Network Working Group                                     T. Murphy, Jr.
Request for Comments: 4777                                      P. Rieth
Obsoletes: 2877                                               J. Stevens
Category: Informational                                              IBM
                                                          November 2006


                  IBM's iSeries Telnet Enhancements

Status of This Memo

  This memo provides information for the Internet community.  It does
  not specify an Internet standard of any kind.  Distribution of this
  memo is unlimited.

Copyright Notice

  Copyright (C) The IETF Trust (2006).

IESG Note

  This RFC is not a candidate for any level of Internet Standard.  The
  IETF disclaims any knowledge of the fitness of this RFC for any
  purpose and in particular notes that the decision to publish is not
  based on IETF review for such things as security, congestion control,
  or inappropriate interaction with deployed protocols.  The RFC Editor
  has chosen to publish this document at its discretion.  Readers of
  this document should exercise caution in evaluating its value for
  implementation and deployment.  See RFC 3932 for more information.

Abstract

  This document describes the interface to the Telnet server on IBM's
  iSeries line of midrange business computers.  This interface allows
  Telnet clients to request a Telnet terminal or printer session using
  specific session attributes related to device names, encryption,
  language support, auto-sign-on, response codes, session association,
  etc.

  These support functions are implemented primarily using the Telnet
  Environment option negotiation RFC 1572 to define new USERVAR
  variables that will be recognized by iSeries Telnet server.









Murphy, et al.               Informational                      [Page 1]

RFC 4777           IBM's iSeries Telnet Enhancements       November 2006


Table of Contents

  1. Introduction ....................................................2
  2. Standard Telnet Option Negotiation ..............................3
  3. Enhanced Telnet Option Negotiation ..............................4
  4. Enhanced Display Emulation Support ..............................7
  5. Enhanced Display Auto-Sign-On and Password Encryption ...........9
     5.1. Data Encryption Standard (DES) Password Substitutes .......13
     5.2. Secure Hash Algorithm (SHA) Password Substitutes ..........16
  6. Kerberos Services Ticket Automatic Sign-On Support .............18
  7. Device Name Collision Processing ...............................21
  8. Enhanced Printer Emulation Support .............................22
  9. Telnet Printer Terminal Types ..................................23
  10. Startup Response Record for Printer and Display Devices .......25
     10.1. Example of a Success Response Record .....................26
     10.2. Example of an Error Response Record ......................27
     10.3. Example of a Response Record with Device Name Retry ......28
     10.4. Response Codes ...........................................31
  11. Printer Steady-State Pass-Through Interface ...................33
     11.1. Example of a Print Record ................................35
     11.2. Example of a Print Complete Record .......................37
     11.3. Example of a Null Print Record ...........................37
  12. End-to-End Print Example ......................................39
  13. Security Considerations .......................................44
  14. IANA Considerations ...........................................44
  15. Normative References ..........................................44
  16. Informative References ........................................44
  17. Relation to Other RFCs ........................................45

1.  Introduction

  The iSeries Telnet server enables clients to negotiate both terminal
  and printer device names through Telnet Environment Options
  Negotiations [RFC1572].

  This allows Telnet servers and clients to exchange environment
  information using a set of standard or custom variables.  By using a
  combination of both standard VARs and custom USERVARs, the iSeries
  Telnet server allows client Telnet to request a pre-defined specific
  device by name.

  If no pre-defined device exists, then the device will be created,
  with client Telnet having the option to negotiate device attributes,
  such as the code page, character set, keyboard type, etc.

  Since printers can now be negotiated as a device name, new terminal
  types have been defined to request printers.  For example, you can




Murphy, et al.               Informational                      [Page 2]

RFC 4777           IBM's iSeries Telnet Enhancements       November 2006


  now negotiate "IBM-3812-1" and "IBM-5553-B01" as valid TERMINAL-TYPE
  options [RFC1091].

  Finally, the iSeries Telnet server will allow exchange of user
  profile and password information, where the password may be in either
  plain text or encrypted form.  If a valid combination of profile and
  password is received, then the client is allowed to bypass the sign-
  on panel.  The local server setting of the QRMTSIGN system value must
  be either *VERIFY or *SAMEPRF for the bypass of the sign-on panel to
  succeed.

2.  Standard Telnet Option Negotiation

  Telnet server option negotiation [RFC855] typically begins with the
  issuance, by the server, of an invitation to engage in terminal type
  negotiation with the Telnet client (DO TERMINAL-TYPE) [RFC1091].  The
  client and server then enter into a series of sub-negotiations to
  determine the level of terminal support that will be used.  After the
  terminal type is agreed upon, the client and server will normally
  negotiate a required set of additional options (EOR [RFC885], BINARY
  [RFC856], SGA [RFC858]) that are required to support "transparent
  mode" or full screen 5250/3270 block mode support.  As soon as the
  required options have been negotiated, the server will suspend
  further negotiations and begin with initializing the actual virtual
  device on the iSeries.  A typical exchange might start as follows:

  iSeries Telnet server             Enhanced Telnet client
  --------------------------        -------------------------
  IAC DO TERMINAL-TYPE        -->
                              <--   IAC WILL TERMINAL-TYPE
  IAC SB TERMINAL-TYPE SEND
  IAC SE                      -->
                                    IAC SB TERMINAL-TYPE IS
                              <--   IBM-5555-C01 IAC SE
  IAC DO EOR                  -->
                              <--   IAC WILL EOR
                              <--   IAC DO EOR
  IAC WILL EOR                -->
                               .
                               .
  (other negotiations)         .










Murphy, et al.               Informational                      [Page 3]

RFC 4777           IBM's iSeries Telnet Enhancements       November 2006


  Actual bytes transmitted in the above example are shown in hex below.

  iSeries Telnet server             Enhanced Telnet client
  --------------------------        -------------------------
  FF FD 18                    -->
                              <--   FF FB 18
  FF FA 18 01 FF F0           -->
                                    FF FA 18 00 49 42 4D 2D
                                    35 35 35 35 2D 43 30 31
                              <--   FF F0
  FF FD 19                    -->
                              <--   FF FB 19
                              <--   FF FD 19
  FF FB 19                    -->
                               .
                               .
  (other negotiations)         .

  Some negotiations are symmetrical between client and server, and some
  are negotiated in one direction only.  Also, it is permissible and
  common practice to bundle more than one response or request, or to
  combine a request with a response, so in practice the actual exchange
  may look different from what is shown above.

3.  Enhanced Telnet Option Negotiation

  In order to accommodate the new environment option negotiations, the
  server will bundle an environment option invitation along with the
  standard terminal type invitation request to the client.

  A client should either send a negative acknowledgment (WONT NEW-
  ENVIRON), or at some point after completing terminal-type
  negotiations, but before completing the full set of negotiations
  required for 5250 transparent mode, engage in environment option
  sub-negotiation with the server.  A maximum of 1024 bytes of
  environment strings may be sent to the server.  A recommended
  sequence might look like the following:














Murphy, et al.               Informational                      [Page 4]

RFC 4777           IBM's iSeries Telnet Enhancements       November 2006


  iSeries Telnet server             Enhanced Telnet client
  --------------------------        -------------------------
  IAC DO NEW-ENVIRON
  IAC DO TERMINAL-TYPE        -->
  (2 requests bundled)
                              <--   IAC WILL NEW-ENVIRON
  IAC SB NEW-ENVIRON SEND
  VAR IAC SE                  -->
                                    IAC SB NEW-ENVIRON IS
                                    VAR "USER" VALUE "JONES"
                                    USERVAR "DEVNAME"
                                    VALUE "MYDEVICE07"
                              <--   IAC SE
                              <--   IAC WILL TERMINAL-TYPE
                                    (do the terminal type
                                    sequence first)
  IAC SB TERMINAL-TYPE SEND
  IAC SE                      -->
                                    IAC SB TERMINAL-TYPE IS
                              <--   IBM-5555-C01 IAC SE
                                    (terminal type negotiations
                                    completed)
  IAC DO EOR                  -->
  (server will continue
  with normal transparent
  mode negotiations)
                              <--   IAC WILL EOR
                               .
                               .
  (other negotiations)         .





















Murphy, et al.               Informational                      [Page 5]

RFC 4777           IBM's iSeries Telnet Enhancements       November 2006


  Actual bytes transmitted in the above example are shown in hex below.

  iSeries Telnet server             Enhanced Telnet client
  --------------------------        -------------------------
  FF FD 27
  FF FD 18                    -->
  (2 requests bundled)
                              <--   FF FB 27
  FF FA 27 01 00 FF F0        -->
                                    FF FA 27 00 00 55 53 45
                                    52 01 4A 4F 4E 45 53 03
                                    44 45 56 4E 41 4D 45 01
                                    4D 59 44 45 56 49 43 45
                              <--   30 37 FF F0
                              <--   FF FB 18
                                    (do the terminal type
                                    sequence first)
  FF FA 18 01 FF F0           -->
                                    FF FA 18 00 49 42 4D 2D
                                    35 35 35 35 2D 43 30 31
                              <--   FF F0
  FF FD 19                    -->
  (server will continue
  with normal transparent
  mode negotiations)
                              <--   FF FB 19
                               .
                               .
  (other negotiations)         .

  Telnet environment options defines 6 standard VARs: USER, JOB, ACCT,
  PRINTER, SYSTEMTYPE, and DISPLAY.  The USER standard VAR will hold
  the value of the iSeries user profile name to be used in auto-sign-on
  requests.  The Telnet server will make no direct use of the
  additional 5 VARs, nor are any of them required to be sent.  All
  standard VARs and their values that are received by the Telnet server
  will be placed in a buffer, along with any USERVARs received
  (described below), and made available to a registered initialization
  exit program to be used for any purpose desired.

  There are some reasons you may want to send NEW-ENVIRON negotiations
  prior to TERMINAL-TYPE negotiations.  With an iSeries Telnet server,
  several virtual device modes can be negotiated: 1) VTxxx device, 2)
  3270 device, and 3) 5250 device (includes Network Station).  The
  virtual device mode selected depends on the TERMINAL-TYPE negotiated
  plus any other Telnet option negotiations necessary to support those
  modes.  The iSeries Telnet server will create the desired virtual
  device at the first opportunity it thinks it has all the requested



Murphy, et al.               Informational                      [Page 6]

RFC 4777           IBM's iSeries Telnet Enhancements       November 2006


  attributes needed to create the device.  This can be as early as
  completion of the TERMINAL-TYPE negotiations.

  For the case of Transparent mode (5250 device), the moment TERMINAL-
  TYPE, BINARY, and EOR options are negotiated, the Telnet server will
  go create the virtual device.  Receiving any NEW-ENVIRON negotiations
  after these option negotiations are complete will result in the NEW-
  ENVIRON negotiations having no effect on device attributes, as the
  virtual device will have already been created.

  So, for Transparent mode, NEW-ENVIRON negotiations are effectively
  closed once EOR is negotiated, since EOR is generally the last option
  done.

  For other devices modes (such as VTxxx or 3270), you cannot be sure
  when the iSeries Telnet server thinks it has all the attributes to
  create the device.  Recall that NEW-ENVIRON negotiations are
  optional, and therefore the iSeries Telnet server need not wait for
  any NEW-ENVIRON options prior to creating the virtual device.  It is
  in the clients' best interest to send NEW-ENVIRON negotiations as
  soon as possible, preferably before TERMINAL-TYPE is negotiated.
  That way, the client can be sure that the requested attributes were
  received before the virtual device is created.

4.  Enhanced Display Emulation Support

  Telnet environment option USERVARs have been defined to allow a
  compliant Telnet client more control over the Telnet server virtual
  device on the iSeries and to provide information to the Telnet server
  about the client.  These USERVARs allow the client Telnet to create
  or select a previously created virtual device.  If the virtual device
  does not exist and must be created, then the USERVAR variables are
  used to create and initialize the device attributes.  If the virtual
  device already exists, the device attributes are modified.

















Murphy, et al.               Informational                      [Page 7]

RFC 4777           IBM's iSeries Telnet Enhancements       November 2006


  The USERVARs defined to accomplish this are:

  USERVAR        VALUE              EXAMPLE         DESCRIPTION
  --------       ----------------   --------------  -------------------
  DEVNAME        us-ascii char(x)   MYDEVICE07      Display device name
  KBDTYPE        us-ascii char(3)   USB             Keyboard type
  CODEPAGE       us-ascii char(y)   437             Code page
  CHARSET        us-ascii char(y)   1212            Character set
  IBMSENDCONFREC us-ascii char(3)   YES | NO        Startup Response
                                                      Record desired
  IBMASSOCPRT    us_ascii char(x)   RFCPRT          Printer associated
                                                      with display
                                                      device

  x - up to a maximum of 10 characters
  y - up to a maximum of 5 characters

  For a description of the KBDTYPE, CODEPAGE, and CHARSET parameters
  and their permissible values, refer to Chapter 8 in the
  Communications Configuration Reference [COMM-CONFIG] and also to
  Appendix C in National Language Support [NLS-SUPPORT].

  The CODEPAGE and CHARSET USERVARs must be associated with a KBDTYPE
  USERVAR.  If either CODEPAGE or CHARSET are sent without KBDTYPE,
  they will default to system values.  A default value for KBDTYPE can
  be sent to force CODEPAGE and CHARSET values to be used.

  iSeries system objects such as device names, user profiles, plain
  text passwords, programs, libraries, etc., are required to be
  specified in English uppercase.  This includes:

     any letter (A-Z), any number (0-9), special characters (# $ _ @)

  Therefore, where us-ascii is specified for VAR or USERVAR values, it
  is recommended that uppercase ASCII values be sent, which will be
  converted to Extended Binary Coded Decimal Interchange Code (EBCDIC)
  by the Telnet server.

  A special case occurs for encrypted passwords (described in the next
  section), where both the initial password and user profile used to
  build the encrypted password must be EBCDIC English uppercase, in
  order to be properly authenticated by the Telnet server.

  The IBMASSOCPRT USERVAR is used to provide the device name of a
  printer that will be associated with the display device that is
  created.  The device description of the printer name provided must
  currently exist on the Telnet server system.  The IBMSENDCONFREC
  USERVAR is used by the enhanced Telnet client to inform the Telnet



Murphy, et al.               Informational                      [Page 8]

RFC 4777           IBM's iSeries Telnet Enhancements       November 2006


  server that a display Startup Response Record should be sent to the
  client.  This record communicates the name of the actual display
  device acquired.  If the attempt is unsuccessful, the reason code
  will be set to provide additional information on why the attempt
  failed.  In addition to the device name and reason code, the Startup
  Response Record will contain the name of the Telnet server system.

  For more details on the Startup Response Record, see Section 11 of
  this document.

5.  Enhanced Display Auto-Sign-On and Password Encryption

  To allow password encryption, new IBMRSEED and IBMSUBSPW USERVARs
  will be used to exchange seed and substitute passwords information.
  IBMRSEED will carry a random seed to be used in both the Data
  Encryption Standard (DES) and Secure Hash Algorithm (SHA) password
  encryption, and IBMSUBSPW will carry the encrypted copy of the
  password.

  The DES encryption would use the same 7-step DES-based password
  substitution scheme as APPC and Client Access.  For a description of

  DES encryption, refer to Federal Information Processing Standards
  Publications (FIPS) 46-2 [FIPS-46-2] and 81 [FIPS-81].

  The SHA encryption is described in Federal Information Processing
  Standards Publication 180-1 [FIPS-180-1].

  The FIPS documents can be found at the Federal Information Processing
  Standards Publications link:

     http://www.itl.nist.gov/fipspubs/by-num.htm

  If encrypted password exchange is not required, plain text password
  exchange is permitted using the same USERVARs defined for encryption.
  For this case, the random client seed should be set either to an
  empty value (preferred method) or to hexadecimal zeros to indicate
  the password is not encrypted, but is plain text.

  It should be noted that security of plain text password exchange
  cannot be guaranteed unless the network is physically protected or a
  trusted network (such as an intranet).  If your network is vulnerable
  to IP address spoofing or directly connected to the Internet, you
  should engage in encrypted password exchange to validate a client's
  identity.

  Additional VARs and USERVARs have also been defined to allow an
  auto-sign-on user greater control over their startup environment,



Murphy, et al.               Informational                      [Page 9]

RFC 4777           IBM's iSeries Telnet Enhancements       November 2006


  similar to what is supported using the Open Virtual Terminal
  (QTVOPNVT) API [SYSTEM-API].

  The standard VARs supported to accomplish this are:

  VAR        VALUE              EXAMPLE           DESCRIPTION
  --------   ----------------   ----------------  -------------------
  USER       us-ascii char(x)   USERXYZ           User profile name

  x - up to a maximum of 10 characters

  The custom USERVARs defined to accomplish this are:

  USERVAR       VALUE              EXAMPLE            DESCRIPTION
  --------      ----------------   ----------------   -----------------
  IBMRSEED      binary(8)          8-byte hex field   Random client
                                                        seed
  IBMSUBSPW     binary(128)        128-byte hex field Substitute
                                                        password
  IBMCURLIB     us-ascii char(x)   QGPL               Current library
  IBMIMENU      us-ascii char(x)   MAIN               Initial menu
  IBMPROGRAM    us-ascii char(x)   QCMD               Program to call

  x - up to a maximum of 10 characters

  In order to communicate the server random seed value to the client,
  the server will request a USERVAR name made up of a fixed part (the 8
  characters "IBMRSEED") immediately followed by an 8-byte hexadecimal
  variable part, which is the server random seed.  The client generates
  its own 8-byte random seed value and uses both seeds to encrypt the
  password.  Both the encrypted password and the client random seed
  value are then sent to the server for authentication.  Telnet
  environment option rules will need to be adhered to when transmitting
  the client random seed and substituted password values to the server.
  Specifically, since a typical environment string is a variable length
  hexadecimal field, the hexadecimal fields are required to be escaped
  and/or byte stuffed according to the RFC 854 [RFC854], where any
  single byte could be misconstrued as a Telnet IAC or other Telnet
  option negotiation control character.  The client must escape and/or
  byte stuff any bytes that could be seen as a Telnet environment
  option, specifically VAR, VALUE, ESC, and USERVAR.

  If you use the IBMSENDCONFREC USERVAR, as described in Section 5 of
  this document, with a value of YES along with the automatic sign-on
  USERVARs described above, you will receive a Startup Response Record
  that will contain a response code informing your Telnet client of the
  success or failure of the automatic sign-on attempt.  See Section 11
  of this document for details on the Startup Response Record.



Murphy, et al.               Informational                     [Page 10]

RFC 4777           IBM's iSeries Telnet Enhancements       November 2006


  The following illustrates the encrypted case:

  iSeries Telnet server            Enhanced Telnet client
  --------------------------       -------------------------------
  IAC DO NEW-ENVIRON          -->
                              <--  IAC WILL NEW-ENVIRON
  IAC SB NEW-ENVIRON SEND
  USERVAR "IBMRSEEDxxxxxxxx"
  USERVAR "IBMSUBSPW"
  VAR USERVAR IAC SE          -->
                                   IAC SB NEW-ENVIRON IS
                                   VAR "USER" VALUE "DUMMYUSR"
                                   USERVAR "IBMRSEED" VALUE "yyyyyyyy"
                                   USERVAR "IBMSUBSPW" VALUE "zzzzzzzz"
                              <--  IAC SE
                               .
                               .
  (other negotiations)         .

  In this example, "xxxxxxxx" is an 8-byte hexadecimal random server
  seed, "yyyyyyyy" is an 8-byte hexadecimal random client seed, and
  "zzzzzzzz" is an 8-byte hexadecimal encrypted password (if the DES
  encryption algorithm was used) or a 20-byte hexadecimal encrypted
  password (if the SHA encryption algorithm was used).  If the password
  is not valid, then the sign-on panel is not bypassed.  If the
  password is expired, then the sign-on panel is not bypassed.

  Actual bytes transmitted in the above example are shown in hex below,
  where the server seed is "7D3E488F18080404", the client seed is
  "4E4142334E414233", and the DES encrypted password is
  "DFB0402F22ABA3BA".  The user profile used to generate the encrypted
  password is "44554D4D59555352" (DUMMYUSR), with a plain text password
  of "44554D4D595057" (DUMMYPW).


















Murphy, et al.               Informational                     [Page 11]

RFC 4777           IBM's iSeries Telnet Enhancements       November 2006


  iSeries Telnet server            Enhanced Telnet client
  --------------------------       -------------------------
  FF FD 27                    -->
                              <--  FF FB 27
  FF FA 27 01 03 49 42 4D
  52 53 45 45 44 7D 3E 48
  8F 18 08 04 04 03 49 42
  4D 53 55 42 53 50 57 03
  00 FF F0                    -->
                                   FF FA 27 00 00 55 53 45
                                   52 01 44 55 4D 4D 59 55
                                   53 52 03 49 42 4D 52 53
                                   45 45 44 01 4E 41 42 33
                                   4E 41 42 33 03 49 42 4D
                                   53 55 42 53 50 57 01 DF
                                   B0 40 2F 22 AB A3 BA FF
                              <--  F0

  The following illustrates the plain text case:

  iSeries Telnet server            Enhanced Telnet client
  --------------------------       -------------------------
  IAC DO NEW-ENVIRON          -->
                              <--  IAC WILL NEW-ENVIRON
  IAC SB NEW-ENVIRON SEND
  USERVAR "IBMRSEEDxxxxxxxx"
  USERVAR "IBMSUBSPW"
  VAR USERVAR IAC SE          -->
                                   IAC SB NEW-ENVIRON IS
                                   VAR "USER" VALUE "DUMMYUSR"
                                   USERVAR "IBMRSEED" VALUE
                                   USERVAR "IBMSUBSPW" VALUE "yyyyyyyy"
                              <--  IAC SE
                               .
                               .
  (other negotiations)         .

  In this example, "xxxxxxxx" is an 8-byte hexadecimal random server
  seed, and "yyyyyyyyyy" is a 128-byte us-ascii client plain text
  password.  If the password has expired, then the sign-on panel is not
  bypassed.

  Actual bytes transmitted in the above example are shown in hex below,
  where the server seed is "7D3E488F18080404", the client seed is
  empty, and the plain text password is "44554D4D595057" (DUMMYPW).
  The user profile used is "44554D4D59555352" (DUMMYUSR).





Murphy, et al.               Informational                     [Page 12]

RFC 4777           IBM's iSeries Telnet Enhancements       November 2006


  iSeries Telnet server            Enhanced Telnet client
  --------------------------       -------------------------
  FF FD 27                    -->
                              <--  FF FB 27
  FF FA 27 01 03 49 42 4D
  52 53 45 45 44 7D 3E 48
  8F 18 08 04 04 03 49 42
  4D 53 55 42 53 50 57 03
  00 FF F0                    -->
                                   FF FA 27 00 00 55 53 45
                                   52 01 44 55 4D 4D 59 55
                                   53 52 03 49 42 4D 52 53
                                   45 45 44 01 03 49 42 4D
                                   53 55 42 53 50 57 01 44
                              <--  55 4D 4D 59 50 57 FF F0

5.1.  Data Encryption Standard (DES) Password Substitutes

  Both APPC and Client Access use well-known DES encryption algorithms
  to create encrypted passwords.  A Network Station or Enhanced Client
  can generate compatible encrypted passwords if it follows these
  steps, details of which can be found in the Federal Information
  Processing Standards 46-2 [FIPS-46-2].

  1) Padded_PW = Left justified user password padded to the right with
     '40'X to 8 bytes.

     The user's password must be left justified in an 8-byte variable
     and padded to the right with '40'X up to an 8-byte length.  If the
     user's password is 8 bytes in length, no padding will occur.  For
     computing password substitutes for passwords of length 9 and 10,
     see "Handling passwords of length 9 and 10" below.  Passwords less
     than 1 byte or greater than 10 bytes in length are not valid.
     Please note that if password is not in EBCDIC, it must be
     converted to EBCDIC uppercase.

  2) XOR_PW = Padded_PW xor '5555555555555555'X

     The padded password is Exclusive OR'ed with 8 bytes of '55'X.

  3) SHIFT_RESULT = XOR_PW << 1

     The entire 8-byte result is shifted 1 bit to the left; the left-
     most bit value is discarded, and the rightmost bit value is
     cleared to 0.

  4) PW_TOKEN = DES_ECB_mode(SHIFT_RESULT,              /* key  */
                             userID_in_EBCDIC_uppercase /* data */ )



Murphy, et al.               Informational                     [Page 13]

RFC 4777           IBM's iSeries Telnet Enhancements       November 2006


     This shifted result is used as key to the Data Encryption Standard
     (Federal Information Processing Standards 46-2 [FIPS-46-2]) to
     encipher the user identifier.  When the user identifier is less
     than 8 bytes, it is left justified in an 8-byte variable and
     padded to the right with '40'X.  When the user identifier is 9 or
     10 bytes, it is first padded to the right with '40'X to a length
     of 10 bytes.  Then bytes 9 and 10 are "folded" into bytes 1-8
     using the following algorithm:

       Bit 0 is the high-order bit (i.e., has value of '80'X).

       Byte 1, bits 0 and 1 are replaced with byte 1, bits 0 and 1
       Exclusive OR'ed with byte 9, bits 0 and 1.
       Byte 2, bits 0 and 1 are replaced with byte 2, bits 0 and 1
       Exclusive OR'ed with byte 9, bits 2 and 3.
       Byte 3, bits 0 and 1 are replaced with byte 3, bits 0 and 1
       Exclusive OR'ed with byte 9, bits 4 and 5.
       Byte 4, bits 0 and 1 are replaced with byte 4, bits 0 and 1
       Exclusive OR'ed with byte 9, bits 6 and 7.
       Byte 5, bits 0 and 1 are replaced with byte 5, bits 0 and 1
       Exclusive OR'ed with byte 10, bits 0 and 1.
       Byte 6, bits 0 and 1 are replaced with byte 6, bits 0 and 1
       Exclusive OR'ed with byte 10, bits 2 and 3.
       Byte 7, bits 0 and 1 are replaced with byte 7, bits 0 and 1
       Exclusive OR'ed with byte 10, bits 4 and 5.
       Byte 8, bits 0 and 1 are replaced with byte 8, bits 0 and 1
       Exclusive OR'ed with byte 10, bits 6 and 7.

     User identifiers greater than 10 bytes or less than 1 byte are not
     the result of this encryption ID, known as PW_TOKEN in the paper.

  5) Increment PWSEQs and store it.

     Each LU must maintain a pair of sequence numbers for ATTACHs sent
     and received on each session.  Each time an ATTACH is generated,
     (and password substitutes are in use on the session) the sending
     sequence number, PWSEQs, is incremented and saved for the next
     time.  Both values are set to zero at BIND time.  So the first use
     of PWSEQs has the value of 1 and increases by one with each use.
     A new field is added to the ATTACH to carry this sequence number.
     However, in certain error conditions, it is possible for the
     sending side to increment the sequence number, and the receiver
     may not increment it.  When the sender sends a subsequent ATTACH,
     the receiver will detect a missing sequence.  This is allowed.
     However the sequence number received must always be larger than
     the previous one, even if some are missing.





Murphy, et al.               Informational                     [Page 14]

RFC 4777           IBM's iSeries Telnet Enhancements       November 2006


     The maximum number of consecutive missing sequence numbers allowed
     is 16.  If this is exceeded, the session is unbound with a
     protocol violation.

     Note: The sequence number must be incremented for every ATTACH
     sent.  However, the sequence number field is only required to be
     included in the FMH5 if a password substitute is sent (byte 4, bit
     3 on).

  6) RDrSEQ = RDr + PWSEQs  /* RDr is server seed. */

     The current value of PWSEQs is added to RDr, the random value
     received from the partner LU on this session, yielding RDrSEQ,
     essentially a predictably modified value of the random value
     received from the partner LU at BIND time.

  7) PW_SUB = DES_CBC_mode(PW_TOKEN,        /* key      */
                           (RDrSEQ,         /* 8 bytes  */
                            RDs,            /* 8 bytes  */
                            ID xor RDrSEQ,  /* 16 bytes */
                            PWSEQs,         /* 8 bytes  */
                            )               /* data     */
                           )

       The PW_TOKEN is used as a key to the DES function to generate an
       8-byte value for the following string of inputs.  The DES CBC
       mode Initialization Vector (IV) used is 8 bytes of '00'X.

         RDrSEQ: the random data value received from the partner LU
                 plus the sequence number.

         RDs:    the random data value sent to the partner LU on BIND
                 for this session.

         A 16-byte value created by:

                 - padding the user identifier with '40'X to a length
                   of 16 bytes.

                 - Exclusive OR'ing the two 8-byte halves of the padded
                   user identifier with the RDrSEQ value.

                   Note: User ID must first be converted to EBCDIC
                   uppercase.

         PWSEQs: the sequence number.





Murphy, et al.               Informational                     [Page 15]

RFC 4777           IBM's iSeries Telnet Enhancements       November 2006


     This is similar to the process used on LU-LU verification as
     described in the Enhanced LU-LU Bind Security.  The resulting
     enciphered random data is the 'password substitute'.

  8) Handling passwords of length 9 and 10

     1. Generate PW_TOKENa by using characters 1 to 8 of the password
        and steps 1-4 from the previous section.

     2. Generate PW_TOKENb by using characters 9 and 10 and steps 1-4
        from the previous section.  In this case, Padded_PW from step 1
        will be characters 9 and 10 padded to the right with '40'X, for
        a total length of 8.

     3. PW_TOKEN = PW_TOKENa xor PW_TOKENb

     4. Now compute PW_SUB by performing steps 5-7 from the previous
        section.

  9) Example DES Password Substitute Calculation

     ID:           USER123
     Password:     ABCDEFG
     Server seed:  '7D4C2319F28004B2'X
     Client seed:  '08BEF662D851F4B1'X
     PWSEQs:       1     (PWSEQs is a sequence number needed in the
                          7-step encryption, and it is always one)

     DES Encrypted Password should be: '5A58BD50E4DD9B5F'X

5.2.  Secure Hash Algorithm (SHA) Password Substitutes

  A Network Station or Enhanced Client can generate SHA encrypted
  passwords if it follows these steps.

  1) Convert the user identifier to uppercase UNICODE format (if it is
     not already in this format).

     The user identifier must be left justified in a 10-byte variable
     and padded to the right with '40'X up to a 10-byte length prior to
     converting it to UNICODE.  If the user's password is 10 bytes in
     length, no padding will occur.  User identifiers of less than 1
     byte or greater than 10 bytes in length are not valid.  The user
     identifier will be 20 bytes in length after conversion to UNICODE,
     so the variable that will hold the UNICODE user identifier should
     have a length of 20 bytes.





Murphy, et al.               Informational                     [Page 16]

RFC 4777           IBM's iSeries Telnet Enhancements       November 2006


  2) Ensure the password is in UNICODE format (if it is not already in
     this format).

     The user's password must be left justified in a 128-byte variable.
     It does not need to be padded to the right with '40'X up to a
     128-byte length.  Passwords less than 1 byte or greater than 128
     bytes in length are not valid. The password will be 2 times its
     original length after conversion to UNICODE, so the maximum length
     of the variable that will hold the UNICODE password is 256 bytes.

  3) Create a 20-byte password token as follows:

     PW_token = SHA-1(uppercase_unicode_userid,         /* 20 bytes */
                      unicode_password)      /* from 2 to 256 bytes */

     The actual routine to be used to perform the SHA-1 processing is
     dependent on the programming language being used.  For example, if
     using the Java language, then use the java.security class to
     perform the actual SHA-1 processing.

     The PW_token will be used in subsequent step to actually generate
     the final substitute password.

  4) Increment PWSEQs and store it.

  5) Create the 20-byte substitute password as follows:

     PW_SUB = SHA-1(PW_token,                        /* 20 bytes */
                    serverseed,                      /*  8 bytes */
                    clientseed,                      /*  8 bytes */
                    uppercase_unicode_userid,        /* 20 bytes */
                    PWSEQ)                           /*  8 bytes */

     The actual routine to be used to perform the SHA-1 processing is
     dependent on the programming language being used.  For example, if
     using the Java language, then use the java.security class to
     perform the actual SHA-1 processing.

  6) Example SHA Password Substitute Calculation

     ID:           USER123
     Password:     AbCdEfGh123?+
     Server seed:  '3E3A71C78795E5F5'X
     Client seed:  'B1C806D5D377D994'X
     PWSEQs:       1     (PWSEQs is a sequence number needed in the
                          SHA encryption, and it is always one)





Murphy, et al.               Informational                     [Page 17]

RFC 4777           IBM's iSeries Telnet Enhancements       November 2006


     SHA Encrypted Password should be:

              'E7FAB5F034BEDA42E91F439DD07532A24140E3DD'X

6.  Kerberos Services Ticket Automatic Sign-On Support

  An iSeries Telnet server specific USERVAR defined below will contain
  the complete Generic Security Services (GSS) token for use on the
  iSeries.  Enhanced Telnet clients will need to obtain the Kerberos
  services ticket from a Key Distribution Center (KDC).  Implementation
  steps for acquiring the Kerberos services ticket will be limited to
  the Microsoft Security Support Provider Interface (SSPI) example
  below.  For information on Kerberos services tickets, refer to your
  Network Authentication Service (NAS) documentation.

  The custom USERVAR defined is:

  USERVAR   VALUE         EXAMPLE              DESCRIPTION
  --------- ------------- -------------------- -------------------
  IBMTICKET binary(16384) 16384-byte hex field Kerberos services token

  Several other USERVARs, as defined in Section 6, can be used along
  with the IBMTICKET USERVAR to allow a user greater control over their
  startup environment.

  The custom USERVARs defined to accomplish this are:

  USERVAR       VALUE              EXAMPLE            DESCRIPTION
  --------      ----------------   ----------------   -----------------
  IBMCURLIB     us-ascii char(x)   QGPL               Current library
  IBMIMENU      us-ascii char(x)   MAIN               Initial menu
  IBMPROGRAM    us-ascii char(x)   QCMD               Program to call

  x - up to a maximum of 10 characters

  If you use the IBMSENDCONFREC USERVAR, as described in Section 5,
  with a value of YES along with the Kerberos ticket USERVARs described
  above, you will receive a Startup Response Record that will contain a
  response code informing your Telnet client of the success or failure
  of the Kerberos validation attempt.  See Section 11 for details on
  the Startup Response Record.

  The following Microsoft SSPI example illustrates how to get the
  client security token, which contains the Kerberos services ticket.







Murphy, et al.               Informational                     [Page 18]

RFC 4777           IBM's iSeries Telnet Enhancements       November 2006


  1) Get a handle to the user's credentials:

     PSecurityFunctionTable pSSPI_;
     CredHandle credHandle;
     TimeStamp  timeStamp;

     ss = pSSPI_->AcquireCredentialsHandle(
                  NULL,                 // Principal
                  "Kerberos",           // PackageName
                  SECPKG_CRED_OUTBOUND, // CredentialUse
                  NULL,                 // LogonID
                  NULL,                 // AuthData
                  NULL,                 // GetKeyFnc
                  NULL,                 // GetKeyArg
                  &credHandle,          // CredHandle
                  &timeStamp);          // ExpireTime

  2) Initialize security context to "request delegation".  Mutual
     authentication is also requested, although it is not required and
     may not be performed.

     CtxtHandle newContext;
     unsigned long contextAttr;
     unsigned char token[16384] ;
     unsigned long tokenLen = sizeof(token);
     SecBuffer sbo = {tokenLen, SECBUFFER_TOKEN, token};
     SecBufferDesc sbdo = {SECBUFFER_VERSION, 1, &sbo}

     pSSPI_->InitializeSecurityContext(
             &credHandle,               // CredHandle
             NULL,                      // Context
             "krbsrv400/fullyqualifiedLowerCaseSystemName",
                                        // ServicePrincipalName
             ISC_REQ_CONNECTION|ISC_REQ_DELEGATE|ISC_REQ_MUTUAL_AUTH,
                                        // ContextRequest
             NULL,                      // Reserved
             SECURITY_NATIVE_DREP,      // DataRep
             NULL,                      // Input
             NULL,                      // Reserved
             &newContext,               // NewContext
             &sbdo,                     // Output
             &contextAttr,              // ContextAttr
             &timeStamp);               // ExpireTime

  3) Free the user credentials handle with FreeCredentialsHandle().

  4) Send security token to Telnet Server (padded with escape
     characters).



Murphy, et al.               Informational                     [Page 19]

RFC 4777           IBM's iSeries Telnet Enhancements       November 2006


  The following illustrates the Kerberos Token Negotiation:

  iSeries Telnet server            Enhanced Telnet client
  --------------------------       -------------------------------
  IAC DO NEW-ENVIRON          -->
                              <--  IAC WILL NEW-ENVIRON
  IAC SB NEW-ENVIRON SEND
  USERVAR "IBMRSEEDxxxxxxxx"
  VAR USERVAR IAC SE          -->
                                   IAC SB NEW-ENVIRON IS
                                   USERVAR "IBMTICKET" VALUE
                                   "zzzzzzzz..."
                              <--  IAC SE
                               .
                               .
  (other negotiations)         .

  In this example, "xxxxxxxx" is an 8-byte hexadecimal random server
  seed, and "zzzzzzzz..." is the complete Kerberos services token.  If
  the Kerberos services token is not valid, then the sign-on panel is
  not bypassed.  It should be noted that for the Kerberos token a
  random server seed is not needed, although it will be sent by the
  Telnet Server.

  Actual bytes transmitted in the above example are shown in hex below,
  where the server seed is "7D3E488F18080404", and the Kerberos
  services token starts with "DFB0402F22ABA3BA...".  The complete
  Kerberos services token is not shown here, as the length of the token
  could be 16384 bytes and would make this document extremely large.
  As described in Section 6, the client must escape and/or byte stuff
  any Kerberos token bytes, which could be seen as a Telnet environment
  option [RFC1572], specifically VAR, VALUE, ESC, and USERVAR.

  iSeries Telnet server            Enhanced Telnet client
  --------------------------       -------------------------
  FF FD 27                    -->
                              <--  FF FB 27
  FF FA 27 01 03 49 42 4D
  52 53 45 45 44 7D 3E 48
  8F 18 08 04 04 00 03 FF
  F0                          -->
                                   FF FA 27 00 03 49 42 4D
                                   54 49 43 48 45 54 01 DF
                                   B0 40 2F 22 AB A3 BA...
                              <--  FF F0






Murphy, et al.               Informational                     [Page 20]

RFC 4777           IBM's iSeries Telnet Enhancements       November 2006


7.  Device Name Collision Processing

  Device name collision occurs when a Telnet client sends the Telnet
  server a virtual device name that it wants to use, but that device is
  already in use on the server.  When this occurs, the Telnet server
  sends a request to the client asking it to try another device name.
  The environment option negotiation uses the USERVAR name of DEVNAME
  to communicate the virtual device name.  The following shows how the
  Telnet server will request the Telnet client to send a different
  DEVNAME when device name collision occurs.

  iSeries Telnet server            Enhanced Telnet client
  --------------------------       -------------------------
  IAC SB NEW-ENVIRON SEND
  VAR USERVAR IAC SE         -->

  Server requests all environment variables be sent.

                                   IAC SB NEW-ENVIRON IS USERVAR
                                   "DEVNAME" VALUE "MYDEVICE1"
                                   USERVAR "xxxxx" VALUE "xxx"
                                   ...
                             <--   IAC SE

  Client sends all environment variables, including DEVNAME.  Server
  tries to select device MYDEVICE1.  If the device is already in use,
  server requests DEVNAME be sent again.

  IAC SB NEW-ENVIRON SEND
  USERVAR "DEVNAME" IAC SE   -->

  Server sends a request for a single environment variable: DEVNAME

                                   IAC SB NEW-ENVIRON IS USERVAR
                             <--   "DEVNAME" VALUE "MYDEVICE2" IAC SE

  Client sends one environment variable, calculating a new value of
  MYDEVICE2.  If MYDEVICE2 is different from the last request, then
  server tries to select device MYDEVICE2, else server disconnects
  client.  If MYDEVICE2 is also in use, server will send DEVNAME
  request again and keep doing so until it receives a device that is
  not in use, or the same device name twice in row.









Murphy, et al.               Informational                     [Page 21]

RFC 4777           IBM's iSeries Telnet Enhancements       November 2006


8.  Enhanced Printer Emulation Support

  Telnet environment option USERVARs have been defined to allow a
  compliant Telnet client more control over the Telnet server virtual
  device on the iSeries.  These USERVARs allow the client Telnet to
  select a previously created virtual device or auto-create a new
  virtual device with requested attributes.

  This makes the enhancements available to any Telnet client that
  chooses to support the new negotiations.

  The USERVARs defined to accomplish this are:

  USERVAR       VALUE            EXAMPLE           DESCRIPTION
  ------------- ---------------- ----------------  -------------------
  DEVNAME       us-ascii char(x) PRINTER1          Printer device name
  IBMIGCFEAT    us-ascii char(6) 2424J0            IGC feature (DBCS)
  IBMMSGQNAME   us-ascii char(x) QSYSOPR           *MSGQ name
  IBMMSGQLIB    us-ascii char(x) QSYS              *MSGQ library
  IBMFONT       us-ascii char(x) 12                Font
  IBMFORMFEED   us-ascii char(1) C | U | A         Formfeed
  IBMTRANSFORM  us-ascii char(1) 1 | 0             Transform
  IBMMFRTYPMDL  us-ascii char(x) *IBM42023         Mfg. type and model
  IBMPPRSRC1    binary(1)        1-byte hex field  Paper source 1
  IBMPPRSRC2    binary(1)        1-byte hex field  Paper source 2
  IBMENVELOPE   binary(1)        1-byte hex field  Envelope hopper
  IBMASCII899   us-ascii char(1) 1 | 0             ASCII 899 support
  IBMWSCSTNAME  us-ascii char(x) *NONE             WSCST name
  IBMWSCSTLIB   us-ascii char(x) *LIBL             WSCST library

  x - up to a maximum of 10 characters

  The "IBM" prefix on the USERVARs denotes iSeries-specific attributes.

  The DEVNAME USERVAR is used for both displays and printers.  The
  IBMFONT and IBMASCII899 are used only for SBCS environments.

  For a description of most of these parameters (drop the "IBM" from
  the USERVAR) and their permissible values, refer to Chapter 8 in the
  Communications Configuration Reference [COMM-CONFIG].

  The IBMIGCFEAT supports the following variable DBCS language
  identifiers in position 5 (positions 1-4 must be '2424'; position 6
  must be '0'):

      'J' = Japanese              'K' = Korean
      'C' = Traditional Chinese   'S' = Simplified Chinese




Murphy, et al.               Informational                     [Page 22]

RFC 4777           IBM's iSeries Telnet Enhancements       November 2006


  The IBMTRANSFORM and IBMASCII899 values correspond to:

      '1' = Yes  '0' = No

  The IBMFORMFEED values correspond to:

      'C' = Continuous  'U' = Cut  'A' = Autocut

  The IBMPPRSRC1, IBMPPRSRC2, and IBMENVELOPE custom USERVARs do not
  map directly to their descriptions in Chapter 8 in the Communications
  Configuration Reference [COMM-CONFIG].  To map these, use the index
  listed here:

  IBMPPRSRC1    HEX     IBMPPRSRC2    HEX     IBMENVELOPE    HEX
  ----------   -----    ----------   -----    -----------   -----
  *NONE        'FF'X    *NONE        'FF'X    *NONE         'FF'X
  *MFRTYPMDL   '00'X    *MFRTYPMDL   '00'X    *MFRTYPMDL    '00'X
  *LETTER      '01'X    *LETTER      '01'X    *B5           '06'X
  *LEGAL       '02'X    *LEGAL       '02'X    *MONARCH      '09'X
  *EXECUTIVE   '03'X    *EXECUTIVE   '03'X    *NUMBER9      '0A'X
  *A4          '04'X    *A4          '04'X    *NUMBER10     '0B'X
  *A5          '05'X    *A5          '05'X    *C5           '0C'X
  *B5          '06'X    *B5          '06'X    *DL           '0D'X
  *CONT80      '07'X    *CONT80      '07'X
  *CONT132     '08'X    *CONT132     '08'X
  *A3          '0E'X    *A3          '0E'X
  *B4          '0F'X    *B4          '0F'X
  *LEDGER      '10'X    *LEDGER      '10'X

9.  Telnet Printer Terminal Types

  New Telnet options are defined for the printer pass-through mode of
  operation.  To enable printer pass-through mode, both the client and
  server must agree to support at least the Transmit-Binary, End-Of-
  Record, and Terminal-Type Telnet options.  The following are new
  terminal types for printers:

  TERMINAL-TYPE  DESCRIPTION
  -------------  -------------------
  IBM-5553-B01   Double-Byte printer
  IBM-3812-1     Single-Byte printer

  Specific characteristics of the IBM-5553-B01 or IBM-3812-1 printers
  are specified through the USERVAR IBMMFRTYPMDL, which specifies the
  manufacturer type and model.






Murphy, et al.               Informational                     [Page 23]

RFC 4777           IBM's iSeries Telnet Enhancements       November 2006


  An example of a typical negotiation process to establish printer
  pass-through mode of operation is shown below.  In this example, the
  server initiates the negotiation by sending the DO TERMINAL-TYPE
  request.

  For DBCS environments, if IBMTRANSFORM is set to 1 (use Host Print
  Transform), then the virtual device created is 3812, not 5553.
  Therefore, IBM-3812-1 (and not IBM-5553-B01) should be negotiated for
  TERMINAL-TYPE.

  iSeries Telnet server           Enhanced Telnet client
  --------------------------      --------------------------
  IAC DO NEW-ENVIRON         -->
                             <--  IAC WILL NEW-ENVIRON
  IAC SB NEW-ENVIRON SEND
  VAR USERVAR IAC SE         -->
                                  IAC SB NEW-ENVIRON IS
                                  USERVAR "DEVNAME" VALUE "PCPRINTER"
                                  USERVAR "IBMMSGQNAME" VALUE "QSYSOPR"
                                  USERVAR "IBMMSGQLIB" VALUE "*LIBL"
                                  USERVAR "IBMTRANSFORM" VALUE "0"
                                  USERVAR "IBMFONT" VALUE "12"
                                  USERVAR "IBMFORMFEED" VALUE "C"
                                  USERVAR "IBMPPRSRC1" VALUE ESC '01'X
                                  USERVAR "IBMPPRSRC2" VALUE '04'X
                                  USERVAR "IBMENVELOPE" VALUE IAC 'FF'X

                             <--  IAC SE
  IAC DO TERMINAL-TYPE       -->
                             <--  IAC WILL TERMINAL-TYPE
  IAC SB TERMINAL-TYPE SEND

  IAC SE                     -->
                                  IAC SB TERMINAL-TYPE IS IBM-3812-1
                             <--  IAC SE
  IAC DO BINARY              -->
                             <--  IAC WILL BINARY
  IAC DO EOR                 -->
                             <--  IAC WILL EOR

  Some points about the above example.  The IBMPPRSRC1 value requires
  escaping the value using ESC according to Telnet environment options
  [RFC1572].  The IBMPPRSRC2 does not require an ESC character since
  '04'X has no conflict with environment options.  Finally, to send
  'FF'X for the IBMENVELOPE value, escape the 'FF'X value by using
  another 'FF'X (called "doubling"), so as not to have the value
  interpreted as a Telnet character per the Telnet protocol
  specification [RFC854].



Murphy, et al.               Informational                     [Page 24]

RFC 4777           IBM's iSeries Telnet Enhancements       November 2006


  Actual bytes transmitted in the above example are shown in hex below.

  iSeries Telnet server            Enhanced Telnet client
  --------------------------       --------------------------
  FF FD 27                    -->
                              <--  FF FB 27
  FF FA 27 01 00 03 FF F0     -->
                                   FF FA 27 00 03 44 45 56
                                   4E 41 4D 45 01 50 43 50
                                   52 49 4E 54 45 52 03 49
                                   42 4D 4D 53 47 51 4E 41
                                   4D 45 01 51 53 59 53 4F
                                   50 52 03 49 42 4D 4D 53
                                   47 51 4C 49 42 01 2A 4C
                                   49 42 4C 03 49 42 4D 54
                                   52 41 4E 53 46 4F 52 4D
                                   01 30 03 49 42 4D 46 4F
                                   4E 54 01 31 32 03 49 42
                                   4D 46 4F 52 4D 46 45 45
                                   44 01 43 03 49 42 4D 50
                                   50 52 53 52 43 31 01 02
                                   01 03 49 42 4D 50 50 52
                                   53 52 43 32 01 04 03 49
                                   42 4D 45 4E 56 45 4C 4F
                              <--  50 45 01 FF FF FF F0
  FF FD 18                    -->
                              <--  FF FB 18
  FF FA 18 01 FF F0           -->
                                   FF FA 18 00 49 42 4D 2D
                              <--  33 38 31 32 2D 31 FF F0
  FF FD 00                    -->
                              <--  FF FB 00
  FF FD 19                    -->
                                   FF FB 19

10.  Startup Response Record for Printer and Display Devices

  Once Telnet negotiation for a 5250 pass-through mode is completed,
  the iSeries Telnet server will initiate a virtual device (printer or
  display) power-on sequence on behalf of the Telnet client.  The
  Telnet server will supply a Startup Response Record to the Telnet
  client with the status of the device power-on sequence, indicating
  success or failure of the virtual device power-on sequence.

  This section shows an example of two Startup Response Records.  The
  source device is a type 3812 model 01 printer with the name
  "PCPRINTER" on the target system "TARGET".




Murphy, et al.               Informational                     [Page 25]

RFC 4777           IBM's iSeries Telnet Enhancements       November 2006


  Figure 1 shows an example of a successful response; Figure 2 shows an
  example of an error response.

10.1.  Example of a Success Response Record

  The response record in Figure 1 was sent by an iSeries at Release
  V4R2.  It is an example of the target sending back a successful
  Startup Response Record.

  +------------------------------------------------------------------+
  |       +-----  Pass-Through header                                |
  |       |          +---  Response data                             |
  |       |          |            +----  Start diagnostic information|
  |       |          |            |                                  |
  | +----------++----------++--------------------------------------- |
  | |          ||          ||                                        |
  | 004912A090000560060020C0003D0000C9F9F0F2E3C1D9C7C5E34040D7C3D7D9 |
  |                                 |      | T A R G E T     P C P R |
  |                                 +------+                         |
  |                           Response Code (I902)                   |
  |                                                                  |
  | ---------------------------------------------------------------- |
  |                                                                  |
  | C9D5E3C5D9400000000000000000000000000000000000000000000000000000 |
  |  I N T E R                                                       |
  |                                                                  |
  |                  +------- End of diagnostic information          |
  |                  |                                               |
  | -----------------+                                               |
  |                  |                                               |
  | 000000000000000000                                               |
  +------------------------------------------------------------------+

            Figure 1.  Example of a success response record

  - '0049'X = Length pass-through data, including this length field
  - '12A0'X = GDS LU6.2 header
  - '90000560060020C0003D0000'X = Fixed value fields
  - 'C9F9F0F2'X                 = Response Code (I902)
  - 'E3C1D9C7C5E34040'X         = System Name (TARGET)
  - 'D7C3D7D9C9D5E3C5D940'X     = Object Name (PCPRINTER)










Murphy, et al.               Informational                     [Page 26]

RFC 4777           IBM's iSeries Telnet Enhancements       November 2006


10.2.  Example of an Error Response Record

  The response record in Figure 2 is one that reports an error.  The
  virtual device named "PCPRINTER" is not available on the target
  system "TARGET" because the device is not available.  You would
  normally see this error if the printer were already assigned to
  another Telnet session.

  +------------------------------------------------------------------+
  |       +-----  Pass-Through header                                |
  |       |          +---  Response data                             |
  |       |          |            +----  Start diagnostic information|
  |       |          |            |                                  |
  | +----------++----------++--------------------------------------- |
  | |          ||          ||                                        |
  | 004912A09000056006008200003D0000F8F9F0F2E3C1D9C7C5E34040D7C3D7D9 |
  |                                 |      | T A R G E T     P C P R |
  |                                 +------+                         |
  |                           Response Code (8902)                   |
  |                                                                  |
  | ---------------------------------------------------------------- |
  |                                                                  |
  | C9D5E3C5D9400000000000000000000000000000000000000000000000000000 |
  |  I N T E R                                                       |
  |                                                                  |
  |                  +------- End of diagnostic information          |
  |                  |                                               |
  | -----------------+                                               |
  |                  |                                               |
  | 000000000000000000                                               |
  +------------------------------------------------------------------+

            Figure 2.  Example of an error response record

  - '0049'X = Length pass-through data, including this length field
  - '12A0'X = GDS LU6.2 header
  - '90000560060020C0003D0000'X = Fixed value fields
  - 'F8F9F0F2'X                 = Response Code (8902)
  - 'E3C1D9C7C5E34040'X         = System Name (TARGET)
  - 'D7C3D7D9C9D5E3C5D940'X     = Object Name (PCPRINTER)











Murphy, et al.               Informational                     [Page 27]

RFC 4777           IBM's iSeries Telnet Enhancements       November 2006


10.3.  Example of a Response Record with Device Name Retry

  The Response Record can be used in conjunction with the DEVNAME
  Environment variable to allow client emulators to inform users of
  connection failures.  In addition, this combination could be used by
  client emulators that accept multiple device names to try on session
  connections.  The client would be able to walk through a list of
  possible device names and provide feedback based on the response
  code(s) received for each device name that was rejected.

  The following sequence shows a negotiation between the client and the
  server in which a named device "RFCTEST" is requested by the client.
  The device name is already assigned to an existing condition.  The
  server responds with the Response Record showing an 8902 response
  code.  The client could use this information to inform the user that
  the device name just tried was already in use.  Following the
  Response Record the server would then invite the client to try
  another device name.  Because the same device name was used again by
  the client, the server closed the session.
































Murphy, et al.               Informational                     [Page 28]

RFC 4777           IBM's iSeries Telnet Enhancements       November 2006


  iSeries Telnet server            Enhanced Telnet client
  --------------------------       -------------------------
  IAC DO NEW-ENVIRON          -->
                              <--   IAC WILL NEW-ENVIRON
  IAC DO TERMINAL-TYPE        -->
                              <--   IAC WILL TERMINAL-TYPE
  IAC SB NEW-ENVIRON SEND
  USERVAR "IBMRSEEDxxxxxxxx"
  VAR USERVAR IAC SE          -->
                                    IAC SB NEW-ENVIRON IS
                                    USERVAR "DEVNAME"
                                    VALUE "RFCTEST"
                                    USERVAR "IBMSENDCONFREC"
                                    VALUE "YES"
                              <--   IAC SE
  IAC SB TERMINAL-TYPE SEND
  IAC SE                      -->
                                    IAC SB TERMINAL-TYPE IS
                              <--   IBM-3180-2 IAC SE
                                    (terminal type negotiations
                                    completed)
  IAC DO EOR                  -->
                              <--   IAC WILL EOR
  IAC WILL EOR                -->
                              <--   IAC DO EOR
  IAC DO BINARY               -->
                              <--   IAC WILL BINARY
  IAC WILL BINARY             -->
                              <--   IAC DO BINARY
  (73 BYTE RFC 1205 RECORD
  WITH 8902 ERROR CODE)       -->
  IAC SB NEW-ENVIRON SEND
  USERVAR "DEVNAME"
  IAC SE                      -->
                                    IAC SB NEW-ENVIRON IS
                                    USERVAR "DEVNAME"
                                    VALUE "RFCTEST"
                                    USERVAR "IBMSENDCONFREC"
                                    VALUE "YES"
                              <--   IAC SE
  (server closes connection)










Murphy, et al.               Informational                     [Page 29]

RFC 4777           IBM's iSeries Telnet Enhancements       November 2006


  Actual bytes transmitted in the above example are shown in hex below.

  iSeries Telnet server            Enhanced Telnet client
  --------------------------       --------------------------
  FF FD 27                    -->
                              <--  FF FB 27
  FF FD 18                    -->
                              <--  FF FB 18
  FF FA 27 01 03 49 42 4D
  52 53 45 45 44 C4 96 67
  76 9A 23 E3 34 00 03 FF
  F0                          -->
                                   FF FA 27 00 03 44 45 56
                                   4E 41 4D 45 01 52 46 43
                                   54 45 53 54 03 49 42 4D
                                   53 45 4E 44 43 4F 4E 46
                                   52 45 43 01 59 45 53 FF
                              <--  F0
  FF FA 18 01 FF F0           -->
                              <--  FF FA 18 00 49 42 4D 2D
                                   33 31 38 30 2D 32 FF F0
  FF FD 19                    -->
                              <--  FF FB 19
  FF FB 19                    -->
                              <--  FF FD 19
  FF FD 00                    -->
                              <--  FF FB 00
  FF FB 00                    -->
                              <--  FF FD 00
  00 49 12 A0 90 00 05 60
  06 00 20 C0 00 3D 00 00
  F8 F9 F0 F2 D9 E2 F0 F3
  F5 40 40 40 00 00 00 00
  00 00 00 00 00 00 00 00
  00 00 00 00 00 00 00 00
  00 00 00 00 00 00 00 00
  00 00 00 00 00 00 00 00
  00 00 00 00 00 00 00 00
  00 FF EF                    -->
  FF FA 27 01 03 44 45 56
  4E 41 4D 45 FF F0           -->
                              <--  FF FA 27 00 03 44 45 56
                                   4E 41 4D 45 01 52 46 43
                                   54 45 53 54 03 49 42 4D
                                   53 45 4E 44 43 4F 4E 46
                                   52 45 43 01 59 45 53 FF
                                   F0




Murphy, et al.               Informational                     [Page 30]

RFC 4777           IBM's iSeries Telnet Enhancements       November 2006


10.4.  Response Codes

  The Start-Up Response Record success response codes:

  CODE    DESCRIPTION
  ----    ------------------------------------------------------
  I901    Virtual device has less function than source device.
  I902    Session successfully started.
  I906    Automatic sign-on requested, but not allowed.
          Session still allowed; a sign-on screen will be
          coming.

  The Start-Up Response Record error response codes:

  CODE    DESCRIPTION
  ----    ------------------------------------------------------
  2702    Device description not found.
  2703    Controller description not found.
  2777    Damaged device description.
  8901    Device not varied on.
  8902    Device not available.
  8903    Device not valid for session.
  8906    Session initiation failed.
  8907    Session failure.
  8910    Controller not valid for session.
  8916    No matching device found.
  8917    Not authorized to object.
  8918    Job canceled.
  8920    Object partially damaged.
  8921    Communications error.
  8922    Negative response received.
  8923    Start-up record built incorrectly.
  8925    Creation of device failed.
  8928    Change of device failed.
  8929    Vary on or vary off failed.
  8930    Message queue does not exist.
  8934    Start-up for S/36 WSF received.
  8935    Session rejected.
  8936    Security failure on session attempt.
  8937    Automatic sign-on rejected.
  8940    Automatic configuration failed or not allowed.
  I904    Source system at incompatible release.









Murphy, et al.               Informational                     [Page 31]

RFC 4777           IBM's iSeries Telnet Enhancements       November 2006


  The Start-Up Response Record error response codes for non-Kerberos
  Services Token automatic sign-on:

     CODE    DESCRIPTION
     ----    ------------------------------------------------------
     0001    System error.
     0002    Userid unknown.
     0003    Userid disabled.
     0004    Invalid password/passphrase/token.
     0005    Password/passphrase/token is expired.
     0006    Pre-V2R2 password.
     0008    Next invalid password/passphrase/token will revoke userid.

  The Start-Up Response Record error response codes for Kerberos
  Services Token automatic sign-on support:

  CODE    DESCRIPTION
  ----    ------------------------------------------------------
  0001    User profile is disabled.
  0002    Kerberos principal maps to a system user profile.
  0003    Enterprise Identity Map (EIM) configuration error.
  0004    EIM does not map Kerberos principal to user profile.
  0005    EIM maps Kerberos principal to multiple user profiles.
  0006    EIM maps Kerberos principal to user profile not found on
          system.
  1000    None of the requested mechanisms are supported by the
          local system.
  2000    The input name is not formatted properly or is not valid.
  6000    The received input token contains an incorrect signature.
  7000    No credentials available or credentials valid for context
          init only.
  9000    Consistency checks performed on the input token failed.
  A000    Consistency checks on the cred structure failed.
  B000    Credentials are no longer valid.
  D000    The runtime failed for reasons that are not defined at the
          GSS level.

  In the case where the USERVAR, DEVNAME USERVAR, IBMSENDCONFREC
  USERVAR, IBMSUBSPW USERVAR, and IBMRSEED USERVAR are all used
  together, any device errors will take precedence over automatic
  sign-on errors.  That is:

  1) If the requested named device is not available or an error occurs
     when attempting to create the device on the server system, a
     device related return code (i.e., 8902) will be sent to the client
     system in the display confirmation record.





Murphy, et al.               Informational                     [Page 32]

RFC 4777           IBM's iSeries Telnet Enhancements       November 2006


  2) If the requested named device is available or no errors occur when
     attempting to create the device on the server system, an automatic
     sign-on return code (i.e., 0002) will be sent to the client system
     in the display confirmation record.

11.  Printer Steady-State Pass-Through Interface

  The information in this section applies to the pass-through session
  after the receipt of startup confirmation records is complete.

  Following is the printer header interface used by Telnet.

  +------------------------------------------------------------------+
  |   +-- Length of structure (LLLL)                                 |
  |   |                                                              |
  |   |    +-- GDS identifier                                        |
  |   |    |                                                         |
  |   |    |    +-- Data flow record                                 |
  |   |    |    |                                                    |
  |   |    |    |   +-- Length of pass-through specific header (LL)  |
  |   |    |    |   |                                                |
  |   |    |    |   |   +-- Flags                                    |
  |   |    |    |   |   |                                            |
  |   |    |    |   |   |   +-- Printer operation code               |
  |   |    |    |   |   |   |                                        |
  |   |    |    |   |   |   |      +-- Diagnostic field - zero pad to|
  |   |    |    |   |   |   |      |   LL specified                  |
  |   |    |    |   |   |   |      |                                 |
  |   |    |    |   |   |   |      |            +-- Printer data     |
  |   |    |    |   |   |   |      |            |                    |
  | +--+ +--+ +--+ ++ +--+ ++ +----------+ +----------------+        |
  | |  | |  | |  | || |  | || |          | |                |        |
  | xxxx 12A0 xxxx xx xxxx xx xxxxxxxxxxxx ... print data ...        |
  |                                                                  |
  +------------------------------------------------------------------+

          Figure 3.  Layout of the printer pass-through header

  BYTES 0-1:   Length of structure including this field (LLLL)

  BYTES 2-3:   GDS Identifier ('12A0'X)

  BYTE 4-5:    Data flow record

               This field contains flags that describe what type of
               data pass-through should be expected to be found
               following this header.  Generally, bits 0-2 in the first
               byte are mutually exclusive (that is, if one of them is



Murphy, et al.               Informational                     [Page 33]

RFC 4777           IBM's iSeries Telnet Enhancements       November 2006


               set to '1'B, the rest will be set to '0'B.) The bits and
               their meanings follow.

               BIT       DESCRIPTION

               0         Start-Up confirmation
               1         Termination record
               2         Start-Up Record
               3         Diagnostic information included
               4 - 5     Reserved
               6         Reserved
               7         Printer record
               8 - 13    Reserved
               14        Client-originated (inbound) printer record
               15        Server-originated (outbound) printer record

  BYTE 6:      Length printer pass-through header including this field
               (LL)

  BYTES 7-8:   Flags

    BYTE 7 BITS:  xxxx x111 --> Reserved
                  xxxx 1xxx --> Last of chain
                  xxx1 xxxx --> First of chain
                  xx1x xxxx --> Printer now ready
                  x1xx xxxx --> Intervention Required
                  1xxx xxxx --> Error Indicator

    BYTE 8 BITS:  xxxx xxxx --> Reserved

  BYTE 9:      Printer operation code

               '01'X  Print/Print complete
               '02'X  Clear Print Buffers

  BYTE 10-LL:  Diagnostic information (Note 1)

    If BYTE 7 = xx1x xxxx, then bytes 10-LL may contain:
       Printer ready                C9 00 00 00 02

    If BYTE 7 = x1xx xxxx, then bytes 10-LL may contain: (Note 2)
       Command/parameter not valid  C9 00 03 02 2x
       Print check                  C9 00 03 02 3x
       Forms check                  C9 00 03 02 4x
       Normal periodic condition    C9 00 03 02 5x
       Data stream error            C9 00 03 02 6x
       Machine/print/ribbon check   C9 00 03 02 8x




Murphy, et al.               Informational                     [Page 34]

RFC 4777           IBM's iSeries Telnet Enhancements       November 2006


    If BYTE 7 = 1xxx xxxx, then bytes 10-LL may contain: (Note 3)
       Cancel                       08 11 02 00
       Invalid print parameter      08 11 02 29
       Invalid print command        08 11 02 28

  Diagnostic information notes:

  1.  LL is the length of the structure defined in Byte 6.  If no
      additional data is present, the remainder of the structure must
      be padded with zeroes.

  2.  These are printer SIGNAL commands.  Further information on these
      commands may be obtained from the 5494 Remote Control Unit
      Functions Reference guide [5494-CU].  Refer to your iSeries
      printer documentation for more specific information on these data
      stream exceptions.  The following are some 3812 and 5553 errors
      that may be seen:

      Machine check              C9 00 03 02 11
      Graphics check             C9 00 03 02 26
      Print check                C9 00 03 02 31
      Form jam                   C9 00 03 02 41
      Paper jam                  C9 00 03 02 47
      End of forms               C9 00 03 02 50
      Printer not ready          C9 00 03 02 51
      Data stream - class 1      C9 00 03 02 66 loss of text
      Data stream - class 2      C9 00 03 02 67 text appearance
      Data stream - class 3      C9 00 03 02 68 multibyte control error
      Data stream - class 4      C9 00 03 02 69 multibyte control parm
      Cover unexpectedly open    C9 00 03 02 81
      Machine check              C9 00 03 02 86
      Machine check              C9 00 03 02 87
      Ribbon check               C9 00 03 02 88

  3.  These are printer negative responses.  Further information on
      these commands may be obtained from the 5494 Remote Control Unit
      Functions Reference guide [5494-CU].

      The print data will start in byte LL+1.

11.1.  Example of a Print Record

  Figure 4 shows the server sending the client data with a print
  record.  This is normally seen following receipt of a Success
  Response Record, such as the example in Figure 1.






Murphy, et al.               Informational                     [Page 35]

RFC 4777           IBM's iSeries Telnet Enhancements       November 2006


 +--------------------------------------------------------------------+
 |   +-- Length of structure (LLLL)                                   |
 |   |    +-- GDS identifier                                          |
 |   |    |    +-- Data flow record                                   |
 |   |    |    |   +-- Length of pass-through specific header (LL)    |
 |   |    |    |   |   +-- Flags                                      |
 |   |    |    |   |   |   +-- Printer operation code                 |
 |   |    |    |   |   |   |      +-- Zero pad to LL specified (0A)   |
 |   |    |    |   |   |   |      |            +-- Printer data       |
 |   |    |    |   |   |   |      |            |                      |
 | +--+ +--+ +--+ ++ +--+ ++ +----------+ +---------------------------|
 | |  | |  | |  | || |  | || |          | |                           |
 | 0085 12A0 0101 0A 1800 01 000000000000 34C4012BD20345FF2BD2044C0002|
 |                                                                    |
 | ------------------------------------------------------------       |
 |                                                                    |
 | 2BD2040D00002BD20A8501010201030204022BD20309022BD2061100014A       |
 |                                                                    |
 | ------------------------------------------------------------       |
 |                                                                    |
 | 402BD20601010000012BD306F60000FFFF2BD20A48000001000000010100       |
 |                                                                    |
 | ------------------------------------------------------------       |
 |                                                                    |
 | 2BD10705000B0090012BD2044900F02BD206404A403DE02BD2041500F034       |
 |                                                                    |
 |    end of printer data                                             |
 | -------------------------+                                         |
 |                          |                                         |
 | C4012BD10381FF002BC8034001                                         |
 +--------------------------------------------------------------------+

         Figure 4.  Server sending client data with a print record

  - '0085'X         = Logical record length, including this byte (LLLL)
  - '12A0'X         = GDS LU6.2 header
  - '0101'X         = Data flow record (server to client)
  - '0A'X           = Length of pass-through specific header (LL)
  - '1800'X         = First of chain / Last of chain indicators
  - '01'X           = Print
  - '000000000000'X = Zero pad header to LL specified
  - '34C401'X       = First piece of data for spooled data
  - Remainder is printer data/commands/orders








Murphy, et al.               Informational                     [Page 36]

RFC 4777           IBM's iSeries Telnet Enhancements       November 2006


11.2.  Example of a Print Complete Record

  Figure 5 shows the client sending the server a print complete record.
  This would normally follow receipt of a print record, such as the
  example in Figure 4.  This indicates successful completion of a print
  request.

  +-------------------------------------------------------------------+
  |   +-- Length of structure (LLLL)                                  |
  |   |    +-- GDS identifier                                         |
  |   |    |    +-- Data flow record                                  |
  |   |    |    |   +-- Length of pass-through specific header (LL)   |
  |   |    |    |   |   +-- Flags                                     |
  |   |    |    |   |   |   +-- Printer operation code                |
  |   |    |    |   |   |   |                                         |
  | +--+ +--+ +--+ ++ +--+ ++                                         |
  | |  | |  | |  | || |  | ||                                         |
  | 000A 12A0 0102 04 0000 01                                         |
  +-------------------------------------------------------------------+

        Figure 5.  Client sending server a print complete record

  - '000A'X = Logical record length, including this byte (LLLL)
  - '12A0'X = GDS LU6.2 header
  - '0102'X = Data flow response record (client to server)
  - '04'X   = Length of pass-through specific header (LL)
  - '0000'X = Good Response
  - '01'X   = Print Complete

11.3.  Example of a Null Print Record

  Figure 6 shows the server sending the client a null print record.
  The null print record is the last print command the server sends to
  the client for a print job, and it indicates to the printer that
  there is no more data.  The null data byte '00'X is optional and in
  some cases may be omitted (in particular, this scenario occurs in
  DBCS print streams).

  This example would normally follow any number of print records, such
  as the example in Figure 4.  This indicates successful completion of
  a print job.  The client normally responds to this null print record
  with another print complete record, such as in Figure 5.









Murphy, et al.               Informational                     [Page 37]

RFC 4777           IBM's iSeries Telnet Enhancements       November 2006


  +------------------------------------------------------------------+
  |   +-- Length of structure (LLLL)                                 |
  |   |    +-- GDS identifier                                        |
  |   |    |    +-- Data flow record                                 |
  |   |    |    |   +-- Length of pass-through specific header (LL)  |
  |   |    |    |   |   +-- Flags                                    |
  |   |    |    |   |   |   +-- Printer operation code               |
  |   |    |    |   |   |   |      +-- Zero pad to LL specified (0A) |
  |   |    |    |   |   |   |      |        +-- Printer data         |
  |   |    |    |   |   |   |      |        |                        |
  | +--+ +--+ +--+ ++ +--+ ++ +----------+ ++                        |
  | |  | |  | |  | || |  | || |          | ||                        |
  | 0011 12A0 0101 0A 0800 01 000000000000 00                        |
  +------------------------------------------------------------------+

          Figure 6.  Server sending client a null print record

  - '0011'X         = Logical record length, including this byte
  - '12A0'X         = GDS LU6.2 header
  - '0101'X         = Data flow record
  - '0A'X           = Length of pass-through specific header (LL)
  - '0800'X         = Last of Chain
  - '01'X           = Print
  - '000000000000'X = Zero pad header to LL specified
  - '00'X           = Null data byte


























Murphy, et al.               Informational                     [Page 38]

RFC 4777           IBM's iSeries Telnet Enhancements       November 2006


12.  End-to-End Print Example

  The next example shows a full print exchange between a Telnet client
  and server for a 526 byte spooled file.  Selective translation of the
  hexadecimal streams into 1) Telnet negotiations and 2) ASCII/EBCDIC
  characters is done to aid readability.  Telnet negotiations are
  delimited by '(' and ')' parenthesis characters; ASCII/EBCDIC
  conversions are bracketed by '|' vertical bar characters.

  iSeries Telnet server               Enhanced Telnet client
  -------------------------------     ---------------------------------
  FFFD27                          -->

  (IAC DO NEW-ENVIRON)
                                  <-- FFFB27

                                      (IAC WILL NEW-ENVIRON)

  FFFD18FFFA270103 49424D5253454544
  7EA5DFDDFD300404 0003FFF0       -->

  (IAC DO TERMINAL-TYPE
  IAC SB NEW-ENVIRON SEND USERVAR
  IBMRSEED xxxxxxxx VAR USERVAR
  IAC SE)

                                  <-- FFFB18

                                      (IAC WILL TERMINAL-TYPE)

  FFFA1801FFF0                    -->

  (IAC SB TERMINAL-TYPE SEND IAC
   SE)

                                      FFFA27000349424D 52534545447EA5DF
                                      DDFD300404000344 45564E414D450144
                                      554D4D5950525403 49424D4D5347514E
                                      414D450151535953 4F50520349424D4D
                                      5347514C4942012A 4C49424C0349424D
                                      464F4E5401313103 49424D5452414E53
                                      464F524D01310349 424D4D4652545950
                                      4D444C012A485049 490349424D505052
                                      5352433101020103 49424D5050525352
                                      433201040349424D 454E56454C4F5045
                                      01FFFF0349424D41 5343494938393901
                                  <-- 30FFF0




Murphy, et al.               Informational                     [Page 39]

RFC 4777           IBM's iSeries Telnet Enhancements       November 2006


                                      (IAC SB NEW-ENVIRON IS USERVAR
                                       IBMRSEED xxxxxxxx VAR
                                       USERVAR DEVNAME VALUE DUMMYPRT
                                       USERVAR IBMMSGQNAME VALUE
                                       QSYSOPR
                                       USERVAR IBMMSGQLIB VALUE *LIBL
                                       USERVAR IBMFONT VALUE 11
                                       USERVAR IBMTRANSFORM VALUE 1
                                       USERVAR IBMMFRTYPMDL VALUE *HPII
                                       USERVAR IBMPPRSRC1 VALUE
                                       ESC '01'X
                                       USERVAR IBMPPRSRC2 VALUE '04'X
                                       USERVAR IBMENVELOPE VALUE IAC
                                       USERVAR IBMASCII899 VALUE 0
                                       IAC SE)

                                  <-- FFFA180049424D2D 333831322D31FFF0

                                      (IAC SB TERMINAL-TYPE IS
                                       IBM-3812-1 IAC SE)
  FFFD19                          -->

  (IAC DO EOR)
                                  <-- FFFB19

                                      (IAC WILL EOR)

  FFFB19                          -->

  (IAC WILL EOR)
                                  <-- FFFD19

                                      (IAC DO EOR)
  FFFD00                          -->

  (IAC DO BINARY)
                                  <-- FFFB00

                                      (IAC WILL BINARY)
  FFFB00                          -->

  (IAC WILL BINARY)
                                  <-- FFFD00

                                      (IAC DO BINARY)






Murphy, et al.               Informational                     [Page 40]

RFC 4777           IBM's iSeries Telnet Enhancements       November 2006


  004912A090000560 060020C0003D0000     |       -   {    |
  C9F9F0F2C5D3C3D9 E3D7F0F6C4E4D4D4     |I902ELCRTP06DUMM| (EBCDIC)
  E8D7D9E340400000 0000000000000000     |YPRT            |
  0000000000000000 0000000000000000     |                |
  0000000000000000 00FFEF           --> |                |

  (73-byte startup success response
   record ... IAC EOR)
  00DF12A001010A18 0001000000000000     |                |
  03CD1B451B283130 551B287330703130     |   E (10U (s0p10| (ASCII)
  2E30306831327630 733062303033541B     |.00h12v0s0b003T |
  287330421B266440 1B266C304F1B266C     |(s0B &d@ &l0O &l|
  303038431B266C30 3035431B28733070     |008C &l005C (s0p|
  31372E3130683130 7630733062303030     |17.10h10v0s0b000|
  541B283130551B28 73307031372E3130     |T (10U (s0p17.10|
  6831307630733062 303030541B287330     |h10v0s0b000T (s0|
  421B2664401B266C 314F1B266C303035     |B &d@ &l1O &l005|
  431B287330703137 2E31306831307630     |C (s0p17.10h10v0|
  733062303030541B 266C314F1B287330     |s0b000T &l1O (s0|
  7031372E31306831 3076307330623030     |p17.10h10v0s0b00|
  30541B2873307031 372E313068313076     |0T (s0p17.10h10v|
  3073306230303054 1B266C30303543FF     |0s0b000T &l005C |
  EF                                --> |                |

  (... 223-byte print record ...
   ... first of chain ...
   ... last of chain ... IAC EOR)
                                    <-- 000A12A001020400 0001FFEF

                                        (10-byte print complete header)
  031012A001010A10 0001000000000000     |                |
  03FFFF1B451B2831 30551B2873307031     |    E (10U (s0p1| (ASCII)
  372E313068313076 3073306230303054     |7.10h10v0s0b000T|
  1B287330421B2664 401B266C314F1B26     | (s0B &d@ &l1O &|
  6C303035431B266C 31481B266C314F1B     |l005C &l1H &l1O |
  266C3032411B266C 31431B266C303030     |&l02A &l1C &l000|
  38451B266C303038 431B266C30303439     |8E &l008C &l0049|
  461B266130521B26 6C303035430A0A0A     |F &a0R &l005C   |
  0A0A0A0A1B26612B 3030303130561B26     |     &a+00010V &|
  6C303035431B2661 2B30303231364820     |l005C &a+00216H |
  2020202020202020 2020202020202020     |                |
  2020202020205072 696E74204B657920     |      Print Key |
  4F75747075742020 2020202020202020     |Output          |
  2020202020202020 2020202020202020     |                |
  2020202020205061 6765202020310D0A     |      Page   1  |
  1B26612B30303231 3648202020203537     | &a+00216H    57|
  3639535331205634 52334D3020393830     |69SS1 V4R3M0 980|
  373203FFFF392020 2020202020202020     |72   9          |



Murphy, et al.               Informational                     [Page 41]

RFC 4777           IBM's iSeries Telnet Enhancements       November 2006


  202020202020454C 4352545030362020     |      ELCRTP06  |
  2020202020202020 202030332F33312F     |          03/31/|
  3939202031363A33 303A34350D0A1B26     |99  16:30:45   &|
  612B303032313648 0D0A1B26612B3030     |a+00216H   &a+00|
  3231364820202020 446973706C617920     |216H    Display |
  4465766963652020 2E202E202E202E20     |Device  . . . . |
  2E203A2020515041 444556303033510D     |. :  QPADEV003Q |
  0A1B26612B303032 3136482020202055     |  &a+00216H    U|
  73657220202E202E 202E202E202E202E     |ser  . . . . . .|
  202E202E202E202E 203A202052434153     | . . . . :  RCAS|
  54524F0D0A1B2661 2B3030323136480D     |TRO   &a+00216H |
  0A1B26612B303032 313648204D41494E     |  &a+00216H MAIN|
  2020202020202020 2020202020202020     |                |
  2020202020202020 20202041532F3430     |           AS/40|
  30204D61696E204D 656E750D0A1B2661     |0 Main Menu   &a|
  2B30303203FFFF31 3648202020202020     |+002   16H      |
  2020202020202020 2020202020202020     |                |
  2020202020202020 2020202020202020     |                |
  2020202020202020 2020202020202020     |                |
  2020202020202053 797374656D3A2020     |       System:  |
  20454C4352545030 360D0A1B26612B30     | ELCRTP06   &a+0|
  3032313648205365 6C656374206F6E65     |0216H Select one|
  206F662074686520 666F6C6C6F77696E     | of the followin|
  673A0D0A1B26612B 3030323136480D0A     |g:   &a+00216H  |
  1B26612B30303231 3648202020202020     | &a+00216H      |
  312E205573657220 7461736B730D0A1B     |1. User tasks   |
  26612B3030323136 4820202020202032     |&a+00216H      2|
  2E204F6666696365 207461736B730D0A     |. Office tasks  |
  1B26612B30303231 36480D0A1B26612B     | &a+00216H   &a+|
  3030323136482020 20202020342E2046     |00216H      4. F|
  696C65732C206C69 627261726965732C     |iles, libraries,|
  20616EFFEF                            | an             |

  (... 784-byte print record ...
   ... first of chain ... IAC EOR)
                                    <-- 000A12A001020400 0001FFEF

                                        (10-byte print complete header)

  020312A001010A00 0001000000000000     |                |
  64206603FFFF6F6C 646572730D0A1B26     |d f   olders   &| (ASCII)
  612B303032313648 0D0A1B26612B3030     |a+00216H   &a+00|
  3231364820202020 2020362E20436F6D     |216H      6. Com|
  6D756E6963617469 6F6E730D0A1B2661     |munications   &a|
  2B3030323136480D 0A1B26612B303032     |+00216H   &a+002|
  3136482020202020 20382E2050726F62     |16H      8. Prob|
  6C656D2068616E64 6C696E670D0A1B26     |lem handling   &|
  612B303032313648 202020202020392E     |a+00216H      9.|



Murphy, et al.               Informational                     [Page 42]

RFC 4777           IBM's iSeries Telnet Enhancements       November 2006


  20446973706C6179 2061206D656E750D     | Display a menu |
  0A1B26612B303032 3136482020202020     |  &a+00216H     |
  31302E20496E666F 726D6174696F6E20     |10. Information |
  417373697374616E 74206F7074696F6E     |Assistant option|
  730D0A1B26612B30 3032313648202020     |s   &a+00216H   |
  202031312E20436C 69656E7420416363     |  11. Client Acc|
  6573732F34303020 7461736B730D0A1B     |ess/400 tasks   |
  26612B3030323136 480D0A1B26612B30     |&a+00216H   &a+0|
  303231364803ED20 2020202039302E20     |0216H       90. |
  5369676E206F6666 0D0A1B26612B3030     |Sign off   &a+00|
  323136480D0A1B26 612B303032313648     |216H   &a+00216H|
  2053656C65637469 6F6E206F7220636F     | Selection or co|
  6D6D616E640D0A1B 26612B3030323136     |mmand   &a+00216|
  48203D3D3D3E0D0A 1B26612B30303231     |H ===>   &a+0021|
  36480D0A1B26612B 3030323136482046     |6H   &a+00216H F|
  333D457869742020 2046343D50726F6D     |3=Exit   F4=Prom|
  707420202046393D 5265747269657665     |pt   F9=Retrieve|
  2020204631323D43 616E63656C202020     |   F12=Cancel   |
  4631333D496E666F 726D6174696F6E20     |F13=Information |
  417373697374616E 740D0A1B26612B30     |Assistant   &a+0|
  3032313648204632 333D53657420696E     |0216H F23=Set in|
  697469616C206D65 6E750D0A1B26612B     |itial menu   &a+|
  3030323136480D0A 1B26612B30303231     |00216H   &a+0021|
  36480D0CFFEF                          |6H              |

  (... 515-byte print record ...
   IAC EOR)
                                    <-- 000A12A001020400 0001FFEF

                                        (10-byte print complete header)
  001412A001010A00 0001000000000000     |                |
  03021B45FFEF                          |   E            |  (ASCII)

  (... 20-byte print record ...
   IAC EOR)
                                    <-- 000A12A001020400 0001FFEF

                                        (10-byte print complete header)
  001112A001010A08 0001000000000000
  00FFEF                            -->

  (... 17-byte NULL print record ...
   ... last of chain ... IAC EOR)
                                    <-- 000A12A001020400 0001FFEF

                                        (10-byte print complete header)





Murphy, et al.               Informational                     [Page 43]

RFC 4777           IBM's iSeries Telnet Enhancements       November 2006


13.  Security Considerations

  The auto-sign-on feature provided by this RFC describes a way to
  encrypt your login password.  However, while passwords can now be
  encrypted by using the IBMRSEED and IBMSUBSPW USERVAR negotiations,
  users should understand that only the login passwords are encrypted
  and not the entire Telnet session.  Encryption of the Telnet session
  requires that another protocol layer, such as SSL, be added.

  The auto-sign-on feature supports plain text passwords, encrypted
  passwords, and Kerberos tokens.  However, using plain text passwords
  is strongly discouraged.  iSeries system administrators may want to
  configure their systems to reject plain text passwords.

14.  IANA Considerations

  IANA registered the terminal types "IBM-3812-1" and "IBM-5553-B01" as
  a terminal type [RFC1091].  They are used when communicating with
  iSeries Telnet servers.

15.  Normative References

  [RFC854]      Postel, J. and J. Reynolds, "Telnet Protocol
                Specification", STD 8, RFC 854, May 1983.

  [RFC855]      Postel, J. and J. Reynolds, "Telnet Option
                Specifications", STD 8, RFC 855, May 1983.

  [RFC1091]     VanBokkelen, J., "Telnet terminal-type option", RFC
                1091, February 1989.

  [RFC1205]     Chmielewski, P., "5250 Telnet Interface", RFC 1205,
                February 1991.

  [RFC1572]     Alexander, S., "Telnet Environment Option", RFC 1572,
                January 1994.

  [RFC2877]     Murphy, T., Jr., Rieth, P., and J. Stevens, "5250
                Telnet Enhancements", RFC 2877, July 2000.

16.  Informative References

  [RFC856]      Postel, J. and J. Reynolds, "Telnet Binary
                Transmission", STD 27, RFC 856, May 1983.

  [RFC858]      Postel, J. and J. Reynolds, "Telnet Supress Go Ahead
                Option", STD 29, RFC 858, May 1983.




Murphy, et al.               Informational                     [Page 44]

RFC 4777           IBM's iSeries Telnet Enhancements       November 2006


  [RFC885]      Postel, J., "Telnet end of record option", RFC 885,
                December 1983.

  [5494-CU]     IBM, "5494 Remote Control Unit, Functions Reference",
                SC30-3533-04, August 1995.

  [SYSTEM-API]  IBM, "AS/400 System API Reference", SC41-5801-01,
                February 1998.

  [COMM-CONFIG] IBM, "AS/400 Communications Configuration",
                SC41-5401-00, August 1997.

  [NLS-SUPPORT] IBM, "AS/400 National Language Support", SC41-5101-01,
                February 1998.

  [FIPS-46-2]   Data Encryption Standard (DES), Federal Information
                Processing Standards Publication 46-2, January 22,
                1988.

  [FIPS-81]     DES Modes of Operation, Federal Information Processing
                Standards Publication 81, December 1980.

  [FIPS-180-1]  Secure Hash Standard, Federal Information Processing
                Standards Publication 180-1, May 11, 1993.

17.  Relation to Other RFCs

  This RFC relies on the 5250 Telnet Interface [RFC1205] in all
  examples.

  This RFC replaces 5250 Telnet Enhancements [RFC2877], adding new
  sections for Kerberos, SHA-1, security and IANA considerations.
  Minor corrections and additional examples were also added.

  Informative references have been removed.
















Murphy, et al.               Informational                     [Page 45]

RFC 4777           IBM's iSeries Telnet Enhancements       November 2006


Authors' Addresses

  Thomas E. Murphy, Jr.
  IBM Corporation
  2455 South Road
  Poughkeepsie, NY 12601

  Phone:  (845) 435-7063
  Fax:    (845) 432-9414
  EMail:  [email protected]


  Paul F. Rieth
  IBM Corporation
  3605 Highway 52 North
  Rochester, MN 55901

  Phone:  (507) 253-5218
  Fax:    (507) 253-5156
  EMail:  [email protected]


  Jeffrey S. Stevens
  IBM Corporation
  3605 Highway 52 North
  Rochester, MN 55901

  Phone:  (507) 253-5337
  Fax:    (507) 253-5156
  EMail:  [email protected]





















Murphy, et al.               Informational                     [Page 46]

RFC 4777           IBM's iSeries Telnet Enhancements       November 2006


Full Copyright Statement

  Copyright (C) The IETF Trust (2006).

  This document is subject to the rights, licenses and restrictions
  contained in BCP 78 and at www.rfc-editor.org/copyright.html, and
  except as set forth therein, the authors retain all their rights.

  This document and the information contained herein are provided on an
  "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
  OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST,
  AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES,
  EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT
  THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY
  IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
  PURPOSE.

Intellectual Property

  The IETF takes no position regarding the validity or scope of any
  Intellectual Property Rights or other rights that might be claimed to
  pertain to the implementation or use of the technology described in
  this document or the extent to which any license under such rights
  might or might not be available; nor does it represent that it has
  made any independent effort to identify any such rights.  Information
  on the procedures with respect to rights in RFC documents can be
  found in BCP 78 and BCP 79.

  Copies of IPR disclosures made to the IETF Secretariat and any
  assurances of licenses to be made available, or the result of an
  attempt made to obtain a general license or permission for the use of
  such proprietary rights by implementers or users of this
  specification can be obtained from the IETF on-line IPR repository at
  http://www.ietf.org/ipr.

  The IETF invites any interested party to bring to its attention any
  copyrights, patents or patent applications, or other proprietary
  rights that may cover technology that may be required to implement
  this standard.  Please address the information to the IETF at
  [email protected].

Acknowledgement

  Funding for the RFC Editor function is currently provided by the
  Internet Society.






Murphy, et al.               Informational                     [Page 47]