Network Working Group                                       B. Feinstein
Request for Comments: 4767                             SecureWorks, Inc.
Category: Experimental                                       G. Matthews
                                          CSC/NASA Ames Research Center
                                                             March 2007


           The Intrusion Detection Exchange Protocol (IDXP)

Status of This Memo

  This memo defines an Experimental Protocol for the Internet
  community.  It does not specify an Internet standard of any kind.
  Discussion and suggestions for improvement are requested.
  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (C) The IETF Trust (2007).

Abstract

  This memo describes the Intrusion Detection Exchange Protocol (IDXP),
  an application-level protocol for exchanging data between intrusion
  detection entities.  IDXP supports mutual-authentication, integrity,
  and confidentiality over a connection-oriented protocol.  The
  protocol provides for the exchange of IDMEF messages, unstructured
  text, and binary data.  The IDMEF message elements are described in
  RFC 4765, "The Intrusion Detection Message Exchange Format (IDMEF)",
  a companion document of the Intrusion Detection Exchange Format
  Working Group (IDWG) of the IETF.

Table of Contents

  1. Introduction ....................................................3
     1.1. Purpose ....................................................3
     1.2. Profiles ...................................................3
     1.3. Terminology ................................................3
  2. The Model .......................................................4
     2.1. Connection Provisioning ....................................4
     2.2. Data Transfer ..............................................6
     2.3. Connection Teardown ........................................7
     2.4. Trust Model ................................................8
  3. The IDXP Profile ................................................8
     3.1. IDXP Profile Overview ......................................8
     3.2. IDXP Profile Identification and Initialization .............9
     3.3. IDXP Profile Message Syntax ................................9
     3.4. IDXP Profile Semantics .....................................9



Feinstein & Matthews          Experimental                      [Page 1]

RFC 4767                          IDXP                        March 2007


          3.4.1. The IDXP-Greeting Element ..........................10
          3.4.2. The Option Element .................................11
          3.4.3. The IDMEF-Message Element ..........................12
  4. IDXP Options ...................................................12
     4.1. The channelPriority Option ................................13
     4.2. The streamType Option .....................................14
  5. Fulfillment of IDWG Communications Protocol Requirements .......16
     5.1. Reliable Message Transmission .............................16
     5.2. Interaction with Firewalls ................................16
     5.3. Mutual Authentication .....................................16
     5.4. Message Confidentiality ...................................17
     5.5. Message Integrity .........................................17
     5.6. Per-Source Authentication .................................17
     5.7. Denial of Service .........................................18
     5.8. Message Duplication .......................................18
  6. Extending IDXP .................................................18
  7. IDXP Option Registration Template ..............................19
  8. Initial Registrations ..........................................19
     8.1. Registration: The IDXP Profile ............................19
     8.2. Registration: The System (Well-Known) TCP Port
          Number for IDXP ...........................................19
     8.3. Registration: The channelPriority Option ..................20
     8.4. Registration: The streamType Option .......................20
  9. The DTDs .......................................................20
     9.1. The IDXP DTD ..............................................20
     9.2. The channelPriority Option DTD ............................22
     9.3. The streamType DTD ........................................23
  10. Reply Codes ...................................................24
  11. Security Considerations .......................................25
     11.1. Use of the TUNNEL Profile ................................25
     11.2. Use of Underlying Security Profiles ......................25
  12. IANA Considerations ...........................................25
  13. References ....................................................26
     13.1. Normative References .....................................26
     13.2. Informative References ...................................26
  14. Acknowledgements ..............................................26















Feinstein & Matthews          Experimental                      [Page 2]

RFC 4767                          IDXP                        March 2007


1.  Introduction

  IDXP is specified, in part, as a Blocks Extensible Exchange Protocol
  (BEEP) [4] "profile".  BEEP is a generic application protocol
  framework for connection-oriented, asynchronous interactions.
  Features such as authentication and confidentiality are provided
  through the use of other BEEP profiles.  Accordingly, many aspects of
  IDXP (e.g., confidentiality) are provided within the BEEP framework.

1.1.  Purpose

  IDXP provides for the exchange of IDMEF [2] messages, unstructured
  text, and binary data between intrusion detection entities.
  Addressing the security-sensitive nature of exchanges between
  intrusion detection entities, underlying BEEP security profiles
  should be used to offer IDXP the required set of security properties.
  See Section 5 for a discussion of how IDXP fulfills the IDWG
  communications protocol requirements.  See Section 11 for a
  discussion of security considerations.

  IDXP is primarily intended for the exchange of data created by
  intrusion detection entities.  IDMEF [2] messages should be used for
  the structured representation of this intrusion detection data,
  although IDXP may be used to exchange unstructured text and binary
  data.

1.2.  Profiles

  There are several BEEP profiles discussed, the first of which we
  define in this memo:

     The IDXP Profile

     The TUNNEL Profile [3]

     The Simple Authentication and Security Layer (SASL) Family of
     Profiles (see Section 4.1 of [4])

     The TLS Profile (see Section 3.1 of [4])

1.3.  Terminology

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in BCP 14, RFC 2119 [1].






Feinstein & Matthews          Experimental                      [Page 3]

RFC 4767                          IDXP                        March 2007


  Throughout this memo, the terms "analyzer" and "manager" are used in
  the context of the Intrusion Detection Message Exchange Requirements
  [5].  In particular, Section 2.2 of [5] defines a collection of
  intrusion detection terms.

  The terms "peer", "initiator", "listener", "client", and "server",
  and the characters "I", "L", "C", and "S" are used in the context of
  BEEP [4].  In particular, Section 2.1 of BEEP discusses the roles
  that a BEEP peer may perform.

  The term "Document Type Definition" is abbreviated as "DTD" and is
  defined in Section 2.8 of the Extensible Markup Language (XML) [7].

  Note that the term "proxy" is specific to IDXP and does not exist in
  the context of BEEP.  The term "intrusion detection" is abbreviated
  as "ID".

2.  The Model

2.1.  Connection Provisioning

  Intrusion detection entities using IDXP to transfer data are termed
  IDXP peers.  Peers can exist only in pairs, and these pairs
  communicate over a single BEEP session with one or more BEEP channels
  opened for transferring data.  Peers are either managers or
  analyzers, as defined in Section 2.2 of [5].

  The relationship between analyzers and managers is potentially many-
  to-many.  That is, an analyzer MAY communicate with many managers;
  similarly, a manager MAY communicate with many analyzers.  Likewise,
  the relationship between different managers is potentially many-to-
  many, so that a manager MAY receive the alerts sent by a large number
  of analyzers by receiving them through intermediate managers.
  Analyzers MUST NOT establish IDXP exchanges with other analyzers.

  An IDXP peer wishing to establish IDXP communications with another
  IDXP peer does so by opening a BEEP channel, which may entail
  initiating a BEEP session.  A BEEP security profile offering the
  required security properties SHOULD initially be negotiated (see
  Section 11 for a discussion of security considerations).  Following
  the successful negotiation of the BEEP security profile, IDXP
  greetings are exchanged and connection provisioning proceeds.

  In the following sequence, the peer 'Alice' initiates an IDXP
  exchange with the peer 'Bob'.






Feinstein & Matthews          Experimental                      [Page 4]

RFC 4767                          IDXP                        March 2007


  Alice                                               Bob
    ---------------- xport connect(1) ------------------>
   <-------------------- greeting ---------------------->
   <-------------start security profile(2) ------------->
   <-------------------- greeting ---------------------->
   <------------------ start IDXP(3) ------------------->

  Notes:

  (1) 'Alice' initiates a transport connection to 'Bob', triggering the
      exchange of BEEP greeting messages.

  (2) Both entities negotiate the use of a BEEP security profile.

  (3) Both entities negotiate the use of the IDXP profile.

  In between a pair of IDXP peers may be an arbitrary number of
  proxies.  A proxy may be necessary for administrative reasons, such
  as running on a firewall to allow restricted access.  Another use
  might be one proxy per company department, which forwards data from
  the analyzer peers in the department onto a company-wide manager
  peer.

  A BEEP tuning profile MAY be used to create an application-layer
  tunnel that transparently forwards data over a chain of proxies.  The
  TUNNEL profile [3] SHOULD be used for this purpose; see [3] for more
  detail concerning the options available to set up an application-
  layer tunnel using TUNNEL, and see Section 11.1 for a discussion of
  TUNNEL-related security considerations.  TUNNEL MUST be offered as a
  tuning profile for the creation of application-layer tunnels.  The
  TUNNEL profile MUST offer the use of some form of SASL authentication
  (see Section 4.1 of [4]).  Once a tunnel has been created, a BEEP
  security profile offering the required security properties SHOULD be
  negotiated, followed by negotiation of the IDXP profile.

  The following sequence shows how TUNNEL might be used to create an
  application-layer tunnel through which IDXP would operate.  A peer
  'Alice' initiates the creation of a BEEP session using the IDXP
  profile with the entity 'Bob' by first contacting 'proxy1'.  In the
  greeting exchange between 'Alice' and 'proxy1', the TUNNEL profile is
  selected, and subsequently the use of the TUNNEL profile is extended
  to reach through 'proxy2' to 'Bob'.









Feinstein & Matthews          Experimental                      [Page 5]

RFC 4767                          IDXP                        March 2007


  Alice              proxy1               proxy2               Bob
    -- xport connect -->
   <---- greeting ----->
    -- start TUNNEL --->
                        - xport connect(1) ->
                       <----- greeting ----->
                        --- start TUNNEL --->
                                             --- xport connect -->
                                            <----- greeting ----->
                                             --- start TUNNEL --->
                                            <----- <ok>(2) ------
                       <------- <ok> -------
   <------ <ok> -------
   <------------------------- greeting -------------------------->
   <------------------ start security profile ------------------->
   <------------------------- greeting -------------------------->
   <------------------------ start IDXP ------------------------->

  Notes:

  (1) Instead of immediately acknowledging the request from 'Alice' to
      start TUNNEL, 'proxy1' attempts to establish use of TUNNEL with
      'proxy2'.  'proxy2' also delays its acknowledgment to 'proxy1'.

  (2) 'Bob' acknowledges the request from 'proxy2' to start TUNNEL, and
      this acknowledgment propagates back to 'Alice' so that a TUNNEL
      application-layer tunnel is established from 'Alice' to 'Bob'.

2.2.  Data Transfer

  Between a pair of ID entities communicating over a BEEP session, one
  or more BEEP channels MAY be opened using the IDXP profile.  If
  desired, additional BEEP sessions MAY be established to offer
  additional channels using the IDXP profile.  However, in most
  situations additional channels using the IDXP profile SHOULD be
  opened within an existing BEEP session, as opposed to provisioning a
  new BEEP session containing the additional channels using the IDXP
  profile.

  Peers assume the role of client or server on a per-channel basis,
  with one acting as the client and the other as the server.  A peer's
  role of client or server is determined independent of whether the
  peer assumed the role of initiator or listener during the BEEP
  session establishment.  Clients and servers act as sources and sinks,
  respectively, for exchanging data.






Feinstein & Matthews          Experimental                      [Page 6]

RFC 4767                          IDXP                        March 2007


  In a simple case, an analyzer peer sends data to a manager peer.  For
  example,

  +----------+                          +----------+
  |          |                          |          |
  |          |****** BEEP session ******|          |
  |          |                          |          |
  | Analyzer | ----- IDXP profile ----> | Manager  |
  | (Client) |                          | (Server) |
  |          |                          |          |
  |          |**************************|          |
  |          |                          |          |
  +----------+                          +----------+

  Use of multiple BEEP channels in a BEEP session facilitates
  categorization and prioritization of data sent between IDXP peers.
  For example, a manager 'M1', sending alert data to another manager,
  'M2', may choose to open a separate channel to exchange different
  categories of alerts.  'M1' would act as the client on each of these
  channels, and manager 'M2' can then process and act on the incoming
  alerts based on their respective channel categorizations.  See
  Section 4 for more detail on how to incorporate categorization and/or
  prioritization into channel creation.

  +----------+                                            +----------+
  |          |                                            |          |
  |          |*************** BEEP session ***************|          |
  |          |                                            |          |
  |          | -- IDXP profile, network-based alerts ---> |          |
  | Manager  |                                            | Manager  |
  |   M1     | ---- IDXP profile, host-based alerts ----> |   M2     |
  | (Client) |                                            | (Server) |
  |          | ------ IDXP profile, other alerts -------> |          |
  |          |                                            |          |
  |          |********************************************|          |
  |          |                                            |          |
  +----------+                                            +----------+

2.3.  Connection Teardown

  An IDXP peer may choose to close an IDXP channel under many different
  circumstances (e.g., an error in processing has occurred).  To close
  a channel, the peer sends a "close" element (see Section 2.3.1.3 of
  [4]) on channel zero indicating which channel is being closed.  An
  IDXP peer may also choose to close an entire BEEP session by sending
  a "close" element indicating that channel zero is to be closed.





Feinstein & Matthews          Experimental                      [Page 7]

RFC 4767                          IDXP                        March 2007


  Section 2.3.1.3 of [4] offers a more complete discussion of the
  circumstances under which a BEEP peer is permitted to close a channel
  and the mechanisms for doing so.

  It is anticipated that due to the overhead of provisioning an
  application-layer tunnel and/or a BEEP security profile, BEEP
  sessions containing IDXP channels will be long-lived.  In addition,
  the repeated overhead of IDXP channel provisioning (i.e., the
  exchange of IDXP greetings) may be avoided by keeping IDXP channels
  open even while data is not actively being exchanged on them.  These
  are recommendations and, as such, IDXP peers may choose to close and
  re-provision BEEP sessions and/or IDXP channels as they see fit.

2.4.  Trust Model

  In our model, trust is placed exclusively in the IDXP peers.  Proxies
  are always assumed to be untrustworthy.  A BEEP security profile is
  used to establish end-to-end security between pairs of IDXP peers,
  doing away with the need to place trust in any intervening proxies.
  Only after successful negotiation of the underlying security profile
  are IDXP peers to be trusted.  Only BEEP security profiles offering
  at least the protections required by Section 5 of [5] should be used
  to secure a BEEP session containing channels using the IDXP profile.
  See Section 3 of [4] for the registration of the TLS profile, an
  example of a BEEP security profile meeting the requirements of
  Section 5 of [5].  See Section 5 for a discussion of how IDXP
  fulfills the IDWG communications protocol requirements.

3.  The IDXP Profile

3.1.  IDXP Profile Overview

  The IDXP profile provides a mechanism for exchanging information
  between intrusion detection entities.  A BEEP tuning profile MAY be
  used to create an application-layer tunnel that transparently
  forwards data over a chain of proxies.  The TUNNEL profile [3] SHOULD
  be used for this purpose; see [3] for more detail concerning the
  options available to set up an application-layer tunnel using TUNNEL,
  and see Section 11.1 for a discussion of TUNNEL-related security
  considerations.  TUNNEL MUST be offered as a tuning profile for the
  creation of application-layer tunnels.  The TUNNEL profile MUST offer
  the use of some form of SASL authentication (see Section 4.1 of [4]).
  The TLS profile SHOULD be used to provide the required combination of
  mutual-authentication, integrity, and confidentiality for the IDXP
  profile.  For further discussion of application-layer tunnel and
  security issues, see Sections 2.1 and 11.





Feinstein & Matthews          Experimental                      [Page 8]

RFC 4767                          IDXP                        March 2007


  The IDXP profile supports several elements of interest:

  o  The "IDXP-Greeting" element identifies an analyzer or manager at
     one end of a BEEP channel to the analyzer or manager at the other
     end of the channel.

  o  The "Option" element is used to convey optional channel parameters
     between peers during the exchange of "IDXP-Greeting" elements.
     This element is OPTIONAL.

  o  The "IDMEF-Message" element carries the structured information to
     be exchanged between the peers.

3.2.  IDXP Profile Identification and Initialization

  The IDXP profile is identified as

     http://idxp.org/beep/profile

  in the BEEP "profile" element during channel creation.

  During channel creation, "IDXP-Greeting" elements MUST be mutually
  exchanged between the peers.  An "IDXP-Greeting" element MAY be
  contained within the corresponding "profile" element in the BEEP
  "start" element.  Including an "IDXP-Greeting" element in the initial
  "start" element has exactly the same semantics as passing it as the
  first "MSG" message on the channel.  If channel creation is
  successful, then before sending the corresponding reply, the BEEP
  peer processes the "IDXP-Greeting" element and includes the resulting
  response in the reply.  This response will be an "ok" element or an
  "error" element.  The choice of which element is returned is
  dependent on local provisioning of the peer.

3.3.  IDXP Profile Message Syntax

  BEEP messages in the profile MUST have a MIME Content-Type [8] of
  "text/xml", "text/plain", or "application/octet-stream".  The syntax
  of the individual elements is specified in Section 9.1 of this
  document and Section 4 of [2].

3.4.  IDXP Profile Semantics

  Each BEEP peer issues the "IDXP-Greeting" element using "MSG"
  messages.  The "IDXP-Greeting" element MAY contain one or more
  "Option" sub-elements, conveying optional channel parameters.  Each
  BEEP peer then issues "ok" in "RPY" messages or "error" in "ERR"
  messages.  (See Section 2.3.1 of [4] for the definitions of the
  "error" and "ok" elements.)  An "error" element MAY be issued within



Feinstein & Matthews          Experimental                      [Page 9]

RFC 4767                          IDXP                        March 2007


  a "RPY" message when piggy-backed within a BEEP "profile" element.
  See Section 3.4.1 for an example of an "error" element being issued
  within a "RPY" message.  Based on the respective client/server roles
  negotiated during the exchange of "IDXP-Greeting" elements, the
  client sends data using "MSG" messages.  Depending on the MIME
  Content-Type, this data may be an "IDMEF-Message" element, plain
  text, or binary.  The server then issues "ok" in "RPY" messages or
  "error" in "ERR" messages.

3.4.1.  The IDXP-Greeting Element

  The "IDXP-Greeting" element serves to identify the analyzer or
  manager at one end of the BEEP channel to the analyzer or manager at
  the other end of the channel.  The "IDXP-Greeting" element MUST
  include the role of the peer on the channel (client or server) and
  the Uniform Resource Identifier (URI) [6] of the peer.  In addition,
  the "IDXP-Greeting" element MAY include the fully qualified domain
  name (see [9]) of the peer.  One or more "Option" sub-elements MAY be
  present.

  An "IDXP-Greeting" element MAY be sent by either peer at any time.
  The peer receiving the "IDXP-Greeting" MUST respond with an "ok"
  (indicating acceptance), or an "error" (indicating rejection).  A
  peer's identity and role on a channel and any optional channel
  parameters are, in effect, specified by the most recent "IDXP-
  Greeting" it sent that was answered with an "ok".

  An "IDXP-Greeting" may be rejected (with an "error" element) under
  many circumstances.  These include, but are not limited to,
  authentication failure, lack of authorization to connect under the
  specified role, the negotiation of an inadequate cipher suite, or the
  presence of a channel option that must be understood but was
  unrecognized.

  For example, a successful creation with an embedded "IDXP-Greeting"
  might look like this:

  I: MSG 0 10 . 1592 187
  I: Content-Type: text/xml
  I:
  I: <start number='1'>
  I:   <profile uri='http://idxp.org/beep/profile'>
  I:     <![CDATA[ <IDXP-Greeting uri='http://example.com/alice'
  I:       role='client' /> ]]>
  I:   </profile>
  I: </start>
  I: END
  L: RPY 0 10 . 1865 91



Feinstein & Matthews          Experimental                     [Page 10]

RFC 4767                          IDXP                        March 2007


  L: Content-Type: text/xml
  L:
  L: <profile uri='http://idxp.org/beep/profile'>
  L:   <![CDATA[ <ok /> ]]>
  L: </profile>
  L: END
  L: MSG 0 11 . 1956 61
  L: Content-Type: text/xml
  L:
  L: <IDXP-Greeting uri='http://example.com/bob' role='server' />
  L: END
  I: RPY 0 11 . 1779 7
  I: Content-Type: text/xml
  I:
  I: <ok />
  I: END

  A creation with an embedded "IDXP-Greeting" that fails might look
  like this:

  I: MSG 0 10 . 1776 185
  I: Content-Type: text/xml
  I:
  I: <start number='1'>
  I:   <profile uri='http://idxp.org/beep/profile'>
  I:     <![CDATA[ <IDXP-Greeting uri='http://example.com/eve'
  I:       role='client' /> ]]>
  I:   </profile>
  I: </start>
  I: END
  L: RPY 0 10 . 1592 182
  L: Content-Type: text/xml
  L:
  L: <profile uri='http://idxp.org/beep/profile'>
  L:   <![CDATA[
  L:     <error code='530'>'http://example.com/eve' must first
  L:       negotiate the TLS profile</error> ]]>
  L: </profile>
  L: END

3.4.2.  The Option Element

  If present, the "Option" element MUST be contained within an "IDXP-
  Greeting" element.  An individual "IDXP-Greeting" element MAY contain
  one or more "Option" sub-elements.  Each "Option" element within an
  "IDXP-Greeting" element represents a request to enable an IDXP option
  on the channel being negotiated.  See Section 4 for a complete
  description of IDXP options and the "Option" element.



Feinstein & Matthews          Experimental                     [Page 11]

RFC 4767                          IDXP                        March 2007


3.4.3.  The IDMEF-Message Element

  The "IDMEF-Message" element carries the information to be exchanged
  between the peers.  See Section 4 of [2] for the definition of this
  element.

4.  IDXP Options

  IDXP provides a service for the reliable exchange of data between
  intrusion detection entities.  Options are used to alter the
  semantics of the service.

  The specification of an IDXP option MUST define

  o  the identity of the option;

  o  what content, if any, is contained within the option; and

  o  the processing rules for the option.

  An option registration template (see Section 7) organizes this
  information.

  An "Option" element is contained within an "IDXP-Greeting" element.
  The "IDXP-Greeting" element itself MAY contain one or more "Option"
  elements.  The "Option" element has several attributes and contains
  arbitrary content:

  o  the "internal" and the "external" attributes, exactly one of which
     MUST be present, uniquely identify the option;

  o  the "mustUnderstand" attribute, whose presence is OPTIONAL and
     whose default value is "false", specifies whether the option, if
     unrecognized, MUST cause an error in processing to occur; and

  o  the "localize" attribute, whose presence is OPTIONAL, specifies
     one or more language tokens, each identifying a desirable language
     tag to be used if textual diagnostics are returned to the
     originator.

  The value of the "internal" attribute is the IANA-registered name for
  the option.  If the "internal" attribute is not present, then the
  value of the "external" attribute is a URI or URI with a fragment-
  identifier.  Note that a relative-URI value is not allowed.

  The "mustUnderstand" attribute specifies whether the peer may ignore
  the option if it is unrecognized.  If the value of the
  "mustUnderstand" attribute is "true", and if the peer does not



Feinstein & Matthews          Experimental                     [Page 12]

RFC 4767                          IDXP                        March 2007


  recognize the option, then an error in processing has occurred.  When
  absent, the value of the "mustUnderstand" attribute is defined to be
  "false".

4.1.  The channelPriority Option

  Section 8.3 contains the IDXP option registration for the
  "channelPriority" option.  This option contains a "channelPriority"
  element (see Section 9.2).

  By default, IDXP does not place any requirements on how peers should
  manage multiple IDXP channels.  The "channelPriority" option provides
  a way for peers using multiple IDXP channels to request relative
  priorities for each channel.  When sending an "IDXP-Greeting" element
  during the provisioning of an IDXP channel, the originating peer MAY
  request that the remote peer assign a priority to the channel by
  including an "Option" element containing a "channelPriority" element.

  The "channelPriority" element has one attribute named "priority", of
  range 0..2147483647.  This attribute is REQUIRED.  Not
  coincidentally, this is the maximum range of possible BEEP channel
  numbers.  0 is defined to represent the highest priority, with
  relative priority decreasing as the "priority" value ascends.

  For example, during the exchange of "IDXP-Greeting" elements during
  channel provisioning, an analyzer successfully requests that a
  manager assign a priority to the channel:

  analyzer                                           manager
     --------------- greeting w/ option ----------------->
     <---------------------- <ok> ------------------------

  C: MSG 1 17 . 1984 165
  C: Content-Type: text/xml
  C:
  C: <IDXP-Greeting uri='http://example.com/alice' role='client'>
  C:   <Option internal='channelPriority'>
  C:     <channelPriority priority='0' />
  C:   </Option>
  C: </IDXP-Greeting>
  C: END
  S: RPY 1 17 . 2001 7
  S: Content-Type: text/xml
  S:
  S: <ok />
  S: END





Feinstein & Matthews          Experimental                     [Page 13]

RFC 4767                          IDXP                        March 2007


  For example, during the exchange of "IDXP-Greeting" elements during
  channel provisioning, a manager unsuccessfully requests that an
  analyzer assign a priority to the channel:

    analyzer                                           manager
      <---------------- greeting w/ option ----------------
       --------------------- <error> ---------------------->

 S: MSG 1 17 . 1312 194
 S: Content-Type: text/xml
 S:
 S: <IDXP-Greeting uri='http://example.com/bob' role='server'>
 S:   <Option internal='channelPriority' mustUnderstand='true'>
 S:     <channelPriority priority='2147483647' />
 S:   </Option>
 S: </IDXP-Greeting>
 S: END
 C: ERR 1 17 . 451 68
 C: Content-Type: text/xml
 C:
 C: <error code='504'>'channelPriority' option was unrecognized</error>
 C: END

4.2.  The streamType Option

  Section 8.4 contains the IDXP option registration for the
  "streamType" option.  This option contains a "streamType" element
  (see Section 9.3).

  By default, IDXP provides no explicit method for categorizing
  channels.  The "streamType" option provides a way for peers to
  request that a channel be categorized as a particular stream type.
  When sending an "IDXP-Greeting" element during the provisioning of an
  IDXP channel, the originating peer MAY request that the remote peer
  assign a stream type to the channel by including an "Option" element
  containing a "streamType" element.

  The "streamType" element has one attribute named "type", with the
  possible values of "alert", "heartbeat", or "config".  This attribute
  is REQUIRED.  A value of "alert" indicates that the channel should be
  categorized as being used for the exchange of ID alerts.  A value of
  "heartbeat" indicates that the channel should be categorized as being
  used for the exchange of heartbeat messages such as the "Heartbeat"
  element (see Section 4 of [2]).  A value of "config" indicates that
  the channel should be categorized as being used for the exchange of
  configuration messages.





Feinstein & Matthews          Experimental                     [Page 14]

RFC 4767                          IDXP                        March 2007


  For example, during the exchange of "IDXP-Greeting" elements during
  channel provisioning, an analyzer successfully requests that a
  manager assign a stream type to the channel:

  analyzer                                           manager
     --------------- greeting w/ option ----------------->
    <---------------------- <ok> ------------------------

  C: MSG 1 21 . 1963 155
  C: Content-Type: text/xml
  C:
  C: <IDXP-Greeting uri='http://example.com/alice' role='client'>
  C:   <Option internal='streamType'>
  C:     <streamType type='alert' />
  C:   </Option>
  C: </IDXP-Greeting>
  C: END
  S: RPY 1 21 . 1117 7
  S: Content-Type: text/xml
  S:
  S: <ok />
  S: END

  For example, during the exchange of "IDXP-Greeting" elements during
  channel provisioning, a manager unsuccessfully requests that an
  analyzer assign a stream type to the channel:

  analyzer                                           manager
    <---------------- greeting w/ option ----------------
     --------------------- <error> ---------------------->

  S: MSG 1 21 . 1969 176
  S: Content-Type: text/xml
  S:
  S: <IDXP-Greeting uri='http://example.com/bob' role='server'>
  S:   <Option internal='streamType' mustUnderstand='true'>
  S:     <streamType type='config' />
  S:   </Option>
  S: </IDXP-Greeting>
  S: END
  C: ERR 1 21 . 1292 63
  C: Content-Type: text/xml
  C:
  C: <error code='504'>'streamType' option was unrecognized</error>
  C: END






Feinstein & Matthews          Experimental                     [Page 15]

RFC 4767                          IDXP                        March 2007


5.  Fulfillment of IDWG Communications Protocol Requirements

  The following lists each of the communications protocol requirements
  established in Section 5 of [5] and, for each requirement, describes
  the manner in which it is fulfilled.  IDXP itself does not fulfill
  each of the communications protocol requirements, but instead relies
  on the underlying BEEP protocol and a variety of BEEP profiles.

5.1.  Reliable Message Transmission

  "The [protocol] MUST support reliable transmission of messages."  See
  Section 5.1 of [5].

     IDXP operates over BEEP, which operates only over reliable
     connection-oriented transport protocols (e.g., TCP).  In addition,
     BEEP peers communicate using a simple request-response protocol,
     which provides end-to-end reliability between peers.

5.2.  Interaction with Firewalls

  "The [protocol] MUST support transmission of messages between ID
  components across firewall boundaries without compromising security."
  See Section 5.2 of [5].

     The TUNNEL profile [3] MUST be offered as an option for creation
     of application-layer tunnels to allow operation across firewalls.
     The TUNNEL profile SHOULD be used to provide an application-layer
     tunnel.  The ability to authenticate hosts during the creation of
     an application-layer tunnel MUST be provided by the mechanism
     chosen to create such tunnels.  A firewall may therefore be
     configured to authenticate all hosts attempting to tunnel into the
     protected network.  If the TUNNEL profile is used, SASL (see
     Section 4.1 of [4]) MUST be offered as a mechanism by which hosts
     can be authenticated.

5.3.  Mutual Authentication

  "The [protocol] MUST support mutual authentication of the analyzer
  and the manager to each other."  See Section 5.3 of [5].

     IDXP supports mutual authentication of the peers through the use
     of an appropriate underlying BEEP security profile.  The TLS
     profile and members of the SASL family of profiles (see Section
     4.1 of [4]) are examples of security profiles that may be used to
     authenticate the identity of communicating ID components.  TLS
     MUST be offered as a mechanism to provide mutual authentication,
     and TLS SHOULD be used to provide mutual authentication.




Feinstein & Matthews          Experimental                     [Page 16]

RFC 4767                          IDXP                        March 2007


5.4.  Message Confidentiality

  "The [protocol] MUST support confidentiality of the message content
  during message exchange.  The selected design MUST be capable of
  supporting a variety of encryption algorithms and MUST be adaptable
  to a wide variety of environments."  See Section 5.4 of [5].

     IDXP supports confidentiality through the use of an appropriate
     underlying BEEP security profile.  The TLS profile is an example
     of a security profile that offers confidentiality.  The TLS
     profile with the TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA cipher suite
     MUST be offered as a mechanism to provide confidentiality, and TLS
     with this cipher suite SHOULD be used to provide confidentiality.
     The TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA cipher suite uses ephemeral
     Diffie-Hellman (DHE) with DSS signatures for key exchange and
     triple DES (Data Encryption Standard) (3DES) and cipher-block
     chaining (CBC) for encryption.  Stronger cipher suites are
     optional.

5.5.  Message Integrity

  "The [protocol] MUST ensure the integrity of the message content.
  The selected design MUST be capable of supporting a variety of
  integrity mechanisms and MUST be adaptable to a wide variety of
  environments."  See Section 5.5 of [5].

     IDXP supports message integrity through the use of an appropriate
     underlying BEEP security profile.  The TLS profile and members of
     the SASL family of profiles (see Section 4.1 of [4]) are examples
     of security profiles that offer message integrity.  The TLS
     profile with the TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA cipher suite
     MUST be offered as a mechanism to provide integrity, and TLS with
     this cipher suite SHOULD be used to provide integrity.  The
     TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA cipher suite uses the Secure
     Hash Algorithm (SHA) for integrity protection using a keyed
     message authentication code.  Stronger cipher suites are optional.

5.6.  Per-Source Authentication

  "The [protocol] MUST support separate authentication keys for each
  sender."  See Section 5.6 of [5].

     IDXP supports separate authentication keys for each sender (i.e.,
     per-source authentication) through the use of an appropriate
     underlying BEEP security profile.  The TLS profile is an example
     of a security profile that supports per-source authentication
     through the mutual authentication of public-key certificates.  TLS
     MUST be offered as a mechanism to provide per-source



Feinstein & Matthews          Experimental                     [Page 17]

RFC 4767                          IDXP                        March 2007


     authentication, and TLS SHOULD be used to provide per-source
     authentication.

5.7.  Denial of Service

  "The [protocol] SHOULD resist protocol denial-of-service attacks."
  See Section 5.7 of [5].

     IDXP supports resistance to denial of service (DoS) attacks
     through the use of an appropriate underlying BEEP security
     profile.  BEEP peers offering the IDXP profile MUST offer the use
     of TLS with the TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA cipher suite,
     and SHOULD use TLS with that cipher suite.  To resist DoS attacks
     it is helpful to discard traffic arising from a non-authenticated
     source.  BEEP peers MUST support the use of authentication in
     conjunction with any mechanism used to create application-layer
     tunnels.  In particular, the use of some form of SASL
     authentication (see Section 4.1 of [4]) MUST be offered to provide
     authentication in the use of the TUNNEL profile.  See Section 7 of
     [3] for a discussion of security considerations in the use of the
     TUNNEL profile.

5.8.  Message Duplication

  "The [protocol] SHOULD resist malicious duplication of messages."
  See Section 5.8 of [5].

     IDXP supports resistance to malicious duplication of messages
     (i.e., replay attacks) through the use of an appropriate
     underlying BEEP security profile.  The TLS profile is an example
     of a security profile offering resistance to replay attacks.  The
     TLS profile with the TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA cipher
     suite MUST be offered as a mechanism to provide resistance against
     replay attacks, and TLS with this cipher suite SHOULD be used to
     provide resistance against replay attacks.  The
     TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA cipher suite uses cipher-block
     chaining (CBC) to ensure that even if a message is duplicated the
     cipher-text duplicate will produce a very different plain-text
     result.  Stronger cipher suites are optional.

6.  Extending IDXP

  The specification of IDXP options (see Section 4) is the preferred
  method of extending IDXP.  In order to extend IDXP, an IDXP option
  SHOULD be documented in an RFC and MUST be registered with the IANA
  (see Section 7).  IDXP extensions that cannot be expressed as IDXP
  options MUST be documented in an RFC.




Feinstein & Matthews          Experimental                     [Page 18]

RFC 4767                          IDXP                        March 2007


7.  IDXP Option Registration Template

  When an IDXP option is registered, the following information is
  supplied:

  Option Identification: specify the NMTOKEN or the URI that
  authoritatively identifies this option.

  Contains: specify the XML content that is contained within the
  "Option" element.

  Processing Rules: specify the processing rules associated with the
  option.

  Contact Information: specify the postal and electronic contact
  information for the author(s) of the option.

8.  Initial Registrations

8.1.  Registration: The IDXP Profile

  Profile identification: http://idxp.org/beep/profile

  Messages exchanged during channel creation: "IDXP-Greeting"

  Messages starting one-to-one exchanges: "IDXP-Greeting", "IDMEF-
  Message"

  Messages in positive replies: "ok"

  Messages in negative replies: "error"

  Messages in one-to-many exchanges: none

  Message syntax: see Section 3.3

  Message semantics: see Section 3.4

  Contact information: see the "Authors' Addresses" section of this
  memo

8.2.  Registration: The System (Well-Known) TCP Port Number for IDXP

  Protocol Number: 603

  Message Formats, Types, Opcodes, and Sequences: see Section 3.3

  Functions: see Section 3.4



Feinstein & Matthews          Experimental                     [Page 19]

RFC 4767                          IDXP                        March 2007


  Use of Broadcast/Multicast: none

  Proposed Name: Intrusion Detection Exchange Protocol

  Short name: idxp

  Contact Information: see the "Authors' Addresses" section of this
  memo

8.3.  Registration: The channelPriority Option

  Option Identification: channelPriority

  Contains: channelPriority (see Section 9.2)

  Processing Rules: see Section 4.1

  Contact Information: see the "Authors' Addresses" section of this
  memo

8.4.  Registration: The streamType Option

  Option Identification: streamType

  Contains: streamType (see Section 9.3)

  Processing Rules: see Section 4.2

  Contact Information: see the "Authors' Addresses" section of this
  memo

9.  The DTDs

9.1.  The IDXP DTD

  The following is the DTD defining the valid elements for the IDXP
  profile.

    <!--
    DTD for the IDXP Profile

    Refer to this DTD as:

      <!ENTITY % IDXP PUBLIC "-//IETF//DTD RFC 4767 IDXP v1.0//EN">

      %IDXP;
    -->




Feinstein & Matthews          Experimental                     [Page 20]

RFC 4767                          IDXP                        March 2007


    <!-- Includes -->

      <!ENTITY % BEEP PUBLIC "-//IETF//DTD BEEP//EN">

      %BEEP;


      <!ENTITY % IDMEF-Message PUBLIC
                                "-//IETF//DTD RFC 4765 IDMEF v1.0//EN">

      %IDMEF;

    <!--
      Profile Summary

        BEEP profile http://idxp.org/beep/profile

        role       MSG               RPY      ERR
        ====       ===               ===      ===
        I or L     IDXP-Greeting     ok       error
        C          IDMEF-Message     ok       error
    -->

    <!--
      Entity Definitions

            entity        syntax/reference     example
            ======        ================     =======
        an authoritative identification
            URI           see RFC 3986 [6]     http://example.com

        a fully qualified domain name
            FQDN          see RFC 1034 [9]     www.example.com
    -->

    <!ENTITY % URI      "CDATA">
    <!ENTITY % FQDN     "CDATA">

    <!--
      The IDXP-Greeting element declares the role and identity of
      the peer issuing it, on a per-channel basis. The
      IDXP-Greeting element may contain one or more Option
      sub-elements.
    -->







Feinstein & Matthews          Experimental                     [Page 21]

RFC 4767                          IDXP                        March 2007


  <!ELEMENT IDXP-Greeting  (Option*)>
  <!ATTLIST IDXP-Greeting
            uri            %URI;                #REQUIRED
            role           (client|server)      #REQUIRED
            fqdn           %FQDN;               #IMPLIED>

    <!--
      The Option element conveys an IDXP channel option.
      Note that the %LOCS entity is imported from the BEEP Channel
      Management DTD.
    -->

  <!ELEMENT Option (ANY)>
  <!ATTLIST Option
            internal       NMTOKEN              ""
            external       %URI;                ""
            mustUnderstand (true|false)         "false"
            localize       %LOCS;               "i-default">

    <!--
      The IDMEF-Message element conveys the intrusion detection
      information that is exchanged.  This element is defined in the
      idmef-message.dtd
    -->

  <!-- End of DTD -->

9.2.  The channelPriority Option DTD

  The following is the DTD defining the valid elements for the
  channelPriority option.

    <!--
    DTD for the channelPriority IDXP option, as of 2002-01-08

    Refer to this DTD as:

      <!ENTITY % IDXP-channelPriority PUBLIC
        "-//IETF//DTD RFC 4767 IDXP-channelPriority v1.0//EN">

      %IDXP-channelPriority;
    -->

    <!--
      Entity Definitions

            entity        syntax/reference     example
            ======        ================     =======



Feinstein & Matthews          Experimental                     [Page 22]

RFC 4767                          IDXP                        March 2007


      a priority number
            PRIORITY      0..2147483647        1
    -->

  <!ENTITY % PRIORITY          "CDATA">

  <!ELEMENT channelPriority    EMPTY>
  <!ATTLIST channelPriority
            priority           %PRIORITY    #REQUIRED>

  <!-- End of DTD -->

9.3.  The streamType DTD

  The following is the DTD defining the valid elements for the
  streamType option.

    <!--
    DTD for the streamType IDXP option, as of 2002-01-08

    Refer to this DTD as:

      <!ENTITY % IDXP-streamType PUBLIC
        "-//IETF//DTD RFC 4767 IDXP-streamType v1.0//EN">

      %IDXP-streamType;
    -->

    <!--
      Entity Definitions

            entity        syntax/reference                example
            ======        ================                =======
       a stream type
            STYPE         (alert | heartbeat | config)    "alert"
    -->

  <!ENTITY % STYPE        (alert|heartbeat|config)>

  <!ELEMENT streamType    EMPTY>
  <!ATTLIST streamType
            type          %STYPE    #REQUIRED>

  <!-- End of DTD -->







Feinstein & Matthews          Experimental                     [Page 23]

RFC 4767                          IDXP                        March 2007


10.  Reply Codes

  This section lists the three-digit error codes the IDXP profile may
  generate.

  code    meaning
  ====    =======
  421     Service not available
          (e.g., the peer does not have sufficient resources)

  450     Requested action not taken
          (e.g., DNS lookup failed or connection could not
           be established.  See also 550.)

  454     Temporary authentication failure

  500     General syntax error
          (e.g., poorly-formed XML)

  501     Syntax error in parameters
          (e.g., non-valid XML)

  504     Parameter not implemented

  530     Authentication required

  534     Authentication mechanism insufficient
          (e.g., cipher suite too weak, sequence exhausted)

  535     Authentication failure

  537     Action not authorized for user

  550     Requested action not taken
          (e.g., peer could be contacted, but
           malformed greeting or no IDXP profile advertised)

  553     Parameter invalid

  554     Transaction failed
          (e.g., policy violation)










Feinstein & Matthews          Experimental                     [Page 24]

RFC 4767                          IDXP                        March 2007


11.  Security Considerations

  The IDXP profile is a profile of BEEP.  In BEEP, transport security,
  user authentication, and data exchange are orthogonal.  Refer to
  Section 9 of [4] for a discussion of this.  It is strongly
  recommended that those wanting to use the IDXP profile initially
  negotiate a BEEP security profile between the peers that offers the
  required security properties.  The TLS profile SHOULD be used to
  provide for transport security.  See Section 5 for a discussion of
  how IDXP fulfills the IDWG communications protocol requirements.

  See Section 2.4 for a discussion of the trust model.

11.1.  Use of the TUNNEL Profile

  See Section 5 for IDXP's requirements on application-layer tunneling
  and the TUNNEL profile specifically.  See Section 7 of [3] for a
  discussion of the security considerations inherent in the use of the
  TUNNEL profile.

11.2.  Use of Underlying Security Profiles

  At present, the TLS profile is the only BEEP security profile known
  to meet all of the requirements set forth in Section 5 of [5].  When
  securing a BEEP session with the TLS profile, the
  TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA cipher suite offers an acceptable
  level of security.  See Section 5 for a discussion of how IDXP
  fulfills the IDWG communications requirements through the use of an
  underlying security profile.

12.  IANA Considerations

  The IANA registered "idxp" as a TCP port number as specified in
  Section 8.2.

  The IANA maintains a list of:

     IDXP options, see Section 7.

  For this list, the IESG is responsible for assigning a designated
  expert to review the specification prior to the IANA making the
  assignment.  As a courtesy to developers of non-standards track IDXP
  options, the mailing list [email protected] may be used to
  solicit commentary.

  IANA made the registrations specified in Sections 8.3 and 8.4.





Feinstein & Matthews          Experimental                     [Page 25]

RFC 4767                          IDXP                        March 2007


13.  References

13.1.  Normative References

  [1]  Bradner, S., "Key words for use in RFCs to Indicate Requirement
       Levels", BCP 14, RFC 2119, March 1997.

  [2]  Debar, H., Curry, D., and B. Feinstein, "The Intrusion Detection
       Message Exchange Format (IDMEF)", RFC 4765, March 2007.

  [3]  New, D., "The TUNNEL Profile", RFC 3620, October 2003.

  [4]  Rose, M., "The Blocks Extensible Exchange Protocol Core", RFC
       3080, March 2001.

  [5]  Wood, M. and M. Erlinger, "Intrusion Detection Message Exchange
       Requirements", RFC 4766, March 2007.

13.2.  Informative References

  [6]  Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
       Resource Identifier (URI): Generic Syntax", STD 66, RFC 3986,
       January 2005.

  [7]  Bray, T., Paoli, J., Sperberg-McQueen, C. and E. Maler,
       "Extensible Markup Language (XML) 1.0 (2nd ed)", W3C REC-xml,
       October 2000, <http://www.w3.org/TR/REC-xml>.

  [8]  Freed, N. and N. Borenstein, "Multipurpose Internet Mail
       Extensions (MIME) Part Two: Media Types", RFC 2046, November
       1996.

  [9]  Mockapetris, P., "Domain names - concepts and facilities", STD
       13, RFC 1034, November 1987.

14.  Acknowledgements

  The authors gratefully acknowledge the contributions of Darren New,
  Marshall T. Rose, Roy Pollock, Tim Buchheim, Mike Erlinger, John C.
  C. White, and Paul Osterwald.











Feinstein & Matthews          Experimental                     [Page 26]

RFC 4767                          IDXP                        March 2007


Authors' Addresses

  Benjamin S. Feinstein
  SecureWorks, Inc.
  PO Box 95007
  Atlanta, GA 30347
  US

  Phone: +1 404 327-6339
  Email: [email protected]
  URI:   http://www.secureworks.com/


  Gregory A. Matthews
  CSC/NASA Ames Research Center

  EMail: [email protected]
  URI:   http://www.nas.nasa.gov/

































Feinstein & Matthews          Experimental                     [Page 27]

RFC 4767                          IDXP                        March 2007


Full Copyright Statement

  Copyright (C) The IETF Trust (2007).

  This document is subject to the rights, licenses and restrictions
  contained in BCP 78, and except as set forth therein, the authors
  retain all their rights.

  This document and the information contained herein are provided on an
  "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
  OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
  THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
  OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
  THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
  WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

  The IETF takes no position regarding the validity or scope of any
  Intellectual Property Rights or other rights that might be claimed to
  pertain to the implementation or use of the technology described in
  this document or the extent to which any license under such rights
  might or might not be available; nor does it represent that it has
  made any independent effort to identify any such rights.  Information
  on the procedures with respect to rights in RFC documents can be
  found in BCP 78 and BCP 79.

  Copies of IPR disclosures made to the IETF Secretariat and any
  assurances of licenses to be made available, or the result of an
  attempt made to obtain a general license or permission for the use of
  such proprietary rights by implementers or users of this
  specification can be obtained from the IETF on-line IPR repository at
  http://www.ietf.org/ipr.

  The IETF invites any interested party to bring to its attention any
  copyrights, patents or patent applications, or other proprietary
  rights that may cover technology that may be required to implement
  this standard.  Please address the information to the IETF at
  [email protected].

Acknowledgement

  Funding for the RFC Editor function is currently provided by the
  Internet Society.







Feinstein & Matthews          Experimental                     [Page 28]