Network Working Group                                           S. Kelly
Request for Comments: 4868                                Aruba Networks
Category: Standards Track                                     S. Frankel
                                                                   NIST
                                                               May 2007


    Using HMAC-SHA-256, HMAC-SHA-384, and HMAC-SHA-512 with IPsec

Status of This Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (C) The IETF Trust (2007).

Abstract

  This specification describes the use of Hashed Message Authentication
  Mode (HMAC) in conjunction with the SHA-256, SHA-384, and SHA-512
  algorithms in IPsec.  These algorithms may be used as the basis for
  data origin authentication and integrity verification mechanisms for
  the Authentication Header (AH), Encapsulating Security Payload (ESP),
  Internet Key Exchange Protocol (IKE), and IKEv2 protocols, and also
  as Pseudo-Random Functions (PRFs) for IKE and IKEv2.  Truncated
  output lengths are specified for the authentication-related variants,
  with the corresponding algorithms designated as HMAC-SHA-256-128,
  HMAC-SHA-384-192, and HMAC-SHA-512-256.  The PRF variants are not
  truncated, and are called PRF-HMAC-SHA-256, PRF-HMAC-SHA-384, and
  PRF-HMAC-SHA-512.
















Kelly & Frankel             Standards Track                     [Page 1]

RFC 4868        HMAC-SHA256, SHA384, and SHA512 in IPsec        May 2007


Table of Contents

  1.  Introduction . . . . . . . . . . . . . . . . . . . . . . . . .  3
  2.  The HMAC-SHA-256+ Algorithms . . . . . . . . . . . . . . . . .  3
    2.1.  Keying Material  . . . . . . . . . . . . . . . . . . . . .  3
      2.1.1.  Data Origin Authentication and Integrity
              Verification Usage . . . . . . . . . . . . . . . . . .  4
      2.1.2.  Pseudo-Random Function (PRF) Usage . . . . . . . . . .  4
      2.1.3.  Randomness and Key Strength  . . . . . . . . . . . . .  5
      2.1.4.  Key Distribution . . . . . . . . . . . . . . . . . . .  5
      2.1.5.  Refreshing Keys  . . . . . . . . . . . . . . . . . . .  5
    2.2.  Padding  . . . . . . . . . . . . . . . . . . . . . . . . .  6
    2.3.  Truncation . . . . . . . . . . . . . . . . . . . . . . . .  6
    2.4.  Using HMAC-SHA-256+ as PRFs in IKE and IKEv2 . . . . . . .  7
    2.5.  Interactions with the ESP, IKE, or IKEv2 Cipher
          Mechanisms . . . . . . . . . . . . . . . . . . . . . . . .  7
    2.6.  HMAC-SHA-256+ Parameter Summary  . . . . . . . . . . . . .  7
    2.7.  Test Vectors . . . . . . . . . . . . . . . . . . . . . . .  7
      2.7.1.  PRF Test Vectors . . . . . . . . . . . . . . . . . . .  8
      2.7.2.  Authenticator Test Vectors . . . . . . . . . . . . . . 11
  3.  Security Considerations  . . . . . . . . . . . . . . . . . . . 17
    3.1.  HMAC Key Length vs Truncation Length . . . . . . . . . . . 17
  4.  IANA Considerations  . . . . . . . . . . . . . . . . . . . . . 18
  5.  Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . 19
  6.  References . . . . . . . . . . . . . . . . . . . . . . . . . . 19
    6.1.  Normative References . . . . . . . . . . . . . . . . . . . 19
    6.2.  Informative References . . . . . . . . . . . . . . . . . . 20
























Kelly & Frankel             Standards Track                     [Page 2]

RFC 4868        HMAC-SHA256, SHA384, and SHA512 in IPsec        May 2007


1.  Introduction

  This document specifies the use of SHA-256, SHA-384, and SHA-512
  [SHA2-1] combined with HMAC [HMAC] as data origin authentication and
  integrity verification mechanisms for the IPsec AH [AH], ESP [ESP],
  IKE [IKE], and IKEv2 [IKEv2] protocol.  Output truncation is
  specified for these variants, with the corresponding algorithms
  designated as HMAC-SHA-256-128, HMAC-SHA-384-192, and HMAC-SHA-512-
  256.  These truncation lengths are chosen in accordance with the
  birthday bound for each algorithm.

  This specification also describes untruncated variants of these
  algorithms as Pseudo-Random Functions (PRFs) for use with IKE and
  IKEv2, and those algorithms are called PRF-HMAC-SHA-256, PRF-HMAC-
  SHA-384, and PRF-HMAC-SHA-512.  For ease of reference, these PRF
  algorithms and the authentication variants described above are
  collectively referred to below as "the HMAC-SHA-256+ algorithms".

  The goal of the PRF variants are to provide secure pseudo-random
  functions suitable for generation of keying material and other
  protocol-specific numeric quantities, while the goal of the
  authentication variants is to ensure that packets are authentic and
  cannot be modified in transit.  The relative security of HMAC-SHA-
  256+ when used in either case is dependent on the distribution scope
  and unpredictability of the associated secret key.  If the key is
  unpredictable and known only by the sender and recipient, these
  algorithms ensure that only parties holding an identical key can
  derive the associated values.

2.  The HMAC-SHA-256+ Algorithms

  [SHA2-1] and [SHA2-2] describe the underlying SHA-256, SHA-384, and
  SHA-512 algorithms, while [HMAC] describes the HMAC algorithm.  The
  HMAC algorithm provides a framework for inserting various hashing
  algorithms such as SHA-256, and [SHA256+] describes combined usage of
  these algorithms.  The following sections describe the various
  characteristics and requirements of the HMAC-SHA-256+ algorithms when
  used with IPsec.

2.1.  Keying Material

  Requirements for keying material vary depending on whether the
  algorithm is functioning as a PRF or as an authentication/integrity
  mechanism.  In the case of authentication/integrity, key lengths are
  fixed according to the output length of the algorithm in use.  In the






Kelly & Frankel             Standards Track                     [Page 3]

RFC 4868        HMAC-SHA256, SHA384, and SHA512 in IPsec        May 2007


  case of PRFs, key lengths are variable, but guidance is given to
  ensure interoperability.  These distinctions are described further
  below.

  Before describing key requirements for each usage, it is important to
  clarify some terms we use below:

  Block size:  the size of the data block the underlying hash algorithm
     operates upon.  For SHA-256, this is 512 bits, for SHA-384 and
     SHA-512, this is 1024 bits.

  Output length:  the size of the hash value produced by the underlying
     hash algorithm.  For SHA-256, this is 256 bits, for SHA-384 this
     is 384 bits, and for SHA-512, this is 512 bits.

  Authenticator length:  the size of the "authenticator" in bits.  This
     only applies to authentication/integrity related algorithms, and
     refers to the bit length remaining after truncation.  In this
     specification, this is always half the output length of the
     underlying hash algorithm.

2.1.1.  Data Origin Authentication and Integrity Verification Usage

  HMAC-SHA-256+ are secret key algorithms.  While no fixed key length
  is specified in [HMAC], this specification requires that when used as
  an integrity/authentication algorithm, a fixed key length equal to
  the output length of the hash functions MUST be supported, and key
  lengths other than the output length of the associated hash function
  MUST NOT be supported.

  These key length restrictions are based in part on the
  recommendations in [HMAC] (key lengths less than the output length
  decrease security strength, and keys longer than the output length do
  not significantly increase security strength), and in part because
  allowing variable length keys for IPsec authenticator functions would
  create interoperability issues.

2.1.2.  Pseudo-Random Function (PRF) Usage

  IKE and IKEv2 use PRFs for generating keying material and for
  authentication of the IKE Security Association.  The IKEv2
  specification differentiates between PRFs with fixed key sizes and
  those with variable key sizes, and so we give some special guidance
  for this below.







Kelly & Frankel             Standards Track                     [Page 4]

RFC 4868        HMAC-SHA256, SHA384, and SHA512 in IPsec        May 2007


  When a PRF described in this document is used with IKE or IKEv2, it
  is considered to have a variable key length, and keys are derived in
  the following ways (note that we simply reiterate that which is
  specified in [HMAC]):

  o  If the length of the key is exactly the algorithm block size, use
     it as-is.

  o  If the key is shorter than the block size, lengthen it to exactly
     the block size by padding it on the right with zero bits.
     However, note that [HMAC] strongly discourages a key length less
     than the output length.  Nonetheless, we describe handling of
     shorter lengths here in recognition of shorter lengths typically
     chosen for IKE or IKEv2 pre-shared keys.

  o  If the key is longer than the block size, shorten it by computing
     the corresponding hash algorithm output over the entire key value,
     and treat the resulting output value as your HMAC key.  Note that
     this will always result in a key that is less than the block size
     in length, and this key value will therefore require zero-padding
     (as described above) prior to use.

2.1.3.  Randomness and Key Strength

  [HMAC] discusses requirements for key material, including a
  requirement for strong randomness.  Therefore, a strong pseudo-random
  function MUST be used to generate the required key for use with HMAC-
  SHA-256+.  At the time of this writing there are no published weak
  keys for use with any HMAC-SHA-256+ algorithms.

2.1.4.  Key Distribution

  [ARCH] describes the general mechanism for obtaining keying material
  when multiple keys are required for a single SA (e.g., when an ESP SA
  requires a key for confidentiality and a key for authentication).  In
  order to provide data origin authentication and integrity
  verification, the key distribution mechanism must ensure that unique
  keys are allocated and that they are distributed only to the parties
  participating in the communication.

2.1.5.  Refreshing Keys

  Currently, there are no practical attacks against the algorithms
  recommended here, and especially against the key sizes recommended
  here.  However, as noted in [HMAC] "...periodic key refreshment is a
  fundamental security practice that helps against potential weaknesses
  of the function and keys, and limits the damage of an exposed key".




Kelly & Frankel             Standards Track                     [Page 5]

RFC 4868        HMAC-SHA256, SHA384, and SHA512 in IPsec        May 2007


  Putting this into perspective, this specification requires 256, 384,
  or 512-bit keys produced by a strong PRF for use as a MAC.  A brute
  force attack on such keys would take longer to mount than the
  universe has been in existence.  On the other hand, weak keys (e.g.,
  dictionary words) would be dramatically less resistant to attack.  It
  is important to take these points, along with the specific threat
  model for your particular application and the current state of the
  art with respect to attacks on SHA-256, SHA-384, and SHA-512 into
  account when determining an appropriate upper bound for HMAC key
  lifetimes.

2.2.  Padding

  The HMAC-SHA-256 algorithms operate on 512-bit blocks of data, while
  the HMAC-SHA-384 and HMAC-SHA-512 algorithms operate on 1024-bit
  blocks of data.  Padding requirements are specified in [SHA2-1] as
  part of the underlying SHA-256, SHA-384, and SHA-512 algorithms, so
  if you implement according to [SHA2-1], you do not need to add any
  additional padding as far as the HMAC-SHA-256+ algorithms specified
  here are concerned.  With regard to "implicit packet padding" as
  defined in [AH], no implicit packet padding is required.

2.3.  Truncation

  The HMAC-SHA-256+ algorithms each produce an nnn-bit value, where nnn
  corresponds to the output bit length of the algorithm, e.g., HMAC-
  SHA-nnn.  For use as an authenticator, this nnn-bit value can be
  truncated as described in [HMAC].  When used as a data origin
  authentication and integrity verification algorithm in ESP, AH, IKE,
  or IKEv2, a truncated value using the first nnn/2 bits -- exactly
  half the algorithm output size -- MUST be supported.  No other
  authenticator value lengths are supported by this specification.

  Upon sending, the truncated value is stored within the authenticator
  field.  Upon receipt, the entire nnn-bit value is computed and the
  first nnn/2 bits are compared to the value stored in the
  authenticator field, with the value of 'nnn' depending on the
  negotiated algorithm.

  [HMAC] discusses potential security benefits resulting from
  truncation of the output MAC value, and in general, encourages HMAC
  users to perform MAC truncation.  In the context of IPsec, a
  truncation length of nnn/2 bits is selected because it corresponds to
  the birthday attack bound for each of the HMAC-SHA-256+ algorithms,
  and it simultaneously serves to minimize the additional bits on the
  wire resulting from use of this facility.





Kelly & Frankel             Standards Track                     [Page 6]

RFC 4868        HMAC-SHA256, SHA384, and SHA512 in IPsec        May 2007


2.4.  Using HMAC-SHA-256+ as PRFs in IKE and IKEv2

  The PRF-HMAC-SHA-256 algorithm is identical to HMAC-SHA-256-128,
  except that variable-length keys are permitted, and the truncation
  step is NOT performed.  Likewise, the implementations of PRF-HMAC-
  SHA-384 and PRF-HMAC-SHA-512 are identical to those of HMAC-SHA-384-
  192 and HMAC-SHA-512-256 respectively, except that again, variable-
  length keys are permitted, and truncation is NOT performed.

2.5.  Interactions with the ESP, IKE, or IKEv2 Cipher Mechanisms

  As of this writing, there are no known issues that preclude the use
  of the HMAC-SHA-256+ algorithms with any specific cipher algorithm.

2.6.  HMAC-SHA-256+ Parameter Summary

  The following table serves to summarize the various quantities
  associated with the HMAC-SHA-256+ algorithms.  In this table, "var"
  stands for "variable".

  +------------------+--------+--------+--------+--------+------------+
  |    Algorithm     | Block  | Output | Trunc. |  Key   | Algorithm  |
  |       ID         |  Size  | Length | Length | Length |   Type     |
  +==================+========+========+========+========+============+
  | HMAC-SHA-256-128 |   512  |   256  |  128   |  256   | auth/integ |
  +------------------+--------+--------+--------+--------+------------+
  | HMAC-SHA-384-192 |  1024  |   384  |  192   |  384   | auth/integ |
  +------------------+--------+--------+--------+--------+------------+
  | HMAC-SHA-512-256 |  1024  |   512  |  256   |  512   | auth/integ |
  +------------------+--------+--------+--------+--------+------------+
  | PRF-HMAC-SHA-256 |   512  |   256  | (none) |  var   |     PRF    |
  +------------------+--------+--------+--------+--------+------------+
  | PRF-HMAC-SHA-384 |  1024  |   384  | (none) |  var   |     PRF    |
  +------------------+--------+--------+--------+--------+------------+
  | PRF-HMAC-SHA-512 |  1024  |   512  | (none) |  var   |     PRF    |
  +------------------+--------+--------+--------+--------+------------+


2.7.  Test Vectors

  The following test cases include the key, the data, and the resulting
  authenticator, and/or PRF values for each algorithm.  The values of
  keys and data are either ASCII character strings (surrounded by
  double quotes) or hexadecimal numbers.  If a value is an ASCII
  character string, then the HMAC computation for the corresponding
  test case DOES NOT include the trailing null character ('\0') of the
  string.  The computed HMAC values are all hexadecimal numbers.




Kelly & Frankel             Standards Track                     [Page 7]

RFC 4868        HMAC-SHA256, SHA384, and SHA512 in IPsec        May 2007


2.7.1.  PRF Test Vectors

  These test cases were borrowed from RFC 4231 [HMAC-TEST].  For
  reference implementations of the underlying hash algorithms, see
  [SHA256+].  Note that for testing purposes, PRF output is considered
  to be simply the untruncated algorithm output.

  Test Case PRF-1:
  Key =          0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b
                 0b0b0b0b                          (20 bytes)

  Data =         4869205468657265                  ("Hi There")

  PRF-HMAC-SHA-256 = b0344c61d8db38535ca8afceaf0bf12b
                     881dc200c9833da726e9376c2e32cff7

  PRF-HMAC-SHA-384 = afd03944d84895626b0825f4ab46907f
                     15f9dadbe4101ec682aa034c7cebc59c
                     faea9ea9076ede7f4af152e8b2fa9cb6

  PRF-HMAC-SHA-512 = 87aa7cdea5ef619d4ff0b4241a1d6cb0
                     2379f4e2ce4ec2787ad0b30545e17cde
                     daa833b7d6b8a702038b274eaea3f4e4
                     be9d914eeb61f1702e696c203a126854


  Test Case PRF-2:
  Key =          4a656665                          ("Jefe")

  Data =         7768617420646f2079612077616e7420  ("what do ya want ")
                 666f72206e6f7468696e673f          ("for nothing?")

  PRF-HMAC-SHA-256 = 5bdcc146bf60754e6a042426089575c7
                     5a003f089d2739839dec58b964ec3843

  PRF-HMAC-SHA-384 = af45d2e376484031617f78d2b58a6b1b
                     9c7ef464f5a01b47e42ec3736322445e
                     8e2240ca5e69e2c78b3239ecfab21649

  PRF-HMAC-SHA-512 = 164b7a7bfcf819e2e395fbe73b56e0a3
                     87bd64222e831fd610270cd7ea250554
                     9758bf75c05a994a6d034f65f8f0e6fd
                     caeab1a34d4a6b4b636e070a38bce737








Kelly & Frankel             Standards Track                     [Page 8]

RFC 4868        HMAC-SHA256, SHA384, and SHA512 in IPsec        May 2007


  Test Case PRF-3:
  Key            aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
                 aaaaaaaa                          (20 bytes)

  Data =         dddddddddddddddddddddddddddddddd
                 dddddddddddddddddddddddddddddddd
                 dddddddddddddddddddddddddddddddd
                 dddd                              (50 bytes)

  PRF-HMAC-SHA-256 = 773ea91e36800e46854db8ebd09181a7
                     2959098b3ef8c122d9635514ced565fe

  PRF-HMAC-SHA-384 = 88062608d3e6ad8a0aa2ace014c8a86f
                     0aa635d947ac9febe83ef4e55966144b
                     2a5ab39dc13814b94e3ab6e101a34f27

  PRF-HMAC-SHA-512 = fa73b0089d56a284efb0f0756c890be9
                     b1b5dbdd8ee81a3655f83e33b2279d39
                     bf3e848279a722c806b485a47e67c807
                     b946a337bee8942674278859e13292fb


  Test Case PRF-4:
  Key =          0102030405060708090a0b0c0d0e0f10
                 111213141516171819                (25 bytes)

  Data =         cdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcd
                 cdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcd
                 cdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcd
                 cdcd                              (50 bytes)

  PRF-HMAC-SHA-256 = 82558a389a443c0ea4cc819899f2083a
                     85f0faa3e578f8077a2e3ff46729665b

  PRF-HMAC-SHA-384 = 3e8a69b7783c25851933ab6290af6ca7
                     7a9981480850009cc5577c6e1f573b4e
                     6801dd23c4a7d679ccf8a386c674cffb

  PRF-HMAC-SHA-512 = b0ba465637458c6990e5a8c5f61d4af7
                     e576d97ff94b872de76f8050361ee3db
                     a91ca5c11aa25eb4d679275cc5788063
                     a5f19741120c4f2de2adebeb10a298dd









Kelly & Frankel             Standards Track                     [Page 9]

RFC 4868        HMAC-SHA256, SHA384, and SHA512 in IPsec        May 2007


  Test Case PRF-5:
  Key =          aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
                 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
                 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
                 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
                 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
                 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
                 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
                 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
                 aaaaaa                            (131 bytes)

  Data =         54657374205573696e67204c61726765  ("Test Using Large")
                 72205468616e20426c6f636b2d53697a  ("r Than Block-Siz")
                 65204b6579202d2048617368204b6579  ("e Key - Hash Key")
                 204669727374                      (" First")


  PRF-HMAC-SHA-256 = 60e431591ee0b67f0d8a26aacbf5b77f
                     8e0bc6213728c5140546040f0ee37f54

  PRF-HMAC-SHA-384 = 4ece084485813e9088d2c63a041bc5b4
                     4f9ef1012a2b588f3cd11f05033ac4c6
                     0c2ef6ab4030fe8296248df163f44952

  PRF-HMAC-SHA-512 = 80b24263c7c1a3ebb71493c1dd7be8b4
                     9b46d1f41b4aeec1121b013783f8f352
                     6b56d037e05f2598bd0fd2215d6a1e52
                     95e64f73f63f0aec8b915a985d786598























Kelly & Frankel             Standards Track                    [Page 10]

RFC 4868        HMAC-SHA256, SHA384, and SHA512 in IPsec        May 2007


  Test Case PRF-6:

  Key =          aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
                 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
                 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
                 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
                 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
                 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
                 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
                 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
                 aaaaaa                            (131 bytes)

  Data =         54686973206973206120746573742075  ("This is a test u")
                 73696e672061206c6172676572207468  ("sing a larger th")
                 616e20626c6f636b2d73697a65206b65  ("an block-size ke")
                 7920616e642061206c61726765722074  ("y and a larger t")
                 68616e20626c6f636b2d73697a652064  ("han block-size d")
                 6174612e20546865206b6579206e6565  ("ata. The key nee")
                 647320746f2062652068617368656420  ("ds to be hashed ")
                 6265666f7265206265696e6720757365  ("before being use")
                 642062792074686520484d414320616c  ("d by the HMAC al")
                 676f726974686d2e                  ("gorithm.")

  PRF-HMAC-SHA-256 = 9b09ffa71b942fcb27635fbcd5b0e944
                     bfdc63644f0713938a7f51535c3a35e2

  PRF-HMAC-SHA-384 = 6617178e941f020d351e2f254e8fd32c
                     602420feb0b8fb9adccebb82461e99c5
                     a678cc31e799176d3860e6110c46523e

  PRF-HMAC-SHA-512 = e37b6a775dc87dbaa4dfa9f96e5e3ffd
                     debd71f8867289865df5a32d20cdc944
                     b6022cac3c4982b10d5eeb55c3e4de15
                     134676fb6de0446065c97440fa8c6a58


2.7.2.  Authenticator Test Vectors

  The following sections are test cases for HMAC-SHA256-128, HMAC-
  SHA384-192, and HMAC-SHA512-256.  PRF outputs are also included for
  convenience.  These test cases were generated using the SHA256+
  reference code provided in [SHA256+].









Kelly & Frankel             Standards Track                    [Page 11]

RFC 4868        HMAC-SHA256, SHA384, and SHA512 in IPsec        May 2007


2.7.2.1.  SHA256 Authentication Test Vectors

  Test Case AUTH256-1:
  Key =          0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b
                 0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b  (32 bytes)

  Data =         4869205468657265                  ("Hi There")

  PRF-HMAC-SHA-256 = 198a607eb44bfbc69903a0f1cf2bbdc5
                     ba0aa3f3d9ae3c1c7a3b1696a0b68cf7

  HMAC-SHA-256-128 = 198a607eb44bfbc69903a0f1cf2bbdc5



  Test Case AUTH256-2:
  Key =          4a6566654a6566654a6566654a656665  ("JefeJefeJefeJefe")
                 4a6566654a6566654a6566654a656665  ("JefeJefeJefeJefe")

  Data =         7768617420646f2079612077616e7420  ("what do ya want ")
                 666f72206e6f7468696e673f          ("for nothing?")

  PRF-HMAC-SHA-256 = 167f928588c5cc2eef8e3093caa0e87c
                     9ff566a14794aa61648d81621a2a40c6

  HMAC-SHA-256-128 = 167f928588c5cc2eef8e3093caa0e87c



  Test Case AUTH256-3:
  Key =          aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
                 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa  (32 bytes)

  Data =         dddddddddddddddddddddddddddddddd
                 dddddddddddddddddddddddddddddddd
                 dddddddddddddddddddddddddddddddd
                 dddd                              (50 bytes)

  PRF-HMAC-SHA-256 = cdcb1220d1ecccea91e53aba3092f962
                     e549fe6ce9ed7fdc43191fbde45c30b0

  HMAC-SHA-256-128 = cdcb1220d1ecccea91e53aba3092f962









Kelly & Frankel             Standards Track                    [Page 12]

RFC 4868        HMAC-SHA256, SHA384, and SHA512 in IPsec        May 2007


  Test Case AUTH256-4:
  Key =          0102030405060708090a0b0c0d0e0f10
                 1112131415161718191a1b1c1d1e1f20  (32 bytes)

  Data =         cdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcd
                 cdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcd
                 cdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcd
                 cdcd                              (50 bytes)

  PRF-HMAC-SHA-256 = 372efcf9b40b35c2115b1346903d2ef4
                     2fced46f0846e7257bb156d3d7b30d3f

  HMAC-SHA-256-128 = 372efcf9b40b35c2115b1346903d2ef4


2.7.2.2.  SHA384 Authentication Test Vectors

  Test Case AUTH384-1:
  Key =          0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b
                 0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b
                 0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b  (48 bytes)

  Data =         4869205468657265                  ("Hi There")

  PRF-HMAC-SHA-384 = b6a8d5636f5c6a7224f9977dcf7ee6c7
                     fb6d0c48cbdee9737a959796489bddbc
                     4c5df61d5b3297b4fb68dab9f1b582c2

  HMAC-SHA-384-128 = b6a8d5636f5c6a7224f9977dcf7ee6c7
                     fb6d0c48cbdee973


  Test Case AUTH384-2:
  Key =          4a6566654a6566654a6566654a656665  ("JefeJefeJefeJefe")
                 4a6566654a6566654a6566654a656665  ("JefeJefeJefeJefe")
                 4a6566654a6566654a6566654a656665  ("JefeJefeJefeJefe")

  Data =         7768617420646f2079612077616e7420  ("what do ya want ")
                 666f72206e6f7468696e673f          ("for nothing?")

  PRF-HMAC-SHA-384 = 2c7353974f1842fd66d53c452ca42122
                     b28c0b594cfb184da86a368e9b8e16f5
                     349524ca4e82400cbde0686d403371c9

  HMAC-SHA-384-192 = 2c7353974f1842fd66d53c452ca42122
                     b28c0b594cfb184d





Kelly & Frankel             Standards Track                    [Page 13]

RFC 4868        HMAC-SHA256, SHA384, and SHA512 in IPsec        May 2007


  Test Case AUTH384-3:
  Key =          aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
                 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
                 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa  (48 bytes)

  Data =         dddddddddddddddddddddddddddddddd
                 dddddddddddddddddddddddddddddddd
                 dddddddddddddddddddddddddddddddd
                 dddd                              (50 bytes)

  PRF-HMAC-SHA-384 = 809f439be00274321d4a538652164b53
                     554a508184a0c3160353e3428597003d
                     35914a18770f9443987054944b7c4b4a

  HMAC-SHA-384-192 = 809f439be00274321d4a538652164b53
                     554a508184a0c316


  Test Case AUTH384-4:
  Key =          0102030405060708090a0b0c0d0e0f10
                 1112131415161718191a1b1c1d1e1f20
                 0a0b0c0d0e0f10111213141516171819  (48 bytes)

  Data =         cdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcd
                 cdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcd
                 cdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcd
                 cdcd                              (50 bytes)

  PRF-HMAC-SHA-384 = 5b540085c6e6358096532b2493609ed1
                     cb298f774f87bb5c2ebf182c83cc7428
                     707fb92eab2536a5812258228bc96687

  HMAC-SHA-384-192 = 5b540085c6e6358096532b2493609ed1
                     cb298f774f87bb5c

















Kelly & Frankel             Standards Track                    [Page 14]

RFC 4868        HMAC-SHA256, SHA384, and SHA512 in IPsec        May 2007


2.7.2.3.  SHA512 Authentication Test Vectors

  Test Case AUTH512-1:
  Key =          0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b
                 0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b
                 0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b
                 0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b  (64 bytes)

  Data =         4869205468657265                  ("Hi There")

  PRF-HMAC-SHA-512 = 637edc6e01dce7e6742a99451aae82df
                     23da3e92439e590e43e761b33e910fb8
                     ac2878ebd5803f6f0b61dbce5e251ff8
                     789a4722c1be65aea45fd464e89f8f5b

  HMAC-SHA-512-256 = 637edc6e01dce7e6742a99451aae82df
                     23da3e92439e590e43e761b33e910fb8


  Test Case AUTH512-2:
  Key =          4a6566654a6566654a6566654a656665  ("JefeJefeJefeJefe")
                 4a6566654a6566654a6566654a656665  ("JefeJefeJefeJefe")
                 4a6566654a6566654a6566654a656665  ("JefeJefeJefeJefe")
                 4a6566654a6566654a6566654a656665  ("JefeJefeJefeJefe")

  Data =         7768617420646f2079612077616e7420  ("what do ya want ")
                 666f72206e6f7468696e673f          ("for nothing?")

  PRF-HMAC-SHA-512 = cb370917ae8a7ce28cfd1d8f4705d614
                     1c173b2a9362c15df235dfb251b15454
                     6aa334ae9fb9afc2184932d8695e397b
                     fa0ffb93466cfcceaae38c833b7dba38

  HMAC-SHA-512-256 = cb370917ae8a7ce28cfd1d8f4705d614
                     1c173b2a9362c15df235dfb251b15454
















Kelly & Frankel             Standards Track                    [Page 15]

RFC 4868        HMAC-SHA256, SHA384, and SHA512 in IPsec        May 2007


  Test Case AUTH512-3:
  Key =          aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
                 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
                 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
                 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa  (64 bytes)

  Data =         dddddddddddddddddddddddddddddddd
                 dddddddddddddddddddddddddddddddd
                 dddddddddddddddddddddddddddddddd
                 dddd                              (50 bytes)

  PRF-HMAC-SHA-512 = 2ee7acd783624ca9398710f3ee05ae41
                     b9f9b0510c87e49e586cc9bf961733d8
                     623c7b55cebefccf02d5581acc1c9d5f
                     b1ff68a1de45509fbe4da9a433922655

  HMAC-SHA-512-256 = 2ee7acd783624ca9398710f3ee05ae41
                     b9f9b0510c87e49e586cc9bf961733d8


  Test Case AUTH512-4:
  Key =          0a0b0c0d0e0f10111213141516171819
                 0102030405060708090a0b0c0d0e0f10
                 1112131415161718191a1b1c1d1e1f20
                 2122232425262728292a2b2c2d2e2f30
                 3132333435363738393a3b3c3d3e3f40  (64 bytes)

  Data =         cdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcd
                 cdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcd
                 cdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcd
                 cdcd                              (50 bytes)

  PRF-HMAC-SHA-512 = 5e6688e5a3daec826ca32eaea224eff5
                     e700628947470e13ad01302561bab108
                     b8c48cbc6b807dcfbd850521a685babc
                     7eae4a2a2e660dc0e86b931d65503fd2

  HMAC-SHA-512-256 = 5e6688e5a3daec826ca32eaea224eff5
                     e700628947470e13ad01302561bab108












Kelly & Frankel             Standards Track                    [Page 16]

RFC 4868        HMAC-SHA256, SHA384, and SHA512 in IPsec        May 2007


3.  Security Considerations

  In a general sense, the security provided by the HMAC-SHA-256+
  algorithms is based both upon the strength of the underlying hash
  algorithm, and upon the additional strength derived from the HMAC
  construct.  At the time of this writing, there are no practical
  cryptographic attacks against SHA-256, SHA-384, SHA-512, or HMAC.
  However, as with any cryptographic algorithm, an important component
  of these algorithms' strength lies in the correctness of the
  algorithm implementation, the security of the key management
  mechanism, the strength of the associated secret key, and upon the
  correctness of the implementation in all of the participating
  systems.  This specification contains test vectors to assist in
  verifying the correctness of the algorithm implementation, but these
  in no way verify the correctness (or security) of the surrounding
  security infrastructure.

3.1.  HMAC Key Length vs Truncation Length

  There are important differences between the security levels afforded
  by HMAC-SHA1-96 [HMAC-SHA1] and the HMAC-SHA-256+ algorithms, but
  there are also considerations that are somewhat counter-intuitive.
  There are two different axes along which we gauge the security of
  these algorithms: HMAC output length and HMAC key length.  If we
  assume the HMAC key is a well-guarded secret that can only be
  determined through offline attacks on observed values, and that its
  length is less than or equal to the output length of the underlying
  hash algorithm, then the key's strength is directly proportional to
  its length.  And if we assume an adversary has no knowledge of the
  HMAC key, then the probability of guessing a correct MAC value for
  any given packet is directly proportional to the HMAC output length.

  This specification defines truncation to output lengths of either 128
  192, or 256 bits.  It is important to note that at this time, it is
  not clear that HMAC-SHA-256 with a truncation length of 128 bits is
  any more secure than HMAC-SHA1 with the same truncation length,
  assuming the adversary has no knowledge of the HMAC key.  This is
  because in such cases, the adversary must predict only those bits
  that remain after truncation.  Since in both cases that output length
  is the same (128 bits), the adversary's odds of correctly guessing
  the value are also the same in either case: 1 in 2^128.  Again, if we
  assume the HMAC key remains unknown to the attacker, then only a bias
  in one of the algorithms would distinguish one from the other.
  Currently, no such bias is known to exist in either HMAC-SHA1 or
  HMAC-SHA-256+.

  If, on the other hand, the attacker is focused on guessing the HMAC
  key, and we assume that the hash algorithms are indistinguishable



Kelly & Frankel             Standards Track                    [Page 17]

RFC 4868        HMAC-SHA256, SHA384, and SHA512 in IPsec        May 2007


  when viewed as PRF's, then the HMAC key length provides a direct
  measure of the underlying security: the longer the key, the harder it
  is to guess.  This means that with respect to passive attacks on the
  HMAC key, size matters - and the HMAC-SHA-256+ algorithms provide
  more security in this regard than HMAC-SHA1-96.

4.  IANA Considerations

  This document does not specify the conventions for using SHA256+ for
  IKE Phase 1 negotiations, except to note that IANA has made the
  following IKE hash algorithm attribute assignments:

  SHA2-256:  4

  SHA2-384:  5

  SHA2-512:  6

  For IKE Phase 2 negotiations, IANA has assigned the following
  authentication algorithm identifiers:

  HMAC-SHA2-256:  5

  HMAC-SHA2-384:  6

  HMAC-SHA2-512:  7

  For use of HMAC-SHA-256+ as a PRF in IKEv2, IANA has assigned the
  following IKEv2 Pseudo-random function (type 2) transform
  identifiers:

  PRF_HMAC_SHA2_256  5

  PRF_HMAC_SHA2_384  6

  PRF_HMAC_SHA2_512  7

  For the use of HMAC-SHA-256+ algorithms for data origin
  authentication and integrity verification in IKEv2, ESP, or AH, IANA
  has assigned the following IKEv2 integrity (type 3) transform
  identifiers:

  AUTH_HMAC_SHA2_256_128  12

  AUTH_HMAC_SHA2_384_192  13

  AUTH_HMAC_SHA2_512_256  14




Kelly & Frankel             Standards Track                    [Page 18]

RFC 4868        HMAC-SHA256, SHA384, and SHA512 in IPsec        May 2007


5.  Acknowledgements

  Portions of this text were unabashedly borrowed from [HMAC-SHA1] and
  [HMAC-TEST].  Thanks to Hugo Krawczyk for comments and
  recommendations on early revisions of this document, and thanks also
  to Russ Housley and Steve Bellovin for various security-related
  comments and recommendations.

6.  References

6.1.  Normative References

  [AH]         Kent, S., "IP Authentication Header", RFC 4302,
               December 2005.

  [ARCH]       Kent, S. and K. Seo, "Security Architecture for the
               Internet Protocol", RFC 4301, December 2005.

  [ESP]        Kent, S., "IP Encapsulating Security Payload (ESP)",
               RFC 4303, December 2005.

  [HMAC]       Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
               Hashing for Message Authentication", RFC 2104,
               February 1997.

  [HMAC-SHA1]  Madsen, C. and R. Glenn, "The Use of HMAC-SHA-1-96
               within ESP and AH", RFC 2404, November 1998.

  [HMAC-TEST]  Nystrom, M., "Identifiers and Test Vectors for HMAC-SHA-
               224, HMAC-SHA-256, HMAC-SHA-384, and HMAC-SHA-512",
               RFC 4231, December 2005.

  [IKE]        Harkins, D. and D. Carrel, "The Internet Key Exchange
               (IKE)", RFC 2409, November 1998.

  [IKEv2]      Kaufman, C., "Internet Key Exchange (IKEv2) Protocol",
               RFC 4306, December 2005.

  [SHA2-1]     NIST, "FIPS PUB 180-2 'Specifications for the Secure
               Hash Standard'", 2004 FEB, <http://csrc.nist.gov/
               publications/fips/fips180-2/
               fips180-2withchangenotice.pdf>.

  [SHA256+]    Eastlake, D. and T. Hansen, "US Secure Hash Algorithms
               (SHA and HMAC-SHA)", RFC 4634, July 2006.






Kelly & Frankel             Standards Track                    [Page 19]

RFC 4868        HMAC-SHA256, SHA384, and SHA512 in IPsec        May 2007


6.2.  Informative References

  [SHA2-2]     NIST, "Descriptions of SHA-256, SHA-384, and SHA-512",
               2001 MAY,
               <http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf>.

Authors' Addresses

  Scott G. Kelly
  Aruba Networks
  1322 Crossman Ave
  Sunnyvale, CA  94089
  US

  EMail: [email protected]


  Sheila Frankel
  NIST
  Bldg. 222 Room B264
  Gaithersburg, MD  20899
  US

  EMail: [email protected]



























Kelly & Frankel             Standards Track                    [Page 20]

RFC 4868        HMAC-SHA256, SHA384, and SHA512 in IPsec        May 2007


Full Copyright Statement

  Copyright (C) The IETF Trust (2007).

  This document is subject to the rights, licenses and restrictions
  contained in BCP 78, and except as set forth therein, the authors
  retain all their rights.

  This document and the information contained herein are provided on an
  "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
  OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
  THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
  OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
  THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
  WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

  The IETF takes no position regarding the validity or scope of any
  Intellectual Property Rights or other rights that might be claimed to
  pertain to the implementation or use of the technology described in
  this document or the extent to which any license under such rights
  might or might not be available; nor does it represent that it has
  made any independent effort to identify any such rights.  Information
  on the procedures with respect to rights in RFC documents can be
  found in BCP 78 and BCP 79.

  Copies of IPR disclosures made to the IETF Secretariat and any
  assurances of licenses to be made available, or the result of an
  attempt made to obtain a general license or permission for the use of
  such proprietary rights by implementers or users of this
  specification can be obtained from the IETF on-line IPR repository at
  http://www.ietf.org/ipr.

  The IETF invites any interested party to bring to its attention any
  copyrights, patents or patent applications, or other proprietary
  rights that may cover technology that may be required to implement
  this standard.  Please address the information to the IETF at
  [email protected].

Acknowledgement

  Funding for the RFC Editor function is currently provided by the
  Internet Society.







Kelly & Frankel             Standards Track                    [Page 21]