol         June 2007


5.  HC Pseudowire Setup Example

  This example will trace the setup of an MPLS PW supporting bi-
  directional ECRTP [RFC3545] traffic.  The example assumes the
  topology shown in Figure 1.  The PW will be set up between LSRs R1/HC
  and R4/HD.  LSRs R2 and R3 have no direct involvement in the
  signaling for this PW, other than to transport the signaling traffic.

  For this example, it is assumed that R1/HC has already obtained the
  IP address of R4/HD used for LDP signaling, and vice versa, that both
  R1/HC and R4/HD have been configured with the same 32-bit PW ID, as
  described in Section 5.2 of [RFC4447], and that R1/HC has been
  configured to initiate the LDP discovery process.  Furthermore, we
  assume that R1/HC has been configured to receive a maximum of 200
  simultaneous ECRTP flows from R4/HD, and R4/HD has been configured to
  receive a maximum of 255 ECRTP flows from R1/HC.

  Assuming that there is no existing LDP session between R1/HC and
  R4/HD, the PW signaling must start by setting up an LDP session
  between them.  As described earlier in this document, LDP extended
  discovery is used between HC over MPLS LSRs.  Since R1/HC has been
  configured to initiate extended discovery, it will send LDP Targeted
  Hello messages to R4/HD's IP address at UDP port 646.  The Targeted
  Hello messages sent by R1/HC will have the "R" bit set in the Common
  Hello Parameters TLV, requesting R4/HD to send Targeted Hello
  messages back to R1/HC.  Since R4/HD has been configured to set up an
  HC PW with R1/HD, R4/HD will do as requested and send LDP Targeted
  Hello messages as unicast UDP packets to UDP port 646 of R1/HC's IP
  address.

  When R1/HC receives a Targeted Hello message from R4/HD, it may begin
  establishing an LDP session to R4/HD.  It starts this by initiating a
  TCP connection on port 646 to R4/HD's signaling IP address.  After
  successful TCP connection establishment, R1/HC sends an LDP
  Initialization message to R4/HD with the following characteristics:

  When R1/HC receives a Targeted Hello message from R4/HD, it may begin
  establishing an LDP session to R4/HD.  The procedure described in
  Section 2.5.2 of [RFC3036] is used to determine which LSR is the
  active LSR and which is the passive LSR.  Assume that R1/HC has the
  numerically higher IP address and therefore takes the active role.
  R1/HC starts by initiating a TCP connection on port 646 to R4/HD's
  signaling IP address.  After successful TCP connection establishment,
  R1/HC sends an LDP Initialization message to R4/HD with the following
  characteristics:






Ash, et al.                 Standards Track                    [Page 24]

RFC 4901         Header Compression over MPLS Protocol         June 2007


  o Common Session Parameters TLV:
    - A bit = 0 (Downstream Unsolicited Mode)
    - D bit = 0 (Loop Detection Disabled)
    - PVLim = 0 (required when D bit = 0)
    - Receive LDP identifier (taken from R4/HD's Hello message)
      > 4 octets LSR identifier (typically an IP address with IPv4)
      > 2 octet Label space identifier (typically 0)
  o No Optional Parameters TLV

  Following the LDP session initialization state machine of Section
  2.5.4 of [RFC3036], R4/HD would send a similar Initialization message
  to R1/HD.  The primary difference would be that R4/HD would use the
  LDP identifier it received in R1/HC's Hello message(s) as the Receive
  LDP identifier.  Assuming that all other fields in the Common Session
  Parameters TLV were acceptable to both sides, R1/HC would send an LDP
  Keepalive message to R4/HD, R4/HD would send a LDP Keepalive message
  to R1/HC, and the LDP session would become operational.

  At this point, either R1/HC or R4/HD may send LDP Label Mapping
  messages to configure the PW.  The Label Mapping message sent by a
  particular router advertises the label that should be used at the
  bottom of the MPLS label stack for all packets sent to that router
  and associated with the particular PW.  The Label Mapping message
  sent from R1/HC to R4/HD would have the following characteristics:

  o FEC TLV
    - FEC Element type 0x80 (PWid FEC Element, as defined in [RFC4447]
    - Control Parameter bit = 1 (Control Parameter present)
    - PW type = 0x001B (ECRTP [RFC3545])
    - Group ID as chosen by R1/HC
    - PW ID = the configured value for this PW, which must be the same
      as that sent in the Label Mapping message by R4/HD
    - Interface Parameter Sub-TLVs
      > Interface MTU sub-TLV (Type 0x01)
      > CRTP/ECRTP/IPHC HC over MPLS configuration sub-TLV (Type 0x0F)
        + Type = 2 (From RFC 3544)
        + Length = 16
        + TCP_SPACE = Don't Care (leave at suggested value = 15)
        + NON_TCP_SPACE = 200 (configured on R1)
        + F_MAX_PERIOD = Don't Care (leave at suggested value = 256)
        + F_MAX_TIME = Don't Care (leave at suggested value = 5
          seconds)
        + MAX_HEADER = 168 (Suggested Value)
        + Enhanced RTP-Compression Suboption
          & Type = 2
          & Length = 2
  o Label TLV - contains label selected by R1, Lr1
  o No Optional Parameters



Ash, et al.                 Standards Track                    [Page 25]

RFC 4901         Header Compression over MPLS Protocol         June 2007


  The Label Mapping message sent from R4/HD to R1/HC would be almost
  identical to the one sent in the opposite direction, with the
  following exceptions:

  o R4/HD could select a different Group ID
  o The Value of NON_TCP_SPACE in the CRTP/ECRTP/IPHC HC over MPLS
    configuration sub-TLV would be 255 instead of 200, as configured
    on R4/HD
  o R4/HD would choose its own value for the Label TLV, Lr4

  As soon as either R1/HC or R4/HD has both transmitted and received
  Label Mapping Messages with the same PW Type and PW ID, that HC
  endpoint considers the PW established.  R1/HC could send ECRTP
  packets using the label it received in the Label Mapping Message from
  R4/HD, Lr4, and could identify received ECRTP packets by the label it
  had sent to R4/HD, Lr1.  And vice versa.

  In this case, assume that R1/HC has an IPv4 RTP flow to send to R4/HD
  that it wishes to compress using the ECRTP PW just set up.  The RTP
  flow is G.729 media with 20 bytes of payload in each RTP packet.  In
  this particular case, the IPv4 identifier changes by a small constant
  value between consecutive packets in the stream.  In the RTP layer of
  the flow, the Contributing Source Identifiers count is 0.  R1/HC
  decides to use 8-bit Context Identifiers for the compressed flow.
  Also, R1/HC determines that compression in this particular flow
  should be able to recover from the loss of 2 consecutive packets
  without requiring re-synchronization of the context (i.e., the "N"
  value from [RFC3545] is 2).

  The first 3 (N + 1) packets of this flow would be sent as FULL_HEADER
  packets.  The MPLS and PW headers at the beginning of these packets
  would be formatted as follows:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                Label                  | Exp |S|       TTL     |
  |                  XX                   |  XX |0|        XX     |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                Label                  | Exp |S|       TTL     |
  |                 Lr4                   |  XX |1|        >0     |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |       |Pkt Typ|  Length   |Res|
  |0 0 0 0|   2   |     62    |0 0|
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
              ^
              |
               -- 2 == FULL_HEADER



Ash, et al.                 Standards Track                    [Page 26]

RFC 4901         Header Compression over MPLS Protocol         June 2007


       where XX signifies either
       a. value determined by the MPLS routing layer
       b. don't care

  Immediately following the above header would come the FULL_HEADER
  packet as defined in [RFC3545], which basically consists of the
  IP/UDP/RTP header, with the IP and UDP length field replaced by
  values encoding the CID, sequence number, and "generation", as
  defined in [RFC3545].  The length field value of 62 comprises:

  o 2 bytes of HC control parameter (included in the above diagram)
  o 20 bytes of the IP header portion of the RFC 3545 FULL_HEADER
  o 8 bytes of the UDP header portion of the RFC 3545 FULL_HEADER
  o 12 bytes of the RTP header portion of the RFC 3545 FULL_HEADER
  o 20 bytes of G.729 payload

  The next 3 RTP packets from this flow would be sent as
  COMPRESSED_UDP_8, to establish the absolute and delta values of the
  IPv4 identifier and RTP timestamp fields.  These packets would use
  the same ECRTP CID as the previous 3 FULL_HEADER packets.  The MPLS
  and PW headers at the beginning of these packets would be formatted
  as follows:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                Label                  | Exp |S|       TTL     |
  |                  XX                   |  XX |0|        XX     |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                Label                  | Exp |S|       TTL     |
  |                 Lr4                   |  XX |1|        >0     |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |       |Pkt Typ|  Length   |Res|
  |0 0 0 0|   8   |     36    |0 0|
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
              ^
              |
               -- 8 == COMPRESSED_UDP_8

  There is no change in the MPLS label stack between the FULL_HEADER
  packets and the COMPRESSED_UDP packets.  The HC control parameter
  changes to reflect another ECRTP packet type following the control
  parameter, and a change of packet length.  The length changes because
  the new packet type more compactly encodes the headers.  The length
  field value of 36 comprises:






Ash, et al.                 Standards Track                    [Page 27]

RFC 4901         Header Compression over MPLS Protocol         June 2007


  o 2 bytes of HC control parameter (included in the above diagram)
  o 1 byte of CID
  o 2 bytes of COMPRESSED_UDP fields that are not octet-aligned:
    - 4 bits of COMPRESSED_UDP flags
    - 4 bits of sequence number
    - 5 bits of COMPRESSED UDP extension flags
    - 3 bits MUST_BE_ZERO
  o 2 bytes of UDP checksum or HDRCKSUM
  o 1 byte of delta IPv4 ID
  o 2 bytes of delta RTP timestamp (changes by 160 in this case,
      differential encoding will encode as 2 bytes)
  o 2 bytes of absolute IPv4 ID
  o 4 bytes of absolute RTP timestamp
  o 20 bytes of G.729 payload

  After the context for the IPv4 ID and RTP timestamp is initialized.
  Subsequent packets on this flow, at least until the end of the talk
  spurt or until there is some other unexpected change in the
  IP/UDP/RTP headers, may be sent as COMPRESSED_RTP_8 packets.  Again,
  the same MPLS stack would be used for these packets, and the same
  value of the CID would be used in this case as for the packets
  described above.  The MPLS and PW headers at the beginning of these
  packets would be formatted as follows:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                Label                  | Exp |S|       TTL     |
  |                  XX                   |  XX |0|        XX     |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                Label                  | Exp |S|       TTL     |
  |                 Lr4                   |  XX |1|        >0     |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |       |Pkt Typ|  Length   |Res|
  |0 0 0 0|   6   |     26    |0 0|
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
              ^
              |
               -- 6 == COMPRESSED_RTP_8

  The HC control parameter again changes to reflect another ECRTP
  packet type following the control parameter, and shorter length
  associated with an even more compact encoding of headers.  The length
  field value of 26 comprises:







Ash, et al.                 Standards Track                    [Page 28]

RFC 4901         Header Compression over MPLS Protocol         June 2007


  o 2 bytes of HC control parameter (included in the above diagram)
  o 1 byte of CID
  o 1 byte COMPRESSED_UDP fields that are not octet-aligned:
    - 4 bits of COMPRESSED_RTP flags
    - 4 bits of sequence number
  o 2 bytes of UDP checksum or HDRCKSUM
  o 20 bytes of G.729 payload

  Additional flows in the same direction may be compressed using the
  same basic encapsulation, including the same PW label.  The CID that
  is part of the HC protocol is used to differentiate flows.  For
  traffic in the opposite direction, the primary change would be the PW
  label, Lr4, used in the example above would be replaced by the label
  Lr1 that R1/HC provides to R4/HD.

6.  Security Considerations

  MPLS PW security considerations in general are discussed in [RFC3985]
  and [RFC4447], and those considerations also apply to this document.
  This document specifies an encapsulation and not the protocols that
  may be used to carry the encapsulated packets across the PSN, or the
  protocols being encapsulated.  Each such protocol may have its own
  set of security issues, but those issues are not affected by the
  encapsulations specified herein.

  The security considerations of the supported HC protocols [RFC2507,
  RFC2508, RFC3095, RFC3095bis, RFC3545] all apply to this document as
  well.

7.  Acknowledgements

  The authors appreciate valuable inputs and suggestions from Loa
  Andersson, Scott Brim, Stewart Bryant, Spencer Dawkins, Adrian
  Farrel, Victoria Fineberg, Eric Gray, Allison Mankin, Luca Martini,
  Colin Perkins, Kristofer Sandlund, Yaakov Stein, George Swallow, Mark
  Townsley, Curtis Villamizar, and Magnus Westerlund.

8.  IANA Considerations

  As discussed in Section 4.1, PW type values have been assigned by
  IANA, as follows:

  0x001A  ROHC Transport Header-compressed Packets    [RFC3095bis]
  0x001B  ECRTP Transport Header-compressed Packets   [RFC3545]
  0x001C  IPHC Transport Header-compressed Packets    [RFC2507]
  0x001D  CRTP Transport Header-compressed Packets    [RFC2508]

  Procedures for registering new PW type values are given in [RFC4446].



Ash, et al.                 Standards Track                    [Page 29]

RFC 4901         Header Compression over MPLS Protocol         June 2007


  As discussed in Section 4.2, Pseudowire Interface Parameter Sub-TLV
  type values have been specified by IANA, as follows:

  Parameter  ID Length        Description                   Reference
  ---------  ---------------  ----------------------------  ---------
  0x0D       up to 256 bytes  ROHC over MPLS configuration  RFC 4901
                              RFC 3241
  0x0F       up to 256 bytes  CRTP/ECRTP/IPHC HC over MPLS  RFC 4901
                              configuration RFC 3544

  As discussed in Section 4.3, IANA has defined a new registry, "Header
  Compression Over MPLS HC Control Parameter Packet Type".  This is a
  four-bit value.  Packet Types 0 through 10 are defined in Section 4.3
  of this document.  Packet Types 11 to 15 are to be assigned by IANA
  using the "Expert Review" policy defined in [RFC2434].

9.  Normative References

  [RFC2119]      Bradner, S., "Key words for use in RFCs to Indicate
                 Requirement Levels", RFC 2119, March 1997.

  [RFC3031]      Rosen, E., Viswanathan, A., and R. Callon,
                 "Multiprotocol Label Switching Architecture", RFC
                 3031, January 2001.

  [RFC3036]      Andersson, L., Doolan, P., Feldman, N., Fredette, A.,
                 and B. Thomas, "LDP Specification", RFC 3036, January
                 2001.

  [RFC3241]      Bormann, C., "Robust Header Compression (ROHC) over
                 PPP", RFC 3241, April 2002.

  [RFC3544]      Engan, M., Casner, S., Bormann, C., and T. Koren, "IP
                 Header Compression over PPP", RFC 3544, July 2003.

  [RFC4447]      Martini, L., Ed., Rosen, E., El-Aawar, N., Smith, T.,
                 and G. Heron, "Pseudowire Setup and Maintenance Using
                 the Label Distribution Protocol (LDP)", RFC 4447,
                 April 2006.












Ash, et al.                 Standards Track                    [Page 30]

RFC 4901         Header Compression over MPLS Protocol         June 2007


10.  Informative References

  [ECMP-AVOID]   Swallow, G., Bryant, S., and L. Andersson, "Avoiding
                 Equal Cost Multipath Treatment in MPLS Networks", Work
                 in Progress, February 2007.

  [REORDER-EVAL] Knutsson, C., "Evaluation and Implementation of Header
                 Compression Algorithm ECRTP", http://epubl.luth.se/
                 1402-1617/2004/286/LTU-EX-04286-SE.pdf.

  [RFC1332]      McGregor, G., "The PPP Internet Protocol Control
                 Protocol (IPCP)", RFC 1332, May 1992.

  [RFC1661]      Simpson, W., Ed., "The Point-to-Point Protocol (PPP)",
                 STD 51, RFC 1661, July 1994.

  [RFC2434]      Narten, T. and H. Alvestrand, "Guidelines for Writing
                 an IANA Considerations Section in RFCs", BCP 26, RFC
                 2434, October 1998.

  [RFC2472]      Haskin, D. and E. Allen, "IP Version 6 over PPP", RFC
                 2472, December 1998.

  [RFC2507]      Degermark, M., Nordgren, B., and S. Pink, "IP Header
                 Compression", RFC 2507, February 1999.

  [RFC2508]      Casner, S. and V. Jacobson, "Compressing IP/UDP/RTP
                 Headers for Low-Speed Serial Links", RFC 2508,
                 February 1999.

  [RFC3095]      Bormann, C., et al., "RObust Header Compression
                 (ROHC):  Framework and four profiles: RTP, UDP, ESP,
                 and uncompressed", RFC 3095, July 2001.

  [RFC3095bis]   Jonsson, L-E. Pelletier, G., and K. Sandlund, "The
                 RObust Header Compression (ROHC) Framework", Work in
                 Progress, November 2006.

  [RFC3209]      Awduche, D., et al., "RSVP-TE: Extensions to RSVP for
                 LSP Tunnels," RFC 3209, December 2001.

  [RFC3544]      Koren, T., et al., "IP Header Compression over PPP,"
                 RFC 3544, July 2003.

  [RFC3545]      Koren, T., et al., "Compressing IP/UDP/RTP Headers on
                 Links with High Delay, Packet Loss, and Reordering,"
                 RFC 3545, July 2003.




Ash, et al.                 Standards Track                    [Page 31]

RFC 4901         Header Compression over MPLS Protocol         June 2007


  [RFC3246]      Davie, B., et al., "An Expedited Forwarding PHB (Per-
                 Hop Behavior)," RFC 3246, March 2002.

  [RFC3270]      Le Faucheur, F., et al., "Multi-Protocol Label
                 Switching (MPLS) Support of Differentiated Services,"
                 RFC 3270, May 2002.

  [RFC3550]      Schulzrinne, H., et al., "RTP: A Transport Protocol
                 for Real-Time Applications," RFC 3550, July 2003.

  [RFC3843]      Jonsson, L-E. and G. Pelletier, "RObust Header
                 Compression (ROHC): A Compression Profile for IP", RFC
                 3843, June 2004.

  [RFC3985]      Bryant, S., Pate, P., "Pseudo Wire Emulation Edge-to-
                 Edge (PWE3) Architecture," RFC 3985, March 2005.

  [RFC4224]      Pelletier, G., et al., "RObust Header Compression
                 (ROHC): ROHC over Channels that can Reorder Packets,"
                 RFC 4224, January 2006.

  [RFC4247]      Ash, G., Goode, B., Hand, J., "Requirements for Header
                 Compression over MPLS", RFC 4247, November 2005.

  [RFC4364]      Rosen, E., Rekhter, Y., "BGP/MPLS IP Virtual Private
                 Networks (VPN)s", RFC 4364, February 2006.

  [RFC4385]      Bryant, S., et al., "Pseudowire Emulation Edge-to-Edge
                 (PWE3) Control Word for Use over an MPLS PSN," RFC
                 4385, February 2006.

  [RFC4446]      Martini, L., et al., "IANA Allocations for Pseudo Wire
                 Edge To Edge Emulation (PWE3)," RFC 4446, April 2006.

  [RFC4815]      Jonsson, L-E., Sandlund, K., Pelletier, G., and P.
                 Kremer, "RObust Header Compression (ROHC): Corrections
                 and Clarifications to RFC 3095", RFC 4815, February
                 2007.













Ash, et al.                 Standards Track                    [Page 32]

RFC 4901         Header Compression over MPLS Protocol         June 2007


11.  Contributors

  Besides the editors listed below, the following people contributed to
  the document:

  Bur Goode
  AT&T
  Phone: +1 203-341-8705
  EMail: [email protected]

  Lars-Erik Jonsson
  Optand 737
  SE-831 92 Ostersund, Sweden
  Phone: +46 70 365 20 58
  EMail: [email protected]

  Raymond Zhang
  Infonet Services Corporation
  2160 E. Grand Ave. El Segundo, CA 90025 USA
  EMail: [email protected]

Editors' Addresses

  Jerry Ash
  AT&T
  Email: [email protected]

  Jim Hand
  AT&T
  Room MT A2-1A03
  200 Laurel Avenue
  Middletown, NJ 07748, USA
  Phone: +1 732-420-3017
  EMail: [email protected]

  Andrew G. Malis
  Verizon Communications
  40 Sylvan Road
  Waltham, MA  02451 USA
  EMail: [email protected]











Ash, et al.                 Standards Track                    [Page 33]

RFC 4901         Header Compression over MPLS Protocol         June 2007


Full Copyright Statement

  Copyright (C) The IETF Trust (2007).

  This document is subject to the rights, licenses and restrictions
  contained in BCP 78, and except as set forth therein, the authors
  retain all their rights.

  This document and the information contained herein are provided on an
  "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
  OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
  THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
  OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
  THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
  WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

  The IETF takes no position regarding the validity or scope of any
  Intellectual Property Rights or other rights that might be claimed to
  pertain to the implementation or use of the technology described in
  this document or the extent to which any license under such rights
  might or might not be available; nor does it represent that it has
  made any independent effort to identify any such rights.  Information
  on the procedures with respect to rights in RFC documents can be
  found in BCP 78 and BCP 79.

  Copies of IPR disclosures made to the IETF Secretariat and any
  assurances of licenses to be made available, or the result of an
  attempt made to obtain a general license or permission for the use of
  such proprietary rights by implementers or users of this
  specification can be obtained from the IETF on-line IPR repository at
  http://www.ietf.org/ipr.

  The IETF invites any interested party to bring to its attention any
  copyrights, patents or patent applications, or other proprietary
  rights that may cover technology that may be required to implement
  this standard.  Please address the information to the IETF at
  [email protected].

Acknowledgement

  Funding for the RFC Editor function is currently provided by the
  Internet Society.







Ash, et al.                 Standards Track                    [Page 34]