Network Working Group                                         L. Martini
Request for Comments: 4717                                  J. Jayakumar
Category: Standards Track                            Cisco Systems, Inc.
                                                               M. Bocci
                                                                Alcatel
                                                            N. El-Aawar
                                            Level 3 Communications, LLC
                                                             J. Brayley
                                                       ECI Telecom Inc.
                                                             G. Koleyni
                                                        Nortel Networks
                                                          December 2006


               Encapsulation Methods for Transport of
         Asynchronous Transfer Mode (ATM) over MPLS Networks

Status of This Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (C) The IETF Trust (2006).

Abstract

  An Asynchronous Transfer Mode (ATM) Pseudowire (PW) is used to carry
  ATM cells over an MPLS network.  This enables service providers to
  offer "emulated" ATM services over existing MPLS networks.  This
  document specifies methods for the encapsulation of ATM cells within
  a pseudowire.  It also specifies the procedures for using a PW to
  provide an ATM service.














Martini, et al.             Standards Track                     [Page 1]

RFC 4717            Encapsulation for ATM over MPLS        December 2006


Table of Contents

  1. Introduction ....................................................3
  2. Specification of Requirements ...................................4
  3. Applicability Statement .........................................4
  4. Terminology .....................................................4
  5. General Encapsulation Method ....................................6
     5.1. The Control Word ...........................................6
          5.1.1. The Generic Control Word ............................7
          5.1.2. The Preferred Control Word ..........................8
          5.1.3. Setting the Sequence Number Field in the
                 Control Word ........................................9
     5.2. MTU Requirements ...........................................9
     5.3. MPLS Shim S Bit Value .....................................10
     5.4. MPLS Shim TTL Values ......................................10
  6. Encapsulation Mode Applicability ...............................10
     6.1. ATM N-to-One Cell Mode ....................................11
     6.2. ATM One-to-One Cell Encapsulation .........................13
     6.3. AAL5 SDU Frame Encapsulation ..............................13
     6.4. AAL5 PDU Frame Encapsulation ..............................14
  7. ATM OAM Cell Support ...........................................15
     7.1. VCC Case ..................................................15
     7.2. VPC Case ..................................................16
     7.3. SDU/PDU OAM Cell Emulation Mode ...........................16
     7.4. Defect Handling ...........................................17
  8. ATM N-to-One Cell Mode .........................................18
     8.1. ATM N-to-One Service Encapsulation ........................19
  9. ATM One-to-One Cell Mode .......................................21
     9.1. ATM One-to-One Service Encapsulation ......................21
     9.2. Sequence Number ...........................................22
     9.3. ATM VCC Cell Transport Service ............................22
     9.4. ATM VPC Services ..........................................24
          9.4.1. ATM VPC Cell Transport Services ....................25
  10. ATM AAL5 CPCS-SDU Mode ........................................26
     10.1. Transparent AAL5 SDU Frame Encapsulation .................27
  11. AAL5 PDU Frame Mode ...........................................28
     11.1. Transparent AAL5 PDU Frame Encapsulation .................28
     11.2. Fragmentation ............................................30
          11.2.1. Procedures in the ATM-to-PSN Direction ............30
          11.2.2. Procedures in the PSN-to-ATM Direction ............31
  12. Mapping of ATM and PSN Classes of Service .....................31
  13. ILMI Support ..................................................32
  14. ATM-Specific Interface Parameter Sub-TLVs .....................32
  15. Congestion Control ............................................32
  16. Security Considerations .......................................33
  17. Normative References ..........................................34
  18. Informative References ........................................34
  19. Significant Contributors ......................................36



Martini, et al.             Standards Track                     [Page 2]

RFC 4717            Encapsulation for ATM over MPLS        December 2006


1.  Introduction

  Packet Switched Networks (PSNs) have the potential to reduce the
  complexity of a service provider's infrastructure by allowing
  virtually any existing digital service to be supported over a single
  networking infrastructure.  The benefit of this model to a service
  provider is threefold:

       -i. Leveraging of the existing systems and services to provide
           increased capacity from a packet-switched core.

      -ii. Preserving existing network operational processes and
           procedures used to maintain the legacy services.

     -iii. Using the common packet-switched network infrastructure to
           support both the core capacity requirements of existing
           services and the requirements of new services supported
           natively over the packet-switched network.

  This document describes a method to carry ATM services over MPLS.  It
  lists ATM-specific requirements and provides encapsulation formats
  and semantics for connecting ATM edge networks through a packet-
  switched network using MPLS.

  Figure 1, below, displays the ATM services reference model.  This
  model is adapted from [RFC3985].

                    |<----- Pseudowire ----->|
                    |                        |
                    |  |<-- PSN Tunnel -->|  |
       ATM Service  V  V                  V  V  ATM Service
            |     +----+                  +----+     |
  +----+    |     | PE1|==================| PE2|     |    +----+
  |    |----------|............PW1.............|----------|    |
  | CE1|    |     |    |                  |    |     |    |CE2 |
  |    |----------|............PW2.............|----------|    |
  +----+    |     |    |==================|    |     |    +----+
       ^          +----+                  +----+     |    ^
       |      Provider Edge 1         Provider Edge 2     |
       |                                                  |
       |<-------------- Emulated Service ---------------->|
  Customer                                                Customer
  Edge 1                                                  Edge 2

                  Figure 1: ATM Service Reference Model






Martini, et al.             Standards Track                     [Page 3]

RFC 4717            Encapsulation for ATM over MPLS        December 2006


2.  Specification of Requirements

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in [RFC2119].

3.  Applicability Statement

  The ATM over PW service is not intended to perfectly emulate a
  traditional ATM service, but it can be used for applications that
  need an ATM transport service.

  The following are notable differences between traditional ATM service
  and the protocol described in this document:

    - ATM cell ordering can be preserved using the OPTIONAL sequence
      field in the control word; however, implementations are not
      required to support this feature.  The use of this feature may
      impact other ATM quality of service (QoS) commitments.

    - The QoS model for traditional ATM can be emulated.  However, the
      detailed specification of ATM QoS emulation is outside the scope
      of this document.  The emulation must be able to provide the
      required ATM QoS commitments for the end-user application.

    - The ATM flow control mechanisms are transparent to the MPLS
      network and cannot reflect the status of the MPLS network.

    - Control plane support for ATM SVCs, SVPs, SPVCs, and SPVPs is
      outside the scope of this document.

  Note that the encapsulations described in this specification are
  identical to those described in [Y.1411] and [Y.1412].

4.  Terminology

  One-to-one mode: specifies an encapsulation method that maps one ATM
  Virtual Channel Connection (VCC) (or one ATM Virtual Path Connection
  (VPC)) to one pseudowire.

  N-to-one mode (N >= 1): specifies an encapsulation method that maps
  one or more ATM VCCs (or one or more ATM VPCs) to one pseudowire.

  Packet-Switched Network (PSN): an IP or MPLS network.

  Pseudowire Emulation Edge to Edge (PWE3): a mechanism that emulates
  the essential attributes of a service (such as a T1 leased line or
  Frame Relay) over a PSN.



Martini, et al.             Standards Track                     [Page 4]

RFC 4717            Encapsulation for ATM over MPLS        December 2006


  Customer Edge (CE): a device where one end of a service originates
  and/or terminates.  The CE is not aware that it is using an emulated
  service rather than a native service.

  Provider Edge (PE): a device that provides PWE3 to a CE.

  Pseudowire (PW): a connection between two PEs carried over a PSN.
  The PE provides the adaptation between the CE and the PW.

  Pseudowire PDU: a PDU sent on the PW that contains all of the data
  and control information necessary to provide the desired service.

  PSN Tunnel: a tunnel inside which multiple PWs can be nested so that
  they are transparent to core PSN devices.

  PSN Bound: the traffic direction where information from a CE is
  adapted to a PW, and PW-PDUs are sent into the PSN.

  CE Bound: the traffic direction where PW-PDUs are received on a PW
  from the PSN, re-converted back in the emulated service, and sent out
  to a CE.

  Ingress: the point where the ATM service is encapsulated into a
  pseudowire PDU (ATM to PSN direction).

  Egress: the point where the ATM service is decapsulated from a
  pseudowire PDU (PSN to ATM direction).

  CTD: Cell Transfer Delay.

  MTU: Maximum Transmission Unit.

  SDU: Service Data Unit.

  OAM: Operations And Maintenance.

  PVC: Permanent Virtual Connection.  An ATM connection that is
  provisioned via a network management interface.  The connection is
  not signaled.

  VCC: Virtual Circuit Connection.  An ATM connection that is switched
  based on the cell header's VCI.

  VPC: Virtual Path Connection.  An ATM connection that is switched
  based on the cell header's VPI.

  Additional terminology relevant to pseudowires and Layer 2 Virtual
  Private Networking (L2VPN) in general may be found in [RFC4026].



Martini, et al.             Standards Track                     [Page 5]

RFC 4717            Encapsulation for ATM over MPLS        December 2006


5.  General Encapsulation Method

  This section describes the general encapsulation format for ATM over
  PSN pseudowires.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |               PSN Transport Header (As Required)              |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                     Pseudowire Header                         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                     ATM Control Word                          |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                     ATM Service Payload                       |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

        Figure 2: General format for ATM encapsulation over PSNs

  The PSN Transport Header depends on the particular tunneling
  technology in use.  This header is used to transport the encapsulated
  ATM information through the packet-switched core.

  The Pseudowire Header identifies a particular ATM service on a
  tunnel.  In case of MPLS, the pseudowire header is one or more MPLS
  labels at the bottom of the MPLS label stack.

  The ATM Control Word is inserted before the ATM service payload.  It
  may contain a length and sequence number in addition to certain
  control bits needed to carry the service.

5.1.  The Control Word

  The Control Words defined in this section are based on the Generic PW
  MPLS Control Word as defined in [RFC4385].  They provide the ability
  to sequence individual frames on the PW, avoidance of equal-cost
  multiple-path load-balancing (ECMP) [RFC2992], and OAM mechanisms
  including VCCV [VCCV].

  [RFC4385] states, "If a PW is sensitive to packet misordering and is
  being carried over an MPLS PSN that uses the contents of the MPLS
  payload to select the ECMP path, it MUST employ a mechanism which
  prevents packet misordering."  This is necessary because ECMP
  implementations may examine the first nibble after the MPLS label
  stack to determine whether or not the labelled packet is IP.  Thus,
  if the VPI of an ATM connection carried over the PW using N-to-one
  cell mode encapsulation, without a control word present, begins with
  0x4 or 0x6, it could be mistaken for an IPv4 or IPv6 packet.  This



Martini, et al.             Standards Track                     [Page 6]

RFC 4717            Encapsulation for ATM over MPLS        December 2006


  could, depending on the configuration and topology of the MPLS
  network, lead to a situation where all packets for a given PW do not
  follow the same path.  This may increase out-of-order frames on a
  given PW, or cause OAM packets to follow a different path than actual
  traffic (see section 4.4.3 on Frame Ordering).

  The features that the control word provides may not be needed for a
  given ATM PW.  For example, ECMP may not be present or active on a
  given MPLS network, strict frame sequencing may not be required, etc.
  If this is the case, and the control word is not REQUIRED by the
  encapsulation mode for other functions (such as length or the
  transport of ATM protocol specific information), the control word
  provides little value and is therefore OPTIONAL.  Early ATM PW
  implementations have been deployed that do not include a control word
  or the ability to process one if present.  To aid in backwards
  compatibility, future implementations MUST be able to send and
  receive frames without a control word present.

  In all cases, the egress PE MUST be aware of whether the ingress PE
  will send a control word over a specific PW.  This may be achieved by
  configuration of the PEs, or by signaling, as defined in [RFC4447].

  If the pseudowire traverses a network link that requires a minimum
  frame size (Ethernet is a practical example), with a minimum frame
  size of 64 octets, then such links will apply padding to the
  pseudowire PDU to reach its minimum frame size.  In this case, the
  control word must include a length field set to the PDU length.  A
  mechanism is required for the egress PE to detect and remove such
  padding.

5.1.1.  The Generic Control Word

  This control word is used in the following encapsulation modes:

    - ATM One-to-one Cell Mode
    - AAL5 PDU Frame Mode

  The PWE3 control word document [RFC4385] provides the following
  structure for the generic control word:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |0 0 0 0|          Specified by PW Encapsulation                |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+






Martini, et al.             Standards Track                     [Page 7]

RFC 4717            Encapsulation for ATM over MPLS        December 2006


  The detailed structure for the ATM One-to-one Cell Mode and for the
  AAL5 PDU Frame Mode is as follows:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |0 0 0 0| Resvd |        Sequence Number        | ATM Specific  |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  In the above diagram, the first 4 bits MUST be set to 0 to indicate
  PW data.  They MUST be ignored by the receiving PE.

  The next four bits are reserved and MUST be set to 0 upon
  transmission and ignored upon reception.

  The next 16 bits provide a sequence number that can be used to
  guarantee ordered packet delivery.  The processing of the sequence
  number field is OPTIONAL.

  The sequence number space is a 16-bit, unsigned circular space.  The
  sequence number value 0 is used to indicate that the sequence number
  check algorithm is not used.

  The last 8 bits provide space for carrying ATM-specific flags.  These
  are defined in the protocol-specific details below.

  There is no requirement for a length field for the One-to-one Cell
  and PDU Frame modes because the PSN PDU is always greater than 64
  bytes; therefore, no padding is applied in Ethernet links in the PSN.

5.1.2.  The Preferred Control Word

  This control word is used in the following encapsulation modes:

    - ATM N-to-one Cell Mode
    - AAL5 SDU Frame Mode

  It is defined as follows:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |0 0 0 0| Flags |Res|   Length  |     Sequence Number           |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  In the above diagram, the first 4 bits MUST be set to 0 to indicate
  PW data.  They MUST be ignored by the receiving PE.




Martini, et al.             Standards Track                     [Page 8]

RFC 4717            Encapsulation for ATM over MPLS        December 2006


  The next 4 bits provide space for carrying protocol-specific flags.
  These are defined in the protocol-specific details below.

  The next 6 bits provide a length field, which is used as follows:  If
  the packet's length (defined as the length of the layer 2 payload
  plus the length of the control word) is less than 64 bytes, the
  length field MUST be set to the packet's length.  Otherwise, the
  length field MUST be set to zero.  The value of the length field, if
  non-zero, can be used to remove any padding.  When the packet reaches
  the service provider's egress router, it may be desirable to remove
  the padding before forwarding the packet.  Note that the length field
  is not used in the N-to-one mode and MUST be set to 0.

  The last 16 bits provide a sequence number that can be used to
  guarantee ordered packet delivery.  The processing of the sequence
  number field is OPTIONAL.

  The sequence number space is a 16-bit, unsigned circular space.  The
  sequence number value 0 is used to indicate that the sequence number
  check algorithm is not used.

5.1.3.  Setting the Sequence Number Field in the Control Word

  This section applies to the sequence number field of both the Generic
  and Preferred Control Words.

  For a given emulated VC and a pair of routers PE1 and PE2, if PE1
  supports packet sequencing, then the sequencing procedures defined in
  [RFC4385] MUST be used.

  Packets that are received out of order MAY be dropped or reordered at
  the discretion of the receiver.

  A simple extension of the processing algorithm in [RFC4385] MAY be
  used to detect lost packets.

  If a PE router negotiated not to use receive sequence number
  processing, and it received a non-zero sequence number, then it
  SHOULD send a PW status message indicating a receive fault and
  disable the PW.

5.2.  MTU Requirements

  The network MUST be configured with an MTU that is sufficient to
  transport the largest encapsulation frames.  If MPLS is used as the
  tunneling protocol, for example, this is likely to be 12 or more
  bytes greater than the largest frame size.  Other tunneling protocols
  may have longer headers and require larger MTUs.  If the ingress



Martini, et al.             Standards Track                     [Page 9]

RFC 4717            Encapsulation for ATM over MPLS        December 2006


  router determines that an encapsulated layer 2 PDU exceeds the MTU of
  the tunnel through which it must be sent, the PDU MUST be dropped.
  If an egress router receives an encapsulated layer 2 PDU whose
  payload length (i.e., the length of the PDU itself without any of the
  encapsulation headers) exceeds the MTU of the destination layer 2
  interface, the PDU MUST be dropped.

5.3.  MPLS Shim S Bit Value

  The ingress label switching router (LSR), PE1, MUST set the S bit of
  the PW label to a value of 1 to denote that the VC label is at the
  bottom of the stack.  For more information on setting the S Bit, see
  [RFC3032].

5.4.  MPLS Shim TTL Values

  The setting of the TTL value in the PW label is application
  dependent.  In any case, [RFC3032] TTL processing procedure,
  including handling of expired TTLs, MUST be followed.

6.  Encapsulation Mode Applicability

  This document defines two methods for encapsulation of ATM cells,
  namely, One-to-one mode and N-to-one mode.

  The N-to-one mode (N >= 1) specifies an encapsulation method that
  maps one or more ATM VCCs (or one or more ATM VPCs) to one
  pseudowire.  This is the only REQUIRED mode.  One format is used for
  both the VCC or VPC mapping to the tunnel.  The 4-octet ATM header is
  unaltered in the encapsulation; thus, the VPI/VCI is always present.
  Cells from one or more VCCs (or one or more VPCs) may be
  concatenated.

  The One-to-one mode specifies an encapsulation method that maps one
  ATM VCC or one ATM VPC to one pseudowire.  For VCCs, the VPI/VCI is
  not included.  For VPCs, the VPI is not included.  Cells from one VCC
  or one VPC may be concatenated.  This mode is OPTIONAL.

  Furthermore, different OPTIONAL encapsulations are supported for ATM
  AAL5 transport: one for ATM AAL5 SDUs, and another for ATM AAL5 PDUs.

  Three deployment models are supported by the encapsulations described
  in this document:

       -i. Single ATM Connection: A PW carries the cells of only one
           ATM VCC or VPC.  This supports both the transport of
           multiservice ATM and L2VPN service over a PSN for all AAL
           types.



Martini, et al.             Standards Track                    [Page 10]

RFC 4717            Encapsulation for ATM over MPLS        December 2006


      -ii. Multiple ATM Connections: A PW carries the cells of multiple
           ATM VCCs and/or VPCs.  This also supports both the transport
           of multiservice ATM and L2VPN service over a PSN for all AAL
           types.

     -iii. AAL5: A PW carries the AAL5 frames of only one ATM VCC.  A
           large proportion of the data carried on ATM networks is
           frame based and therefore uses AAL5.  The AAL5 mapping takes
           advantage of the delineation of higher-layer frames in the
           ATM layer to provide increased bandwidth efficiency compared
           with the basic cell mapping.  The nature of the service, as
           defined by the ATM service category [TM4.0] or the ATM
           transfer capability [I.371], should be preserved.

6.1.  ATM N-to-One Cell Mode

  This encapsulation supports both the Single and Multiple ATM
  Connection deployment models.  This encapsulation is REQUIRED.

  The encapsulation allows multiple VCCs/VPCs to be carried within a
  single pseudowire.  However, a service provider may wish to provision
  a single VCC to a pseudowire in order to satisfy QoS or restoration
  requirements.

  The encapsulation also supports the binding of multiple VCCs/VPCs to
  a single pseudowire.  This capability is useful in order to make more
  efficient use of the PW demultiplexing header space as well as to
  ease provisioning of the VCC/VPC services.

  In the simplest case, this encapsulation can be used to transmit a
  single ATM cell per PSN PDU.  However, in order to provide better PSN
  bandwidth efficiency, several ATM cells may optionally be
  encapsulated in a single PSN PDU.  This process is called cell
  concatenation.

  The encapsulation has the following attributes:

       -i. Supports all ATM Adaptation Layer Types.

      -ii. Non-terminating OAM/Admin cells are transported among the
           user cells in the same order as they are received.  This
           requirement enables the use of various performance
           management and security applications.








Martini, et al.             Standards Track                    [Page 11]

RFC 4717            Encapsulation for ATM over MPLS        December 2006


     -iii. In order to gain transport efficiency on the PSN, multiple
           cells may be encapsulated in a single PW PDU.  This process
           is called cell concatenation.  How many cells to insert or
           how long to wait for cell arrival before sending a PW PDU is
           an implementation decision.  Cell concatenation adds latency
           and delay variation to a cell relay service.

      -iv. The CLP bit from each cell may be mapped to a corresponding
           marking on the PW PDU.  This allows the drop precedence to
           be preserved across the PSN.

       -v. If the Single ATM connection deployment model is used, then
           it is simpler to provide an ATM layer service.  The nature
           of the service, as defined by the ATM service category
           [TM4.0] or ATM transfer capability [I.371], should be
           preserved.

  The limitations of the ATM N-to-one cell encapsulation are:

      -vi. There is no currently defined method to translate the
           forward congestion indication (EFCI) to a corresponding
           function in the PSN.  Nor is there a way to translate PSN
           congestion to the EFCI upon transmission by the egress PE.

     -vii. The ATM cell header checksum can detect a 2-bit error or
           detect and correct a single-bit error in the cell header.
           Analogous functionality does not exist in most PSNs.  A
           single bit error in a PW PDU will most likely cause the
           packet to be dropped due to an L2 Frame Check Sequence (FCS)
           failure.

    -viii. Cells can be concatenated from multiple VCCs or VPCs
           belonging to different service categories and QoS
           requirements.  In this case, the PSN packet must receive
           treatment by the PSN to support the highest QoS of the ATM
           VCCs/VPCs carried.

      -ix. Cell encapsulation only supports point-to-point Label
           Switched Paths (LSPs).  Multipoint-to-point and point-to-
           multi-point are for further study (FFS).

       -x. The number of concatenated ATM cells is limited by the MTU
           size and the cell transfer delay (CTD) and cell delay
           variation (CDV) objectives of multiple ATM connections that
           are multiplexed into a single PW.






Martini, et al.             Standards Track                    [Page 12]

RFC 4717            Encapsulation for ATM over MPLS        December 2006


6.2.  ATM One-to-One Cell Encapsulation

  This OPTIONAL encapsulation supports the Single ATM Connection
  deployment model.

  Like the N-to-one cell encapsulation mode, the One-to-one mode
  supports cell concatenation.  The advantage of this encapsulation is
  that it utilizes less bandwidth that the N-to-one encapsulation, for
  a given number of concatenated cells.  Since only one ATM VCC or VPC
  is carried on a PW, the VCI and/or VPI of the ATM VCC or VPC can be
  derived from the context of the PW using the PW label.  These fields
  therefore do not need to be encapsulated for a VCC, and only the VCI
  needs to be encapsulated for a VPC.  This encapsulation thus allows
  service providers to achieve a higher bandwidth efficiency on PSN
  links than the N-to-one encapsulation for a given number of
  concatenated cells.

  The limitations vi, vii, ix, and x of N-to-one mode apply.

6.3.  AAL5 SDU Frame Encapsulation

  This OPTIONAL encapsulation supports the AAL5 model.  This mode
  allows the transport of ATM AAL5 CSPS-SDUs traveling on a particular
  ATM PVC across the network to another ATM PVC.  This encapsulation is
  used by a PW of type 0x0002 "ATM AAL5 SDU VCC transport" as allocated
  in [RFC4446].

  The AAL5 SDU encapsulation is more efficient for small AAL5 SDUs than
  the VCC cell encapsulations.  In turn, it presents a more efficient
  alternative to the cell relay service when carrying [RFC2684]-
  encapsulated IP PDUs across a PSN.

  The AAL5-SDU encapsulation requires Segmentation and Reassembly (SAR)
  on the PE-CE ATM interface.  This SAR function is provided by common
  off-the-shelf hardware components.  Once reassembled, the AAL5-SDU is
  carried via a pseudowire to the egress PE.  Herein lies another
  advantage of the AAL5-SDU encapsulation.

  The limitations of the AAL5 SDU encapsulation are:

       -i. If an ATM OAM cell is received at the ingress PE, it is sent
           before the cells of the surrounding AAL5 frame.  Therefore,
           OAM cell reordering may occur, which may cause certain ATM
           OAM performance monitoring and ATM security applications to
           operate incorrectly.






Martini, et al.             Standards Track                    [Page 13]

RFC 4717            Encapsulation for ATM over MPLS        December 2006


      -ii. If the ALL5 PDU is scrambled using ATM security standards, a
           PE will not be able to extract the ALL5 SDU, and therefore
           the whole PDU will be dropped.

     -iii. The AAL5 PDU CRC is not transported across the PSN.  The CRC
           must therefore be regenerated at the egress PE since the CRC
           has end-to-end significance in ATM security.  This means
           that the AAL5 CRC may not be used to accurately check for
           errors on the end-to-end ATM VCC.

      -iv. The Length of AAL5 frame may exceed the MTU of the PSN.
           This requires fragmentation, which may not be available to
           all nodes at the PW endpoint.

       -v. This mode does not preserve the value of the CLP bit for
           every ATM cell within an AAL5 PDU.  Therefore, transparency
           of the CLP setting may be violated.  Additionally, tagging
           of some cells may occur when tagging is not allowed by the
           conformance definition [TM4.0].

      -vi. This mode does not preserve the EFCI state for every ATM
           cell within an AAL5 PDU.  Therefore, transparency of the
           EFCI state may be violated.

6.4.  AAL5 PDU Frame Encapsulation

  This OPTIONAL encapsulation supports the AAL5 model.

  The primary application supported by AAL5 PDU frame encapsulation
  over PSN is the transparent carriage of ATM layer services that use
  AAL5 to carry higher-layer frames.  The main advantage of this AAL5
  mode is that it is transparent to ATM OAM and ATM security
  applications.

  One important consideration is to allow OAM information to be treated
  as in the original network.  This encapsulation mode allows this
  transparency while performing AAL5 frame encapsulation.  This mode
  supports fragmentation, which may be performed in order to maintain
  the position of the OAM cells with respect to the user cells.

  Fragmentation may also be performed to maintain the size of the
  packet carrying the AAL5 PDU within the MTU of the link.
  Fragmentation provides a means for the PE to set the size of the PW
  packet to a different value than that of the original AAL5 PDU.  This
  means that the PE has control on the delay and jitter provided to the
  ATM cells.





Martini, et al.             Standards Track                    [Page 14]

RFC 4717            Encapsulation for ATM over MPLS        December 2006


  The whole AAL5-PDU is encapsulated.  In this case, all necessary
  parameters, such as CPCS-UU (CPCS User-to-User indicator), CPI
  (Common Part Indicator), Length (Length of the CPCS-SDU) and CRC
  (Cyclic Redundancy Check), are transported as part of the payload.
  Note that carrying of the full PDU also allows the simplification of
  the fragmentation operation since it is performed at cell boundaries
  and the CRC in the trailer of the AAL5 PDU can be used to check the
  integrity of the PDU.

  Reassembly is not required at the egress PE for the PSN-to-ATM
  direction.

  The limitations v and vi of the AAL5 SDU mode apply to this mode as
  well.

7.  ATM OAM Cell Support

7.1.  VCC Case

  In general, when configured for ATM VCC service, both PEs SHOULD act
  as a VC switch, in accordance with the OAM procedures defined in
  [I.610].

  The PEs SHOULD be able to pass the following OAM cells transparently:

    - F5 Alarm Indication Signal (AIS) (segment and end-to-end)
    - F5 Remote Defect Indicator (RDI) (segment and end-to-end)
    - F5 loopback (segment and end-to-end)
    - Resource Management
    - Performance Management
    - Continuity Check
    - Security

  However, if configured to be an administrative segment boundary, the
  PE SHOULD terminate and process F5 segment OAM cells.

  F4 OAM cells are inserted or extracted at the VP link termination.
  These OAM cells are not seen at the VC link termination and are
  therefore not sent across the PSN.

  When the PE is operating in AAL5 CPCS-SDU transport mode if it does
  not support transport of ATM cells, the PE MUST discard incoming MPLS
  frames on an ATM PW that contain a PW label with the T bit set.








Martini, et al.             Standards Track                    [Page 15]

RFC 4717            Encapsulation for ATM over MPLS        December 2006


7.2.  VPC Case

  When configured for a VPC cell relay service, both PEs SHOULD act as
  a VP cross-connect in accordance with the OAM procedures defined in
  [I.610].

  The PEs SHOULD be able to process and pass the following OAM cells
  transparently according to [I.610]:

    - F4 AIS (segment and end-to-end)
    - F4 RDI (segment and end-to-end)
    - F4 loopback (segment and end-to-end)

  However, if configured to be an administrative segment boundary, the
  PE SHOULD terminate and process F4 segment OAM cells.

  F5 OAM are not inserted or extracted here.  The PEs MUST be able to
  pass the following OAM cells transparently:

    - F5 AIS (segment and end-to-end)
    - F5 RDI (segment and end-to-end)
    - F5 loopback (segment and end-to-end)
    - Resource Management
    - Performance Management
    - Continuity Check
    - Security

  The OAM cell MAY be encapsulated together with other user data cells
  if multiple cell encapsulation is used.

7.3.  SDU/PDU OAM Cell Emulation Mode

  A PE operating in ATM SDU or PDU transport mode that does not support
  transport of OAM cells across a PW MAY provide OAM support on ATM
  PVCs using the following procedures:

    - Loopback cells response

      If an F5 end-to-end OAM cell is received from an ATM VC, by
      either PE that is transporting this ATM VC, with a loopback
      indication value of 1, and the PE has a label mapping for the ATM
      VC, then the PE MUST decrement the loopback indication value and
      loop back the cell on the ATM VC.  Otherwise, the loopback cell
      MUST be discarded by the PE.







Martini, et al.             Standards Track                    [Page 16]

RFC 4717            Encapsulation for ATM over MPLS        December 2006


    - AIS alarm

      If an ingress PE, PE1, receives an AIS F4/F5 OAM cell, it MUST
      notify the remote PE of the failure.  The remote PE, PE2, MUST in
      turn send F5 OAM AIS cells on the respective PVCs.  Note that if
      the PE supports forwarding of OAM cells, then the received OAM
      AIS alarm cells MUST be forwarded along the PW as well.

    - Interface failure

      If the PE detects a physical interface failure, or the interface
      is administratively disabled, the PE MUST notify the remote PE
      for all VCs associated with the failure.

    - PSN/PW failure detection

      If the PE detects a failure in the PW, by receiving a label
      withdraw for a specific PW ID, or the targeted Label Distribution
      Protocol (LDP) session fails, or a PW status TLV notification is
      received, then a proper AIS F5 OAM cell MUST be generated for all
      the affected ATM PVCs.  The AIS OAM alarm will be generated on
      the ATM output port of the PE that detected the failure.

7.4.  Defect Handling

  Figure 3 illustrates four possible locations for defects on the PWE3
  service:

    - (a) On the ATM connection from CE to PE
    - (b) On the ATM side of the PW
    - (c) On the PSN side of the PE
    - (d) In the PSN

                  +----+                  +----+
  +----+          | PE1|==================| PE2|          +----+
  |    |---a------|b..c........PW1...d.........|----------|    |
  | CE1|          |    |                  |    |          |CE2 |
  |    |----------|............PW2.............|----------|    |
  +----+          |    |==================|    |          +----+
       ^          +----+                  +----+          ^
       |      Provider Edge 1         Provider Edge 2     |
       |                                                  |
       |<-------------- Emulated Service ---------------->|
  Customer                                                Customer
  Edge 1                                                  Edge 2

                       Figure 3: Defect Locations




Martini, et al.             Standards Track                    [Page 17]

RFC 4717            Encapsulation for ATM over MPLS        December 2006


  For failures at (a) or (b), in the VPC case, the ingress PE MUST be
  able to generate an F4 AIS upon reception of a lower-layer defect
  (such as LOS).  In the VCC case, the ingress PE SHOULD be able to
  generate an F5 AIS upon reception of a corresponding F4 AIS or
  lower-layer defect (such as LOS).  These messages are sent across the
  PSN.

  For failures at (c) or (d), in the VCC case, the egress PE SHOULD be
  able to generate an F5 AIS based on a PSN failure (such as a PSN
  tunnel failure or LOS on the PSN port).  In the VPC case, the egress
  PE SHOULD be able to generate an F4 AIS based on a PSN failure (such
  as a PSN tunnel failure or LOS on the PSN port).

  If the ingress PE cannot support the generation of OAM cells, it MAY
  notify the egress PE using a pseudowire-specific maintenance
  mechanism such as the PW status message defined in [RFC4447].
  Alternatively, for example, the ingress PE MAY withdraw the
  pseudowire (PW label) label associated with the service.  Upon
  receiving such a notification, the egress PE SHOULD generate the
  appropriate F4 AIS (for VPC) or F5 AIS (for VCC).

  If the PW in one direction fails, then the complete bidirectional
  service is considered to have failed.

8.  ATM N-to-One Cell Mode

  The N-to-one mode (N >= 1) described in this document allows a
  service provider to offer an ATM PVC- or SVC-based service across a
  network.  The encapsulation allows multiple ATM VCCs or VPCs to be
  carried within a single PSN tunnel.  A service provider may also use
  N-to-one mode to provision either one VCC or one VPC on a tunnel.
  This section defines the VCC and VPC cell relay services over a PSN
  and their applicability.


















Martini, et al.             Standards Track                    [Page 18]

RFC 4717            Encapsulation for ATM over MPLS        December 2006


8.1.  ATM N-to-One Service Encapsulation

  This section describes the general encapsulation format for ATM over
  PSN pseudowires.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |               PSN Transport Header (As Required)              |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                     pseudowire Header                         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |0 0 0 0| Flags |Res|   Length  |     Sequence Number           |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                     ATM Service Payload                       |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

        Figure 4: General format for ATM encapsulation over PSNs

  The PSN Transport Header depends on the particular tunneling
  technology in use.  This header is used to transport the encapsulated
  ATM information through the packet-switched core.

  The Pseudowire Header identifies a particular ATM service on a
  tunnel.  Non-ATM services may also be carried on the PSN tunnel.

  As shown above, in Figure 4, the ATM Control Word is inserted before
  the ATM service payload.  It may contain a length field and a
  sequence number field in addition to certain control bits needed to
  carry the service.

  The ATM Service Payload is specific to the service being offered via
  the pseudowire.  It is defined in the following sections.

  In this encapsulation mode, ATM cells are transported individually.
  The encapsulation of a single ATM cell is the only REQUIRED
  encapsulation for ATM.  The encapsulation of more than one ATM cell
  in a PSN frame is OPTIONAL.

  The ATM cell encapsulation consists of an OPTIONAL control word and
  one or more ATM cells, each consisting of a 4-byte ATM cell header
  and the 48-byte ATM cell payload.  This ATM cell header is defined as
  in the FAST encapsulation [FBATM] section 3.1.1, but without the
  trailer byte.  The length of each frame, without the encapsulation
  headers, is a multiple of 52 bytes.  The maximum number of ATM cells
  that can be fitted in a frame, in this fashion, is limited only by
  the network MTU and by the ability of the egress router to process
  them.  The ingress router MUST NOT send more cells than the egress



Martini, et al.             Standards Track                    [Page 19]

RFC 4717            Encapsulation for ATM over MPLS        December 2006


  router is willing to receive.  The number of cells that the egress
  router is willing to receive may either be configured in the ingress
  router or be signaled, for example using the methods described later
  in this document and in [RFC4447].  The number of cells encapsulated
  in a particular frame can be inferred by the frame length.  The
  control word is OPTIONAL.  If the control word is used, then the flag
  and length bits in the control word are not used.  These bits MUST be
  set to 0 when transmitting, and MUST be ignored upon receipt.

  The EFCI and CLP bits are carried across the network in the ATM cell
  header.  The edge routers that implement this document MAY, when
  either adding or removing the encapsulation described herein, change
  the EFCI bit from zero to one in order to reflect congestion in the
  network that is known to the edge router, and change the CLP bit from
  zero to one in order to reflect marking from edge policing of the ATM
  Sustained Cell Rate.  The EFCI and CLP bits SHOULD NOT be changed
  from one to zero.

  This diagram illustrates an encapsulation of two ATM cells:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                  Control word ( Optional )                    |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |          VPI          |              VCI              | PTI |C|
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                  ATM Payload ( 48 bytes )                     |
  |                          "                                    |
  |                          "                                    |
  |                          "                                    |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |          VPI          |              VCI              | PTI |C|
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                  ATM Payload ( 48 bytes )                     |
  |                          "                                    |
  |                          "                                    |
  |                          "                                    |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                Figure 5: Multiple Cell ATM Encapsulation

    * When multiple VCCs or VPCs are transported in one pseudowire,
      VPI/VCI values MUST be unique.  When the multiple VCCs or VPCs
      are from different a physical transmission path, it may be
      necessary to assign unique VPI/VCI values to the ATM connections.
      If they are from the same physical transmission path, the VPI/VCI
      values are unique.



Martini, et al.             Standards Track                    [Page 20]

RFC 4717            Encapsulation for ATM over MPLS        December 2006


    * VPI

      The ingress router MUST copy the VPI field from the incoming cell
      into this field.  For particular emulated VCs, the egress router
      MAY generate a new VPI and ignore the VPI contained in this
      field.

    * VCI

      The ingress router MUST copy the VCI field from the incoming ATM
      cell header into this field.  For particular emulated VCs, the
      egress router MAY generate a new VCI.

    * PTI & CLP (C bit)

      The PTI and CLP fields are the PTI and CLP fields of the incoming
      ATM cells.  The cell headers of the cells within the packet are
      the ATM headers (without Header Error Check (HEC) field) of the
      incoming cell.

9.  ATM One-to-One Cell Mode

  The One-to-one mode described in this document allows a service
  provider to offer an ATM PVC- or SVC-based service across a network.
  The encapsulation allows one ATM VCC or VPC to be carried within a
  single pseudowire.

9.1.  ATM One-to-One Service Encapsulation

  This section describes the general encapsulation format for ATM over
  pseudowires on an MPLS PSN.  Figure 6 provides a general format for
  encapsulation of ATM cells into packets.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |               PSN Transport Header (As Required)              |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                     Pseudowire Header                        |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |0 0 0 0| Resvd |    Optional Sequence Number   | ATM Specific  |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                     ATM Service Payload                       |
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Figure 6: General format for One-to-one mode encapsulation over PSNs




Martini, et al.             Standards Track                    [Page 21]

RFC 4717            Encapsulation for ATM over MPLS        December 2006


  The MPLS PSN Transport Header depends on how the MPLS network is
  configured.  The Pseudowire Header identifies a particular ATM
  service within the PSN tunnel created by the PSN Transport Header.

  This header is used to transport the encapsulated ATM information
  through the packet-switched core.

  The generic control word is inserted after the Pseudowire Header.
  The presence of the control word is REQUIRED.

  The ATM Specific Header is inserted before the ATM service payload.
  The ATM Specific Header contains control bits needed to carry the
  service.  These are defined in the ATM service descriptions below.
  The length of ATM Specific Header may not always be one octet.  It
  depends on the service type.

  The ATM payload octet group is the payload of the service that is
  being encapsulated.

9.2.  Sequence Number

  The sequence number is not required for all services.

  Treatment of the sequence number is according to section 5.1.3.

9.3.  ATM VCC Cell Transport Service

  The VCC cell transport service is characterized by the mapping of a
  single ATM VCC (VPI/VCI) to a pseudowire.  This service is fully
  transparent to the ATM Adaptation Layer.  The VCC single cell
  transport service is OPTIONAL.  This service MUST use the following
  encapsulation format:

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |               PSN Transport Header (As Required)              |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                      Pseudowire Header                        |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |0 0 0 0| Resvd |  Optional Sequence Number     |M|V|Res| PTI |C|
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                                                               |
     |                   ATM Cell Payload ( 48 bytes )               |
     |                                                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

               Figure 7: Single ATM VCC Cell Encapsulation



Martini, et al.             Standards Track                    [Page 22]

RFC 4717            Encapsulation for ATM over MPLS        December 2006


    * M (transport mode) bit

      Bit (M) of the control byte indicates whether the packet contains
      an ATM cell or a frame payload.  If set to 0, the packet contains
      an ATM cell.  If set to 1, the PDU contains an AAL5 payload.

    * V (VCI present) bit

      Bit (V) of the control byte indicates whether the VCI field is
      present in the packet.  If set to 1, the VCI field is present for
      the cell.  If set to 0, no VCI field is present.  In the case of
      a VCC, the VCI field is not required.  For VPC, the VCI field is
      required and is transmitted with each cell.

    * Reserved bits

      The reserved bits should be set to 0 at the transmitter and
      ignored upon reception.

    * PTI Bits

      The 3-bit Payload Type Identifier (PTI) incorporates ATM Layer
      PTI coding of the cell.  These bits are set to the value of the
      PTI of the encapsulated ATM cell.

    * C (CLP) Bit

      The Cell Loss Priority (CLP) field indicates CLP value of the
      encapsulated cell.

  For increased transport efficiency, the ingress PE SHOULD be able to
  encapsulate multiple ATM cells into a pseudowire PDU.  The ingress
  and egress PE MUST agree to a maximum number of cells in a single
  pseudowire PDU.  This agreement may be accomplished via a
  pseudowire-specific signaling mechanism or via static configuration.

  When multiple cells are encapsulated in the same PSN packet, the
  ATM-specific byte MUST be repeated for each cell.  This means that 49
  bytes are used to encapsulate each 53 byte ATM cell.












Martini, et al.             Standards Track                    [Page 23]

RFC 4717            Encapsulation for ATM over MPLS        December 2006


   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |               PSN Transport Header (As Required)              |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                      Pseudowire Header                       |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |0 0 0 0| Resvd |  Optional Sequence Number     |M|V|Res| PTI |C|
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  |                   ATM Cell Payload ( 48 bytes )               |
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |M|V|Res| PTI |C|                                               |
  +-+-+-+-+-+-+-+-+                                               |
  |                   ATM Cell Payload ( 48 bytes )               |
  |                                                               |
  |               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |               |
  +-+-+-+-+-+-+-+-+

              Figure 8: Multiple ATM VCC Cell Encapsulation

9.4.  ATM VPC Services

  The VPC service is defined by mapping a single VPC (VPI) to a
  pseudowire.  As such, it emulates a Virtual Path cross-connect across
  the PSN.  All VCCs belonging to the VPC are carried transparently by
  the VPC service.

  The egress PE may choose to apply a different VPI other than the one
  that arrived at the ingress PE.  The egress PE MUST choose the
  outgoing VPI based solely upon the pseudowire header.  As a VPC
  service, the egress PE MUST NOT change the VCI field.

















Martini, et al.             Standards Track                    [Page 24]

RFC 4717            Encapsulation for ATM over MPLS        December 2006


9.4.1.  ATM VPC Cell Transport Services

  The ATM VPC cell transport service is OPTIONAL.

  This service MUST use the following cell mode encapsulation:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |               PSN Transport Header (As Required)              |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                      Pseudowire Header                       |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |0 0 0 0| Resvd |  Optional Sequence Number     |M|V|Res| PTI |C|
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |             VCI               |                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               |
  |                                                               |
  |                   ATM Cell Payload ( 48 bytes )               |
  |                                                               |
  |                               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                 Figure 9: Single Cell VPC Encapsulation

  The ATM control byte contains the same information as in the VCC
  encapsulation except for the VCI field.

    * VCI Bits

      The 16-bit Virtual Circuit Identifier (VCI) incorporates ATM
      Layer VCI value of the cell.

  For increased transport efficiency, the ingress PE SHOULD be able to
  encapsulate multiple ATM cells into a pseudowire PDU.  The ingress
  and egress PE MUST agree to a maximum number of cells in a single
  pseudowire PDU.  This agreement may be accomplished via a
  pseudowire-specific signaling mechanism or via static configuration.

  If the Egress PE supports cell concatenation, the ingress PE MUST
  only concatenate cells up to the "Maximum Number of concatenated ATM
  cells in a frame" interface parameter sub-TLV as received as part of
  the control protocol [RFC4447].

  When multiple ATM cells are encapsulated in the same PSN packet, the
  ATM-specific byte MUST be repeated for each cell.  This means that 51
  bytes are used to encapsulate each 53-byte ATM cell.



Martini, et al.             Standards Track                    [Page 25]

RFC 4717            Encapsulation for ATM over MPLS        December 2006


   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |               PSN Transport Header (As Required)              |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                      Pseudowire Header                       |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |0 0 0 0| Resvd |  Optional Sequence Number     |M|V|Res| PTI |C|
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |             VCI               |                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               |
  |                                                               |
  |                   ATM Cell Payload (48 bytes)                 |
  |                                                               |
  |                               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                               |M|V|Res| PTI |C|        VCI    |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |   VCI         |                                               |
  +-+-+-+-+-+-+-+-+                                               |
  |                   ATM Cell Payload (48 bytes)                 |
  |                                                               |
  |               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |               |
  +-+-+-+-+-+-+-+-+

               Figure 10: Multiple Cell VPC Encapsulation

10.  ATM AAL5 CPCS-SDU Mode

  The AAL5 payload VCC service defines a mapping between the payload of
  an AAL5 VCC and a single pseudowire.  The AAL5 payload VCC service
  requires ATM segmentation and reassembly support on the PE.

  The AAL5 payload CPCS-SDU service is OPTIONAL.

  Even the smallest TCP packet requires two ATM cells when sent over
  AAL5 on a native ATM device.  It is desirable to avoid this padding
  on the pseudowire.  Therefore, once the ingress PE reassembles the
  AAL5 CPCS-PDU, the PE discards the PAD and CPCS-PDU trailer, and then
  the ingress PE inserts the resulting payload into a pseudowire PDU.

  The egress PE MUST regenerate the PAD and trailer before transmitting
  the AAL5 frame on the egress ATM port.

  This service does allow the transport of OAM and RM cells, but it
  does not attempt to maintain the relative order of these cells with
  respect to the cells that comprise the AAL5 CPCS-PDU.  All OAM cells,
  regardless of their type, that arrive during the reassembly of a



Martini, et al.             Standards Track                    [Page 26]

RFC 4717            Encapsulation for ATM over MPLS        December 2006


  single AAL5 CPCS-PDU are sent immediately on the pseudowire using
  N-to-one cell encapsulation, followed by the AAL5 payload.
  Therefore, the AAL5 payload VCC service will not be suitable for ATM
  applications that require strict ordering of OAM cells (such as
  performance monitoring and security applications).

10.1.  Transparent AAL5 SDU Frame Encapsulation

  The AAL5 CPCS-SDU is prepended by the following header:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |  Res  |T|E|C|U|Res|  Length   |   Sequence Number (Optional)  |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                              "                                |
  |                     ATM cell or AAL5 CPCS-SDU                 |
  |                              "                                |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                 Figure 11: AAL5 CPCS-SDU Encapsulation

  The AAL5 payload service encapsulation requires the ATM control word.
  The Flag bits are described below.

    * Res (Reserved)

      These bits are reserved and MUST be set to 0 upon transmission
      and ignored upon reception.

    * T (transport type) bit

      Bit (T) of the control word indicates whether the packet contains
      an ATM admin cell or an AAL5 payload.  If T = 1, the packet
      contains an ATM admin cell, encapsulated according to the N-to-
      one cell relay encapsulation, Figure 4.  If not set, the PDU
      contains an AAL5 payload.  The ability to transport an ATM cell
      in the AAL5 SDU mode is intended to provide a means of enabling
      administrative functionality over the AAL5 VCC (though it does
      not endeavor to preserve user-cell and admin-cell
      arrival/transport ordering).

    * E (EFCI) Bit

      The ingress router, PE1, SHOULD set this bit to 1 if the EFCI bit
      of the final cell of those that transported the AAL5 CPCS-SDU is
      set to 1, or if the EFCI bit of the single ATM cell to be
      transported in the packet is set to 1.  Otherwise, this bit



Martini, et al.             Standards Track                    [Page 27]

RFC 4717            Encapsulation for ATM over MPLS        December 2006


      SHOULD be set to 0.  The egress router, PE2, SHOULD set the EFCI
      bit of all cells that transport the AAL5 CPCS-SDU to the value
      contained in this field.

    * C (CLP) Bit

      The ingress router, PE1, SHOULD set this bit to 1 if the CLP bit
      of any of the ATM cells that transported the AAL5 CPCS-SDU is set
      to 1, or if the CLP bit of the single ATM cell to be transported
      in the packet is set to 1.  Otherwise this bit SHOULD be set to
      0.  The egress router, PE2, SHOULD set the CLP bit of all cells
      that transport the AAL5 CPCS-SDU to the value contained in this
      field.

    * U (Command/Response Field) Bit

      When FRF.8.1 Frame Relay/ATM PVC Service Interworking [RFC3916]
      traffic is being transported, the CPCS-UU Least Significant Bit
      (LSB) of the AAL5 CPCS-PDU may contain the Frame Relay C/R bit.
      The ingress router, PE1, SHOULD copy this bit to the U bit of the
      control word.  The egress router, PE2, SHOULD copy the U bit to
      the CPCS-UU Least Significant Bit (LSB) of the AAL5 CPCS PDU.

11.  AAL5 PDU Frame Mode

  The AAL5 payload PDU service is OPTIONAL.

11.1.  Transparent AAL5 PDU Frame Encapsulation

  In this mode, the ingress PE encapsulates the entire CPCS-PDU
  including the PAD and trailer.

  This mode MAY support fragmentation procedures described in the
  "Fragmentation" section below, in order to maintain OAM cell
  sequencing.

  Like the ATM AAL5 payload VCC service, the AAL5 transparent VCC
  service is intended to be more efficient than the VCC cell transport
  service.  However, the AAL5 transparent VCC service carries the
  entire AAL5 CPCS-PDU, including the PAD and trailer.  Note that the
  AAL5 CPCS-PDU is not processed, i.e., an AAL5 frame with an invalid
  CRC or length field will be transported.  One reason for this is that
  there may be a security agent that has scrambled the ATM cell
  payloads that form the AAL5 CPCS-PDU.

  This service supports all OAM cell flows by using a fragmentation
  procedure that ensures that OAM cells are not repositioned in respect
  to AAL5 composite cells.



Martini, et al.             Standards Track                    [Page 28]

RFC 4717            Encapsulation for ATM over MPLS        December 2006


  The AAL5 transparent VCC service is OPTIONAL.

  0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |               PSN Transport Header (As Required)              |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                      Pseudowire Header                       |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |0 0 0 0| Resvd |   Optional Sequence Number    |M|V| Res |U|E|C|
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                             "                                 |
  |                        AAL5 CPCS-PDU                          |
  |                      (n * 48 bytes)                           |
  |                             "                                 |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

            Figure 12: AAL5 transparent service encapsulation

  The generic control word is inserted after the Pseudowire Header.
  The presence of the control word is MANDATORY.

  The M, V, Res, and C bits are as defined earlier for VCC One-to-one
  cell mode.

    * U Bit

      This field indicates whether this frame contains the last cell of
      an AAL5 PDU and represents the value of the ATM User-to-User bit
      for the last ATM cell of the PSN frame.  Note: The ATM User-to-
      User bit is the least significant bit of the PTI field in the ATM
      header.  This field is used to support the fragmentation
      functionality described later in this section.

    * E (EFCI) bit

      This field is used to convey the EFCI state of the ATM cells.
      The EFCI state is indicated in the middle bit of each ATM cell's
      PTI field.

      ATM-to-PSN direction (ingress): The EFCI field of the control
      byte is set to the EFCI state of the last cell of the AAL5 PDU or
      AAL5 fragment.

      PSN-to-ATM direction (egress): The EFCI state of all constituent
      cells of the AAL5 PDU or AAL5 fragment is set to the value of the
      EFCI field in the control byte.




Martini, et al.             Standards Track                    [Page 29]

RFC 4717            Encapsulation for ATM over MPLS        December 2006


    * C (CLP) bit

      This field is used to convey the cell loss priority of the ATM
      cells.

      ATM-to-PSN direction (ingress): The CLP field of the control byte
      is set to 1 if any of the constituent cells of the AAL5 PDU or
      AAL5 fragment has its CLP bit set to 1; otherwise, this field is
      set to 0.

      PSN-to-ATM direction (egress): The CLP bit of all constituent
      cells for an AAL5 PDU or AAL5 fragment is set to the value of the
      CLP field in the control byte.  The payload consists of the
      re-assembled AAL5 CPCS-PDU, including the AAL5 padding and
      trailer or the AAL5 fragment.

11.2.  Fragmentation

  The ingress PE may not always be able to reassemble a full AAL5
  frame.  This may be because the AAL5 PDU exceeds the pseudowire MTU
  or because OAM cells arrive during reassembly of the AAL5 PDU.  In
  these cases, the AAL5 PDU shall be fragmented.  In addition,
  fragmentation may be desirable to bound ATM cell delay.

  When fragmentation occurs, the procedures described in the following
  subsections shall be followed.

11.2.1.  Procedures in the ATM-to-PSN Direction

  The following procedures shall apply while fragmenting AAL5 PDUs:

    - Fragmentation shall always occur at cell boundaries within the
      AAL5 PDU.

    - Set the UU bit to the value of the ATM User-to-User bit in the
      cell header of the most recently received ATM cell.

    - The E and C bits of the fragment shall be set as defined in
      section 9.

    - If the arriving cell is an OAM or an RM cell, send the current
      PSN frame and then send the OAM or RM cell using One-to-one
      single cell encapsulation (VCC).








Martini, et al.             Standards Track                    [Page 30]

RFC 4717            Encapsulation for ATM over MPLS        December 2006


11.2.2.  Procedures in the PSN-to-ATM Direction

  The following procedures shall apply:

    - The 3-bit PTI field of each ATM cell header is constructed as
      follows:

       -i. The most significant bit is set to 0, indicating a user data
           cell.

      -ii. The middle bit is set to the E bit value of the fragment.

     -iii. The least significant bit for the last ATM cell in the PSN
           frame is set to the value of the UU bit of Figure 12.

      -iv. The least significant PTI bit is set to 0 for all other
           cells in the PSN frame.

    - The CLP bit of each ATM cell header is set to the value of the C
      bit of the control byte in Figure 12.

    - When a fragment is received, each constituent ATM cell is sent in
      correct order.

12.  Mapping of ATM and PSN Classes of Service

  This section is provided for informational purposes, and for guidance
  only.  This section should not be considered part of the standard
  proposed in this document.

  When ATM PW service is configured over a PSN, the ATM service
  category of a connection SHOULD be mapped to a compatible class of
  service in the PSN network.  A compatible class of service maintains
  the integrity of the service end to end.  For example, the CBR
  service category SHOULD be mapped to a class of service with
  stringent loss and delay objectives.  If the PSN implements the IP
  Diffserv framework, a class of service based on the EF PHB is a good
  candidate.

  Furthermore, ATM service categories have support for multiple
  conformance definitions [TM4.0].  Some are CLP blind (e.g., CBR),
  meaning that the QoS objectives apply to the aggregate CLP0+1
  conforming cell flow.  Some are CLP significant (e.g., VBR.3),
  meaning that the QoS objectives apply to the CLP0 conforming cell
  flow only.

  When the PSN is MPLS based, a mapping between the CLP bit and the EXP
  field can be performed to provide visibility of the cell loss



Martini, et al.             Standards Track                    [Page 31]

RFC 4717            Encapsulation for ATM over MPLS        December 2006


  priority in the MPLS network.  The actual value to be marked in the
  EXP field depends on the ATM service category, the ATM conformance
  definition, and the type of tunnel LSP used (E-LSP or L-LSP).  The
  details of this mapping are outside the scope of this document.
  Operators have the flexibility to design a specific mapping that
  satisfies their own requirements.

  In both the ATM-to-PSN and PSN-to-ATM directions, the method used to
  transfer the CLP and EFCI information of the individual cells into
  the ATM-specific field, or flags, of the PW packet is described in
  detail in sections 6 through 9 for each encapsulation mode.

13.  ILMI Support

  An MPLS edge PE MAY provide an ATM Integrated Local Management
  Interface (ILMI) to the ATM edge switch.  If an ingress PE receives
  an ILMI message indicating that the ATM edge switch has deleted a VC,
  or if the physical interface goes down, it MUST send a PW status
  notification message for all PWs associated with the failure.  When a
  PW label mapping is withdrawn, or PW status notification message is
  received, the egress PE MUST notify its client of this failure by
  deleting the VC using ILMI.

14.  ATM-Specific Interface Parameter Sub-TLVs

  The Interface parameter TLV is defined in [RFC4447], and the IANA
  registry with initial values for interface parameter sub-TLV types is
  defined in [RFC4446], but the ATM PW-specific interface parameter is
  specified as follows:

    - 0x02 Maximum Number of concatenated ATM cells.

      A 2-octet value specifying the maximum number of concatenated ATM
      cells that can be processed as a single PDU by the egress PE.  An
      ingress PE transmitting concatenated cells on this PW can
      concatenate a number of cells up to the value of this parameter,
      but MUST NOT exceed it.  This parameter is applicable only to PW
      types 3, 9, 0x0a, 0xc, [RFC4446], and 0xd and is REQUIRED for
      these PWC types.  This parameter does not need to match in both
      directions of a specific PW.

15.  Congestion Control

  As explained in [RFC3985], the PSN carrying the PW may be subject to
  congestion, with congestion characteristics depending on PSN type,
  network architecture, configuration, and loading.  During congestion
  the PSN may exhibit packet loss that will impact the service carried
  by the ATM PW.  In addition, since ATM PWs carry a variety of



Martini, et al.             Standards Track                    [Page 32]

RFC 4717            Encapsulation for ATM over MPLS        December 2006


  services across the PSN, including but not restricted to TCP/IP, they
  may or may not behave in a TCP-friendly manner prescribed by
  [RFC2914].  In the presence of services that reduce transmission
  rate, ATM PWs may thus consume more than their fair share and in that
  case SHOULD be halted.

  Whenever possible, ATM PWs should be run over traffic-engineered PSNs
  providing bandwidth allocation and admission control mechanisms.
  IntServ-enabled domains providing the Guaranteed Service (GS) or
  Diffserv-enabled domains using EF (expedited forwarding) are examples
  of traffic-engineered PSNs.  Such PSNs will minimize loss and delay
  while providing some degree of isolation of the ATM PW's effects from
  neighboring streams.

  It should be noted that when transporting ATM, Diffserv-enabled
  domains may use AF (Assured Forwarding) and/or DF (Default
  Forwarding) instead of EF, in order to place less burden on the
  network and gain additional statistical multiplexing advantage.  In
  particular, Table 1 of Appendix "V" in [ATM-MPLS] contains a detailed
  mapping between ATM classes and Diffserv classes.

  The PEs SHOULD monitor for congestion (by using explicit congestion
  notification, [VCCV], or by measuring packet loss) in order to ensure
  that the service using the ATM PW may be maintained.  When a PE
  detects significant congestion while receiving the PW PDUs, the PE
  MAY use RM cells for ABR connections to notify the remote PE.

  If the PW has been set up using the protocol defined in [RFC4447],
  then procedures specified in [RFC4447] for status notification can be
  used to disable packet transmission on the ingress PE from the egress
  PE.  The PW may be restarted by manual intervention, or by automatic
  means after an appropriate waiting time.

16.  Security Considerations

  This document specifies only encapsulations, not the protocols used
  to carry the encapsulated packets across the PSN.  Each such protocol
  may have its own set of security issues [RFC4447][RFC3985], but those
  issues are not affected by the encapsulations specified herein.  Note
  that the security of the transported ATM service will only be as good
  as the security of the PSN.  This level of security might be less
  rigorous than a native ATM service.









Martini, et al.             Standards Track                    [Page 33]

RFC 4717            Encapsulation for ATM over MPLS        December 2006


17.  Normative References

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119, March 1997.

  [RFC4447]  Martini, L., Rosen, E., El-Aawar, N., Smith, T., and G.
             Heron, "Pseudowire Setup and Maintenance Using the Label
             Distribution Protocol (LDP)", RFC 4447, April 2006.

  [RFC3032]  Rosen, E., Tappan, D., Fedorkow, G., Rekhter, Y.,
             Farinacci, D., Li, T., and A. Conta, "MPLS Label Stack
             Encoding", RFC 3032, January 2001.

  [RFC4446]  Martini, L., "IANA Allocations for Pseudowire Edge to Edge
             Emulation (PWE3)", BCP 116, RFC 4446, April 2006.

  [RFC4385]  Bryant, S., Swallow, G., Martini, L., and D. McPherson,
             "Pseudowire Emulation Edge-to-Edge (PWE3) Control Word for
             Use over an MPLS PSN", RFC 4385, February 2006.

18.  Informative References

  [FBATM]    ATM Forum Specification af-fbatm-0151.000 (2000), "Frame
             Based ATM over SONET/SDH Transport (FAST)"

  [TM4.0]    ATM Forum Specification af-tm-0121.000 (1999), "Traffic
             Management Specification Version 4.1"

  [I.371]    ITU-T Recommendation I.371 (2000), "Traffic control and
             congestion control in B-ISDN".

  [I.610]    ITU-T Recommendation I.610, (1999), "B-ISDN operation and
             maintenance principles and functions".

  [Y.1411]   ITU-T Recommendation Y.1411 (2003), ATM-MPLS Network
             Interworking - Cell Mode user Plane Interworking

  [Y.1412]   ITU-T Recommendation Y.1412 (2003), ATM-MPLS network
             interworking - Frame mode user plane interworking

  [RFC3985]  Bryant, S. and P. Pate, "Pseudo Wire Emulation Edge-to-
             Edge (PWE3) Architecture", RFC 3985, March 2005.

  [RFC3916]  Xiao, X., McPherson, D., and P. Pate, "Requirements for
             Pseudo-Wire Emulation Edge-to-Edge (PWE3)", RFC 3916,
             September 2004.





Martini, et al.             Standards Track                    [Page 34]

RFC 4717            Encapsulation for ATM over MPLS        December 2006


  [RFC4026]  Andersson, L. and T. Madsen, "Provider Provisioned Virtual
             Private Network (VPN) Terminology", RFC 4026, March 2005.

  [VCCV]     Nadeau, T., Pignataro, C., and R. Aggarwal, "Pseudowire
             Virtual Circuit Connectivity Verification (VCCV)", Work in
             Progress, June 2006.

  [RFC2992]  Hopps, C., "Analysis of an Equal-Cost Multi-Path
             Algorithm", RFC 2992, November 2000.

  [ATM-MPLS] ATM Forum Specification af-aic-0178.001, "ATM-MPLS Network
             Interworking Version 2.0", August 2003.

  [RFC2914]  Floyd, S., "Congestion Control Principles", BCP 41, RFC
             2914, September 2000.

  [RFC2684]  Grossman, D. and J. Heinanen, "Multiprotocol Encapsulation
             over ATM Adaptation Layer 5", RFC 2684, September 1999.

































Martini, et al.             Standards Track                    [Page 35]

RFC 4717            Encapsulation for ATM over MPLS        December 2006


19.  Significant Contributors

  Giles Heron
  Tellabs
  Abbey Place
  24-28 Easton Street
  High Wycombe
  Bucks
  HP11 1NT
  UK
  EMail: [email protected]


  Dimitri Stratton Vlachos
  Mazu Networks, Inc.
  125 Cambridgepark Drive
  Cambridge, MA 02140
  EMail: [email protected]


  Dan Tappan
  Cisco Systems, Inc.
  1414 Massachusetts Avenue
  Boxborough, MA 01719
  EMail: [email protected]


  Eric C. Rosen
  Cisco Systems, Inc.
  1414 Massachusetts Avenue
  Boxborough, MA 01719
  EMail: [email protected]


  Steve Vogelsang
  ECI Telecom
  Omega Corporate Center
  1300 Omega Drive
  Pittsburgh, PA 15205
  EMail: [email protected]


  Gerald de Grace
  ECI Telecom
  Omega Corporate Center
  1300 Omega Drive
  Pittsburgh, PA 15205
  EMail: [email protected]



Martini, et al.             Standards Track                    [Page 36]

RFC 4717            Encapsulation for ATM over MPLS        December 2006


  John Shirron
  ECI Telecom
  Omega Corporate Center
  1300 Omega Drive
  Pittsburgh, PA 15205
  EMail: [email protected]


  Andrew G. Malis
  Verizon Communications
  40 Sylvan Road
  Waltham, MA
  EMail: [email protected]
  Phone: 781-466-2362


  Vinai Sirkay
  Redback Networks
  300 Holger Way
  San Jose, CA 95134
  EMail: [email protected]


  Chris Liljenstolpe
  Alcatel
  11600 Sallie Mae Dr.
  9th Floor
  Reston, VA 20193
  EMail: [email protected]


  Kireeti Kompella
  Juniper Networks
  1194 N. Mathilda Ave
  Sunnyvale, CA 94089
  EMail: [email protected]


  John Fischer
  Alcatel
  600 March Rd
  Kanata, ON, Canada. K2K 2E6
  EMail: [email protected]








Martini, et al.             Standards Track                    [Page 37]

RFC 4717            Encapsulation for ATM over MPLS        December 2006


  Mustapha Aissaoui
  Alcatel
  600 March Rd
  Kanata, ON, Canada. K2K 2E6
  EMail: [email protected]


  Tom Walsh
  Lucent Technologies
  1 Robbins Road
  Westford, MA 01886 USA
  EMail: [email protected]


  John Rutemiller
  Marconi Networks
  1000 Marconi Drive
  Warrendale, PA 15086
  EMail: [email protected]


  Rick Wilder
  Alcatel
  45195 Business Court
  Loudoun Gateway II Suite 300
  M/S STERV-SMAE
  Sterling, VA 20166
  EMail: [email protected]


  Laura Dominik
  Qwest Communications, Inc.
  600 Stinson Blvd.
  Minneapolis, MN 55413
  Email: [email protected]
















Martini, et al.             Standards Track                    [Page 38]

RFC 4717            Encapsulation for ATM over MPLS        December 2006


Authors' Addresses

  Luca Martini
  Cisco Systems, Inc.
  9155 East Nichols Avenue, Suite 400
  Englewood, CO 80112
  EMail: [email protected]


  Jayakumar Jayakumar
  Cisco Systems, Inc.
  225 E.Tasman, MS-SJ3/3
  San Jose, CA 95134
  EMail: [email protected]


  Matthew Bocci
  Alcatel
  Grove House, Waltham Road Rd
  White Waltham, Berks, UK. SL6 3TN
  EMail: [email protected]


  Nasser El-Aawar
  Level 3 Communications, LLC.
  1025 Eldorado Blvd.
  Broomfield, CO 80021
  EMail: [email protected]


  Jeremy Brayley
  ECI Telecom Inc.
  Omega Corporate Center
  1300 Omega Drive
  Pittsburgh, PA 15205
  EMail: [email protected]


  Ghassem Koleyni
  Nortel Networks
  P O Box 3511, Station C Ottawa, Ontario,
  K1Y 4H7 Canada
  EMail: [email protected]








Martini, et al.             Standards Track                    [Page 39]

RFC 4717            Encapsulation for ATM over MPLS        December 2006


Full Copyright Statement

  Copyright (C) The IETF Trust (2006).

  This document is subject to the rights, licenses and restrictions
  contained in BCP 78, and except as set forth therein, the authors
  retain all their rights.

  This document and the information contained herein are provided on an
  "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
  OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST,
  AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES,
  EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT
  THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY
  IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
  PURPOSE.

Intellectual Property

  The IETF takes no position regarding the validity or scope of any
  Intellectual Property Rights or other rights that might be claimed to
  pertain to the implementation or use of the technology described in
  this document or the extent to which any license under such rights
  might or might not be available; nor does it represent that it has
  made any independent effort to identify any such rights.  Information
  on the procedures with respect to rights in RFC documents can be
  found in BCP 78 and BCP 79.

  Copies of IPR disclosures made to the IETF Secretariat and any
  assurances of licenses to be made available, or the result of an
  attempt made to obtain a general license or permission for the use of
  such proprietary rights by implementers or users of this
  specification can be obtained from the IETF on-line IPR repository at
  http://www.ietf.org/ipr.

  The IETF invites any interested party to bring to its attention any
  copyrights, patents or patent applications, or other proprietary
  rights that may cover technology that may be required to implement
  this standard.  Please address the information to the IETF at
  [email protected].

Acknowledgement

  Funding for the RFC Editor function is currently provided by the
  Internet Society.






Martini, et al.             Standards Track                    [Page 40]