Network Working Group                                         J. Lazzaro
Request for Comments: 4695                                  J. Wawrzynek
Category: Standards Track                                    UC Berkeley
                                                          November 2006


                     RTP Payload Format for MIDI


Status of This Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (C) The IETF Trust (2006).

Abstract

  This memo describes a Real-time Transport Protocol (RTP) payload
  format for the MIDI (Musical Instrument Digital Interface) command
  language.  The format encodes all commands that may legally appear on
  a MIDI 1.0 DIN cable.  The format is suitable for interactive
  applications (such as network musical performance) and content-
  delivery applications (such as file streaming).  The format may be
  used over unicast and multicast UDP and TCP, and it defines tools for
  graceful recovery from packet loss.  Stream behavior, including the
  MIDI rendering method, may be customized during session setup.  The
  format also serves as a mode for the mpeg4-generic format, to support
  the MPEG 4 Audio Object Types for General MIDI, Downloadable Sounds
  Level 2, and Structured Audio.

Table of Contents

  1. Introduction ....................................................4
     1.1. Terminology ................................................5
     1.2. Bitfield Conventions .......................................6
  2. Packet Format ...................................................6
     2.1. RTP Header .................................................7
     2.2. MIDI Payload ..............................................11
  3. MIDI Command Section ...........................................12
     3.1.  Timestamps ...............................................14
     3.2.  Command Coding ...........................................16




Lazzaro & Wawrzynek         Standards Track                     [Page 1]

RFC 4695              RTP Payload Format for MIDI          November 2006


  4. The Recovery Journal System ....................................22
  5. Recovery Journal Format ........................................24
  6. Session Description Protocol ...................................28
     6.1. Session Descriptions for Native Streams ...................29
     6.2. Session Descriptions for mpeg4-generic Streams ............30
     6.3. Parameters ................................................33
  7. Extensibility ..................................................34
  8. Congestion Control .............................................35
  9. Security Considerations ........................................35
  10. Acknowledgements ..............................................36
  11. IANA Considerations ...........................................37
     11.1. rtp-midi Media Type Registration .........................37
          11.1.1. Repository Request for "audio/rtp-midi" ...........40
     11.2. mpeg4-generic Media Type Registration ....................41
          11.2.1. Repository Request for Mode rtp-midi for
                  mpeg4-generic .....................................44
     11.3. asc Media Type Registration ..............................46
  A. The Recovery Journal Channel Chapters ..........................48
     A.1. Recovery Journal Definitions ..............................48
     A.2. Chapter P: MIDI Program Change ............................52
     A.3. Chapter C: MIDI Control Change ............................53
          A.3.1. Log Inclusion Rules ................................54
          A.3.2. Controller Log Format ..............................55
          A.3.3. Log List Coding Rules ..............................57
          A.3.4. The Parameter System ...............................60
     A.4. Chapter M: MIDI Parameter System ..........................62
          A.4.1. Log Inclusion Rules ................................64
          A.4.2. Log Coding Rules ...................................65
                A.4.2.1. The Value Tool .............................67
                A.4.2.2. The Count Tool .............................70
     A.5. Chapter W: MIDI Pitch Wheel ...............................71
     A.6. Chapter N: MIDI NoteOff and NoteOn ........................71
          A.6.1. Header Structure ...................................73
          A.6.2. Note Structures ....................................74
     A.7. Chapter E: MIDI Note Command Extras .......................75
          A.7.1. Note Log Format ....................................76
          A.7.2. Log Inclusion Rules ................................76
     A.8. Chapter T: MIDI Channel Aftertouch ........................77
     A.9. Chapter A: MIDI Poly Aftertouch ...........................78
  B. The Recovery Journal System Chapters ...........................79
     B.1. System Chapter D: Simple System Commands ..................79
          B.1.1. Undefined System Commands ..........................80
     B.2. System Chapter V: Active Sense Command ....................83
     B.3. System Chapter Q: Sequencer State Commands ................83
          B.3.1. Non-compliant Sequencers ...........................85
     B.4. System Chapter F: MIDI Time Code Tape Position ............86
          B.4.1. Partial Frames .....................................88




Lazzaro & Wawrzynek         Standards Track                     [Page 2]

RFC 4695              RTP Payload Format for MIDI          November 2006


     B.5. System Chapter X: System Exclusive ........................89
          B.5.1. Chapter Format .....................................90
          B.5.2. Log Inclusion Semantics ............................92
          B.5.3. TCOUNT and COUNT Fields ............................95
  C. Session Configuration Tools ....................................95
     C.1. Configuration Tools: Stream Subsetting ....................97
     C.2. Configuration Tools: The Journalling System ..............101
          C.2.1. The j_sec Parameter ...............................102
          C.2.2. The j_update Parameter ............................103
                C.2.2.1. The anchor Sending Policy .................104
                C.2.2.2. The closed-loop Sending Policy ............104
                C.2.2.3. The open-loop Sending Policy ..............108
          C.2.3. Recovery Journal Chapter Inclusion Parameters .....110
     C.3. Configuration Tools: Timestamp Semantics .................115
          C.3.1. The comex Algorithm ...............................115
          C.3.2. The async Algorithm ...............................116
          C.3.3. The buffer Algorithm ..............................117
     C.4. Configuration Tools: Packet Timing Tools .................118
          C.4.1. Packet Duration Tools .............................119
          C.4.2. The guardtime Parameter ...........................120
     C.5. Configuration Tools: Stream Description ..................121
     C.6. Configuration Tools: MIDI Rendering ......................128
          C.6.1. The multimode Parameter ...........................129
          C.6.2. Renderer Specification ............................129
          C.6.3. Renderer Initialization ...........................131
          C.6.4. MIDI Channel Mapping ..............................133
                C.6.4.1. The smf_info Parameter ....................134
                C.6.4.2. The smf_inline, smf_url, and smf_cid
                         Parameters ................................136
                C.6.4.3. The chanmask Parameter ....................136
          C.6.5. The audio/asc Media Type ..........................137
     C.7. Interoperability .........................................139
          C.7.1. MIDI Content Streaming Applications ...............139
          C.7.2. MIDI Network Musical Performance Applications .....142
  D. Parameter Syntax Definitions ..................................150
  E. A MIDI Overview for Networking Specialists ....................156
     E.1. Commands Types ...........................................159
     E.2. Running Status ...........................................159
     E.3. Command Timing ...........................................160
     E.4. AudioSpecificConfig Templates for MMA Renderers ..........160
  References .......................................................165
  Normative References .............................................165
  Informative References ...........................................166








Lazzaro & Wawrzynek         Standards Track                     [Page 3]

RFC 4695              RTP Payload Format for MIDI          November 2006


1.  Introduction

  The Internet Engineering Task Force (IETF) has developed a set of
  focused tools for multimedia networking ([RFC3550] [RFC4566]
  [RFC3261] [RFC2326]).  These tools can be combined in different ways
  to support a variety of real-time applications over Internet Protocol
  (IP) networks.

  For example, a telephony application might use the Session Initiation
  Protocol (SIP, [RFC3261]) to set up a phone call.  Call setup would
  include negotiations to agree on a common audio codec [RFC3264].
  Negotiations would use the Session Description Protocol (SDP,
  [RFC4566]) to describe candidate codecs.

  After a call is set up, audio data would flow between the parties
  using the Real Time Protocol (RTP, [RFC3550]) under any applicable
  profile (for example, the Audio/Visual Profile (AVP, [RFC3551])).
  The tools used in this telephony example (SIP, SDP, RTP) might be
  combined in a different way to support a content streaming
  application, perhaps in conjunction with other tools, such as the
  Real Time Streaming Protocol (RTSP, [RFC2326]).

  The MIDI (Musical Instrument Digital Interface) command language
  [MIDI] is widely used in musical applications that are analogous to
  the examples described above.  On stage and in the recording studio,
  MIDI is used for the interactive remote control of musical
  instruments, an application similar in spirit to telephony.  On web
  pages, Standard MIDI Files (SMFs, [MIDI]) rendered using the General
  MIDI standard [MIDI] provide a low-bandwidth substitute for audio
  streaming.

  This memo is motivated by a simple premise: if MIDI performances
  could be sent as RTP streams that are managed by IETF session tools,
  a hybridization of the MIDI and IETF application domains may occur.

  For example, interoperable MIDI networking may foster network music
  performance applications, in which a group of musicians, located at
  different physical locations, interact over a network to perform as
  they would if they were located in the same room [NMP].  As a second
  example, the streaming community may begin to use MIDI for low-
  bitrate audio coding, perhaps in conjunction with normative sound
  synthesis methods [MPEGSA].

  To enable MIDI applications to use RTP, this memo defines an RTP
  payload format and its media type.  Sections 2-5 and Appendices A-B
  define the RTP payload format.  Section 6 and Appendices C-D define
  the media types identifying the payload format, the parameters needed
  for configuration, and how the parameters are utilized in SDP.



Lazzaro & Wawrzynek         Standards Track                     [Page 4]

RFC 4695              RTP Payload Format for MIDI          November 2006


  Appendix C also includes interoperability guidelines for the example
  applications described above: network musical performance using SIP
  (Appendix C.7.2) and content-streaming using RTSP (Appendix C.7.1).

  Another potential application area for RTP MIDI is MIDI networking
  for professional audio equipment and electronic musical instruments.
  We do not offer interoperability guidelines for this application in
  this memo.  However, RTP MIDI has been designed with stage and studio
  applications in mind, and we expect that efforts to define a stage
  and studio framework will rely on RTP MIDI for MIDI transport
  services.

  Some applications may require MIDI media delivery at a certain
  service quality level (latency, jitter, packet loss, etc).  RTP
  itself does not provide service guarantees.  However, applications
  may use lower-layer network protocols to configure the quality of the
  transport services that RTP uses.  These protocols may act to reserve
  network resources for RTP flows [RFC2205] or may simply direct RTP
  traffic onto a dedicated "media network" in a local installation.
  Note that RTP and the MIDI payload format do provide tools that
  applications may use to achieve the best possible real-time
  performance at a given service level.

  This memo normatively defines the syntax and semantics of the MIDI
  payload format.  However, this memo does not define algorithms for
  sending and receiving packets.  An ancillary document [RFC4696]
  provides informative guidance on algorithms.  Supplemental
  information may be found in related conference publications [NMP]
  [GRAME].

  Throughout this memo, the phrase "native stream" refers to a stream
  that uses the rtp-midi media type.  The phrase "mpeg4-generic stream"
  refers to a stream that uses the mpeg4-generic media type (in mode
  rtp-midi) to operate in an MPEG 4 environment [RFC3640].  Section 6
  describes this distinction in detail.

1.1.  Terminology

  In this document, the key words "MUST", "MUST NOT", "REQUIRED",
  "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY",
  and "OPTIONAL" are to be interpreted as described in BCP 14, RFC 2119
  [RFC2119].









Lazzaro & Wawrzynek         Standards Track                     [Page 5]

RFC 4695              RTP Payload Format for MIDI          November 2006


1.2.  Bitfield Conventions

  In this document, the packet bitfields that share a common name often
  have identical semantics.  As most of these bitfields appear in
  Appendices A-B, we define the common bitfield names in Appendix A.1.

  However, a few of these common names also appear in the main text of
  this document.  For convenience, we list these definitions below:

    o R flag bit.  R flag bits are reserved for future use.  Senders
      MUST set R bits to 0.  Receivers MUST ignore R bit values.

    o LENGTH field.  All fields named LENGTH (as distinct from LEN)
      code the number of octets in the structure that contains it,
      including the header it resides in and all hierarchical levels
      below it.  If a structure contains a LENGTH field, a receiver
      MUST use the LENGTH field value to advance past the structure
      during parsing, rather than use knowledge about the internal
      format of the structure.

2.  Packet Format

  In this section, we introduce the format of RTP MIDI packets.  The
  description includes some background information on RTP, for the
  benefit of MIDI implementors new to IETF tools.  Implementors should
  consult [RFC3550] for an authoritative description of RTP.

  This memo assumes that the reader is familiar with MIDI syntax and
  semantics.  Appendix E provides a MIDI overview, at a level of detail
  sufficient to understand most of this memo.  Implementors should
  consult [MIDI] for an authoritative description of MIDI.

  The MIDI payload format maps a MIDI command stream (16 voice channels
  + systems) onto an RTP stream.  An RTP media stream is a sequence of
  logical packets that share a common format.  Each packet consists of
  two parts: the RTP header and the MIDI payload.  Figure 1 shows this
  format (vertical space delineates the header and payload).

  We describe RTP packets as "logical" packets to highlight the fact
  that RTP itself is not a network-layer protocol.  Instead, RTP
  packets are mapped onto network protocols (such as unicast UDP,
  multicast UDP, or TCP) by an application [ALF].  The interleaved mode
  of the Real Time Streaming Protocol (RTSP, [RFC2326]) is an example
  of an RTP mapping to TCP transport, as is [RFC4571].







Lazzaro & Wawrzynek         Standards Track                     [Page 6]

RFC 4695              RTP Payload Format for MIDI          November 2006


2.1.  RTP Header

  [RFC3550] provides a complete description of the RTP header fields.
  In this section, we clarify the role of a few RTP header fields for
  MIDI applications.  All fields are coded in network byte order (big-
  endian).

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     | V |P|X|  CC   |M|     PT      |        Sequence number        |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                           Timestamp                           |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                             SSRC                              |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                     MIDI command section ...                  |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                       Journal section ...                     |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                        Figure 1 -- Packet format

  The behavior of the 1-bit M field depends on the media type of the
  stream.  For native streams, the M bit MUST be set to 1 if the MIDI
  command section has a non-zero LEN field, and MUST be set to 0
  otherwise.  For mpeg4-generic streams, the M bit MUST be set to 1 for
  all packets (to conform to [RFC3640]).

  In an RTP MIDI stream, the 16-bit sequence number field is
  initialized to a randomly chosen value and is incremented by one
  (modulo 2^16) for each packet sent in the stream.  A related
  quantity, the 32-bit extended packet sequence number, may be computed
  by tracking rollovers of the 16-bit sequence number.  Note that
  different receivers of the same stream may compute different extended
  packet sequence numbers, depending on when the receiver joined the
  session.

  The 32-bit timestamp field sets the base timestamp value for the
  packet.  The payload codes MIDI command timing relative to this
  value.  The timestamp units are set by the clock rate parameter.  For
  example, if the clock rate has a value of 44100 Hz, two packets whose
  base timestamp values differ by 2 seconds have RTP timestamp fields
  that differ by 88200.




Lazzaro & Wawrzynek         Standards Track                     [Page 7]

RFC 4695              RTP Payload Format for MIDI          November 2006


  Note that the clock rate parameter is not encoded within each RTP
  MIDI packet.  A receiver of an RTP MIDI stream becomes aware of the
  clock rate as part of the session setup process.  For example, if a
  session management tool uses the Session Description Protocol (SDP,
  [RFC4566]) to describe a media session, the clock rate parameter is
  set using the rtpmap attribute.  We show examples of session setup in
  Section 6.

  For RTP MIDI streams destined to be rendered into audio, the clock
  rate SHOULD be an audio sample rate of 32 KHz or higher.  This
  recommendation is due to the sensitivity of human musical perception
  to small timing errors in musical note sequences, and due to the
  timbral changes that occur when two near-simultaneous MIDI NoteOns
  are rendered with a different timing than that desired by the content
  author due to clock rate quantization.  RTP MIDI streams that are not
  destined for audio rendering (such as MIDI streams that control stage
  lighting) MAY use a lower clock rate but SHOULD use a clock rate high
  enough to avoid timing artifacts in the application.

  For RTP MIDI streams destined to be rendered into audio, the clock
  rate SHOULD be chosen from rates in common use in professional audio
  applications or in consumer audio distribution.  At the time of this
  writing, these rates include 32 KHz, 44.1 KHz, 48 KHz, 64 KHz, 88.2
  KHz, 96 KHz, 176.4 KHz, and 192 KHz.  If the RTP MIDI session is a
  part of a synchronized media session that includes another (non-MIDI)
  RTP audio stream with a clock rate of 32 KHz or higher, the RTP MIDI
  stream SHOULD use a clock rate that matches the clock rate of the
  other audio stream.  However, if the RTP MIDI stream is destined to
  be rendered into audio, the RTP MIDI stream SHOULD NOT use a clock
  rate lower than 32 KHz, even if this second stream has a clock rate
  less than 32 KHz.

  Timestamps of consecutive packets do not necessarily increment at a
  fixed rate, because RTP MIDI packets are not necessarily sent at a
  fixed rate.  The degree of packet transmission regularity reflects
  the underlying application dynamics.  Interactive applications may
  vary the packet sending rate to track the gestural rate of a human
  performer, whereas content-streaming applications may send packets at
  a fixed rate.

  Therefore, the timestamps for two sequential RTP packets may be
  identical, or the second packet may have a timestamp arbitrarily
  larger than the first packet (modulo 2^32).  Section 3 places
  additional restrictions on the RTP timestamps for two sequential RTP
  packets, as does the guardtime parameter (Appendix C.4.2).

  We use the term "media time" to denote the temporal duration of the
  media coded by an RTP packet.  The media time coded by a packet is



Lazzaro & Wawrzynek         Standards Track                     [Page 8]

RFC 4695              RTP Payload Format for MIDI          November 2006


  computed by subtracting the last command timestamp in the MIDI
  command section from the RTP timestamp (modulo 2^32).  If the MIDI
  list of the MIDI command section of a packet is empty, the media time
  coded by the packet is 0 ms.  Appendix C.4.1 discusses media time
  issues in detail.

  We now define RTP session semantics, in the context of sessions
  specified using the session description protocol [RFC4566].  A
  session description media line ("m=") specifies an RTP session.  An
  RTP session has an independent space of 2^32 synchronization sources.
  Synchronization source identifiers are coded in the SSRC header field
  of RTP session packets.  The payload types that may appear in the PT
  header field of RTP session packets are listed at the end of the
  media line.

  Several RTP MIDI streams may appear in an RTP session.  Each stream
  is distinguished by a unique SSRC value and has a unique sequence
  number and RTP timestamp space.  Multiple streams in the RTP session
  may be sent by a single party.  Multiple parties may send streams in
  the RTP session.  An RTP MIDI stream encodes data for a single MIDI
  command name space (16 voice channels + Systems).

  Streams in an RTP session may use different payload types, or they
  may use the same payload type.  However, each party may send, at
  most, one RTP MIDI stream for each payload type mapped to an RTP MIDI
  payload format in an RTP session.  Recall that dynamic binding of
  payload type numbers in [RFC4566] lets a party map many payload type
  numbers to the RTP MIDI payload format; thus a party may send many
  RTP MIDI streams in a single RTP session.  Pairs of streams (unicast
  or multicast) that communicate between two parties in an RTP session
  and that share a payload type have the same association as a MIDI
  cable pair that cross-connects two devices in a MIDI 1.0 DIN network.

  The RTP session architecture described above is efficient in its use
  of network ports, as one RTP session (using a port pair per party)
  supports the transport of many MIDI name spaces (16 MIDI channels +
  systems).  We define tools for grouping and labelling MIDI name
  spaces across streams and sessions in Appendix C.5 of this memo.

  The RTP header timestamps for each stream in an RTP session have
  separately and randomly chosen initialization values.  Receivers use
  the timing fields encoded in the RTP control protocol (RTCP,
  [RFC3550]) sender reports to synchronize the streams sent by a party.
  The SSRC values for each stream in an RTP session are also separately
  and randomly chosen, as described in [RFC3550].  Receivers use the
  CNAME field encoded in RTCP sender reports to verify that streams
  were sent by the same party, and to detect SSRC collisions, as
  described in [RFC3550].



Lazzaro & Wawrzynek         Standards Track                     [Page 9]

RFC 4695              RTP Payload Format for MIDI          November 2006


  In some applications, a receiver renders MIDI commands into audio (or
  into control actions, such as the rewind of a tape deck or the
  dimming of stage lights).  In other applications, a receiver presents
  a MIDI stream to software programs via an Application Programmer
  Interface (API).  Appendix C.6 defines session configuration tools to
  specify what receivers should do with a MIDI command stream.

  If a multimedia session uses different RTP MIDI streams to send
  different classes of media, the streams MUST be sent over different
  RTP sessions.  For example, if a multimedia session uses one MIDI
  stream for audio and a second MIDI stream to control a lighting
  system, the audio and lighting streams MUST be sent over different
  RTP sessions, each with its own media line.

  Session description tools defined in Appendix C.5 let a sending party
  split a single MIDI name space (16 voice channels + systems) over
  several RTP MIDI streams.  Split transport of a MIDI command stream
  is a delicate task, because correct command stream reconstruction by
  a receiver depends on exact timing synchronization across the
  streams.

  To support split name spaces, we define the following requirements:

    o  A party MUST NOT send several RTP MIDI streams that share a MIDI
       name space in the same RTP session.  Instead, each stream MUST
       be sent from a different RTP session.

    o  If several RTP MIDI streams sent by a party share a MIDI name
       space, all streams MUST use the same SSRC value and MUST use the
       same randomly chosen RTP timestamp initialization value.

  These rules let a receiver identify streams that share a MIDI name
  space (by matching SSRC values) and also let a receiver accurately
  reconstruct the source MIDI command stream (by using RTP timestamps
  to interleave commands from the two streams).  Care MUST be taken by
  senders to ensure that SSRC changes due to collisions are reflected
  in both streams.  Receivers MUST regularly examine the RTCP CNAME
  fields associated with the linked streams, to ensure that the assumed
  link is legitimate and not the result of an SSRC collision by another
  sender.

  Except for the special cases described above, a party may send many
  RTP MIDI streams in the same session.  However, it is sometimes
  advantageous for two RTP MIDI streams to be sent over different RTP
  sessions.  For example, two streams may need different values for RTP
  session-level attributes (such as the sendonly and recvonly
  attributes).  As a second example, two RTP sessions may be needed to
  send two unicast streams in a multimedia session that originate on



Lazzaro & Wawrzynek         Standards Track                    [Page 10]

RFC 4695              RTP Payload Format for MIDI          November 2006


  different computers (with different IP numbers).  Two RTP sessions
  are needed in this case because transport addresses are specified on
  the RTP-session or multimedia-session level, not on a payload type
  level.

  On a final note, in some uses of MIDI, parties send bidirectional
  traffic to conduct transactions (such as file exchange).  These
  commands were designed to work over MIDI 1.0 DIN cable networks may
  be configured in a multicast topology, which use pure "party-line"
  signalling.  Thus, if a multimedia session ensures a multicast
  connection between all parties, bidirectional MIDI commands will work
  without additional support from the RTP MIDI payload format.

2.2. MIDI Payload

  The payload (Figure 1) MUST begin with the MIDI command section.  The
  MIDI command section codes a (possibly empty) list of timestamped
  MIDI commands, and provides the essential service of the payload
  format.

  The payload MAY also contain a journal section.  The journal section
  provides resiliency by coding the recent history of the stream.  A
  flag in the MIDI command section codes the presence of a journal
  section in the payload.

  Section 3 defines the MIDI command section.  Sections 4-5 and
  Appendices A-B define the recovery journal, the default format for
  the journal section.  Here, we describe how these payload sections
  operate in a stream in an RTP session.

  The journalling method for a stream is set at the start of a session
  and MUST NOT be changed thereafter.  A stream may be set to use the
  recovery journal, to use an alternative journal format (none are
  defined in this memo), or not to use a journal.

  The default journalling method of a stream is inferred from its
  transport type.  Streams that use unreliable transport (such as UDP)
  default to using the recovery journal.  Streams that use reliable
  transport (such as TCP) default to not using a journal.  Appendix
  C.2.1 defines session configuration tools for overriding these
  defaults.  For all types of transport, a sender MUST transmit an RTP
  packet stream with consecutive sequence numbers (modulo 2^16).

  If a stream uses the recovery journal, every payload in the stream
  MUST include a journal section.  If a stream does not use
  journalling, a journal section MUST NOT appear in a stream payload.
  If a stream uses an alternative journal format, the specification for
  the journal format defines an inclusion policy.



Lazzaro & Wawrzynek         Standards Track                    [Page 11]

RFC 4695              RTP Payload Format for MIDI          November 2006


  If a stream is sent over UDP transport, the Maximum Transmission Unit
  (MTU) of the underlying network limits the practical size of the
  payload section (for example, an Ethernet MTU is 1500 octets), for
  applications where predictable and minimal packet transmission
  latency is critical.  A sender SHOULD NOT create RTP MIDI UDP packets
  whose size exceeds the MTU of the underlying network.  Instead, the
  sender SHOULD take steps to keep the maximum packet size under the
  MTU limit.

  These steps may take many forms.  The default closed-loop recovery
  journal sending policy (defined in Appendix C.2.2.2) uses RTP control
  protocol (RTCP, [RFC3550]) feedback to manage the RTP MIDI packet
  size.  In addition, Section 3.2 and Appendix B.5.2 provide specific
  tools for managing the size of packets that code MIDI System
  Exclusive (0xF0) commands.  Appendix C.5 defines session
  configuration tools that may be used to split a dense MIDI name space
  into several UDP streams (each sent in a different RTP session, per
  Section 2.1) so that the payload fits comfortably into an MTU.
  Another option is to use TCP.  Section 4.3 of [RFC4696] provides
  non-normative advice for packet size management.

3.  MIDI Command Section

  Figure 2 shows the format of the MIDI command section.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |B|J|Z|P|LEN... |  MIDI list ...                                |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                     Figure 2 -- MIDI command section

  The MIDI command section begins with a variable-length header.

  The header field LEN codes the number of octets in the MIDI list that
  follow the header.  If the header flag B is 0, the header is one
  octet long, and LEN is a 4-bit field, supporting a maximum MIDI list
  length of 15 octets.

  If B is 1, the header is two octets long, and LEN is a 12-bit field,
  supporting a maximum MIDI list length of 4095 octets.  LEN is coded
  in network byte order (big-endian): the 4 bits of LEN that appear in
  the first header octet code the most significant 4 bits of the 12-bit
  LEN value.

  A LEN value of 0 is legal, and it codes an empty MIDI list.




Lazzaro & Wawrzynek         Standards Track                    [Page 12]

RFC 4695              RTP Payload Format for MIDI          November 2006


  If the J header bit is set to 1, a journal section MUST appear after
  the MIDI command section in the payload.  If the J header bit is set
  to 0, the payload MUST NOT contain a journal section.

  We define the semantics of the P header bit in Section 3.2.

  If the LEN header field is nonzero, the MIDI list has the structure
  shown in Figure 3.

     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  Delta Time 0     (1-4 octets long, or 0 octets if Z = 1)     |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  MIDI Command 0   (1 or more octets long)                     |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  Delta Time 1     (1-4 octets long)                           |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  MIDI Command 1   (1 or more octets long)                     |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                              ...                              |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  Delta Time N     (1-4 octets long)                           |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  MIDI Command N   (0 or more octets long)                     |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                      Figure 3 -- MIDI list structure

  If the header flag Z is 1, the MIDI list begins with a complete MIDI
  command (coded in the MIDI Command 0 field, in Figure 3) preceded by
  a delta time (coded in the Delta Time 0 field).  If Z is 0, the Delta
  Time 0 field is not present in the MIDI list, and the command coded
  in the MIDI Command 0 field has an implicit delta time of 0.

  The MIDI list structure may also optionally encode a list of N
  additional complete MIDI commands, each coded in a MIDI Command K
  field.  Each additional command MUST be preceded by a Delta Time K
  field, which codes the command's delta time.  We discuss exceptions
  to the "command fields code complete MIDI commands" rule in Section
  3.2.

  The final MIDI command field (i.e., the MIDI Command N field, shown
  in Figure 3) in the MIDI list MAY be empty.  Moreover, a MIDI list
  MAY consist a single delta time (encoded in the Delta Time 0 field)
  without an associated command (which would have been encoded in the
  MIDI Command 0 field).  These rules enable MIDI coding features that
  are explained in Section 3.1.  We delay the explanations because an
  understanding of RTP MIDI timestamps is necessary to describe the
  features.



Lazzaro & Wawrzynek         Standards Track                    [Page 13]

RFC 4695              RTP Payload Format for MIDI          November 2006


3.1.  Timestamps

  In this section, we describe how RTP MIDI encodes a timestamp for
  each MIDI list command.  Command timestamps have the same units as
  RTP packet header timestamps (described in Section 2.1 and
  [RFC3550]).  Recall that RTP timestamps have units of seconds, whose
  scaling is set during session configuration (see Section 6.1 and
  [RFC4566]).

  As shown in Figure 3, the MIDI list encodes time using a compact
  delta-time format.  The RTP MIDI delta time syntax is a modified form
  of the MIDI File delta time syntax [MIDI].  RTP MIDI delta times use
  1-4 octet fields to encode 32-bit unsigned integers.  Figure 4 shows
  the encoded and decoded forms of delta times.  Note that delta time
  values may be legally encoded in multiple formats; for example, there
  are four legal ways to encode the zero delta time (0x00, 0x8000,
  0x808000, 0x80808000).

  RTP MIDI uses delta times to encode a timestamp for each MIDI
  command.  The timestamp for MIDI Command K is the summation (modulo
  2^32) of the RTP timestamp and decoded delta times 0 through K.  This
  cumulative coding technique, borrowed from MIDI File delta time
  coding, is efficient because it reduces the number of multi-octet
  delta times.

  All command timestamps in a packet MUST be less than or equal to the
  RTP timestamp of the next packet in the stream (modulo 2^32).

  This restriction ensures that a particular RTP MIDI packet in a
  stream is uniquely responsible for encoding time starting at the
  moment after the RTP timestamp encoded in the RTP packet header, and
  ending at the moment before the final command timestamp encoded in
  the MIDI list.  The "moment before" and "moment after" qualifiers
  acknowledge the "less than or equal" semantics (as opposed to
  "strictly less than") in the sentence above this paragraph.

  Note that it is possible to "pad" the end of an RTP MIDI packet with
  time that is guaranteed to be void of MIDI commands, by setting the
  "Delta Time N" field of the MIDI list to the end of the void time,
  and by omitting its corresponding "MIDI Command N" field (a syntactic
  construction the preamble of Section 3 expressly made legal).

  In addition, it is possible to code an RTP MIDI packet to express
  that a period of time in the stream is void of MIDI commands.  The
  RTP timestamp in the header would code the start of the void time.
  The MIDI list of this packet would consist of a "Delta Time 0" field





Lazzaro & Wawrzynek         Standards Track                    [Page 14]

RFC 4695              RTP Payload Format for MIDI          November 2006


  that coded the end of the void time.  No other fields would be
  present in the MIDI list (a syntactic construction the preamble of
  Section 3 also expressly made legal).

  By default, a command timestamp indicates the execution time for the
  command.  The difference between two timestamps indicates the time
  delay between the execution of the commands.  This difference may be
  zero, coding simultaneous execution.  In this memo, we refer to this
  interpretation of timestamps as "comex" (COMmand EXecution)
  semantics.  We formally define comex semantics in Appendix C.3.

  The comex interpretation of timestamps works well for transcoding a
  Standard MIDI File (SMF) into an RTP MIDI stream, as SMFs code a
  timestamp for each MIDI command stored in the file.  To transcode an
  SMF that uses metric time markers, use the SMF tempo map (encoded in
  the SMF as meta-events) to convert metric SMF timestamp units into
  seconds-based RTP timestamp units.

  The comex interpretation also works well for MIDI hardware
  controllers that are coding raw sensor data directly onto an RTP MIDI
  stream.  Note that this controller design is preferable to a design
  that converts raw sensor data into a MIDI 1.0 cable command stream
  and then transcodes the stream onto an RTP MIDI stream.

  The comex interpretation of timestamps is usually not the best
  timestamp interpretation for transcoding a MIDI source that uses
  implicit command timing (such as MIDI 1.0 DIN cables) into an RTP
  MIDI stream.  Appendix C.3 defines alternatives to comex semantics
  and describes session configuration tools for selecting the timestamp
  interpretation semantics for a stream.





















Lazzaro & Wawrzynek         Standards Track                    [Page 15]

RFC 4695              RTP Payload Format for MIDI          November 2006


       One-Octet Delta Time:

          Encoded form: 0ddddddd
          Decoded form: 00000000 00000000 00000000 0ddddddd

       Two-Octet Delta Time:

          Encoded form: 1ccccccc 0ddddddd
          Decoded form: 00000000 00000000 00cccccc cddddddd

       Three-Octet Delta Time:

          Encoded form: 1bbbbbbb 1ccccccc 0ddddddd
          Decoded form: 00000000 000bbbbb bbcccccc cddddddd

       Four-Octet Delta Time:

          Encoded form: 1aaaaaaa 1bbbbbbb 1ccccccc 0ddddddd
          Decoded form: 0000aaaa aaabbbbb bbcccccc cddddddd

                 Figure 4 -- Decoding delta time formats

3.2.  Command Coding

  Each non-empty MIDI Command field in the MIDI list codes one of the
  MIDI command types that may legally appear on a MIDI 1.0 DIN cable.
  Standard MIDI File meta-events do not fit this definition and MUST
  NOT appear in the MIDI list.  As a rule, each MIDI Command field
  codes a complete command, in the binary command format defined in
  [MIDI].  In the remainder of this section, we describe exceptions to
  this rule.

  The first MIDI channel command in the MIDI list MUST include a status
  octet.  Running status coding, as defined in [MIDI], MAY be used for
  all subsequent MIDI channel commands in the list.  As in [MIDI],
  System Common and System Exclusive messages (0xF0 ... 0xF7) cancel
  the running status state, but System Real-time messages (0xF8 ...
  0xFF) do not affect the running status state.  All System commands in
  the MIDI list MUST include a status octet.

  As we note above, the first channel command in the MIDI list MUST
  include a status octet.  However, the corresponding command in the
  original MIDI source data stream might not have a status octet (in
  this case, the source would be coding the command using running
  status).  If the status octet of the first channel command in the
  MIDI list does not appear in the source data stream, the P (phantom)
  header bit MUST be set to 1.  In all other cases, the P bit MUST be
  set to 0.



Lazzaro & Wawrzynek         Standards Track                    [Page 16]

RFC 4695              RTP Payload Format for MIDI          November 2006


  Note that the P bit describes the MIDI source data stream, not the
  MIDI list encoding; regardless of the state of the P bit, the MIDI
  list MUST include the status octet.

  As receivers MUST be able to decode running status, sender
  implementors should feel free to use running status to improve
  bandwidth efficiency.  However, senders SHOULD NOT introduce timing
  jitter into an existing MIDI command stream through an inappropriate
  use or removal of running status coding.  This warning primarily
  applies to senders whose RTP MIDI streams may be transcoded onto a
  MIDI 1.0 DIN cable [MIDI] by the receiver: both the timestamps and
  the command coding (running status or not) must comply with the
  physical restrictions of implicit time coding over a slow serial
  line.

  On a MIDI 1.0 DIN cable [MIDI], a System Real-time command may be
  embedded inside of another "host" MIDI command.  This syntactic
  construction is not supported in the payload format: a MIDI Command
  field in the MIDI list codes exactly one MIDI command (partially or
  completely).

  To encode an embedded System Real-time command, senders MUST extract
  the command from its host and code it in the MIDI list as a separate
  command.  The host command and System Real-time command SHOULD appear
  in the same MIDI list.  The delta time of the System Real-time
  command SHOULD result in a command timestamp that encodes the System
  Real-time command placement in its original embedded position.

  Two methods are provided for encoding MIDI System Exclusive (SysEx)
  commands in the MIDI list.  A SysEx command may be encoded in a MIDI
  Command field verbatim: a 0xF0 octet, followed by an arbitrary number
  of data octets, followed by a 0xF7 octet.

  Alternatively, a SysEx command may be encoded as multiple segments.
  The command is divided into two or more SysEx command segments; each
  segment is encoded in its own MIDI Command field in the MIDI list.

  The payload format supports segmentation in order to encode SysEx
  commands that encode information in the temporal pattern of data
  octets.  By encoding these commands as a series of segments, each
  data octet may be associated with a distinct delta time.
  Segmentation also supports the coding of large SysEx commands across
  several packets.

  To segment a SysEx command, first partition its data octet list into
  two or more sublists.  The last sublist MAY be empty (i.e., contain
  no octets); all other sublists MUST contain at least one data octet.
  To complete the segmentation, add the status octets defined in Figure



Lazzaro & Wawrzynek         Standards Track                    [Page 17]

RFC 4695              RTP Payload Format for MIDI          November 2006


  5 to the head and tail of the first, last, and any "middle" sublists.
  Figure 6 shows example segmentations of a SysEx command.

  A sender MAY cancel a segmented SysEx command transmission that is in
  progress, by sending the "cancel" sublist shown in Figure 5.  A
  "cancel" sublist MAY follow a "first" or "middle" sublist in the
  transmission, but MUST NOT follow a "last" sublist.  The cancel MUST
  be empty (thus, 0xF7 0xF4 is the only legal cancel sublist).

  The cancellation feature is needed because Appendix C.1 defines
  configuration tools that let session parties exclude certain SysEx
  commands in the stream.  Senders that transcode a MIDI source onto an
  RTP MIDI stream under these constraints have the responsibility of
  excluding undesired commands from the RTP MIDI stream.

  The cancellation feature lets a sender start the transmission of a
  command before the MIDI source has sent the entire command.  If a
  sender determines that the command whose transmission is in progress
  should not appear on the RTP stream, it cancels the command.  Without
  a method for cancelling a SysEx command transmission, senders would
  be forced to use a high-latency store-and-forward approach to
  transcoding SysEx commands onto RTP MIDI packets, in order to
  validate each SysEx command before transmission.

  The recommended receiver reaction to a cancellation depends on the
  capabilities of the receiver.  For example, a sound synthesizer that
  is directly parsing RTP MIDI packets and rendering them to audio will
  be aware of the fact that SysEx commands may be cancelled in RTP
  MIDI.  These receivers SHOULD detect a SysEx cancellation in the MIDI
  list and act as if they had never received the SysEx command.

  As a second example, a synthesizer may be receiving MIDI data from an
  RTP MIDI stream via a MIDI DIN cable (or a software API emulation of
  a MIDI DIN cable).  In this case, an RTP-MIDI-aware system receives
  the RTP MIDI stream and transcodes it onto the MIDI DIN cable (or its
  emulation).  Upon the receipt of the cancel sublist, the RTP-MIDI-
  aware transcoder might have already sent the first part of the SysEx
  command on the MIDI DIN cable to the receiver.

  Unfortunately, the MIDI DIN cable protocol cannot directly code
  "cancel SysEx in progress" semantics.  However, MIDI DIN cable
  receivers begin SysEx processing after the complete command arrives.
  The receiver checks to see if it recognizes the command (coded in the
  first few octets) and then checks to see if the command is the
  correct length.  Thus, in practice, a transcoder can cancel a SysEx
  command by sending an 0xF7 to (prematurely) end the SysEx command --
  the receiver will detect the incorrect command length and discard the
  command.



Lazzaro & Wawrzynek         Standards Track                    [Page 18]

RFC 4695              RTP Payload Format for MIDI          November 2006


  Appendix C.1 defines configuration tools that may be used to prohibit
  SysEx command cancellation.

  The relative ordering of SysEx command segments in a MIDI list must
  match the relative ordering of the sublists in the original SysEx
  command.  By default, commands other than System Real-time MIDI
  commands MUST NOT appear between SysEx command segments (Appendix C.1
  defines configuration tools to change this default, to let other
  commands types appear between segments).  If the command segments of
  a SysEx command are placed in the MIDI lists of two or more RTP
  packets, the segment ordering rules apply to the concatenation of all
  affected MIDI lists.

         -----------------------------------------------------------
        | Sublist Position |  Head Status Octet | Tail Status Octet |
        |-----------------------------------------------------------|
        |    first         |       0xF0         |       0xF0        |
        |-----------------------------------------------------------|
        |    middle        |       0xF7         |       0xF0        |
        |-----------------------------------------------------------|
        |    last          |       0xF7         |       0xF7        |
        |-----------------------------------------------------------|
        |    cancel        |       0xF7         |       0xF4        |
         -----------------------------------------------------------

              Figure 5 -- Command segmentation status octets

  [MIDI] permits 0xF7 octets that are not part of a (0xF0, 0xF7) pair
  to appear on a MIDI 1.0 DIN cable.  Unpaired 0xF7 octets have no
  semantic meaning in MIDI, apart from cancelling running status.

  Unpaired 0xF7 octets MUST NOT appear in the MIDI list of the MIDI
  Command section.  We impose this restriction to avoid interference
  with the command segmentation coding defined in Figure 5.

  SysEx commands carried on a MIDI 1.0 DIN cable may use the "dropped
  0xF7" construction [MIDI].  In this coding method, the 0xF7 octet is
  dropped from the end of the SysEx command, and the status octet of
  the next MIDI command acts both to terminate the SysEx command and
  start the next command.  To encode this construction in the payload
  format, follow these steps:

    o  Determine the appropriate delta times for the SysEx command and
       the command that follows the SysEx command.

    o  Insert the "dropped" 0xF7 octet at the end of the SysEx command,
       to form the standard SysEx syntax.




Lazzaro & Wawrzynek         Standards Track                    [Page 19]

RFC 4695              RTP Payload Format for MIDI          November 2006


    o  Code both commands into the MIDI list using the rules above.

    o  Replace the 0xF7 octet that terminates the verbatim SysEx
       encoding or the last segment of the segmented SysEx encoding
       with a 0xF5 octet.  This substitution informs the receiver of
       the original dropped 0xF7 coding.

  [MIDI] reserves the undefined System Common commands 0xF4 and 0xF5
  and the undefined System Real-time commands 0xF9 and 0xFD for future
  use.  By default, undefined commands MUST NOT appear in a MIDI
  Command field in the MIDI list, with the exception of the 0xF5 octets
  used to code the "dropped 0xF7" construction and the 0xF4 octets used
  by SysEx "cancel" sublists.

  During session configuration, a stream may be customized to transport
  undefined commands (Appendix C.1).  For this case, we now define how
  senders encode undefined commands in the MIDI list.

  An undefined System Real-time command MUST be coded using the System
  Real-time rules.

  If the undefined System Common commands are put to use in a future
  version of [MIDI], the command will begin with an 0xF4 or 0xF5 status
  octet, followed by an arbitrary number of data octets (i.e., zero or
  more data bytes).  To encode these commands, senders MUST terminate
  the command with an 0xF7 octet and place the modified command into
  the MIDI Command field.

  Unfortunately, non-compliant uses of the undefined System Common
  commands may appear in MIDI implementations.  To model these
  commands, we assume that the command begins with an 0xF4 or 0xF5
  status octet, followed by zero or more data octets, followed by zero
  or more trailing 0xF7 status octets.  To encode the command, senders
  MUST first remove all trailing 0xF7 status octets from the command.
  Then, senders MUST terminate the command with an 0xF7 octet and place
  the modified command into the MIDI Command field.

  Note that we include the trailing octets in our model as a cautionary
  measure: if such commands appeared in a non-compliant use of an
  undefined System Common command, an RTP MIDI encoding of the command
  that did not remove trailing octets could be mistaken for an encoding
  of "middle" or "last" sublist of a segmented SysEx commands (Figure
  5) under certain packet loss conditions.








Lazzaro & Wawrzynek         Standards Track                    [Page 20]

RFC 4695              RTP Payload Format for MIDI          November 2006


         Original SysEx command:

             0xF0 0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08 0xF7

         A two-segment segmentation:

             0xF0 0x01 0x02 0x03 0x04 0xF0

             0xF7 0x05 0x06 0x07 0x08 0xF7

         A different two-segment segmentation:

             0xF0 0x01 0xF0

             0xF7 0x02 0x03 0x04 0x05 0x06 0x07 0x08 0xF7

         A three-segment segmentation:

             0xF0 0x01 0x02 0xF0

             0xF7 0x03 0x04 0xF0

             0xF7 0x05 0x06 0x07 0x08 0xF7

        The segmentation with the largest number of segments:

             0xF0 0x01 0xF0

             0xF7 0x02 0xF0

             0xF7 0x03 0xF0

             0xF7 0x04 0xF0

             0xF7 0x05 0xF0

             0xF7 0x06 0xF0

             0xF7 0x07 0xF0

             0xF7 0x08 0xF0

             0xF7 0xF7

                    Figure 6 -- Example segmentations






Lazzaro & Wawrzynek         Standards Track                    [Page 21]

RFC 4695              RTP Payload Format for MIDI          November 2006


4.  The Recovery Journal System

  The recovery journal is the default resiliency tool for unreliable
  transport.  In this section, we normatively define the roles that
  senders and receivers play in the recovery journal system.

  MIDI is a fragile code.  A single lost command in a MIDI command
  stream may produce an artifact in the rendered performance.  We
  normatively classify rendering artifacts into two categories:

    o Transient artifacts.  Transient artifacts produce immediate but
      short-term glitches in the performance.  For example, a lost
      NoteOn (0x9) command produces a transient artifact: one note
      fails to play, but the artifact does not extend beyond the end of
      that note.

    o Indefinite artifacts.  Indefinite artifacts produce long-lasting
      errors in the rendered performance.  For example, a lost NoteOff
      (0x8) command may produce an indefinite artifact: the note that
      should have been ended by the lost NoteOff command may sustain
      indefinitely.  As a second example, the loss of a Control Change
      (0xB) command for controller number 7 (Channel Volume) may
      produce an indefinite artifact: after the loss, all notes on the
      channel may play too softly or too loudly.

  The purpose of the recovery journal system is to satisfy the recovery
  journal mandate: the MIDI performance rendered from an RTP MIDI
  stream sent over unreliable transport MUST NOT contain indefinite
  artifacts.

  The recovery journal system does not use packet retransmission to
  satisfy this mandate.  Instead, each packet includes a special
  section, called the recovery journal.

  The recovery journal codes the history of the stream, back to an
  earlier packet called the checkpoint packet.  The range of coverage
  for the journal is called the checkpoint history.  The recovery
  journal codes the information necessary to recover from the loss of
  an arbitrary number of packets in the checkpoint history.  Appendix
  A.1 normatively defines the checkpoint packet and the checkpoint
  history.

  When a receiver detects a packet loss, it compares its own knowledge
  about the history of the stream with the history information coded in
  the recovery journal of the packet that ends the loss event.  By
  noting the differences in these two versions of the past, a receiver
  is able to transform all indefinite artifacts in the rendered




Lazzaro & Wawrzynek         Standards Track                    [Page 22]

RFC 4695              RTP Payload Format for MIDI          November 2006


  performance into transient artifacts, by executing MIDI commands to
  repair the stream.

  We now state the normative role for senders in the recovery journal
  system.

  Senders prepare a recovery journal for every packet in the stream.
  In doing so, senders choose the checkpoint packet identity for the
  journal.  Senders make this choice by applying a sending policy.
  Appendix C.2.2 normatively defines three sending policies: "closed-
  loop", "open-loop", and "anchor".

  By default, senders MUST use the closed-loop sending policy.  If the
  session description overrides this default policy, by using the
  parameter j_update defined in Appendix C.2.2, senders MUST use the
  specified policy.

  After choosing the checkpoint packet identity for a packet, the
  sender creates the recovery journal.  By default, this journal MUST
  conform to the normative semantics in Section 5 and Appendices A-B in
  this memo.  In Appendix C.2.3, we define parameters that modify the
  normative semantics for recovery journals.  If the session
  description uses these parameters, the journal created by the sender
  MUST conform to the modified semantics.

  Next, we state the normative role for receivers in the recovery
  journal system.

  A receiver MUST detect each RTP sequence number break in a stream.
  If the sequence number break is due to a packet loss event (as
  defined in [RFC3550]), the receiver MUST repair all indefinite
  artifacts in the rendered MIDI performance caused by the loss.  If
  the sequence number break is due to an out-of-order packet (as
  defined in [RFC3550]), the receiver MUST NOT take actions that
  introduce indefinite artifacts (ignoring the out-of-order packet is a
  safe option).

  Receivers take special precautions when entering or exiting a
  session.  A receiver MUST process the first received packet in a
  stream as if it were a packet that ends a loss event.  Upon exiting a
  session, a receiver MUST ensure that the rendered MIDI performance
  does not end with indefinite artifacts.

  Receivers are under no obligation to perform indefinite artifact
  repairs at the moment a packet arrives.  A receiver that uses a
  playout buffer may choose to wait until the moment of rendering
  before processing the recovery journal, as the "lost" packet may be a
  late packet that arrives in time to use.



Lazzaro & Wawrzynek         Standards Track                    [Page 23]

RFC 4695              RTP Payload Format for MIDI          November 2006


  Next, we state the normative role for the creator of the session
  description in the recovery journal system.  Depending on the
  application, the sender, the receivers, and other parties may take
  part in creating or approving the session description.

  A session description that specifies the default closed-loop sending
  policy and the default recovery journal semantics satisfies the
  recovery journal mandate.  However, these default behaviors may not
  be appropriate for all sessions.  If the creators of a session
  description use the parameters defined in Appendix C.2 to override
  these defaults, the creators MUST ensure that the parameters define a
  system that satisfies the recovery journal mandate.

  Finally, we note that this memo does not specify sender or receiver
  recovery journal algorithms.  Implementations are free to use any
  algorithm that conforms to the requirements in this section.  The
  non-normative [RFC4696] discusses sender and receiver algorithm
  design.

5.  Recovery Journal Format

  This section introduces the structure of the recovery journal and
  defines the bitfields of recovery journal headers.  Appendices A-B
  complete the bitfield definition of the recovery journal.

  The recovery journal has a three-level structure:

    o Top-level header.

    o Channel and system journal headers.  These headers encode
      recovery information for a single voice channel (channel journal)
      or for all systems commands (system journal).

    o Chapters.  Chapters describe recovery information for a single
      MIDI command type.

  Figure 7 shows the top-level structure of the recovery journal.  The
  recovery journals consists of a 3-octet header, followed by an
  optional system journal (labeled S-journal in Figure 7) and an
  optional list of channel journals.  Figure 8 shows the recovery
  journal header format.










Lazzaro & Wawrzynek         Standards Track                    [Page 24]

RFC 4695              RTP Payload Format for MIDI          November 2006


      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |            Recovery journal header            | S-journal ... |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                      Channel journals ...                     |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

               Figure 7 -- Top-level recovery journal format

             0                   1                   2
             0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3
            +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
            |S|Y|A|H|TOTCHAN|   Checkpoint Packet Seqnum    |
            +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                   Figure 8 -- Recovery journal header

  If the Y header bit is set to 1, the system journal appears in the
  recovery journal, directly following the recovery journal header.

  If the A header bit is set to 1, the recovery journal ends with a
  list of (TOTCHAN + 1) channel journals (the 4-bit TOTCHAN header
  field is interpreted as an unsigned integer).

  A MIDI channel MAY be represented by (at most) one channel journal in
  a recovery journal.  Channel journals MUST appear in the recovery
  journal in ascending channel-number order.

  If A and Y are both zero, the recovery journal only contains its 3-
  octet header and is considered to be an "empty" journal.

  The S (single-packet loss) bit appears in most recovery journal
  structures, including the recovery journal header.  The S bit helps
  receivers efficiently parse the recovery journal in the common case
  of the loss of a single packet.  Appendix A.1 defines S bit
  semantics.

  The H bit indicates if MIDI channels in the stream have been
  configured to use the enhanced Chapter C encoding (Appendix A.3.3).

  By default, the payload format does not use enhanced Chapter C
  encoding.  In this default case, the H bit MUST be set to 0 for all
  packets in the stream.







Lazzaro & Wawrzynek         Standards Track                    [Page 25]

RFC 4695              RTP Payload Format for MIDI          November 2006


  If the stream has been configured so that controller numbers for one
  or more MIDI channels use enhanced Chapter C encoding, the H bit MUST
  be set to 1 in all packets in the stream.  In Appendix C.2.3, we show
  how to configure a stream to use enhanced Chapter C encoding.

  The 16-bit Checkpoint Packet Seqnum header field codes the sequence
  number of the checkpoint packet for this journal, in network byte
  order (big-endian).  The choice of the checkpoint packet sets the
  depth of the checkpoint history for the journal (defined in Appendix
  A.1).

  Receivers may use the Checkpoint Packet Seqnum field of the packet
  that ends a loss event to verify that the journal checkpoint history
  covers the entire loss event.  The checkpoint history covers the loss
  event if the Checkpoint Packet Seqnum field is less than or equal to
  one plus the highest RTP sequence number previously received on the
  stream (modulo 2^16).

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |S| CHAN  |H|      LENGTH       |P|C|M|W|N|E|T|A|  Chapters ... |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                    Figure 9 -- Channel journal format

  Figure 9 shows the structure of a channel journal: a 3-octet header,
  followed by a list of leaf elements called channel chapters.  A
  channel journal encodes information about MIDI commands on the MIDI
  channel coded by the 4-bit CHAN header field.  Note that CHAN uses
  the same bit encoding as the channel nibble in MIDI Channel Messages
  (the cccc field in Figure E.1 of Appendix E).

  The 10-bit LENGTH field codes the length of the channel journal.  The
  semantics for LENGTH fields are uniform throughout the recovery
  journal, and are defined in Appendix A.1.

  The third octet of the channel journal header is the Table of
  Contents (TOC) of the channel journal.  The TOC is a set of bits that
  encode the presence of a chapter in the journal.  Each chapter
  contains information about a certain class of MIDI channel command:

     o  Chapter P: MIDI Program Change (0xC)
     o  Chapter C: MIDI Control Change (0xB)
     o  Chapter M: MIDI Parameter System (part of 0xB)
     o  Chapter W: MIDI Pitch Wheel (0xE)
     o  Chapter N: MIDI NoteOff (0x8), NoteOn (0x9)
     o  Chapter E: MIDI Note Command Extras (0x8, 0x9)



Lazzaro & Wawrzynek         Standards Track                    [Page 26]

RFC 4695              RTP Payload Format for MIDI          November 2006


     o  Chapter T: MIDI Channel Aftertouch (0xD)
     o  Chapter A: MIDI Poly Aftertouch (0xA)

  Chapters appear in a list following the header, in order of their
  appearance in the TOC.  Appendices A.2-9 describe the bitfield format
  for each chapter, and define the conditions under which a chapter
  type MUST appear in the recovery journal.  If any chapter types are
  required for a channel, an associated channel journal MUST appear in
  the recovery journal.

  The H bit indicates if controller numbers on a MIDI channel have been
  configured to use the enhanced Chapter C encoding (Appendix A.3.3).

  By default, controller numbers on a MIDI channel do not use enhanced
  Chapter C encoding.  In this default case, the H bit MUST be set to 0
  for all channel journal headers for the channel in the recovery
  journal, for all packets in the stream.

  However, if at least one controller number for a MIDI channel has
  been configured to use the enhanced Chapter C encoding, the H bit for
  its channel journal MUST be set to 1, for all packets in the stream.

  In Appendix C.2.3, we show how to configure a controller number to
  use enhanced Chapter C encoding.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |S|D|V|Q|F|X|      LENGTH       |  System chapters ...          |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                    Figure 10 -- System journal format

  Figure 10 shows the structure of the system journal: a 2-octet
  header, followed by a list of system chapters.  Each chapter codes
  information about a specific class of MIDI Systems command:

     o  Chapter D: Song Select (0xF3), Tune Request (0xF6), Reset
                   (0xFF), undefined System commands (0xF4, 0xF5, 0xF9,
                   0xFD)
     o  Chapter V: Active Sense (0xFE)
     o  Chapter Q: Sequencer State (0xF2, 0xF8, 0xF9, 0xFA, 0xFB, 0xFC)
     o  Chapter F: MTC Tape Position (0xF1, 0xF0 0x7F 0xcc 0x01 0x01)
     o  Chapter X: System Exclusive (all other 0xF0)

  The 10-bit LENGTH field codes the size of the system journal and
  conforms to semantics described in Appendix A.1.




Lazzaro & Wawrzynek         Standards Track                    [Page 27]

RFC 4695              RTP Payload Format for MIDI          November 2006


  The D, V, Q, F, and X header bits form a Table of Contents (TOC) for
  the system journal.  A TOC bit that is set to 1 codes the presence of
  a chapter in the journal.  Chapters appear in a list following the
  header, in the order of their appearance in the TOC.

  Appendix B describes the bitfield format for the system chapters and
  defines the conditions under which a chapter type MUST appear in the
  recovery journal.  If any system chapter type is required to appear
  in the recovery journal, the system journal MUST appear in the
  recovery journal.

6.  Session Description Protocol

  RTP does not perform session management.  Instead, RTP works together
  with session management tools, such as the Session Initiation
  Protocol (SIP, [RFC3261]) and the Real Time Streaming Protocol (RTSP,
  [RFC2326]).

  RTP payload formats define media type parameters for use in session
  management (for example, this memo defines "rtp-midi" as the media
  type for native RTP MIDI streams).

  In most cases, session management tools use the media type parameters
  via another standard, the Session Description Protocol (SDP,
  [RFC4566]).

  SDP is a textual format for specifying session descriptions.  Session
  descriptions specify the network transport and media encoding for RTP
  sessions.  Session management tools coordinate the exchange of
  session descriptions between participants ("parties").

  Some session management tools use SDP to negotiate details of media
  transport (network addresses, ports, etc.).  We refer to this use of
  SDP as "negotiated usage".  One example of negotiated usage is the
  Offer/Answer protocol ([RFC3264] and Appendix C.7.2 in this memo) as
  used by SIP.

  Other session management tools use SDP to declare the media encoding
  for the session but use other techniques to negotiate network
  transport.  We refer to this use of SDP as "declarative usage".  One
  example of declarative usage is RTSP ([RFC2326] and Appendix C.7.1 in
  this memo).

  Below, we show session description examples for native (Section 6.1)
  and mpeg4-generic (Section 6.2) streams.  In Section 6.3, we
  introduce session configuration tools that may be used to customize
  streams.




Lazzaro & Wawrzynek         Standards Track                    [Page 28]

RFC 4695              RTP Payload Format for MIDI          November 2006


6.1.  Session Descriptions for Native Streams

  The session description below defines a unicast UDP RTP session (via
  a media ("m=") line) whose sole payload type (96) is mapped to a
  minimal native RTP MIDI stream.

  v=0
  o=lazzaro 2520644554 2838152170 IN IP4 first.example.net
  s=Example
  t=0 0
  m=audio 5004 RTP/AVP 96
  c=IN IP4 192.0.2.94
  a=rtpmap:96 rtp-midi/44100

  The rtpmap attribute line uses the "rtp-midi" media type to specify
  an RTP MIDI native stream.  The clock rate specified on the rtpmap
  line (in the example above, 44100 Hz) sets the scaling for the RTP
  timestamp header field (see Section 2.1, and also [RFC3550]).

  Note that this document does not specify a default clock rate value
  for RTP MIDI.  When RTP MIDI is used with SDP, parties MUST use the
  rtpmap line to communicate the clock rate.  Guidance for selecting
  the RTP MIDI clock rate value appears in Section 2.1.

  We consider the RTP MIDI stream shown above to be "minimal" because
  the session description does not customize the stream with
  parameters.  Without such customization, a native RTP MIDI stream has
  these characteristics:

    1. If the stream uses unreliable transport (unicast UDP, multicast
       UDP, etc.), the recovery journal system is in use, and the RTP
       payload contains both the MIDI command section and the journal
       section.  If the stream uses reliable transport (such as TCP),
       the stream does not use journalling, and the payload contains
       only the MIDI command section (Section 2.2).

    2. If the stream uses the recovery journal system, the recovery
       journal system uses the default sending policy and the default
       journal semantics (Section 4).

    3. In the MIDI command section of the payload, command timestamps
       use the default "comex" semantics (Section 3).

    4. The recommended temporal duration ("media time") of an RTP
       packet ranges from 0 to 200 ms, and the RTP timestamp difference
       between sequential packets in the stream may be arbitrarily
       large (Section 2.1).




Lazzaro & Wawrzynek         Standards Track                    [Page 29]

RFC 4695              RTP Payload Format for MIDI          November 2006


    5. If more than one minimal rtp-midi stream appears in a session,
       the MIDI name spaces for these streams are independent: channel
       1 in the first stream does not reference the same MIDI channel
       as channel 1 in the second stream (see Appendix C.5 for a
       discussion of the independence of minimal rtp-midi streams).

    6. The rendering method for the stream is not specified.  What the
       receiver "does" with a minimal native MIDI stream is "out of
       scope" of this memo.  For example, in content creation
       environments, a user may manually configure client software to
       render the stream with a specific software package.

  As in standard in RTP, RTP sessions managed by SIP are sendrecv by
  default (parties send and receive MIDI), and RTP sessions managed by
  RTSP are recvonly by default (server sends and client receives).

  In sendrecv RTP MIDI sessions for the session description shown
  above, the 16 voice channel + systems MIDI name space is unique for
  each sender.  Thus, in a two-party session, the voice channel 0 sent
  by one party is distinct from the voice channel 0 sent by the other
  party.

  This behavior corresponds to what occurs when two MIDI 1.0 DIN
  devices are cross-connected with two MIDI cables (one cable routing
  MIDI Out from the first device into MIDI In of the second device, a
  second cable routing MIDI In from the first device into MIDI Out of
  the second device).  We define this "association" formally in Section
  2.1.

  MIDI 1.0 DIN networks may be configured in a "party-line" multicast
  topology.  For these networks, the MIDI protocol itself provides
  tools for addressing specific devices in transactions on a multicast
  network, and for device discovery.  Thus, apart from providing a 1-
  to-many forward path and a many-to-1 reverse path, IETF protocols do
  not need to provide any special support for MIDI multicast
  networking.

6.2.  Session Descriptions for mpeg4-generic Streams

  An mpeg4-generic [RFC3640] RTP MIDI stream uses an MPEG 4 Audio
  Object Type to render MIDI into audio.  Three Audio Object Types
  accept MIDI input:

    o General MIDI (Audio Object Type ID 15), based on the General MIDI
      rendering standard [MIDI].

    o Wavetable Synthesis (Audio Object Type ID 14), based on the
      Downloadable Sounds Level 2 (DLS 2) rendering standard [DLS2].



Lazzaro & Wawrzynek         Standards Track                    [Page 30]

RFC 4695              RTP Payload Format for MIDI          November 2006


    o Main Synthetic (Audio Object Type ID 13), based on Structured
      Audio and the programming language SAOL [MPEGSA].

  The primary service of an mpeg4-generic stream is to code Access
  Units (AUs).  We define the mpeg4-generic RTP MIDI AU as the MIDI
  payload shown in Figure 1 of Section 2.1 of this memo: a MIDI command
  section optionally followed by a journal section.

  Exactly one RTP MIDI AU MUST be mapped to one mpeg4-generic RTP MIDI
  packet.  The mpeg4-generic options for placing several AUs in an RTP
  packet MUST NOT be used with RTP MIDI.  The mpeg4-generic options for
  fragmenting and interleaving AUs MUST NOT be used with RTP MIDI.  The
  mpeg4-generic RTP packet payload (Figure 1 in [RFC3640]) MUST contain
  empty AU Header and Auxiliary sections.  These rules yield mpeg4-
  generic packets that are structurally identical to native RTP MIDI
  packets, an essential property for the correct operation of the
  payload format.

  The session description that follows defines a unicast UDP RTP
  session (via a media ("m=") line) whose sole payload type (96) is
  mapped to a minimal mpeg4-generic RTP MIDI stream.  This example uses
  the General MIDI Audio Object Type under Synthesis Profile @ Level 2.

  v=0
  o=lazzaro 2520644554 2838152170 IN IP6 first.example.net
  s=Example
  t=0 0
  m=audio 5004 RTP/AVP 96
  c=IN IP6 2001:DB80::7F2E:172A:1E24
  a=rtpmap:96 mpeg4-generic/44100
  a=fmtp:96 streamtype=5; mode=rtp-midi; profile-level-id=12;
  config=7A0A0000001A4D546864000000060000000100604D54726B0000
  000600FF2F000

  (The a=fmtp line has been wrapped to fit the page to accommodate memo
  formatting restrictions; it comprises a single line in SDP.)

  The fmtp attribute line codes the four parameters (streamtype, mode,
  profile-level-id, and config) that are required in all mpeg4-generic
  session descriptions [RFC3640].  For RTP MIDI streams, the streamtype
  parameter MUST be set to 5, the "mode" parameter MUST be set to
  "rtp-midi", and the "profile-level-id" parameter MUST be set to the
  MPEG-4 Profile Level for the stream.  For the Synthesis Profile,
  legal profile-level-id values are 11, 12, and 13, coding low (11),
  medium (12), or high (13) decoder computational complexity, as
  defined by MPEG conformance tests.





Lazzaro & Wawrzynek         Standards Track                    [Page 31]

RFC 4695              RTP Payload Format for MIDI          November 2006


  In a minimal RTP MIDI session description, the config value MUST be a
  hexadecimal encoding [RFC3640] of the AudioSpecificConfig data block
  [MPEGAUDIO] for the stream.  AudioSpecificConfig encodes the Audio
  Object Type for the stream and also encodes initialization data (SAOL
  programs, DLS 2 wave tables, etc.).  Standard MIDI Files encoded in
  AudioSpecificConfig in a minimal session description MUST be ignored
  by the receiver.

  Receivers determine the rendering algorithm for the session by
  interpreting the first 5 bits of AudioSpecificConfig as an unsigned
  integer that codes the Audio Object Type.  In our example above, the
  leading config string nibbles "7A" yield the Audio Object Type 15
  (General MIDI).  In Appendix E.4, we derive the config string value
  in the session description shown above; the starting point of the
  derivation is the MPEG bitstreams defined in [MPEGSA] and
  [MPEGAUDIO].

  We consider the stream to be "minimal" because the session
  description does not customize the stream through the use of
  parameters, other than the 4 required mpeg4-generic parameters
  described above.  In Section 6.1, we describe the behavior of a
  minimal native stream, as a numbered list of characteristics.  Items
  1-4 on that list also describe the minimal mpeg4-generic stream, but
  items 5 and 6 require restatements, as listed below:

    5. If more than one minimal mpeg4-generic stream appears in a
       session, each stream uses an independent instance of the Audio
       Object Type coded in the config parameter value.

    6. A minimal mpeg4-generic stream encodes the AudioSpecificConfig
       as an inline hexadecimal constant.  If a session description is
       sent over UDP, it may be impossible to transport large
       AudioSpecificConfig blocks within the Maximum Transmission Size
       (MTU) of the underlying network (for Ethernet, the MTU is 1500
       octets).  In some cases, the AudioSpecificConfig block may
       exceed the maximum size of the UDP packet itself.

  The comments in Section 6.1 on SIP and RTSP stream directional
  defaults, sendrecv MIDI channel usage, and MIDI 1.0 DIN multicast
  networks also apply to mpeg4-generic RTP MIDI sessions.

  In sendrecv sessions, each party's session description MUST use
  identical values for the mpeg4-generic parameters (including the
  required streamtype, mode, profile-level-id, and config parameters).
  As a consequence, each party uses an identically configured MPEG 4
  Audio Object Type to render MIDI commands into audio.  The preamble
  to Appendix C discusses a way to create "virtual sendrecv" sessions
  that do not have this restriction.



Lazzaro & Wawrzynek         Standards Track                    [Page 32]

RFC 4695              RTP Payload Format for MIDI          November 2006


6.3.  Parameters

  This section introduces parameters for session configuration for RTP
  MIDI streams.  In session descriptions, parameters modify the
  semantics of a payload type.  Parameters are specified on an fmtp
  attribute line.  See the session description example in Section 6.2
  for an example of a fmtp attribute line.

  The parameters add features to the minimal streams described in
  Sections 6.1-2, and support several types of services:

    o  Stream subsetting.  By default, all MIDI commands that are legal
       to appear on a MIDI 1.0 DIN cable may appear in an RTP MIDI
       stream.  The cm_unused parameter overrides this default by
       prohibiting certain commands from appearing in the stream.  The
       cm_used parameter is used in conjunction with cm_unused, to
       simplify the specification of complex exclusion rules.  We
       describe cm_unused and cm_used in Appendix C.1.

    o  Journal customization.  The j_sec and j_update parameters
       configure the use of the journal section.  The ch_default,
       ch_never, and ch_anchor parameters configure the semantics of
       the recovery journal chapters.  These parameters are described
       in Appendix C.2 and override the default stream behaviors 1 and
       2, listed in Section 6.1 and referenced in Section 6.2.

    o  MIDI command timestamp semantics.  The tsmode, octpos, mperiod,
       and linerate parameters customize the semantics of timestamps in
       the MIDI command section.  These parameters let RTP MIDI
       accurately encode the implicit time coding of MIDI 1.0 DIN
       cables.  These parameters are described in Appendix C.3 and
       override default stream behavior 3, listed in Section 6.1 and
       referenced in Section 6.2

    o  Media time.  The rtp_ptime and rtp_maxptime parameters define
       the temporal duration ("media time") of an RTP MIDI packet.  The
       guardtime parameter sets the minimum sending rate of stream
       packets.  These parameters are described in Appendix C.4 and
       override default stream behavior 4, listed in Section 6.1 and
       referenced in Section 6.2.

    o  Stream description.  The musicport parameter labels the MIDI
       name space of RTP streams in a multimedia session.  Musicport is
       described in Appendix C.5.  The musicport parameter overrides
       default stream behavior 5, in Sections 6.1 and 6.2.






Lazzaro & Wawrzynek         Standards Track                    [Page 33]

RFC 4695              RTP Payload Format for MIDI          November 2006


    o  MIDI rendering.  Several parameters specify the MIDI rendering
       method of a stream.  These parameters are described in Appendix
       C.6 and override default stream behavior 6, in Sections 6.1 and
       6.2.

  In Appendix C.7, we specify interoperability guidelines for two RTP
  MIDI application areas: content-streaming using RTSP (Appendix C.7.1)
  and network musical performance using SIP (Appendix C.7.2).

7.  Extensibility

  The payload format defined in this memo exclusively encodes all
  commands that may legally appear on a MIDI 1.0 DIN cable.

  Many worthy uses of MIDI over RTP do not fall within the narrow scope
  of the payload format.  For example, the payload format does not
  support the direct transport of Standard MIDI File (SMF) meta-event
  and metric timing data.  As a second example, the payload format does
  not define transport tools for user-defined commands (apart from
  tools to support System Exclusive commands [MIDI]).

  The payload format does not provide an extension mechanism to support
  new features of this nature, by design.  Instead, we encourage the
  development of new payload formats for specialized musical
  applications.  The IETF session management tools [RFC3264] [RFC2326]
  support codec negotiation, to facilitate the use of new payload
  formats in a backward-compatible way.

  However, the payload format does provide several extensibility tools,
  which we list below:

    o  Journalling.  As described in Appendix C.2, new token values for
       the j_sec and j_update parameters may be defined in IETF
       standards-track documents.  This mechanism supports the design
       of new journal formats and the definition of new journal sending
       policies.

    o  Rendering.  The payload format may be extended to support new
       MIDI renderers (Appendix C.6.2).  Certain general aspects of the
       RTP MIDI rendering process may also be extended, via the
       definition of new token values for the render (Appendix C.6) and
       smf_info (Appendix C.6.4.1) parameters.

    o  Undefined commands.  [MIDI] reserves 4 MIDI System commands for
       future use (0xF4, 0xF5, 0xF9, 0xFD).  If updates to [MIDI]
       define the reserved commands, IETF standards-track documents may
       be defined to provide resiliency support for the commands.




Lazzaro & Wawrzynek         Standards Track                    [Page 34]

RFC 4695              RTP Payload Format for MIDI          November 2006


       Opaque LEGAL fields appear in System Chapter D for this purpose
       (Appendix B.1.1).

  A final form of extensibility involves the inclusion of the payload
  format in framework documents.  Framework documents describe how to
  combine protocols to form a platform for interoperable applications.
  For example, a stage and studio framework might define how to use SIP
  [RFC3261], RTSP [RFC2326], SDP [RFC4566], and RTP [RFC3550] to
  support media networking for professional audio equipment and
  electronic musical instruments.

8.  Congestion Control

  The RTP congestion control requirements defined in [RFC3550] apply to
  RTP MIDI sessions, and implementors should carefully read the
  congestion control section in [RFC3550].  As noted in [RFC3550], all
  transport protocols used on the Internet need to address congestion
  control in some way, and RTP is not an exception.

  In addition, the congestion control requirements defined in [RFC3551]
  applies to RTP MIDI sessions run under applicable profiles.  The
  basic congestion control requirement defined in [RFC3551] is that RTP
  sessions that use UDP transport should monitor packet loss (via RTCP
  or other means) to ensure that the RTP stream competes fairly with
  TCP flows that share the network.

  Finally, RTP MIDI has congestion control issues that are unique for
  an audio RTP payload format.  In applications such as network musical
  performance [NMP], the packet rate is linked to the gestural rate of
  a human performer.  Senders MUST monitor the MIDI command source for
  patterns that result in excessive packet rates and take actions
  during RTP transcoding to reduce the RTP packet rate.  [RFC4696]
  offers implementation guidance on this issue.

9.  Security Considerations

  Implementors should carefully read the Security Considerations
  sections of the RTP [RFC3550], AVP [RFC3551], and other RTP profile
  documents, as the issues discussed in these sections directly apply
  to RTP MIDI streams.  Implementors should also review the Secure
  Real-time Transport Protocol (SRTP, [RFC3711]), an RTP profile that
  addresses the security issues discussed in [RFC3550] and [RFC3551].

  Here, we discuss security issues that are unique to the RTP MIDI
  payload format.

  When using RTP MIDI, authentication of incoming RTP and RTCP packets
  is RECOMMENDED.  Per-packet authentication may be provided by SRTP or



Lazzaro & Wawrzynek         Standards Track                    [Page 35]

RFC 4695              RTP Payload Format for MIDI          November 2006


  by other means.  Without the use of authentication, attackers could
  forge MIDI commands into an ongoing stream, damaging speakers and
  eardrums.  An attacker could also craft RTP and RTCP packets to
  exploit known bugs in the client and take effective control of a
  client machine.

  Session management tools (such as SIP [RFC3261]) SHOULD use
  authentication during the transport of all session descriptions
  containing RTP MIDI media streams.  For SIP, the Security
  Considerations section in [RFC3261] provides an overview of possible
  authentication mechanisms.  RTP MIDI session descriptions should use
  authentication because the session descriptions may code
  initialization data using the parameters described in Appendix C.  If
  an attacker inserts bogus initialization data into a session
  description, he can corrupt the session or forge an client attack.

  Session descriptions may also code renderer initialization data by
  reference, via the url (Appendix C.6.3) and smf_url (Appendix
  C.6.4.2) parameters.  If the coded URL is spoofed, both session and
  client are open to attack, even if the session description itself is
  authenticated.  Therefore, URLs specified in url and smf_url
  parameters SHOULD use [RFC2818].

  Section 2.1 allows streams sent by a party in two RTP sessions to
  have the same SSRC value and the same RTP timestamp initialization
  value, under certain circumstances.  Normally, these values are
  randomly chosen for each stream in a session, to make plaintext
  guessing harder to do if the payloads are encrypted.  Thus, Section
  2.1 weakens this aspect of RTP security.

10.  Acknowledgements

  We thank the networking, media compression, and computer music
  community members who have commented or contributed to the effort,
  including Kurt B, Cynthia Bruyns, Steve Casner, Paul Davis, Robin
  Davies, Joanne Dow, Tobias Erichsen, Nicolas Falquet, Dominique
  Fober, Philippe Gentric, Michael Godfrey, Chris Grigg, Todd Hager,
  Michel Jullian, Phil Kerr, Young-Kwon Lim, Jessica Little, Jan van
  der Meer, Colin Perkins, Charlie Richmond, Herbie Robinson, Larry
  Rowe, Eric Scheirer, Dave Singer, Martijn Sipkema, William Stewart,
  Kent Terry, Magnus Westerlund, Tom White, Jim Wright, Doug Wyatt, and
  Giorgio Zoia.  We also thank the members of the San Francisco Bay
  Area music and audio community for creating the context for the work,
  including Don Buchla, Chris Chafe, Richard Duda, Dan Ellis, Adrian
  Freed, Ben Gold, Jaron Lanier, Roger Linn, Richard Lyon, Dana Massie,
  Max Mathews, Keith McMillen, Carver Mead, Nelson Morgan, Tom
  Oberheim, Malcolm Slaney, Dave Smith, Julius Smith, David Wessel, and
  Matt Wright.



Lazzaro & Wawrzynek         Standards Track                    [Page 36]

RFC 4695              RTP Payload Format for MIDI          November 2006


11.  IANA Considerations

  This section makes a series of requests to IANA.  The IANA has
  completed registration/assignments of the below requests.

  The sub-sections that follow hold the actual, detailed requests.  All
  registrations in this section are in the IETF tree and follow the
  rules of [RFC4288] and [RFC3555], as appropriate.

  In Section 11.1, we request the registration of a new media type:
  "audio/rtp-midi".  Paired with this request is a request for a
  repository for new values for several parameters associated with
  "audio/rtp-midi".  We request this repository in Section 11.1.1.

  In Section 11.2, we request the registration of a new value ("rtp-
  midi") for the "mode" parameter of the "mpeg4-generic" media type.
  The "mpeg4-generic" media type is defined in [RFC3640], and [RFC3640]
  defines a repository for the "mode" parameter.  However, we believe
  we are the first to request the registration of a "mode" value, so we
  believe the registry for "mode" has not yet been created by IANA.

  Paired with our "mode" parameter value request for "mpeg4-generic" is
  a request for a repository for new values for several parameters we
  have defined for use with the "rtp-midi" mode value.  We request this
  repository in Section 11.2.1.

  In Section 11.3, we request the registration of a new media type:
  "audio/asc".  No repository request is associated with this request.

11.1.  rtp-midi Media Type Registration

  This section requests the registration of the "rtp-midi" subtype for
  the "audio" media type.  We request the registration of the
  parameters listed in the "optional parameters" section below (both
  the "non-extensible parameters" and the "extensible parameters"
  lists).  We also request the creation of repositories for the
  "extensible parameters"; the details of this request appear in
  Section 11.1.1, below.

  Media type name:

      audio

  Subtype name:

      rtp-midi





Lazzaro & Wawrzynek         Standards Track                    [Page 37]

RFC 4695              RTP Payload Format for MIDI          November 2006


  Required parameters:

      rate: The RTP timestamp clock rate.  See Sections 2.1 and 6.1
      for usage details.

  Optional parameters:

      Non-extensible parameters:

         ch_anchor:    See Appendix C.2.3 for usage details.
         ch_default:   See Appendix C.2.3 for usage details.
         ch_never:     See Appendix C.2.3 for usage details.
         cm_unused:    See Appendix C.1 for usage details.
         cm_used:      See Appendix C.1 for usage details.
         chanmask:     See Appendix C.6.4.3 for usage details.
         cid:          See Appendix C.6.3 for usage details.
         guardtime:    See Appendix C.4.2 for usage details.
         inline:       See Appendix C.6.3 for usage details.
         linerate:     See Appendix C.3 for usage details.
         mperiod:      See Appendix C.3 for usage details.
         multimode:    See Appendix C.6.1 for usage details.
         musicport:    See Appendix C.5 for usage details.
         octpos:       See Appendix C.3 for usage details.
         rinit:        See Appendix C.6.3 for usage details.
         rtp_maxptime: See Appendix C.4.1 for usage details.
         rtp_ptime:    See Appendix C.4.1 for usage details.
         smf_cid:      See Appendix C.6.4.2 for usage details.
         smf_inline:   See Appendix C.6.4.2 for usage details.
         smf_url:      See Appendix C.6.4.2 for usage details.
         tsmode:       See Appendix C.3 for usage details.
         url:          See Appendix C.6.3 for usage details.

      Extensible parameters:

         j_sec:        See Appendix C.2.1 for usage details.  See
                       Section 11.1.1 for repository details.
         j_update:     See Appendix C.2.2 for usage details.  See
                       Section 11.1.1 for repository details.
         render:       See Appendix C.6 for usage details.  See
                       Section 11.1.1 for repository details.
         subrender:    See Appendix C.6.2 for usage details.  See
                       Section 11.1.1 for repository details.
         smf_info:     See Appendix C.6.4.1 for usage details.  See
                       Section 11.1.1 for repository details.

  Encoding considerations:

      The format for this type is framed and binary.



Lazzaro & Wawrzynek         Standards Track                    [Page 38]

RFC 4695              RTP Payload Format for MIDI          November 2006


  Restrictions on usage:

      This type is only defined for real-time transfers of MIDI
      streams via RTP.  Stored-file semantics for rtp-midi may
      be defined in the future.

  Security considerations:

      See Section 9 of this memo.

  Interoperability considerations:

      None.

  Published specification:

      This memo and [MIDI] serve as the normative specification.  In
      addition, references [NMP], [GRAME], and [RFC4696] provide
      non-normative implementation guidance.

  Applications that use this media type:

      Audio content-creation hardware, such as MIDI controller piano
      keyboards and MIDI audio synthesizers.  Audio content-creation
      software, such as music sequencers, digital audio workstations,
      and soft synthesizers.  Computer operating systems, for network
      support of MIDI Application Programmer Interfaces.  Content
      distribution servers and terminals may use this media type for
      low bit-rate music coding.

  Additional information:

      None.

  Person & email address to contact for further information:

      John Lazzaro <[email protected]>

  Intended usage:

      COMMON.

  Author:

      John Lazzaro <[email protected]>






Lazzaro & Wawrzynek         Standards Track                    [Page 39]

RFC 4695              RTP Payload Format for MIDI          November 2006


  Change controller:

      IETF Audio/Video Transport Working Group delegated
      from the IESG.

11.1.1.  Repository Request for "audio/rtp-midi"

  For the "rtp-midi" subtype, we request the creation of repositories
  for extensions to the following parameters (which are those listed as
  "extensible parameters" in Section 11.1).

     j_sec:

        Registrations for this repository may only occur
        via an IETF standards-track document.  Appendix C.2.1
        of this memo describes appropriate registrations for this
        repository.

        Initial values for this repository appear below:

        "none":  Defined in Appendix C.2.1 of this memo.
        "recj":  Defined in Appendix C.2.1 of this memo.

     j_update:

        Registrations for this repository may only occur
        via an IETF standards-track document.  Appendix C.2.2
        of this memo describes appropriate registrations for this
        repository.

        Initial values for this repository appear below:

        "anchor":  Defined in Appendix C.2.2 of this memo.
        "open-loop":  Defined in Appendix C.2.2 of this memo.
        "closed-loop":  Defined in Appendix C.2.2 of this memo.

     render:

        Registrations for this repository MUST include a
        specification of the usage of the proposed value.
        See text in the preamble of Appendix C.6 for details
        (the paragraph that begins "Other render token ...").









Lazzaro & Wawrzynek         Standards Track                    [Page 40]

RFC 4695              RTP Payload Format for MIDI          November 2006


        Initial values for this repository appear below:

        "unknown":  Defined in Appendix C.6 of this memo.
        "synthetic":  Defined in Appendix C.6 of this memo.
        "api":  Defined in Appendix C.6 of this memo.
        "null":  Defined in Appendix C.6 of this memo.

     subrender:

        Registrations for this repository MUST include a
        specification of the usage of the proposed value.
        See text Appendix C.6.2 for details (the paragraph
        that begins "Other subrender token ...").

        Initial values for this repository appear below:

        "default":  Defined in Appendix C.6.2 of this memo.

     smf_info:

        Registrations for this repository MUST include a
        specification of the usage of the proposed value.
        See text in Appendix C.6.4.1 for details (the
        paragraph that begins "Other smf_info token ...").

        Initial values for this repository appear below:

        "ignore":  Defined in Appendix C.6.4.1 of this memo.
        "sdp_start":  Defined in Appendix C.6.4.1 of this memo.
        "identity":  Defined in Appendix C.6.4.1 of this memo.

11.2.  mpeg4-generic Media Type Registration

  This section requests the registration of the "rtp-midi" value for
  the "mode" parameter of the "mpeg4-generic" media type.  The "mpeg4-
  generic" media type is defined in [RFC3640], and [RFC3640] defines a
  repository for the "mode" parameter.  We are registering mode rtp-
  midi to support the MPEG Audio codecs [MPEGSA] that use MIDI.

  In conjunction with this registration request, we request the
  registration of the parameters listed in the "optional parameters"
  section below (both the "non-extensible parameters" and the
  "extensible parameters" lists).  We also request the creation of
  repositories for the "extensible parameters"; the details of this
  request appear in Appendix 11.2.1, below.






Lazzaro & Wawrzynek         Standards Track                    [Page 41]

RFC 4695              RTP Payload Format for MIDI          November 2006


  Media type name:

      audio


  Subtype name:

      mpeg4-generic


  Required parameters:

      The "mode" parameter is required by [RFC3640].  [RFC3640]
      requests a repository for "mode", so that new values for mode
      may be added.  We request that the value "rtp-midi" be
      added to the "mode" repository.

      In mode rtp-midi, the mpeg4-generic parameter rate is
      a required parameter.  Rate specifies the RTP timestamp
      clock rate.  See Sections 2.1 and 6.2 for usage details
      of rate in mode rtp-midi.

  Optional parameters:

      We request registration of the following parameters
      for use in mode rtp-midi for mpeg4-generic.

      Non-extensible parameters:

         ch_anchor:    See Appendix C.2.3 for usage details.
         ch_default:   See Appendix C.2.3 for usage details.
         ch_never:     See Appendix C.2.3 for usage details.
         cm_unused:    See Appendix C.1 for usage details.
         cm_used:      See Appendix C.1 for usage details.
         chanmask:     See Appendix C.6.4.3 for usage details.
         cid:          See Appendix C.6.3 for usage details.
         guardtime:    See Appendix C.4.2 for usage details.
         inline:       See Appendix C.6.3 for usage details.
         linerate:     See Appendix C.3 for usage details.
         mperiod:      See Appendix C.3 for usage details.
         multimode:    See Appendix C.6.1 for usage details.
         musicport:    See Appendix C.5 for usage details.
         octpos:       See Appendix C.3 for usage details.
         rinit:        See Appendix C.6.3 for usage details.
         rtp_maxptime: See Appendix C.4.1 for usage details.
         rtp_ptime:    See Appendix C.4.1 for usage details.
         smf_cid:      See Appendix C.6.4.2 for usage details.
         smf_inline:   See Appendix C.6.4.2 for usage details.



Lazzaro & Wawrzynek         Standards Track                    [Page 42]

RFC 4695              RTP Payload Format for MIDI          November 2006


         smf_url:      See Appendix C.6.4.2 for usage details.
         tsmode:       See Appendix C.3 for usage details.
         url:          See Appendix C.6.3 for usage details.

      Extensible parameters:

         j_sec:        See Appendix C.2.1 for usage details.  See
                       Section 11.2.1 for repository details.
         j_update:     See Appendix C.2.2 for usage details.  See
                       Section 11.2.1 for repository details.
         render:       See Appendix C.6 for usage details.  See
                       Section 11.2.1 for repository details.
         subrender:    See Appendix C.6.2 for usage details.  See
                       Section 11.2.1 for repository details.
         smf_info:     See Appendix C.6.4.1 for usage details.  See
                       Section 11.2.1 for repository details.

  Encoding considerations:

      The format for this type is framed and binary.

  Restrictions on usage:

      Only defined for real-time transfers of audio/mpeg4-generic
      RTP streams with mode=rtp-midi.

  Security considerations:

      See Section 9 of this memo.

  Interoperability considerations:

      Except for the marker bit (Section 2.1), the packet formats
      for audio/rtp-midi and audio/mpeg4-generic (mode rtp-midi)
      are identical.  The formats differ in use: audio/mpeg4-generic
      is for MPEG work, and audio/rtp-midi is for all other work.

  Published specification:

      This memo, [MIDI], and [MPEGSA] are the normative references.
      In addition, references [NMP], [GRAME], and [RFC4696] provide
      non-normative implementation guidance.

  Applications that use this media type:

      MPEG 4 servers and terminals that support [MPEGSA].





Lazzaro & Wawrzynek         Standards Track                    [Page 43]

RFC 4695              RTP Payload Format for MIDI          November 2006


  Additional information:

      None.

  Person & email address to contact for further information:

      John Lazzaro <[email protected]>

  Intended usage:

      COMMON.

  Author:

      John Lazzaro <[email protected]>

  Change controller:

      IETF Audio/Video Transport Working Group delegated
      from the IESG.

11.2.1.  Repository Request for Mode rtp-midi for mpeg4-generic

  For mode rtp-midi of the mpeg4-generic subtype, we request the
  creation of repositories for extensions to the following parameters
  (which are those listed as "extensible parameters" in Section 11.2).

     j_sec:

        Registrations for this repository may only occur
        via an IETF standards-track document.  Appendix C.2.1
        of this memo describes appropriate registrations for this
        repository.

        Initial values for this repository appear below:

        "none":  Defined in Appendix C.2.1 of this memo.
        "recj":  Defined in Appendix C.2.1 of this memo.

     j_update:

        Registrations for this repository may only occur
        via an IETF standards-track document.  Appendix C.2.2
        of this memo describes appropriate registrations for this
        repository.






Lazzaro & Wawrzynek         Standards Track                    [Page 44]

RFC 4695              RTP Payload Format for MIDI          November 2006


        Initial values for this repository appear below:

        "anchor":  Defined in Appendix C.2.2 of this memo.
        "open-loop":  Defined in Appendix C.2.2 of this memo.
        "closed-loop":  Defined in Appendix C.2.2 of this memo.

     render:

        Registrations for this repository MUST include a
        specification of the usage of the proposed value.
        See text in the preamble of Appendix C.6 for details
        (the paragraph that begins "Other render token ...").

        Initial values for this repository appear below:

        "unknown":  Defined in Appendix C.6 of this memo.
        "synthetic":  Defined in Appendix C.6 of this memo.
        "null":  Defined in Appendix C.6 of this memo.

     subrender:

        Registrations for this repository MUST include a
        specification of the usage of the proposed value.
        See text Appendix C.6.2 for details (the paragraph
        that begins "Other subrender token ..." and
        subsequent paragraphs).  Note that the text in
        Appendix C.6.2 contains restrictions on subrender
        registrations for mpeg4-generic ("Registrations
        for mpeg4-generic subrender values ...").

        Initial values for this repository appear below:

        "default":  Defined in Appendix C.6.2 of this memo.

     smf_info:

        Registrations for this repository MUST include a
        specification of the usage of the proposed value.
        See text in Appendix C.6.4.1 for details (the
        paragraph that begins "Other smf_info token ...").

        Initial values for this repository appear below:

        "ignore":  Defined in Appendix C.6.4.1 of this memo.
        "sdp_start":  Defined in Appendix C.6.4.1 of this memo.
        "identity":  Defined in Appendix C.6.4.1 of this memo.





Lazzaro & Wawrzynek         Standards Track                    [Page 45]

RFC 4695              RTP Payload Format for MIDI          November 2006


11.3.  asc Media Type Registration

  This section registers "asc" as a subtype for the "audio" media type.
  We register this subtype to support the remote transfer of the
  "config" parameter of the mpeg4-generic media type [RFC3640] when it
  is used with mpeg4-generic mode rtp-midi (registered in Appendix 11.2
  above).  We explain the mechanics of using "audio/asc" to set the
  config parameter in Section 6.2 and Appendix C.6.5 of this document.

  Note that this registration is a new subtype registration and is not
  an addition to a repository defined by MPEG-related memos (such as
  [RFC3640]).  Also note that this request for "audio/asc" does not
  register parameters, and does not request the creation of a
  repository.

  Media type name:

      audio

  Subtype name:

      asc

  Required parameters:

      None.

  Optional parameters:

      None.

  Encoding considerations:

      The native form of the data object is binary data,
      zero-padded to an octet boundary.

  Restrictions on usage:

      This type is only defined for data object (stored file)
      transfer.  The most common transports for the type are
      HTTP and SMTP.

  Security considerations:

      See Section 9 of this memo.






Lazzaro & Wawrzynek         Standards Track                    [Page 46]

RFC 4695              RTP Payload Format for MIDI          November 2006


  Interoperability considerations:

      None.

  Published specification:

      The audio/asc data object is the AudioSpecificConfig
      binary data structure, which is normatively defined in
      [MPEGAUDIO].

  Applications that use this media type:

      MPEG 4 Audio servers and terminals that support
      audio/mpeg4-generic RTP streams for mode rtp-midi.

  Additional information:

      None.

  Person & email address to contact for further information:

      John Lazzaro <[email protected]>

  Intended usage:

      COMMON.

  Author:

      John Lazzaro <[email protected]>

  Change controller:

      IETF Audio/Video Transport Working Group delegated
      from the IESG.
















Lazzaro & Wawrzynek         Standards Track                    [Page 47]

RFC 4695              RTP Payload Format for MIDI          November 2006


A.  The Recovery Journal Channel Chapters

A.1.  Recovery Journal Definitions

  This appendix defines the terminology and the coding idioms that are
  used in the recovery journal bitfield descriptions in Section 5
  (journal header structure), Appendices A.2 to A.9 (channel journal
  chapters) and Appendices B.1 to B.5 (system journal chapters).

  We assume that the recovery journal resides in the journal section of
  an RTP packet with sequence number I ("packet I") and that the
  Checkpoint Packet Seqnum field in the top-level recovery journal
  header refers to a previous packet with sequence number C (an
  exception is the self-referential C = I case).  Unless stated
  otherwise, algorithms are assumed to use modulo 2^16 arithmetic for
  calculations on 16-bit sequence numbers and modulo 2^32 arithmetic
  for calculations on 32-bit extended sequence numbers.

  Several bitfield coding idioms appear throughout the recovery journal
  system, with consistent semantics.  Most recovery journal elements
  begin with an "S" (Single-packet loss) bit.  S bits are designed to
  help receivers efficiently parse through the recovery journal
  hierarchy in the common case of the loss of a single packet.

  As a rule, S bits MUST be set to 1.  However, an exception applies if
  a recovery journal element in packet I encodes data about a command
  stored in the MIDI command section of packet I - 1.  In this case,
  the S bit of the recovery journal element MUST be set to 0.  If a
  recovery journal element has its S bit set to 0, all higher-level
  recovery journal elements that contain it MUST also have S bits that
  are set to 0, including the top-level recovery journal header.

  Other consistent bitfield coding idioms are described below:

    o R flag bit.  R flag bits are reserved for future use.  Senders
      MUST set R bits to 0.  Receivers MUST ignore R bit values.

    o LENGTH field.  All fields named LENGTH (as distinct from LEN)
      code the number of octets in the structure that contains it,
      including the header it resides in and all hierarchical levels
      below it.  If a structure contains a LENGTH field, a receiver
      MUST use the LENGTH field value to advance past the structure
      during parsing, rather than use knowledge about the internal
      format of the structure.







Lazzaro & Wawrzynek         Standards Track                    [Page 48]

RFC 4695              RTP Payload Format for MIDI          November 2006


  We now define normative terms used to describe recovery journal
  semantics.

    o Checkpoint history.  The checkpoint history of a recovery journal
      is the concatenation of the MIDI command sections of packets C
      through I - 1.  The final command in the MIDI command section for
      packet I - 1 is considered the most recent command; the first
      command in the MIDI command section for packet C is the oldest
      command.  If command X is less recent than command Y, X is
      considered to be "before Y".  A checkpoint history with no
      commands is considered to be empty.  The checkpoint history never
      contains the MIDI command section of packet I (the packet
      containing the recovery journal), so if C == I, the checkpoint
      history is empty by definition.

    o Session history.  The session history of a recovery journal is
      the concatenation of MIDI command sections from the first packet
      of the session up to packet I - 1.  The definitions of command
      recency and history emptiness follow those in the checkpoint
      history.  The session history never contains the MIDI command
      section of packet I, and so the session history of the first
      packet in the session is empty by definition.

    o Finished/unfinished commands.  If all octets of a MIDI command
      appear in the session history, the command is defined as being
      finished.  If some but not all octets of a command appear in the
      session history, the command is defined as being unfinished.
      Unfinished commands occur if segments of a SysEx command appear
      in several RTP packets.  For example, if a SysEx command is coded
      as 3 segments, with segment 1 in packet K, segment 2 in packet K
      + 1, and segment 3 in packet K + 2, the session histories for
      packets K + 1 and K + 2 contain unfinished versions of the
      command.  A session history contains a finished version of a
      cancelled SysEx command if the history contains the cancel
      sublist for the command.

    o Reset State commands.  Reset State (RS) commands reset renderers
      to an initialized "powerup" condition.  The RS commands are:
      System Reset (0xFF), General MIDI System Enable (0xF0 0x7E 0xcc
      0x09 0x01 0xF7), General MIDI 2 System Enable (0xF0 0x7E 0xcc
      0x09 0x03 0xF7), General MIDI System Disable (0xF0 0x7E 0xcc 0x09
      0x00 0xF7), Turn DLS On (0xF0 0x7E 0xcc 0x0A 0x01 0xF7), and Turn
      DLS Off (0xF0 0x7E 0xcc 0x0A 0x02 0xF7).  Registrations of
      subrender parameter token values (Appendix C.6.2) and IETF
      standards-track documents MAY specify additional RS commands.

    o Active commands.  Active command are MIDI commands that do not
      appear before a Reset State command in the session history.



Lazzaro & Wawrzynek         Standards Track                    [Page 49]

RFC 4695              RTP Payload Format for MIDI          November 2006


    o N-active commands.  N-active commands are MIDI commands that do
      not appear before one of the following commands in the session
      history:  MIDI Control Change numbers 123-127 (numbers with All
      Notes Off semantics) or 120 (All Sound Off), and any Reset State
      command.

    o C-active commands.  C-active commands are MIDI commands that do
      not appear before one of the following commands in the session
      history:  MIDI Control Change number 121 (Reset All Controllers)
      and any Reset State command.

    o Oldest-first ordering rule.  Several recovery journal chapters
      contain a list of elements, where each element is associated with
      a MIDI command that appears in the session history.  In most
      cases, the chapter definition requires that list elements be
      ordered in accordance with the "oldest-first ordering rule".
      Below, we normatively define this rule:

      Elements associated with the most recent command in the session
      history coded in the list MUST appear at the end of the list.

      Elements associated with the oldest command in the session
      history coded in the list MUST appear at the start of the list.

      All other list elements MUST be arranged with respect to these
      boundary elements, to produce a list ordering that strictly
      reflects the relative session history recency of the commands
      coded by the elements in the list.

    o Parameter system.  A MIDI feature that provides two sets of
      16,384 parameters to expand the 0-127 controller number space.
      The Registered Parameter Names (RPN) system and the Non-
      Registered Parameter Names (NRPN) system each provides 16,384
      parameters.

    o Parameter system transaction.  The value of RPNs and NRPNs are
      changed by a series of Control Change commands that form a
      parameter system transaction.  A canonical transaction begins
      with two Control Change commands to set the parameter number
      (controller numbers 99 and 98 for NRPNs, controller numbers 101
      and 100 for RPNs).  The transaction continues with an arbitrary
      number of Data Entry (controller numbers 6 and 38), Data
      Increment (controller number 96), and Data Decrement (controller
      number 97) Control Change commands to set the parameter value.
      The transaction ends with a second pair of (99, 98) or (101, 100)
      Control Change commands that specify the null parameter (MSB
      value 0x7F, LSB value 0x7F).




Lazzaro & Wawrzynek         Standards Track                    [Page 50]

RFC 4695              RTP Payload Format for MIDI          November 2006


      Several variants of the canonical transaction sequence are
      possible.  Most commonly, the terminal pair of (99, 98) or (101,
      100) Control Change commands may specify a parameter other than
      the null parameter.  In this case, the command pair terminates
      the first transaction and starts a second transaction.  The
      command pair is considered to be a part of both transactions.
      This variant is legal and recommended in [MIDI].  We refer to
      this variant as a "type 1 variant".

      Less commonly, the MSB (99 or 101) or LSB (98 or 100) command of
      a (99, 98) or (101, 100) Control Change pair may be omitted.

      If the MSB command is omitted, the transaction uses the MSB value
      of the most recent C-active Control Change command for controller
      number 99 or 101 that appears in the session history.  We refer
      to this variant as a "type 2 variant".

      If the LSB command is omitted, the LSB value 0x00 is assumed.  We
      refer to this variant as a "type 3 variant".  The type 2 and type
      3 variants are defined as legal, but are not recommended, in
      [MIDI].

      System real-time commands may appear at any point during a
      transaction (even between octets of individual commands in the
      transaction).  More generally, [MIDI] does not forbid the
      appearance of unrelated MIDI commands during an open transaction.
      As a rule, these commands are considered to be "outside" the
      transaction and do not affect the status of the transaction in
      any way.  Exceptions to this rule are commands whose semantics
      act to terminate transactions:  Reset State commands, and Control
      Change (0xB) for controller number 121 (Reset All Controllers)
      [RP015].

    o Initiated parameter system transaction.  A canonical parameter
      system transaction whose (99, 98) or (101, 100) initial Control
      Change command pair appears in the session history is considered
      to be an initiated parameter system transaction.  This definition
      also holds for type 1 variants.  For type 2 variants (dropped
      MSB), a transaction whose initial LSB Control Change command
      appears in the session history is an initiated transaction.  For
      type 3 variants (dropped LSB), a transaction is considered to be
      initiated if at least one transaction command follows the initial
      MSB (99 or 101) Control Change command in the session history.
      The completion of a transaction does not nullify its "initiated"
      status.






Lazzaro & Wawrzynek         Standards Track                    [Page 51]

RFC 4695              RTP Payload Format for MIDI          November 2006


    o Session history reference counts.  Several recovery journal
      chapters include a reference count field, which codes the total
      number of commands of a type that appear in the session history.
      Examples include the Reset and Tune Request command logs (Chapter
      D, Appendix B.1) and the Active Sense command (Chapter V,
      Appendix B.2).  Upon the detection of a loss event, reference
      count fields let a receiver deduce if any instances of the
      command have been lost, by comparing the journal reference count
      with its own reference count.  Thus, a reference count field
      makes sense, even for command types in which knowing the NUMBER
      of lost commands is irrelevant (as is true with all of the
      example commands mentioned above).

  The chapter definitions in Appendices A.2 to A.9 and B.1 to B.5
  reflect the default recovery journal behavior.  The ch_default,
  ch_never, and ch_anchor parameters modify these definitions, as
  described in Appendix C.2.3.

  The chapter definitions specify if data MUST be present in the
  journal.  Senders MAY also include non-required data in the journal.
  This optional data MUST comply with the normative chapter definition.
  For example, if a chapter definition states that a field codes data
  from the most recent active command in the session history, the
  sender MUST NOT code inactive commands or older commands in the
  field.

  Finally, we note that a channel journal only encodes information
  about MIDI commands appearing on the MIDI channel the journal
  protects.  All references to MIDI commands in Appendices A.2 to A.9
  should be read as "MIDI commands appearing on this channel."

A.2.  Chapter P: MIDI Program Change

  A channel journal MUST contain Chapter P if an active Program Change
  (0xC) command appears in the checkpoint history.  Figure A.2.1 shows
  the format for Chapter P.

               0                   1                   2
               0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3
              +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
              |S|   PROGRAM   |B|   BANK-MSB  |X|  BANK-LSB   |
              +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                     Figure A.2.1 -- Chapter P format

  The chapter has a fixed size of 24 bits.  The PROGRAM field indicates
  the data value of the most recent active Program Change command in
  the session history.  By default, the B, BANK-MSB, X, and BANK-LSB



Lazzaro & Wawrzynek         Standards Track                    [Page 52]

RFC 4695              RTP Payload Format for MIDI          November 2006


  fields MUST be set to 0.  Below, we define exceptions to this default
  condition.

  If an active Control Change (0xB) command for controller number 0
  (Bank Select MSB) appears before the Program Change command in the
  session history, the B bit MUST be set to 1, and the BANK-MSB field
  MUST code the data value of the Control Change command.

  If B is set to 1, the BANK-LSB field MUST code the data value of the
  most recent Control Change command for controller number 32 (Bank
  Select LSB) that preceded the Program Change command coded in the
  PROGRAM field and followed the Control Change command coded in the
  BANK-MSB field.  If no such Control Change command exists, the BANK-
  LSB field MUST be set to 0.

  If B is set to 1, and if a Control Change command for controller
  number 121 (Reset All Controllers) appears in the MIDI stream between
  the Control Change command coded by the BANK-MSB field and the
  Program Change command coded by the PROGRAM field, the X bit MUST be
  set to 1.

  Note that [RP015] specifies that Reset All Controllers does not reset
  the values of controller numbers 0 (Bank Select MSB) and 32 (Bank
  Select LSB).  Thus, the X bit does not effect how receivers will use
  the BANK-LSB and BANK-MSB values when recovering from a lost Program
  Change command.  The X bit serves to aid recovery in MIDI
  applications where controller numbers 0 and 32 are used in a non-
  standard way.

A.3.  Chapter C: MIDI Control Change

  Figure A.3.1 shows the format for Chapter C.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 8 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |S|     LEN     |S|   NUMBER    |A|  VALUE/ALT  |S|   NUMBER    |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |A|  VALUE/ALT  |  ....                                         |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                      Figure A.3.1 -- Chapter C format

  The chapter consists of a 1-octet header, followed by a variable
  length list of 2-octet controller logs.  The list MUST contain at
  least one controller log.  The 7-bit LEN field codes the number of
  controller logs in the list, minus one.  We define the semantics of
  the controller log fields in Appendix A.3.2.



Lazzaro & Wawrzynek         Standards Track                    [Page 53]

RFC 4695              RTP Payload Format for MIDI          November 2006


  A channel journal MUST contain Chapter C if the rules defined in this
  appendix require that one or more controller logs appear in the list.

A.3.1.  Log Inclusion Rules

  A controller log encodes information about a particular Control
  Change command in the session history.

  In the default use of the payload format, list logs MUST encode
  information about the most recent active command in the session
  history for a controller number.  Logs encoding earlier commands MUST
  NOT appear in the list.

  Also, as a rule, the list MUST contain a log for the most recent
  active command for a controller number that appears in the checkpoint
  history.  Below, we define exceptions to this rule:

    o  MIDI streams may transmit 14-bit controller values using paired
       Most Significant Byte (MSB, controller numbers 0-31, 99, 101)
       and Least Significant Byte (LSB, controller numbers 32-63, 98,
       100) Control Change commands [MIDI].

       If the most recent active Control Change command in the session
       history for a 14-bit controller pair uses the MSB number,
       Chapter C MAY omit the controller log for the most recent active
       Control Change command for the associated LSB number, as the
       command ordering makes this LSB value irrelevant.  However, this
       exception MUST NOT be applied if the sender is not certain that
       the MIDI source uses 14-bit semantics for the controller number
       pair.  Note that some MIDI sources ignore 14-bit controller
       semantics and use the LSB controller numbers as independent 7-
       bit controllers.

    o  If active Control Change commands for controller numbers 0 (Bank
       Select MSB) or 32 (Bank Select LSB) appear in the checkpoint
       history, and if the command instances are also coded in the
       BANK-MSB and BANK-LSB fields of the Chapter P (Appendix A.2),
       Chapter C MAY omit the controller logs for the commands.

    o  Several controller number pairs are defined to be mutually
       exclusive.  Controller numbers 124 (Omni Off) and 125 (Omni On)
       form a mutually exclusive pair, as do controller numbers 126
       (Mono) and 127 (Poly).

       If active Control Change commands for one or both members of a
       mutually exclusive pair appear in the checkpoint history, a log
       for the controller number of the most recent command for the
       pair in the checkpoint history MUST appear in the controller



Lazzaro & Wawrzynek         Standards Track                    [Page 54]

RFC 4695              RTP Payload Format for MIDI          November 2006


       list.  However, the list MAY omit the controller log for the
       most recent active command for the other number in the pair.

       If active Control Change commands for one or both members of a
       mutually exclusive pair appear in the session history, and if a
       log for the controller number of the most recent command for the
       pair does not appear in the controller list, a log for the most
       recent command for the other number of the pair MUST NOT appear
       in the controller list.

    o  If an active Control Change command for controller number 121
       (Reset All Controllers) appears in the session history, the
       controller list MAY omit logs for Control Change commands that
       precede the Reset All Controllers command in the session
       history, under certain conditions.

       Namely, a log MAY be omitted if the sender is certain that a
       command stream follows the Reset All Controllers semantics
       defined in [RP015], and if the log codes a controller number for
       which [RP015] specifies a reset value.

       For example, [RP015] specifies that controller number 1
       (Modulation Wheel) is reset to the value 0, and thus a
       controller log for Modulation Wheel MAY be omitted from the
       controller log list.  In contrast, [RP015] specifies that
       controller number 7 (Channel Volume) is not reset, and thus a
       controller log for Channel Volume MUST NOT be omitted from the
       controller log list.

    o  Appendix A.3.4 defines exception rules for the MIDI Parameter
       System controller numbers 6, 38, and 96-101.

A.3.2.  Controller Log Format

  Figure A.3.2 shows the controller log structure of Chapter C.

                      0                   1
                      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
                     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                     |S|    NUMBER   |A|  VALUE/ALT  |
                     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                 Figure A.3.2 -- Chapter C controller log

  The 7-bit NUMBER field identifies the controller number of the coded
  command.  The 7-bit VALUE/ALT field codes recovery information for
  the command.  The A bit sets the format of the VALUE/ALT field.




Lazzaro & Wawrzynek         Standards Track                    [Page 55]

RFC 4695              RTP Payload Format for MIDI          November 2006


  A log encodes recovery information using one of the following tools:
  the value tool, the toggle tool, or the count tool.

  A log uses the value tool if the A bit is set to 0.  The value tool
  codes the 7-bit data value of a command in the VALUE/ALT field.  The
  value tool works best for controllers that code a continuous
  quantity, such as number 1 (Modulation Wheel).

  The A bit is set to 1 to code the toggle or count tool.  These tools
  work best for controllers that code discrete actions.  Figure A.3.3
  shows the controller log for these tools.

                      0                   1
                      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
                     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                     |S|    NUMBER   |1|T|    ALT    |
                     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                Figure A.3.3 -- Controller log for ALT tools

  A log uses the toggle tool if the T bit is set to 0.  A log uses the
  count tool if the T bit is set to 1.  Both methods use the 6-bit ALT
  field as an unsigned integer.

  The toggle tool works best for controllers that act as on/off
  switches, such as 64 (Damper Pedal (Sustain)).  These controllers
  code the "off" state with control values 0-63 and the "on" state with
  64-127.

  For the toggle tool, the ALT field codes the total number of toggles
  (off->on and on->off) due to Control Change commands in the session
  history, up to and including a toggle caused by the command coded by
  the log.  The toggle count includes toggles caused by Control Change
  commands for controller number 121 (Reset All Controllers).

  Toggle counting is performed modulo 64.  The toggle count is reset at
  the start of a session, and whenever a Reset State command (Appendix
  A.1) appears in the session history.  When these reset events occur,
  the toggle count for a controller is set to 0 (for controllers whose
  default value is 0-63) or 1 (for controllers whose default value is
  64-127).

  The Damper Pedal (Sustain) controller illustrates the benefits of the
  toggle tool over the value tool for switch controllers.  As often
  used in piano applications, the "on" state of the controller lets
  notes resonate, while the "off" state immediately damps notes to
  silence.  The loss of the "off" command in an "on->off->on" sequence
  results in ringing notes that should have been damped silent.  The



Lazzaro & Wawrzynek         Standards Track                    [Page 56]

RFC 4695              RTP Payload Format for MIDI          November 2006


  toggle tool lets receivers detect this lost "off" command, but the
  value tool does not.

  The count tool is conceptually similar to the toggle tool.  For the
  count tool, the ALT field codes the total number of Control Change
  commands in the session history, up to and including the command
  coded by the log.  Command counting is performed modulo 64.  The
  command count is set to 0 at the start of the session and is reset to
  0 whenever a Reset State command (Appendix A.1) appears in the
  session history.

  Because the count tool ignores the data value, it is a good match for
  controllers whose controller value is ignored, such as number 123
  (All Notes Off).  More generally, the count tool may be used to code
  a (modulo 64) identification number for a command.

A.3.3.  Log List Coding Rules

  In this section, we describe the organization of controller logs in
  the Chapter C log list.

  A log encodes information about a particular Control Change command
  in the session history.  In most cases, a command SHOULD be coded by
  a single tool (and, thus, a single log).  If a number is coded with a
  single tool and this tool is the count tool, recovery Control Change
  commands generated by a receiver SHOULD use the default control value
  for the controller.

  However, a command MAY be coded by several tool types (and, thus,
  several logs, each using a different tool).  This technique may
  improve recovery performance for controllers with complex semantics,
  such as controller number 84 (Portamento Control) or controller
  number 121 (Reset All Controllers) when used with a non-zero data
  octet (with the semantics described in [DLS2]).

  If a command is encoded by multiple tools, the logs MUST be placed in
  the list in the following order: count tool log (if any), followed by
  value tool log (if any), followed by toggle tool log (if any).

  The Chapter C log list MUST obey the oldest-first ordering rule
  (defined in Appendix A.1).  Note that this ordering preserves the
  information necessary for the recovery of 14-bit controller values,
  without precluding the use of MSB and LSB controller pairs as
  independent 7-bit controllers.







Lazzaro & Wawrzynek         Standards Track                    [Page 57]

RFC 4695              RTP Payload Format for MIDI          November 2006


  In the default use of the payload format, all logs that appear in the
  list for a controller number encode information about one Control
  Change command -- namely, the most recent active Control Change
  command in the session history for the number.

  This coding scheme provides good recovery performance for the
  standard uses of Control Change commands defined in [MIDI].  However,
  not all MIDI applications restrict the use of Control Change commands
  to those defined in [MIDI].

  For example, consider the common MIDI encoding of rotary encoders
  ("infinite" rotation knobs).  The mixing console MIDI convention
  defined in [LCP] codes the position of rotary encoders as a series of
  Control Change commands.  Each command encodes a relative change of
  knob position from the last update (expressed as a clockwise or
  counter-clockwise knob turning angle).

  As the knob position is encoded incrementally over a series of
  Control Change commands, the best recovery performance is obtained if
  the log list encodes all Control Change commands for encoder
  controller numbers that appear in the checkpoint history, not only
  the most recent command.

  To support application areas that use Control Change commands in this
  way, Chapter C may be configured to encode information about several
  Control Change commands for a controller number.  We use the term
  "enhanced" to describe this encoding method, which we describe below.

  In Appendix C.2.3, we show how to configure a stream to use enhanced
  Chapter C encoding for specific controller numbers.  In Section 5 in
  the main text, we show how the H bits in the recovery journal header
  (Figure 8) and in the channel journal header (Figure 9) indicate the
  use of enhanced Chapter C encoding.

  Here, we define how to encode a Chapter C log list that uses the
  enhanced encoding method.

  Senders that use the enhanced encoding method for a controller number
  MUST obey the rules below.  These rules let a receiver determine
  which logs in the list correspond to lost commands.  Note that these
  rules override the exceptions listed in Appendix A.3.1.

    o  If N commands for a controller number are encoded in the list,
       the commands MUST be the N most recent commands for the
       controller number in the session history.  For example, for N =
       2, the sender MUST encode the most recent command and the second
       most recent command, not the most recent command and the third
       most recent command.



Lazzaro & Wawrzynek         Standards Track                    [Page 58]

RFC 4695              RTP Payload Format for MIDI          November 2006


    o  If a controller number uses enhanced encoding, the encoding of
       the least-recent command for the controller number in the log
       list MUST include a count tool log.  In addition, if commands
       are encoded for the controller number whose logs have S bits set
       to 0, the encoding of the least-recent command with S = 0 logs
       MUST include a count tool log.

       The count tool is OPTIONAL for the other commands for the
       controller number encoded in the list, as a receiver is able to
       efficiently deduce the count tool value for these commands, for
       both single-packet and multi-packet loss events.

    o  The use of the value and toggle tools MUST be identical for all
       commands for a controller number encoded in the list.  For
       example, a value tool log either MUST appear for all commands
       for the controller number coded in the list, or alternatively,
       value tool logs for the controller number MUST NOT appear in the
       list.  Likewise, a toggle tool log either MUST appear for all
       commands for the controller number coded in the list, or
       alternatively, toggle tool logs for the controller number MUST
       NOT appear in the list.

    o  If a command is encoded by multiple tools, the logs MUST be
       placed in the list in the following order: count tool log (if
       any), followed by value tool log (if any), followed by toggle
       tool log (if any).

  These rules permit a receiver recovering from a packet loss to use
  the count tool log to match the commands encoded in the list with its
  own history of the stream, as we describe below.  Note that the text
  below describes a non-normative algorithm; receivers are free to use
  any algorithm to match its history with the log list.

  In a typical implementation of the enhanced encoding method, a
  receiver computes and stores count, value, and toggle tool data field
  values for the most recent Control Change command it has received for
  a controller number.

  After a loss event, a receiver parses the Chapter C list and
  processes list logs for a controller number that uses enhanced
  encoding as follows.

  The receiver compares the count tool ALT field for the least-recent
  command for the controller number in the list against its stored
  count data for the controller number, to determine if recovery is
  necessary for the command coded in the list.  The value and toggle
  tool logs (if any) that directly follow the count tool log are
  associated with this least-recent command.



Lazzaro & Wawrzynek         Standards Track                    [Page 59]

RFC 4695              RTP Payload Format for MIDI          November 2006


  To check more-recent commands for the controller, the receiver
  detects additional value and/or toggle tool logs for the controller
  number in the list and infers count tool data for the command coded
  by these logs.  This inferred data is used to determine if recovery
  is necessary for the command coded by the value and/or toggle tool
  logs.

  In this way, a receiver is able to execute only lost commands,
  without executing a command twice.  While recovering from a single
  packet loss, a receiver may skip through S = 1 logs in the list, as
  the first S = 0 log for an enhanced controller number is always a
  count tool log.

  Note that the requirements in Appendix C.2.2.2 for protective sender
  and receiver actions during session startup for multicast operation
  are of particular importance for enhanced encoding, as receivers need
  to initialize its count tool data structures with recovery journal
  data in order to match commands correctly after a loss event.

  Finally, we note in passing that in some applications of rotary
  encoders, a good user experience may be possible without the use of
  enhanced encoding.  These applications are distinguished by visual
  feedback of encoding position that is driven by the post-recovery
  rotary encoding stream, and relatively low packet loss.  In these
  domains, recovery performance may be acceptable for rotary encoders
  if the log list encodes only the most recent command, if both count
  and value logs appear for the command.

A.3.4.  The Parameter System

  Readers may wish to review the Appendix A.1 definitions of "parameter
  system", "parameter system transaction", and "initiated parameter
  system transaction" before reading this section.

  Parameter system transactions update a MIDI Registered Parameter
  Number (RPN) or Non-Registered Parameter Number (NRPN) value.  A
  parameter system transaction is a sequence of Control Change commands
  that may use the following controllers numbers:

    o  Data Entry MSB (6)
    o  Data Entry LSB (38)
    o  Data Increment (96)
    o  Data Decrement (97)
    o  Non-Registered Parameter Number (NRPN) LSB (98)
    o  Non-Registered Parameter Number (NRPN) MSB (99)
    o  Registered Parameter Number (RPN) LSB (100)
    o  Registered Parameter Number (RPN) MSB (101)




Lazzaro & Wawrzynek         Standards Track                    [Page 60]

RFC 4695              RTP Payload Format for MIDI          November 2006


  Control Change commands that are a part of a parameter system
  transaction MUST NOT be coded in Chapter C controller logs.  Instead,
  these commands are coded in Chapter M, the MIDI Parameter chapter
  defined in Appendix A.4.

  However, Control Change commands that use the listed controllers as
  general-purpose controllers (i.e., outside of a parameter system
  transaction) MUST NOT be coded in Chapter M.

  Instead, the controllers are coded in Chapter C controller logs.  The
  controller logs follow the coding rules stated in Appendix A.3.2 and
  A.3.3.  The rules for coding paired LSB and MSB controllers, as
  defined in Appendix A.3.1, apply to the pairs (6, 38), (99, 98), and
  (101, 100) when coded in Chapter C.

  If active Control Change commands for controller numbers 6, 38, or
  96-101 appear in the checkpoint history, and these commands are used
  as general-purpose controllers, the most recent general-purpose
  command instance for these controller numbers MUST appear as entries
  in the Chapter C controller list.

  MIDI syntax permits a source to use controllers 6, 38, 96, and 97 as
  parameter-system controllers and general-purpose controllers in the
  same stream.  An RTP MIDI sender MUST deduce the role of each Control
  Change command for these controller numbers by noting the placement
  of the command in the stream and MUST use this information to code
  the command in Chapter C or Chapter M, as appropriate.

  Specifically, active Control Change commands for controllers 6, 38,
  96, and 97 act in a general-purpose way when

    o  no active Control Change commands that set an RPN or NRPN
       parameter number appear in the session history, or

    o  the most recent active Control Change commands in the session
       history that set an RPN or NRPN parameter number code the null
       parameter (MSB value 0x7F, LSB value 0x7F), or

    o  a Control Change command for controller number 121 (Reset All
       Controllers) appears more recently in the session history than
       all active Control Change commands that set an RPN or NRPN
       parameter number (see [RP015] for details).

  Finally, we note that a MIDI source that follows the recommendations
  of [MIDI] exclusively uses numbers 98-101 as parameter system
  controllers.  Alternatively, a MIDI source may exclusively use 98-101
  as general-purpose controllers and lose the ability perform parameter
  system transactions in a stream.



Lazzaro & Wawrzynek         Standards Track                    [Page 61]

RFC 4695              RTP Payload Format for MIDI          November 2006


  In the language of [MIDI], the general-purpose use of controllers
  98-101 constitutes a non-standard controller assignment.  As most
  real-world MIDI sources use the standard controller assignment for
  controller numbers 98-101, an RTP MIDI sender SHOULD assume these
  controllers act as parameter system controllers, unless it knows that
  a MIDI source uses controller numbers 98-101 in a general-purpose
  way.

A.4.  Chapter M: MIDI Parameter System

  Readers may wish to review the Appendix A.1 definitions for
  "C-active", "parameter system", "parameter system transaction", and
  "initiated parameter system transaction" before reading this
  appendix.

  Chapter M protects parameter system transactions for Registered
  Parameter Number (RPN) and Non-Registered Parameter Number (NRPN)
  values.  Figure A.4.1 shows the format for Chapter M.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |S|P|E|U|W|Z|      LENGTH       |Q|  PENDING    |  Log list ... |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                 Figure A.4.1 -- Top-level Chapter M format

  Chapter M begins with a 2-octet header.  If the P header bit is set
  to 1, a 1-octet field follows the header, coding the 7-bit PENDING
  value and its associated Q bit.

  The 10-bit LENGTH field codes the size of Chapter M and conforms to
  semantics described in Appendix A.1.

  Chapter M ends with a list of zero or more variable-length parameter
  logs.  Appendix A.4.2 defines the bitfield format of a parameter log.
  Appendix A.4.1 defines the inclusion semantics of the log list.

  A channel journal MUST contain Chapter M if the rules defined in
  Appendix A.4.1 require that one or more parameter logs appear in the
  list.

  A channel journal also MUST contain Chapter M if the most recent
  C-active Control Change command involved in a parameter system
  transaction in the checkpoint history is

    o  an RPN MSB (101) or NRPN MSB (99) controller, or




Lazzaro & Wawrzynek         Standards Track                    [Page 62]

RFC 4695              RTP Payload Format for MIDI          November 2006


    o  an RPN LSB (100) or NRPN LSB (98) controller that completes the
       coding of the null parameter (MSB value 0x7F, LSB value 0x7F).

  This rule provides loss protection for partially transmitted
  parameter numbers and for the null parameter numbers.

  If the most recent C-active Control Change command involved in a
  parameter system transaction in the session history is for the RPN
  MSB or NRPN MSB controller, the P header bit MUST be set to 1, and
  the PENDING field (and its associated Q bit) MUST follow the Chapter
  M header.  Otherwise, the P header bit MUST be set to 0, and the
  PENDING field and Q bit MUST NOT appear in Chapter M.

  If PENDING codes an NRPN MSB, the Q bit MUST be set to 1.  If PENDING
  codes an RPN MSB, the Q bit MUST be set to 0.

  The E header bit codes the current transaction state of the MIDI
  stream.  If E = 1, an initiated transaction is in progress.  Below,
  we define the rules for setting the E header bit:

    o  If no C-active parameter system transaction Control Change
       commands appear in the session history, the E bit MUST be set to
       0.

    o  If the P header bit is set to 1, the E bit MUST be set to 0.

    o  If the most recent C-active parameter system transaction Control
       Change command in the session history is for the NRPN LSB or RPN
       LSB controller number, and if this command acts to complete the
       coding of the null parameter (MSB value 0x7F, LSB value 0x7F),
       the E bit MUST be set to 0.

    o  Otherwise, an initiated transaction is in progress, and the E
       bit MUST be set to 1.

  The U, W, and Z header bits code properties that are shared by all
  parameter logs in the list.  If these properties are set, parameter
  logs may be coded with improved efficiency (we explain how in A.4.1).

  By default, the U, W, and Z bits MUST be set to 0.  If all parameter
  logs in the list code RPN parameters, the U bit MAY be set to 1.  If
  all parameter logs in the list code NRPN parameters, the W bit MAY be
  set to 1.  If the parameter numbers of all RPN and NRPN logs in the
  list lie in the range 0-127 (and thus have an MSB value of 0), the Z
  bit MAY be set to 1.






Lazzaro & Wawrzynek         Standards Track                    [Page 63]

RFC 4695              RTP Payload Format for MIDI          November 2006


  Note that C-active semantics appear in the preceding paragraphs
  because [RP015] specifies that pending Parameter System transactions
  are closed by a Control Change command for controller number 121
  (Reset All Controllers).

A.4.1.  Log Inclusion Rules

  Parameter logs code recovery information for a specific RPN or NRPN
  parameter.

  A parameter log MUST appear in the list if an active Control Change
  command that forms a part of an initiated transaction for the
  parameter appears in the checkpoint history.

  An exception to this rule applies if the checkpoint history only
  contains transaction Control Change commands for controller numbers
  98-101 that act to terminate the transaction.  In this case, a log
  for the parameter MAY be omitted from the list.

  A log MAY appear in the list if an active Control Change command that
  forms a part of an initiated transaction for the parameter appears in
  the session history.  Otherwise, a log for the parameter MUST NOT
  appear in the list.

  Multiple logs for the same RPN or NRPN parameter MUST NOT appear in
  the log list.

  The parameter log list MUST obey the oldest-first ordering rule
  (defined in Appendix A.1), with the phrase "parameter transaction"
  replacing the word "command" in the rule definition.

  Parameter logs associated with the RPN or NRPN null parameter (LSB =
  0x7F, MSB = 0x7F) MUST NOT appear in the log list.  Chapter M uses
  the E header bit (Figure A.4.1) and the log list ordering rules to
  code null parameter semantics.

  Note that "active" semantics (rather than "C-active" semantics)
  appear in the preceding paragraphs because [RP015] specifies that
  pending Parameter System transactions are not reset by a Control
  Change command for controller number 121 (Reset All Controllers).
  However, the rule that follows uses C-active semantics, because it
  concerns the protection of the transaction system itself, and [RP015]
  specifies that Reset All Controllers acts to close a transaction in
  progress.







Lazzaro & Wawrzynek         Standards Track                    [Page 64]

RFC 4695              RTP Payload Format for MIDI          November 2006


  In most cases, parameter logs for RPN and NRPN parameters that are
  assigned to the ch_never parameter (Appendix C.2.3) MAY be omitted
  from the list.  An exception applies if

    o  the log codes the most recent initiated transaction in the
       session history, and

    o  a C-active command that forms a part of the transaction appears
       in the checkpoint history, and

    o  the E header bit for the top-level Chapter M header (Figure
       A.4.1) is set to 1.

  In this case, a log for the parameter MUST appear in the list.  This
  log informs receivers recovering from a loss that a transaction is in
  progress, so that the receiver is able to correctly interpret RPN or
  NRPN Control Change commands that follow the loss event.

A.4.2.  Log Coding Rules

  Figure A.4.2 shows the parameter log structure of Chapter M.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 8 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |S|  PNUM-LSB   |Q|  PNUM-MSB   |J|K|L|M|N|T|V|R|   Fields ...  |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                     Figure A.4.2 -- Parameter log format

  The log begins with a header, whose default size (as shown in Figure
  A.4.2) is 3 octets.  If the Q header bit is set to 0, the log encodes
  an RPN parameter.  If Q = 1, the log encodes an NRPN parameter.  The
  7-bit PNUM-MSB and PNUM-LSB fields code the parameter number and
  reflect the Control Change command data values for controllers 99 and
  98 (for NRPNs) or 101 and 100 (for RPNs).

  The J, K, L, M, and N header bits form a Table of Contents (TOC) for
  the log and signal the presence of fixed-sized fields that follow the
  header.  A header bit that is set to 1 codes the presence of a field
  in the log.  The ordering of fields in the log follows the ordering
  of the header bits in the TOC.  Appendices A.4.2.1-2 define the
  fields associated with each TOC header bit.

  The T and V header bits code information about the parameter log but
  are not part of the TOC.  A set T or V bit does not signal the
  presence of any parameter log field.




Lazzaro & Wawrzynek         Standards Track                    [Page 65]

RFC 4695              RTP Payload Format for MIDI          November 2006


  If the rules in Appendix A.4.1 state that a log for a given parameter
  MUST appear in Chapter M, the log MUST code sufficient information to
  protect the parameter from the loss of active parameter transaction
  Control Change commands in the checkpoint history.

  This rule does not apply if the parameter coded by the log is
  assigned to the ch_never parameter (Appendix C.2.3).  In this case,
  senders MAY choose to set the J, K, L, M, and N TOC bits to 0, coding
  a parameter log with no fields.

  Note that logs to protect parameters that are assigned to ch_never
  are REQUIRED under certain conditions (see Appendix A.4.1).  The
  purpose of the log is to inform receivers recovering from a loss that
  a transaction is in progress, so that the receiver is able to
  correctly interpret RPN or NRPN Control Change commands that follow
  the loss event.

  Parameter logs provide two tools for parameter protection: the value
  tool and the count tool.  Depending on the semantics of the
  parameter, senders may use either tool, both tools, or neither tool
  to protect a given parameter.

  The value tool codes information a receiver may use to determine the
  current value of an RPN or NRPN parameter.  If a parameter log uses
  the value tool, the V header bit MUST be set to 1, and the semantics
  defined in Appendices A.4.2.1 for setting the J, K, L, and M TOC bits
  MUST be followed.  If a parameter log does not use the value tool,
  the V bit MUST be set to 0, and the J, K, L, and M TOC bits MUST also
  be set to 0.

  The count tool codes the number of transactions for an RPN or NRPN
  parameter.  If a parameter log uses the count tool, the T header bit
  MUST be set to 1, and the semantics defined in Appendices A.4.2.2 for
  setting the N TOC bit MUST be followed.  If a parameter log does not
  use the count tool, the T bit and the N TOC bit MUST be set to 0.

  Note that V and T are set if the sender uses value (V) or count (T)
  tool for the log on an ongoing basis.  Thus, V may be set even if J =
  K = L = M = 0, and T may be set even if N = 0.

  In many cases, all parameters coded in the log list are of one type
  (RPN and NRPN), and all parameter numbers lie in the range 0-127.  As
  described in Appendix A.4.1, senders MAY signal this condition by
  setting the top-level Chapter M header bit Z to 1 (to code the
  restricted range) and by setting the U or W bit to 1 (to code the
  parameter type).





Lazzaro & Wawrzynek         Standards Track                    [Page 66]

RFC 4695              RTP Payload Format for MIDI          November 2006


  If the top-level Chapter M header codes Z = 1 and either U = 1 or
  W = 1, all logs in the parameter log list MUST use a modified header
  format.  This modification deletes bits 8-15 of the bitfield shown in
  Figure A.4.2, to yield a 2-octet header.  The values of the deleted
  PNUM-MSB and Q fields may be inferred from the U, W, and Z bit
  values.

A.4.2.1.  The Value Tool

  The value tool uses several fields to track the value of an RPN or
  NRPN parameter.

  The J TOC bit codes the presence of the octet shown in Figure A.4.3
  in the field list.

                            0
                            0 1 2 3 4 5 6 7
                           +-+-+-+-+-+-+-+-+
                           |X|  ENTRY-MSB  |
                           +-+-+-+-+-+-+-+-+

                     Figure A.4.3 -- ENTRY-MSB field

  The 7-bit ENTRY-MSB field codes the data value of the most recent
  active Control Change command for controller number 6 (Data Entry
  MSB) in the session history that appears in a transaction for the log
  parameter.

  The X bit MUST be set to 1 if the command coded by ENTRY-MSB precedes
  the most recent Control Change command for controller 121 (Reset All
  Controllers) in the session history.  Otherwise, the X bit MUST be
  set to 0.

  A parameter log that uses the value tool MUST include the ENTRY-MSB
  field if an active Control Change command for controller number 6
  appears in the checkpoint history.

  Note that [RP015] specifies that Control Change commands for
  controller 121 (Reset All Controllers) do not reset RPN and NRPN
  values, and thus the X bit would not play a recovery role for MIDI
  systems that comply with [RP015].

  However, certain renderers (such as DLS 2 [DLS2]) specify that
  certain RPN values are reset for some uses of Reset All Controllers.
  The X bit (and other bitfield features of this nature in this
  appendix) plays a role in recovery for renderers of this type.





Lazzaro & Wawrzynek         Standards Track                    [Page 67]

RFC 4695              RTP Payload Format for MIDI          November 2006


  The K TOC bit codes the presence of the octet shown in Figure A.4.4
  in the field list.

                            0
                            0 1 2 3 4 5 6 7
                           +-+-+-+-+-+-+-+-+
                           |X|  ENTRY-LSB  |
                           +-+-+-+-+-+-+-+-+

                     Figure A.4.4 -- ENTRY-LSB field

  The 7-bit ENTRY-LSB field codes the data value of the most recent
  active Control Change command for controller number 38 (Data Entry
  LSB) in the session history that appears in a transaction for the log
  parameter.

  The X bit MUST be set to 1 if the command coded by ENTRY-LSB precedes
  the most recent Control Change command for controller 121 (Reset All
  Controllers) in the session history.  Otherwise, the X bit MUST be
  set to 0.

  As a rule, a parameter log that uses the value tool MUST include the
  ENTRY-LSB field if an active Control Change command for controller
  number 38 appears in the checkpoint history.  However, the ENTRY-LSB
  field MUST NOT appear in a parameter log if the Control Change
  command associated with the ENTRY-LSB precedes a Control Change
  command for controller number 6 (Data Entry MSB) that appears in a
  transaction for the log parameter in the session history.

  The L TOC bit codes the presence of the octets shown in Figure A.4.5
  in the field list.

                      0                   1
                      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
                     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                     |G|X|       A-BUTTON            |
                     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                      Figure A.4.5 -- A-BUTTON field

  The 14-bit A-BUTTON field codes a count of the number of active
  Control Change commands for controller numbers 96 and 97 (Data
  Increment and Data Decrement) in the session history that appear in a
  transaction for the log parameter.







Lazzaro & Wawrzynek         Standards Track                    [Page 68]

RFC 4695              RTP Payload Format for MIDI          November 2006


  The M TOC bit codes the presence of the octets shown in Figure A.4.6
  in the field list.

                      0                   1
                      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
                     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                     |G|R|       C-BUTTON            |
                     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                      Figure A.4.6 -- C-BUTTON field

  The 14-bit C-BUTTON field has semantics identical to A-BUTTON, except
  that Data Increment and Data Decrement Control Change commands that
  precede the most recent Control Change command for controller 121
  (Reset All Controllers) in the session history are not counted.

  For both A-BUTTON and C-BUTTON, Data Increment and Data Decrement
  Control Change commands are not counted if they precede Control
  Changes commands for controller numbers 6 (Data Entry MSB) or 38
  (Data Entry LSB) that appear in a transaction for the log parameter
  in the session history.

  The A-BUTTON and C-BUTTON fields are interpreted as unsigned
  integers, and the G bit associated the field codes the sign of the
  integer (G = 0 for positive or zero, G = 1 for negative).

  To compute and code the count value, initialize the count value to 0,
  add 1 for each qualifying Data Increment command, and subtract 1 for
  each qualifying Data Decrement command.  After each add or subtract,
  limit the count magnitude to 16383.  The G bit codes the sign of the
  count, and the A-BUTTON or C-BUTTON field codes the count magnitude.

  For the A-BUTTON field, if the most recent qualified Data Increment
  or Data Decrement command precedes the most recent Control Change
  command for controller 121 (Reset All Controllers) in the session
  history, the X bit associated with A-BUTTON field MUST be set to 1.
  Otherwise, the X bit MUST be set to 0.

  A parameter log that uses the value tool MUST include the A-BUTTON
  and C-BUTTON fields if an active Control Change command for
  controller numbers 96 or 97 appears in the checkpoint history.
  However, to improve coding efficiency, this rule has several
  exceptions:

    o  If the log includes the A-BUTTON field, and if the X bit of the
       A-BUTTON field is set to 1, the C-BUTTON field (and its
       associated R and G bits) MAY be omitted from the log.




Lazzaro & Wawrzynek         Standards Track                    [Page 69]

RFC 4695              RTP Payload Format for MIDI          November 2006


    o  If the log includes the A-BUTTON field, and if the A-BUTTON and
       C-BUTTON fields (and their associated G bits) code identical
       values, the C-BUTTON field (and its associated R and G bits) MAY
       be omitted from the log.

A.4.2.2.  The Count Tool

  The count tool tracks the number of transactions for an RPN or NRPN
  parameter.  The N TOC bit codes the presence of the octet shown in
  Figure A.4.7 in the field list.

                         0
                         0 1 2 3 4 5 6 7
                        +-+-+-+-+-+-+-+-+
                        |X|    COUNT    |
                        +-+-+-+-+-+-+-+-+

                    Figure A.4.7 -- COUNT field

  The 7-bit COUNT codes the number of initiated transactions for the
  log parameter that appear in the session history.  Initiated
  transactions are counted if they contain one or more active Control
  Change commands, including commands for controllers 98-101 that
  initiate the parameter transaction.

  If the most recent counted transaction precedes the most recent
  Control Change command for controller 121 (Reset All Controllers) in
  the session history, the X bit associated with the COUNT field MUST
  be set to 1.  Otherwise, the X bit MUST be set to 0.

  Transaction counting is performed modulo 128.  The transaction count
  is set to 0 at the start of a session and is reset to 0 whenever a
  Reset State command (Appendix A.1) appears in the session history.

  A parameter log that uses the count tool MUST include the COUNT field
  if an active command that increments the transaction count (modulo
  128) appears in the checkpoint history.














Lazzaro & Wawrzynek         Standards Track                    [Page 70]

RFC 4695              RTP Payload Format for MIDI          November 2006


A.5.  Chapter W: MIDI Pitch Wheel

  A channel journal MUST contain Chapter W if a C-active MIDI Pitch
  Wheel (0xE) command appears in the checkpoint history.  Figure A.5.1
  shows the format for Chapter W.

                      0                   1
                      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
                     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                     |S|     FIRST   |R|    SECOND   |
                     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                     Figure A.5.1 -- Chapter W format

  The chapter has a fixed size of 16 bits.  The FIRST and SECOND fields
  are the 7-bit values of the first and second data octets of the most
  recent active Pitch Wheel command in the session history.

  Note that Chapter W encodes C-active commands and thus does not
  encode active commands that are not C-active (see the second-to-last
  paragraph of Appendix A.1 for an explanation of chapter inclusion
  text in this regard).

  Chapter W does not encode "active but not C-active" commands because
  [RP015] declares that Control Change commands for controller number
  121 (Reset All Controllers) act to reset the Pitch Wheel value to 0.
  If Chapter W encoded "active but not C-active" commands, a repair
  operation following a Reset All Controllers command could incorrectly
  repair the stream with a stale Pitch Wheel value.

A.6.  Chapter N: MIDI NoteOff and NoteOn

  In this appendix, we consider NoteOn commands with zero velocity to
  be NoteOff commands.  Readers may wish to review the Appendix A.1
  definition of "N-active commands" before reading this appendix.

  Chapter N completely protects note commands in streams that alternate
  between NoteOn and NoteOff commands for a particular note number.
  However, in rare applications, multiple overlapping NoteOn commands
  may appear for a note number.  Chapter E, described in Appendix A.7,
  augments Chapter N to completely protect these streams.

  A channel journal MUST contain Chapter N if an N-active MIDI NoteOn
  (0x9) or NoteOff (0x8) command appears in the checkpoint history.
  Figure A.6.1 shows the format for Chapter N.






Lazzaro & Wawrzynek         Standards Track                    [Page 71]

RFC 4695              RTP Payload Format for MIDI          November 2006


      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 8 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |B|     LEN     |  LOW  | HIGH  |S|   NOTENUM   |Y|  VELOCITY   |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |S|   NOTENUM   |Y|  VELOCITY   |             ....              |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |    OFFBITS    |    OFFBITS    |     ....      |    OFFBITS    |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                     Figure A.6.1 -- Chapter N format

  Chapter N consists of a 2-octet header, followed by at least one of
  the following data structures:

     o A list of note logs to code NoteOn commands.
     o A NoteOff bitfield structure to code NoteOff commands.

  We define the header bitfield semantics in Appendix A.6.1.  We define
  the note log semantics and the NoteOff bitfield semantics in Appendix
  A.6.2.

  If one or more N-active NoteOn or NoteOff commands in the checkpoint
  history reference a note number, the note number MUST be coded in
  either the note log list or the NoteOff bitfield structure.

  The note log list MUST contain an entry for all note numbers whose
  most recent checkpoint history appearance is in an N-active NoteOn
  command.  The NoteOff bitfield structure MUST contain a set bit for
  all note numbers whose most recent checkpoint history appearance is
  in an N-active NoteOff command.

  A note number MUST NOT be coded in both structures.

  All note logs and NoteOff bitfield set bits MUST code the most recent
  N-active NoteOn or NoteOff reference to a note number in the session
  history.

  The note log list MUST obey the oldest-first ordering rule (defined
  in Appendix A.1).











Lazzaro & Wawrzynek         Standards Track                    [Page 72]

RFC 4695              RTP Payload Format for MIDI          November 2006


A.6.1.  Header Structure

  The header for Chapter N, shown in Figure A.6.2, codes the size of
  the note list and bitfield structures.

                      0                   1
                      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
                     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                     |B|     LEN     |  LOW  | HIGH  |
                     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                     Figure A.6.2 -- Chapter N header

  The LEN field, a 7-bit integer value, codes the number of 2-octet
  note logs in the note list.  Zero is a valid value for LEN and codes
  an empty note list.

  The 4-bit LOW and HIGH fields code the number of OFFBITS octets that
  follow the note log list.  LOW and HIGH are unsigned integer values.
  If LOW <= HIGH, there are (HIGH - LOW + 1) OFFBITS octets in the
  chapter.  The value pairs (LOW = 15, HIGH = 0) and (LOW = 15, HIGH =
  1) code an empty NoteOff bitfield structure (i.e., no OFFBITS
  octets).  Other (LOW > HIGH) value pairs MUST NOT appear in the
  header.

  The B bit provides S-bit functionality (Appendix A.1) for the NoteOff
  bitfield structure.  By default, the B bit MUST be set to 1.
  However, if the MIDI command section of the previous packet (packet I
  - 1, with I as defined in Appendix A.1) includes a NoteOff command
  for the channel, the B bit MUST be set to 0.  If the B bit is set to
  0, the higher-level recovery journal elements that contain Chapter N
  MUST have S bits that are set to 0, including the top-level journal
  header.

  The LEN value of 127 codes a note list length of 127 or 128 note
  logs, depending on the values of LOW and HIGH.  If LEN = 127, LOW =
  15, and HIGH = 0, the note list holds 128 note logs, and the NoteOff
  bitfield structure is empty.  For other values of LOW and HIGH, LEN =
  127 codes that the note list contains 127 note logs.  In this case,
  the chapter has (HIGH - LOW + 1) NoteOff OFFBITS octets if LOW <=
  HIGH and has no OFFBITS octets if LOW = 15 and HIGH = 1.










Lazzaro & Wawrzynek         Standards Track                    [Page 73]

RFC 4695              RTP Payload Format for MIDI          November 2006


A.6.2.  Note Structures

  Figure A.6.3 shows the 2-octet note log structure.

                      0                   1
                      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
                     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                     |S|   NOTENUM   |Y|  VELOCITY   |
                     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                    Figure A.6.3 -- Chapter N note log

  The 7-bit NOTENUM field codes the note number for the log.  A note
  number MUST NOT be represented by multiple note logs in the note
  list.

  The 7-bit VELOCITY field codes the velocity value for the most recent
  N-active NoteOn command for the note number in the session history.
  Multiple overlapping NoteOns for a given note number may be coded
  using Chapter E, as discussed in Appendix A.7.

  VELOCITY is never zero; NoteOn commands with zero velocity are coded
  as NoteOff commands in the NoteOff bitfield structure.

  The note log does not code the execution time of the NoteOn command.
  However, the Y bit codes a hint from the sender about the NoteOn
  execution time.  The Y bit codes a recommendation to play (Y = 1) or
  skip (Y = 0) the NoteOn command recovered from the note log.  See
  Section 4.2 of [RFC4696] for non-normative guidance on the use of the
  Y bit.

  Figure A.6.1 shows the NoteOff bitfield structure, as the list of
  OFFBITS octets at the end of the chapter.  A NoteOff OFFBITS octet
  codes NoteOff information for eight consecutive MIDI note numbers,
  with the most-significant bit representing the lowest note number.
  The most-significant bit of the first OFFBITS octet codes the note
  number 8*LOW; the most-significant bit of the last OFFBITS octet
  codes the note number 8*HIGH.

  A set bit codes a NoteOff command for the note number.  In the most
  efficient coding for the NoteOff bitfield structure, the first and
  last octets of the structure contain at least one set bit.  Note that
  Chapter N does not code NoteOff velocity data.

  Note that in the general case, the recovery journal does not code the
  relative placement of a NoteOff command and a Change Control command
  for controller 64 (Damper Pedal (Sustain)).  In many cases, a
  receiver processing a loss event may deduce this relative placement



Lazzaro & Wawrzynek         Standards Track                    [Page 74]

RFC 4695              RTP Payload Format for MIDI          November 2006


  from the history of the stream and thus determine if a NoteOff note
  is sustained by the pedal.  If such a determination is not possible,
  receivers SHOULD err on the side of silencing pedal sustains, as
  erroneously sustained notes may produce unpleasant (albeit transient)
  artifacts.

A.7.  Chapter E: MIDI Note Command Extras

  Readers may wish to review the Appendix A.1 definition of "N-active
  commands" before reading this appendix.  In this appendix, a NoteOn
  command with a velocity of 0 is considered to be a NoteOff command
  with a release velocity value of 64.

  Chapter E encodes recovery information about MIDI NoteOn (0x9) and
  NoteOff (0x8) command features that rarely appear in MIDI streams.
  Receivers use Chapter E to reduce transient artifacts for streams
  where several NoteOn commands appear for a note number without an
  intervening NoteOff.  Receivers also use Chapter E to reduce
  transient artifacts for streams that use NoteOff release velocity.
  Chapter E supplements the note information coded in Chapter N
  (Appendix A.6).

  Figure A.7.1 shows the format for Chapter E.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 8 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |S|     LEN     |S|   NOTENUM   |V|  COUNT/VEL  |S|  NOTENUM    |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |V|  COUNT/VEL  |  ....                                         |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                      Figure A.7.1 -- Chapter E format

  The chapter consists of a 1-octet header, followed by a variable-
  length list of 2-octet note logs.  Appendix A.7.1 defines the
  bitfield format for a note log.

  The log list MUST contain at least one note log.  The 7-bit LEN
  header field codes the number of note logs in the list, minus one.  A
  channel journal MUST contain Chapter E if the rules defined in this
  appendix require that one or more note logs appear in the list.  The
  note log list MUST obey the oldest-first ordering rule (defined in
  Appendix A.1).







Lazzaro & Wawrzynek         Standards Track                    [Page 75]

RFC 4695              RTP Payload Format for MIDI          November 2006


A.7.1.  Note Log Format

  Figure A.7.2 reproduces the note log structure of Chapter E.

                      0                   1
                      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
                     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                     |S|   NOTENUM   |V|  COUNT/VEL  |
                     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                     Figure A.7.2 -- Chapter E note log

  A note log codes information about the MIDI note number coded by the
  7-bit NOTENUM field.  The nature of the information depends on the
  value of the V flag bit.

  If the V bit is set to 1, the COUNT/VEL field codes the release
  velocity value for the most recent N-active NoteOff command for the
  note number that appears in the session history.

  If the V bit is set to 0, the COUNT/VEL field codes a reference count
  of the number of NoteOn and NoteOff commands for the note number that
  appear in the session history.

  The reference count is set to 0 at the start of the session.  NoteOn
  commands increment the count by 1.  NoteOff commands decrement the
  count by 1.  However, a decrement that generates a negative count
  value is not performed.

  If the reference count is in the range 0-126, the 7-bit COUNT/VEL
  field codes an unsigned integer representation of the count.  If the
  count is greater than or equal to 127, COUNT/VEL is set to 127.

  By default, the count is reset to 0 whenever a Reset State command
  (Appendix A.1) appears in the session history, and whenever MIDI
  Control Change commands for controller numbers 123-127 (numbers with
  All Notes Off semantics) or 120 (All Sound Off) appear in the session
  history.

A.7.2.  Log Inclusion Rules

  If the most recent N-active NoteOn or NoteOff command for a note
  number in the checkpoint history is a NoteOff command with a release
  velocity value other than 64, a note log whose V bit is set to 1 MUST
  appear in Chapter E for the note number.

  If the most recent N-active NoteOn or NoteOff command for a note
  number in the checkpoint history is a NoteOff command, and if the



Lazzaro & Wawrzynek         Standards Track                    [Page 76]

RFC 4695              RTP Payload Format for MIDI          November 2006


  reference count for the note number is greater than 0, a note log
  whose V bit is set to 0 MUST appear in Chapter E for the note number.

  If the most recent N-active NoteOn or NoteOff command for a note
  number in the checkpoint history is a NoteOn command, and if the
  reference count for the note number is greater than 1, a note log
  whose V bit is set to 0 MUST appear in Chapter E for the note number.

  At most, two note logs MAY appear in Chapter E for a note number: one
  log whose V bit is set to 0, and one log whose V bit is set to 1.

  Chapter E codes a maximum of 128 note logs.  If the log inclusion
  rules yield more than 128 REQUIRED logs, note logs whose V bit is set
  to 1 MUST be dropped from Chapter E in order to reach the 128-log
  limit.  Note logs whose V bit is set to 0 MUST NOT be dropped.

  Most MIDI streams do not use NoteOn and NoteOff commands in ways that
  would trigger the log inclusion rules.  For these streams, Chapter E
  would never be REQUIRED to appear in a channel journal.

  The ch_never parameter (Appendix C.2.3) may be used to configure the
  log inclusion rules for Chapter E.

A.8.  Chapter T: MIDI Channel Aftertouch

  A channel journal MUST contain Chapter T if an N-active and C-active
  MIDI Channel Aftertouch (0xD) command appears in the checkpoint
  history.  Figure A.8.1 shows the format for Chapter T.

                            0
                            0 1 2 3 4 5 6 7
                           +-+-+-+-+-+-+-+-+
                           |S|   PRESSURE  |
                           +-+-+-+-+-+-+-+-+

                     Figure A.8.1 -- Chapter T format

  The chapter has a fixed size of 8 bits.  The 7-bit PRESSURE field
  holds the pressure value of the most recent N-active and C-active
  Channel Aftertouch command in the session history.

  Chapter T only encodes commands that are C-active and N-active.  We
  define a C-active restriction because [RP015] declares that a Control
  Change command for controller 121 (Reset All Controllers) acts to
  reset the channel pressure to 0 (see the discussion at the end of
  Appendix A.5 for a more complete rationale).





Lazzaro & Wawrzynek         Standards Track                    [Page 77]

RFC 4695              RTP Payload Format for MIDI          November 2006


  We define an N-active restriction on the assumption that aftertouch
  commands are linked to note activity, and thus Channel Aftertouch
  commands that are not N-active are stale and should not be used to
  repair a stream.

A.9.  Chapter A: MIDI Poly Aftertouch

  A channel journal MUST contain Chapter A if a C-active Poly
  Aftertouch (0xA) command appears in the checkpoint history.  Figure
  A.9.1 shows the format for Chapter A.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 8 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |S|    LEN      |S|   NOTENUM   |X|  PRESSURE   |S|   NOTENUM   |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |X|  PRESSURE   |  ....                                         |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                      Figure A.9.1 -- Chapter A format

  The chapter consists of a 1-octet header, followed by a variable-
  length list of 2-octet note logs.  A note log MUST appear for a note
  number if a C-active Poly Aftertouch command for the note number
  appears in the checkpoint history.  A note number MUST NOT be
  represented by multiple note logs in the note list.  The note log
  list MUST obey the oldest-first ordering rule (defined in Appendix
  A.1).

  The 7-bit LEN field codes the number of note logs in the list, minus
  one.  Figure A.9.2 reproduces the note log structure of Chapter A.

                      0                   1
                      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
                     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                     |S|   NOTENUM   |X|  PRESSURE   |
                     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                     Figure A.9.2 -- Chapter A note log

  The 7-bit PRESSURE field codes the pressure value of the most recent
  C-active Poly Aftertouch command in the session history for the MIDI
  note number coded in the 7-bit NOTENUM field.

  As a rule, the X bit MUST be set to 0.  However, the X bit MUST be
  set to 1 if the command coded by the log appears before one of the
  following commands in the session history: MIDI Control Change




Lazzaro & Wawrzynek         Standards Track                    [Page 78]

RFC 4695              RTP Payload Format for MIDI          November 2006


  numbers 123-127 (numbers with All Notes Off semantics) or 120 (All
  Sound Off).

  We define C-active restrictions for Chapter A because [RP015]
  declares that a Control Change command for controller 121 (Reset All
  Controllers) acts to reset the polyphonic pressure to 0 (see the
  discussion at the end of Appendix A.5 for a more complete rationale).

B.  The Recovery Journal System Chapters

B.1.  System Chapter D: Simple System Commands

  The system journal MUST contain Chapter D if an active MIDI Reset
  (0xFF), MIDI Tune Request (0xF6), MIDI Song Select (0xF3), undefined
  MIDI System Common (0xF4 and 0xF5), or undefined MIDI System Real-
  time (0xF9 and 0xFD) command appears in the checkpoint history.

  Figure B.1.1 shows the variable-length format for Chapter D.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |S|B|G|H|J|K|Y|Z|  Command logs ...                             |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                 Figure B.1.1 -- System Chapter D format

  The chapter consists of a 1-octet header, followed by one or more
  command logs.  Header flag bits indicate the presence of command logs
  for the Reset (B = 1), Tune Request (G = 1), Song Select (H = 1),
  undefined System Common 0xF4 (J = 1), undefined System Common 0xF5 (K
  = 1), undefined System Real-time 0xF9 (Y = 1), or undefined System
  Real-time 0xFD (Z = 1) commands.

  Command logs appear in a list following the header, in the order that
  the flag bits appear in the header.

  Figure B.1.2 shows the 1-octet command log format for the Reset and
  Tune Request commands.

                           0
                           0 1 2 3 4 5 6 7
                          +-+-+-+-+-+-+-+-+
                          |S|    COUNT    |
                          +-+-+-+-+-+-+-+-+

            Figure B.1.2 -- Command log for Reset and Tune Request




Lazzaro & Wawrzynek         Standards Track                    [Page 79]

RFC 4695              RTP Payload Format for MIDI          November 2006


  Chapter D MUST contain the Reset command log if an active Reset
  command appears in the checkpoint history.  The 7-bit COUNT field
  codes the total number of Reset commands (modulo 128) present in the
  session history.

  Chapter D MUST contain the Tune Request command log if an active Tune
  Request command appears in the checkpoint history.  The 7-bit COUNT
  field codes the total number of Tune Request commands (modulo 128)
  present in the session history.

  For these commands, the COUNT field acts as a reference count.  See
  the definition of "session history reference counts" in Appendix A.1
  for more information.

  Figure B.1.3 shows the 1-octet command log format for the Song Select
  command.

                              0
                              0 1 2 3 4 5 6 7
                             +-+-+-+-+-+-+-+-+
                             |S|    VALUE    |
                             +-+-+-+-+-+-+-+-+

                Figure B.1.3 -- Song Select command log format

  Chapter D MUST contain the Song Select command log if an active Song
  Select command appears in the checkpoint history.  The 7-bit VALUE
  field codes the song number of the most recent active Song Select
  command in the session history.

B.1.1.  Undefined System Commands

  In this section, we define the Chapter D command logs for the
  undefined System commands.  [MIDI] reserves the undefined System
  commands 0xF4, 0xF5, 0xF9, and 0xFD for future use.  At the time of
  this writing, any MIDI command stream that uses these commands is
  non-compliant with [MIDI].  However, future versions of [MIDI] may
  define these commands, and a few products do use these commands in a
  non-compliant manner.












Lazzaro & Wawrzynek         Standards Track                    [Page 80]

RFC 4695              RTP Payload Format for MIDI          November 2006


  Figure B.1.4 shows the variable-length command log format for the
  undefined System Common commands (0xF4 and 0xF5).

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |S|C|V|L|DSZ|      LENGTH       |    COUNT      |  VALUE ...    |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  LEGAL ...                                                    |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

         Figure B.1.4 -- Undefined System Common command log format

  The command log codes a single command type (0xF4 or 0xF5, not both).
  Chapter D MUST contain a command log if an active 0xF4 command
  appears in the checkpoint history and MUST contain an independent
  command log if an active 0xF5 command appears in the checkpoint
  history.

  Chapter D consists of a two-octet header followed by a variable
  number of data fields.  Header flag bits indicate the presence of the
  COUNT field (C = 1), the VALUE field (V = 1), and the LEGAL field (L
  = 1).  The 10-bit LENGTH field codes the size of the command log and
  conforms to semantics described in Appendix A.1.

  The 2-bit DSZ field codes the number of data octets in the command
  instance that appears most recently in the session history.  If DSZ =
  0-2, the command has 0-2 data octets.  If DSZ = 3, the command has 3
  or more command data octets.

  We now define the default rules for the use of the COUNT, VALUE, and
  LEGAL fields.  The session configuration tools defined in Appendix
  C.2.3 may be used to override this behavior.

  By default, if the DSZ field is set to 0, the command log MUST
  include the COUNT field.  The 8-bit COUNT field codes the total
  number of commands of the type coded by the log (0xF4 or 0xF5)
  present in the session history, modulo 256.

  By default, if the DSZ field is set to 1-3, the command log MUST
  include the VALUE field.  The variable-length VALUE field codes a
  verbatim copy the data octets for the most recent use of the command
  type coded by the log (0xF4 or 0xF5) in the session history.  The
  most-significant bit of the final data octet MUST be set to 1, and
  the most-significant bit of all other data octets MUST be set to 0.






Lazzaro & Wawrzynek         Standards Track                    [Page 81]

RFC 4695              RTP Payload Format for MIDI          November 2006


  The LEGAL field is reserved for future use.  If an update to [MIDI]
  defines the 0xF4 or 0xF5 command, an IETF standards-track document
  may define the LEGAL field.  Until such a document appears, senders
  MUST NOT use the LEGAL field, and receivers MUST use the LENGTH field
  to skip over the LEGAL field.  The LEGAL field would be defined by
  the IETF if the semantics of the new 0xF4 or 0xF5 command could not
  be protected from packet loss via the use of the COUNT and VALUE
  fields.

  Figure B.1.5 shows the variable-length command log format for the
  undefined System Real-time commands (0xF9 and 0xFD).

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |S|C|L| LENGTH  |     COUNT     |  LEGAL ...                    |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

       Figure B.1.5 -- Undefined System Real-time command log format

  The command log codes a single command type (0xF9 or 0xFD, not both).
  Chapter D MUST contain a command log if an active 0xF9 command
  appears in the checkpoint history and MUST contain an independent
  command log if an active 0xFD command appears in the checkpoint
  history.

  Chapter D consists of a one-octet header followed by a variable
  number of data fields.  Header flag bits indicate the presence of the
  COUNT field (C = 1) and the LEGAL field (L = 1).  The 5-bit LENGTH
  field codes the size of the command log and conforms to semantics
  described in Appendix A.1.

  We now define the default rules for the use of the COUNT and LEGAL
  fields.  The session configuration tools defined in Appendix C.2.3
  may be used to override this behavior.

  The 8-bit COUNT field codes the total number of commands of the type
  coded by the log present in the session history, modulo 256.  By
  default, the COUNT field MUST be present in the command log.

  The LEGAL field is reserved for future use.  If an update to [MIDI]
  defines the 0xF9 or 0xFD command, an IETF standards-track document
  may define the LEGAL field to protect the command.  Until such a
  document appears, senders MUST NOT use the LEGAL field, and receivers
  MUST use the LENGTH field to skip over the LEGAL field.  The LEGAL
  field would be defined by the IETF if the semantics of the new 0xF9
  or 0xFD command could not be protected from packet loss via the use
  of the COUNT field.



Lazzaro & Wawrzynek         Standards Track                    [Page 82]

RFC 4695              RTP Payload Format for MIDI          November 2006


  Finally, we note that some non-standard uses of the undefined System
  Real-time commands act to implement non-compliant variants of the
  MIDI sequencer system.  In Appendix B.3.1, we describe resiliency
  tools for the MIDI sequencer system that provide some protection in
  this case.

B.2.  System Chapter V: Active Sense Command

  The system journal MUST contain Chapter V if an active MIDI Active
  Sense (0xFE) command appears in the checkpoint history.  Figure B.2.1
  shows the format for Chapter V.

                              0
                              0 1 2 3 4 5 6 7
                             +-+-+-+-+-+-+-+-+
                             |S|    COUNT    |
                             +-+-+-+-+-+-+-+-+

                    Figure B.2.1 -- System Chapter V format

  The 7-bit COUNT field codes the total number of Active Sense commands
  (modulo 128) present in the session history.  The COUNT field acts as
  a reference count.  See the definition of "session history reference
  counts" in Appendix A.1 for more information.

B.3.  System Chapter Q: Sequencer State Commands

  This appendix describes Chapter Q, the system chapter for the MIDI
  sequencer commands.

  The system journal MUST contain Chapter Q if an active MIDI Song
  Position Pointer (0xF2), MIDI Clock (0xF8), MIDI Start (0xFA), MIDI
  Continue (0xFB), or MIDI Stop (0xFC) command appears in the
  checkpoint history, and if the rules defined in this appendix require
  a change in the Chapter Q bitfield contents because of the command
  appearance.

  Figure B.3.1 shows the variable-length format for Chapter Q.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |S|N|D|C|T| TOP |            CLOCK              | TIMETOOLS ... |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |              ...              |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                   Figure B.3.1 -- System Chapter Q format



Lazzaro & Wawrzynek         Standards Track                    [Page 83]

RFC 4695              RTP Payload Format for MIDI          November 2006


  Chapter Q consists of a 1-octet header followed by several optional
  fields, in the order shown in Figure B.3.1.

  Header flag bits signal the presence of the 16-bit CLOCK field (C =
  1) and the 24-bit TIMETOOLS field (T = 1).  The 3-bit TOP header
  field is interpreted as an unsigned integer, as are CLOCK and
  TIMETOOLS.  We describe the TIMETOOLS field in Appendix B.3.1.

  Chapter Q encodes the most recent state of the sequencer system.
  Receivers use the chapter to re-synchronize the sequencer after a
  packet loss episode.  Chapter fields encode the on/off state of the
  sequencer, the current position in the song, and the downbeat.

  The N header bit encodes the relative occurrence of the Start, Stop,
  and Continue commands in the session history.  If an active Start or
  Continue command appears most recently, the N bit MUST be set to 1.
  If an active Stop appears most recently, or if no active Start, Stop,
  or Continue commands appear in the session history, the N bit MUST be
  set to 0.

  The C header flag, the TOP header field, and the CLOCK field act to
  code the current position in the sequence:

    o  If C = 1, the 3-bit TOP header field and the 16-bit CLOCK field
       are combined to form the 19-bit unsigned quantity 65536*TOP +
       CLOCK.  This value encodes the song position in units of MIDI
       Clocks (24 clocks per quarter note), modulo 524288.  Note that
       the maximum song position value that may be coded by the Song
       Position Pointer command is 98303 clocks (which may be coded
       with 17 bits), and that MIDI-coded songs are generally
       constructed to avoid durations longer than this value.  However,
       the 19-bit size may be useful for real-time applications, such
       as a drum machine MIDI output that is sending clock commands for
       long periods of time.

    o  If C = 0, the song position is the start of the song.  The C = 0
       position is identical to the position coded by C = 1, TOP = 0,
       and CLOCK = 0, for the case where the song position is less than
       524288 MIDI clocks.  In certain situations (defined later in
       this section), normative text may require the C = 0 or the C =
       1, TOP = 0, CLOCK = 0 encoding of the start of the song.

  The C, TOP, and CLOCK fields MUST be set to code the current song
  position, for both N = 0 and N = 1 conditions.  If C = 0, the TOP
  field MUST be set to 0.  See [MIDI] for a precise definition of a
  song position.





Lazzaro & Wawrzynek         Standards Track                    [Page 84]

RFC 4695              RTP Payload Format for MIDI          November 2006


  The D header bit encodes information about the downbeat and acts to
  qualify the song position coded by the C, TOP, and CLOCK fields.

  If the D bit is set to 1, the song position represents the most
  recent position in the sequence that has played.  If D = 1, the next
  Clock command (if N = 1) or the next (Continue, Clock) pair (if
  N = 0) acts to increment the song position by one clock, and to play
  the updated position.

  If the D bit is set to 0, the song position represents a position in
  the sequence that has not yet been played.  If D = 0, the next Clock
  command (if N = 1) or the next (Continue, Clock) pair (if N = 0) acts
  to play the point in the song coded by the song position.  The song
  position is not incremented.

  An example of a stream that uses D = 0 coding is one whose most
  recent sequence command is a Start or Song Position Pointer command
  (both N = 1 conditions).  However, it is also possible to construct
  examples where D = 0 and N = 0.  A Start command immediately followed
  by a Stop command is coded in Chapter Q by setting C = 0, D = 0,
  N = 0, TOP = 0.

  If N = 1 (coding Start or Continue), D = 0 (coding that the downbeat
  has yet to be played), and the song position is at the start of the
  song, the C = 0 song position encoding MUST be used if a Start
  command occurs more recently than a Continue command in the session
  history, and the C = 1, TOP = 0, CLOCK = 0 song position encoding
  MUST be used if a Continue command occurs more recently than a Start
  command in the session history.

B.3.1.  Non-compliant Sequencers

  The Chapter Q description in this appendix assumes that the sequencer
  system counts off time with Clock commands, as mandated in [MIDI].
  However, a few non-compliant products do not use Clock commands to
  count off time, but instead use non-standard methods.

  Chapter Q uses the TIMETOOLS field to provide resiliency support for
  these non-standard products.  By default, the TIMETOOLS field MUST
  NOT appear in Chapter Q, and the T header bit MUST be set to 0.  The
  session configuration tools described in Appendix C.2.3 may be used
  to select TIMETOOLS coding.









Lazzaro & Wawrzynek         Standards Track                    [Page 85]

RFC 4695              RTP Payload Format for MIDI          November 2006


  Figure B.3.2 shows the format of the 24-bit TIMETOOLS field.

               0                   1                   2
               0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3
              +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
              |                   TIME                        |
              +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                      Figure B.3.2 -- TIMETOOLS format

  The TIME field is a 24-bit unsigned integer quantity, with units of
  milliseconds.  TIME codes an additive correction term for the song
  position coded by the TOP, CLOCK, and C fields.  TIME is coded in
  network byte order (big-endian).

  A receiver computes the correct song position by converting TIME into
  units of MIDI clocks and adding it to 65536*TOP + CLOCK (assuming
  C = 1).  Alternatively, a receiver may convert 65536*TOP + CLOCK into
  milliseconds (assuming C = 1) and add it to TIME.  The downbeat (D
  header bit) semantics defined in Appendix B.3 apply to the corrected
  song position.

B.4.  System Chapter F: MIDI Time Code Tape Position

  This appendix describes Chapter F, the system chapter for the MIDI
  Time Code (MTC) commands.  Readers may wish to review the Appendix
  A.1 definition of "finished/unfinished commands" before reading this
  appendix.

  The system journal MUST contain Chapter F if an active System Common
  Quarter Frame command (0xF1) or an active finished System Exclusive
  (Universal Real Time) MTC Full Frame command (F0 7F cc 01 01 hr mn sc
  fr F7) appears in the checkpoint history.  Otherwise, the system
  journal MUST NOT contain Chapter F.

  Figure B.4.1 shows the variable-length format for Chapter F.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |S|C|P|Q|D|POINT|  COMPLETE ...                                 |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |     ...       |  PARTIAL  ...                                 |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |     ...       |
     +-+-+-+-+-+-+-+-+

                   Figure B.4.1 -- System Chapter F format



Lazzaro & Wawrzynek         Standards Track                    [Page 86]

RFC 4695              RTP Payload Format for MIDI          November 2006


  Chapter F holds information about recent MTC tape positions coded in
  the session history.  Receivers use Chapter F to re-synchronize the
  MTC system after a packet loss episode.

  Chapter F consists of a 1-octet header followed by several optional
  fields, in the order shown in Figure B.4.1.  The C and P header bits
  form a Table of Contents (TOC) and signal the presence of the 32-bit
  COMPLETE field (C = 1) and the 32-bit PARTIAL field (P = 1).

  The Q header bit codes information about the COMPLETE field format.
  If Chapter F does not contain a COMPLETE field, Q MUST be set to 0.

  The D header bit codes the tape movement direction.  If the tape is
  moving forward, or if the tape direction is indeterminate, the D bit
  MUST be set to 0.  If the tape is moving in the reverse direction,
  the D bit MUST be set to 1.  In most cases, the ordering of commands
  in the session history clearly defines the tape direction.  However,
  a few command sequences have an indeterminate direction (such as a
  session history consisting of one Full Frame command).

  The 3-bit POINT header field is interpreted as an unsigned integer.
  Appendix B.4.1 defines how the POINT field codes information about
  the contents of the PARTIAL field.  If Chapter F does not contain a
  PARTIAL field, POINT MUST be set to 7 (if D = 0) or 0 (if D = 1).

  Chapter F MUST include the COMPLETE field if an active finished Full
  Frame command appears in the checkpoint history, or if an active
  Quarter Frame command that completes the encoding of a frame value
  appears in the checkpoint history.

  The COMPLETE field encodes the most recent active complete MTC frame
  value that appears in the session history.  This frame value may take
  the form of a series of 8 active Quarter Frame commands (0xF1 0x0n
  through 0xF1 0x7n for forward tape movement, 0xF1 0x7n through 0xF1
  0x0n for reverse tape movement) or may take the form of an active
  finished Full Frame command.

  If the COMPLETE field encodes a Quarter Frame command series, the Q
  header bit MUST be set to 1, and the COMPLETE field MUST have the
  format shown in Figure B.4.2.  The 4-bit fields MT0 through MT7 code
  the data (lower) nibble for the Quarter Frame commands for Message
  Type 0 through Message Type 7 [MIDI].  These nibbles encode a
  complete frame value, in addition to fields reserved for future use
  by [MIDI].







Lazzaro & Wawrzynek         Standards Track                    [Page 87]

RFC 4695              RTP Payload Format for MIDI          November 2006


      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  MT0  |  MT1  |  MT2  |  MT3  |  MT4  |  MT5  |  MT6  |  MT7  |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

             Figure B.4.2 -- COMPLETE field format, Q = 1

  In this usage, the frame value encoded in the COMPLETE field MUST be
  offset by 2 frames (relative to the frame value encoded in the
  Quarter Frame commands) if the frame value codes a 0xF1 0x0n through
  0xF1 0x7n command sequence.  This offset compensates for the two-
  frame latency of the Quarter Frame encoding for forward tape
  movement.  No offset is applied if the frame value codes a 0xF1 0x7n
  through 0xF1 0x0n Quarter Frame command sequence.

  The most recent active complete MTC frame value may alternatively be
  encoded by an active finished Full Frame command.  In this case, the
  Q header bit MUST be set to 0, and the COMPLETE field MUST have
  format shown in Figure B.4.3.  The HR, MN, SC, and FR fields
  correspond to the hr, mn, sc, and fr data octets of the Full Frame
  command.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |      HR       |      MN       |      SC       |      FR       |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

             Figure B.4.3 -- COMPLETE field format, Q = 0

B.4.1.  Partial Frames

  The most recent active session history command that encodes MTC frame
  value data may be a Quarter Frame command other than a forward-moving
  0xF1 0x7n command (which completes a frame value for forward tape
  movement) or a reverse-moving 0xF1 0x1n command (which completes a
  frame value for reverse tape movement).

  We consider this type of Quarter Frame command to be associated with
  a partial frame value.  The Quarter Frame sequence that defines a
  partial frame value MUST either start at Message Type 0 and increment
  contiguously to an intermediate Message Type less than 7, or start at
  Message Type 7 and decrement contiguously to an intermediate Message
  type greater than 0.  A Quarter Frame command sequence that does not
  follow this pattern is not associated with a partial frame value.





Lazzaro & Wawrzynek         Standards Track                    [Page 88]

RFC 4695              RTP Payload Format for MIDI          November 2006


  Chapter F MUST include a PARTIAL field if the most recent active
  command in the checkpoint history that encodes MTC frame value data
  is a Quarter Frame command that is associated with a partial frame
  value.  Otherwise, Chapter F MUST NOT include a PARTIAL field.

  The partial frame value consists of the data (lower) nibbles of the
  Quarter Frame command sequence.  The PARTIAL field codes the partial
  frame value, using the format shown in Figure B.4.2.  Message Type
  fields that are not associated with a Quarter Frame command MUST be
  set to 0.

  The POINT header field indicates the Message Type fields in the
  PARTIAL field code valid data.  If P = 1, the POINT field MUST encode
  the unsigned integer value formed by the lower 3 bits of the upper
  nibble of the data value of the most recent active Quarter Frame
  command in the session history.  If D = 0 and P = 1, POINT MUST take
  on a value in the range 0-6.  If D = 1 and P = 1, POINT MUST take on
  a value in the range 1-7.

  If D = 0, MT fields (Figure B.4.2) in the inclusive range from 0 up
  to and including the POINT value encode the partial frame value.  If
  D = 1, MT fields in the inclusive range from 7 down to and including
  the POINT value encode the partial frame value.  Note that, unlike
  the COMPLETE field encoding, senders MUST NOT add a 2-frame offset to
  the partial frame value encoded in PARTIAL.

  For the default semantics, if a recovery journal contains Chapter F,
  and if the session history codes a legal [MIDI] series of Quarter
  Frame and Full Frame commands, the chapter always contains a COMPLETE
  or a PARTIAL field (and may contain both fields).  Thus, a one-octet
  Chapter F (C = P = 0) always codes the presence of an illegal command
  sequence in the session history (under some conditions, the C = 1,
  P = 0 condition may also code the presence of an illegal command
  sequence).  The illegal command sequence conditions are transient in
  nature and usually indicate that a Quarter Frame command sequence
  began with an intermediate Message Type.

B.5.  System Chapter X: System Exclusive

  This appendix describes Chapter X, the system chapter for MIDI System
  Exclusive (SysEx) commands (0xF0).  Readers may wish to review the
  Appendix A.1 definition of "finished/unfinished commands" before
  reading this appendix.

  Chapter X consists of a list of one or more command logs.  Each log
  in the list codes information about a specific finished or unfinished
  SysEx command that appears in the session history.  The system




Lazzaro & Wawrzynek         Standards Track                    [Page 89]

RFC 4695              RTP Payload Format for MIDI          November 2006


  journal MUST contain Chapter X if the rules defined in Appendix B.5.2
  require that one or more logs appear in the list.

  The log list is not preceded by a header.  Instead, each log
  implicitly encodes its own length.  Given the length of the N'th list
  log, the presence of the (N+1)'th list log may be inferred from the
  LENGTH field of the system journal header (Figure 10 in Section 5 of
  the main text).  The log list MUST obey the oldest-first ordering
  rule (defined in Appendix A.1).

B.5.1.  Chapter Format

  Figure B.5.1 shows the bitfield format for the Chapter X command log.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |S|T|C|F|D|L|STA|    TCOUNT     |     COUNT     |  FIRST ...    |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  DATA ...                                                     |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                Figure B.5.1 -- Chapter X command log format

  A Chapter X command log consists of a 1-octet header, followed by the
  optional TCOUNT, COUNT, FIRST, and DATA fields.

  The T, C, F, and D header bits act as a Table of Contents (TOC) for
  the log.  If T is set to 1, the 1-octet TCOUNT field appears in the
  log.  If C is set to 1, the 1-octet COUNT field appears in the log.
  If F is set to 1, the variable-length FIRST field appears in the log.
  If D is set to 1, the variable-length DATA field appears in the log.

  The L header bit sets the coding tool for the log.  We define the log
  coding tools in Appendix B.5.2.

  The STA field codes the status of the command coded by the log.  The
  2-bit STA value is interpreted as an unsigned integer.  If STA is 0,
  the log codes an unfinished command.  Non-zero STA values code
  different classes of finished commands.  An STA value of 1 codes a
  cancelled command, an STA value of 2 codes a command that uses the
  "dropped F7" construction, and an STA value of 3 codes all other
  finished commands.  Section 3.2 in the main text describes cancelled
  and "dropped F7" commands.

  The S bit (Appendix A.1) of the first log in the list acts as the S
  bit for Chapter X.  For the other logs in the list, the S bit refers




Lazzaro & Wawrzynek         Standards Track                    [Page 90]

RFC 4695              RTP Payload Format for MIDI          November 2006


  to the log itself.  The value of the "phantom" S bit associated with
  the first log is defined by the following rules:

    o  If the list codes one log, the phantom S-bit value is the same
       as the Chapter X S-bit value.

    o  If the list codes multiple logs, the phantom S-bit value is the
       logical OR of the S-bit value of the first and second command
       logs in the list.

  In all other respects, the S bit follows the semantics defined in
  Appendix A.1.

  The FIRST field (present if F = 1) encodes a variable-length unsigned
  integer value that sets the coverage of the DATA field.

  The FIRST field (present if F = 1) encodes a variable-length unsigned
  integer value that specifies which SysEx data bytes are encoded in
  the DATA field of the log.  The FIRST field consists of an octet
  whose most-significant bit is set to 0, optionally preceded by one or
  more octets whose most-significant bit is set to 1.  The algorithm
  shown in Figure B.5.2 decodes this format into an unsigned integer,
  to yield the value dec(FIRST).  FIRST uses a variable-length encoding
  because dec(FIRST) references a data octet in a SysEx command, and a
  SysEx command may contain an arbitrary number of data octets.

       One-Octet FIRST value:

          Encoded form: 0ddddddd
          Decoded form: 00000000 00000000 00000000 0ddddddd

       Two-Octet FIRST value:

          Encoded form: 1ccccccc 0ddddddd
          Decoded form: 00000000 00000000 00cccccc cddddddd

       Three-Octet FIRST value:

          Encoded form: 1bbbbbbb 1ccccccc 0ddddddd
          Decoded form: 00000000 000bbbbb bbcccccc cddddddd

       Four-Octet FIRST value:

          Encoded form: 1aaaaaaa 1bbbbbbb 1ccccccc 0ddddddd
          Decoded form: 0000aaaa aaabbbbb bbcccccc cddddddd

               Figure B.5.2 -- Decoding FIRST field formats




Lazzaro & Wawrzynek         Standards Track                    [Page 91]

RFC 4695              RTP Payload Format for MIDI          November 2006


  The DATA field (present if D = 1) encodes a modified version of the
  data octets of the SysEx command coded by the log.  Status octets
  MUST NOT be coded in the DATA field.

  If F = 0, the DATA field begins with the first data octet of the
  SysEx command and includes all subsequent data octets for the command
  that appear in the session history.  If F = 1, the DATA field begins
  with the (dec(FIRST) + 1)'th data octet of the SysEx command and
  includes all subsequent data octets for the command that appear in
  the session history.  Note that the word "command" in the
  descriptions above refers to the original SysEx command as it appears
  in the source MIDI data stream, not to a particular MIDI list SysEx
  command segment.

  The length of the DATA field is coded implicitly, using the most-
  significant bit of each octet.  The most-significant bit of the final
  octet of the DATA field MUST be set to 1.  The most-significant bit
  of all other DATA octets MUST be set to 0.  This coding method relies
  on the fact that the most-significant bit of a MIDI data octet is 0
  by definition.  Apart from this length-coding modification, the DATA
  field encodes a verbatim copy of all data octets it encodes.

B.5.2.  Log Inclusion Semantics

  Chapter X offers two tools to protect SysEx commands: the "recency"
  tool and the "list" tool.  The tool definitions use the concept of
  the "SysEx type" of a command, which we now define.

  Each SysEx command instance in a session, excepting MTC Full Frame
  commands, is said to have a "SysEx type".  Types are used in equality
  comparisons: two SysEx commands in a session are said to have "the
  same SysEx type" or "different SysEx types".

  If efficiency is not a concern, a sender may follow a simple typing
  rule: every SysEx command in the session history has a different
  SysEx type, and thus no two commands in the session have the same
  type.

  To improve efficiency, senders MAY implement exceptions to this rule.
  These exceptions declare that certain sets of SysEx command instances
  have the same SysEx type.  Any command not covered by an exception
  follows the simple rule.  We list exceptions below:

    o  All commands with identical data octet fields (same number of
       data octets, same value for each data octet) have the same type.
       This rule MUST be applied to all SysEx commands in the session,
       or not at all.  Note that the implementation of this exception
       requires no sender knowledge of the format and semantics of the



Lazzaro & Wawrzynek         Standards Track                    [Page 92]

RFC 4695              RTP Payload Format for MIDI          November 2006


       SysEx commands in the stream, merely the ability to count and
       compare octets.

    o  Two instances of the same command whose semantics set or report
       the value of the same "parameter" have the same type.  The
       implementation of this exception requires specific knowledge of
       the format and semantics of SysEx commands.  In practice, a
       sender implementation chooses to support this exception for
       certain classes of commands (such as the Universal System
       Exclusive commands defined in [MIDI]).  If a sender supports
       this exception for a particular command in a class (for example,
       the Universal Real Time System Exclusive message for Master
       Volume, F0 F7 cc 04 01 vv vv F7, defined in [MIDI]), it MUST
       support the exception to all instances of this particular
       command in the session.

  We now use this definition of "SysEx type" to define the "recency"
  tool and the "list" tool for Chapter X.

  By default, the Chapter X log list MUST code sufficient information
  to protect the rendered MIDI performance from indefinite artifacts
  caused by the loss of all finished or unfinished active SysEx
  commands that appear in the checkpoint history (excluding finished
  MTC Full Frame commands, which are coded in Chapter F (Appendix
  B.4)).

  To protect a command of a specific SysEx type with the recency tool,
  senders MUST code a log in the log list for the most recent finished
  active instance of the SysEx type that appears in the checkpoint
  history.  Additionally, if an unfinished active instance of the SysEx
  type appears in the checkpoint history, senders MUST code a log in
  the log list for the unfinished command instance.  The L header bit
  of both command logs MUST be set to 0.

  To protect a command of a specific SysEx type with the list tool,
  senders MUST code a log in the Chapter X log list for each finished
  or unfinished active instance of the SysEx type that appears in the
  checkpoint history.  The L header bit of list tool command logs MUST
  be set to 1.

  As a rule, a log REQUIRED by the list or recency tool MUST include a
  DATA field that codes all data octets that appear in the checkpoint
  history for the SysEx command instance associated with the log.  The
  FIRST field MAY be used to configure a DATA field that minimally
  meets this requirement.






Lazzaro & Wawrzynek         Standards Track                    [Page 93]

RFC 4695              RTP Payload Format for MIDI          November 2006


  An exception to this rule applies to cancelled commands (defined in
  Section 3.2).  REQUIRED command logs associated with cancelled
  commands MAY be coded with no DATA field.  However, if DATA appears
  in the log, DATA MUST code all data octets that appear in the
  checkpoint history for the command associated with the log.

  As defined by the preceding text in this section, by default all
  finished or unfinished active SysEx commands that appear in the
  checkpoint history (excluding finished MTC Full Frame commands) MUST
  be protected by the list tool or the recency tool.

  For some MIDI source streams, this default yields a Chapter X whose
  size is too large.  For example, imagine that a sender begins to
  transcode a SysEx command with 10,000 data octets onto a UDP RTP
  stream "on the fly", by sending SysEx command segments as soon as
  data octets are delivered by the MIDI source.  After 1000 octets have
  been sent, the expansion of Chapter X yields an RTP packet that is
  too large to fit in the Maximum Transmission Unit (MTU) for the
  stream.

  In this situation, if a sender uses the closed-loop sending policy
  for SysEx commands, the RTP packet size may always be capped by
  stalling the stream.  In a stream stall, once the packet reaches a
  maximum size, the sender refrains from sending new packets with non-
  empty MIDI Command Sections until receiver feedback permits the
  trimming of Chapter X.  If the stream permits arbitrary commands to
  appear between SysEx segments (selectable during configuration using
  the tools defined in Appendix C.1), the sender may stall the SysEx
  segment stream but continue to code other commands in the MIDI list.

  Stalls are a workable but sub-optimal solution to Chapter X size
  issues.  As an alternative to stalls, senders SHOULD take preemptive
  action during session configuration to reduce the anticipated size of
  Chapter X, using the methods described below:

    o  Partitioned transport.  Appendix C.5 provides tools for sending
       a MIDI name space over several RTP streams.  Senders may use
       these tools to map a MIDI source into a low-latency UDP RTP
       stream (for channel commands and short SysEx commands) and a
       reliable [RFC4571] TCP stream (for bulk-data SysEx commands).
       The cm_unused and cm_used parameters (Appendix C.1) may be used
       to communicate the nature of the SysEx command partition.  As
       TCP is reliable, the RTP MIDI TCP stream would not use the
       recovery journal.  To minimize transmission latency for short
       SysEx commands, senders may begin segmental transmission for all
       SysEx commands over the UDP stream and then cancel the UDP
       transmission of long commands (using tools described in Section
       3.2) and resend the commands over the TCP stream.



Lazzaro & Wawrzynek         Standards Track                    [Page 94]

RFC 4695              RTP Payload Format for MIDI          November 2006


    o  Selective protection.  Journal protection may not be necessary
       for all SysEx commands in a stream.  The ch_never parameter
       (Appendix C.2) may be used to communicate which SysEx commands
       are excluded from Chapter X.

B.5.3.  TCOUNT and COUNT Fields

  If the T header bit is set to 1, the 8-bit TCOUNT field appears in
  the command log.  If the C header bit is set to 1, the 8-bit COUNT
  field appears in the command log.  TCOUNT and COUNT are interpreted
  as unsigned integers.

  The TCOUNT field codes the total number of SysEx commands of the
  SysEx type coded by the log that appear in the session history, at
  the moment after the (finished or unfinished) command coded by the
  log enters the session history.

  The COUNT field codes the total number of SysEx commands that appear
  in the session history, excluding commands that are excluded from
  Chapter X via the ch_never parameter (Appendix C.2), at the moment
  after the (finished or unfinished) command coded by the log enters
  the session history.

  Command counting for TCOUNT and COUNT uses modulo-256 arithmetic.
  MTC Full Frame command instances (Appendix B.4) are included in
  command counting if the TCOUNT and COUNT definitions warrant their
  inclusion, as are cancelled commands (Section 3.2).

  Senders use the TCOUNT and COUNT fields to track the identity and
  (for TCOUNT) the sequence position of a command instance.  Senders
  MUST use the TCOUNT or COUNT fields if identity or sequence
  information is necessary to protect the command type coded by the
  log.

  If a sender uses the COUNT field in a session, the final command log
  in every Chapter X in the stream MUST code the COUNT field.  This
  rule lets receivers resynchronize the COUNT value after a packet
  loss.

C.  Session Configuration Tools

  In Sections 6.1-2 of the main text, we show session descriptions for
  minimal native and mpeg4-generic RTP MIDI streams.  Minimal streams
  lack the flexibility to support some applications.  In this appendix,
  we describe how to customize stream behavior through the use of the
  payload format parameters.





Lazzaro & Wawrzynek         Standards Track                    [Page 95]

RFC 4695              RTP Payload Format for MIDI          November 2006


  The appendix begins with 6 sections, each devoted to parameters that
  affect a particular aspect of stream behavior:

    o  Appendix C.1 describes the stream subsetting system (cm_unused
       and cm_used).

    o  Appendix C.2 describes the journalling system (ch_anchor,
       ch_default, ch_never, j_sec, j_update).

    o  Appendix C.3 describes MIDI command timestamp semantics
       (linerate, mperiod, octpos, tsmode).

    o  Appendix C.4 describes the temporal duration ("media time") of
       an RTP MIDI packet (guardtime, rtp_maxptime, rtp_ptime).

    o  Appendix C.5 concerns stream description (musicport).

    o  Appendix C.6 describes MIDI rendering (chanmask, cid, inline,
       multimode, render, rinit, subrender, smf_cid, smf_info,
       smf_inline, smf_url, url).

  The parameters listed above may optionally appear in session
  descriptions of RTP MIDI streams.  If these parameters are used in an
  SDP session description, the parameters appear on an fmtp attribute
  line.  This attribute line applies to the payload type associated
  with the fmtp line.

  The parameters listed above add extra functionality ("features") to
  minimal RTP MIDI streams.  In Appendix C.7, we show how to use these
  features to support two classes of applications: content-streaming
  using RTSP (Appendix C.7.1) and network musical performance using SIP
  (Appendix C.7.2).

  The participants in a multimedia session MUST share a common view of
  all of the RTP MIDI streams that appear in an RTP session, as defined
  by a single media (m=) line.  In some RTP MIDI applications, the
  "common view" restriction makes it difficult to use sendrecv streams
  (all parties send and receive), as each party has its own
  requirements.  For example, a two-party network musical performance
  application may wish to customize the renderer on each host to match
  the CPU performance of the host [NMP].

  We solve this problem by using two RTP MIDI streams -- one sendonly,
  one recvonly -- in lieu of one sendrecv stream.  The data flows in
  the two streams travel in opposite directions, to control receivers
  configured to use different renderers.  In the third example in
  Appendix C.5, we show how the musicport parameter may be used to
  define virtual sendrecv streams.



Lazzaro & Wawrzynek         Standards Track                    [Page 96]

RFC 4695              RTP Payload Format for MIDI          November 2006


  As a general rule, the RTP MIDI protocol does not handle parameter
  changes during a session well, because the parameters describe
  heavyweight or stateful configuration that is not easily changed once
  a session has begun.  Thus, parties SHOULD NOT expect that parameter
  change requests during a session will be accepted by other parties.
  However, implementors SHOULD support in-session parameter changes
  that are easy to handle (for example, the guardtime parameter defined
  in Appendix C.4) and SHOULD be capable of accepting requests for
  changes of those parameters, as received by its session management
  protocol (for example, re-offers in SIP [RFC3264]).

  Appendix D defines the Augmented Backus-Naur Form (ABNF, [RFC4234])
  syntax for the payload parameters.  Section 11 provides information
  to the Internet Assigned Numbers Authority (IANA) on the media types
  and parameters defined in this document.

  Appendix C.6.5 defines the media type "audio/asc", a stored object
  for initializing mpeg4-generic renderers.  As described in Appendix
  C.6, the audio/asc media type is assigned to the "rinit" parameter to
  specify an initialization data object for the default mpeg4-generic
  renderer.  Note that RTP stream semantics are not defined for
  "audio/asc".  Therefore, the "asc" subtype MUST NOT appear on the
  rtpmap line of a session description.

C.1.  Configuration Tools: Stream Subsetting

  As defined in Section 3.2 in the main text, the MIDI list of an RTP
  MIDI packet may encode any MIDI command that may legally appear on a
  MIDI 1.0 DIN cable.

  In this appendix, we define two parameters (cm_unused and cm_used)
  that modify this default condition, by excluding certain types of
  MIDI commands from the MIDI list of all packets in a stream.  For
  example, if a multimedia session partitions a MIDI name space into
  two RTP MIDI streams, the parameters may be used to define which
  commands appear in each stream.

  In this appendix, we define a simple language for specifying MIDI
  command types.  If a command type is assigned to cm_unused, the
  commands coded by the string MUST NOT appear in the MIDI list.  If a
  command type is assigned to cm_used, the commands coded by the string
  MAY appear in the MIDI list.

  The parameter list may code multiple assignments to cm_used and
  cm_unused.  Assignments have a cumulative effect and are applied in
  the order of appearance in the parameter list.  A later assignment of
  a command type to the same parameter expands the scope of the earlier
  assignment.  A later assignment of a command type to the opposite



Lazzaro & Wawrzynek         Standards Track                    [Page 97]

RFC 4695              RTP Payload Format for MIDI          November 2006


  parameter cancels (partially or completely) the effect of an earlier
  assignment.

  To initialize the stream subsetting system, "implicit" assignments to
  cm_unused and cm_used are processed before processing the actual
  assignments that appear in the parameter list.  The System Common
  undefined commands (0xF4, 0xF5) and the System Real-Time Undefined
  commands (0xF9, 0xFD) are implicitly assigned to cm_unused.  All
  other command types are implicitly assigned to cm_used.

  Note that the implicit assignments code the default behavior of an
  RTP MIDI stream as defined in Section 3.2 in the main text (namely,
  that all commands that may legally appear on a MIDI 1.0 DIN cable may
  appear in the stream).  Also note that assignments of the System
  Common undefined commands (0xF4, 0xF5) apply to the use of these
  commands in the MIDI source command stream, not the special use of
  0xF4 and 0xF5 in SysEx segment encoding defined in Section 3.2 in the
  main text.

  As a rule, parameter assignments obey the following syntax (see
  Appendix D for ABNF):

    <parameter> = [channel list]<command-type list>[field list]

  The command-type list is mandatory; the channel and field lists are
  optional.

  The command-type list specifies the MIDI command types for which the
  parameter applies.  The command-type list is a concatenated sequence
  of one or more of the letters (ABCFGHJKMNPQTVWXYZ).  The letters code
  the following command types:

     o  A: Poly Aftertouch (0xA)
     o  B: System Reset (0xFF)
     o  C: Control Change (0xB)
     o  F: System Time Code (0xF1)
     o  G: System Tune Request (0xF6)
     o  H: System Song Select (0xF3)
     o  J: System Common Undefined (0xF4)
     o  K: System Common Undefined (0xF5)
     o  N: NoteOff (0x8), NoteOn (0x9)
     o  P: Program Change (0xC)
     o  Q: System Sequencer (0xF2, 0xF8, 0xF9, 0xFA, 0xFB, 0xFC)
     o  T: Channel Aftertouch (0xD)
     o  V: System Active Sense (0xFE)
     o  W: Pitch Wheel (0xE)





Lazzaro & Wawrzynek         Standards Track                    [Page 98]

RFC 4695              RTP Payload Format for MIDI          November 2006


     o  X: SysEx (0xF0)
     o  Y: System Real-Time Undefined (0xF9)
     o  Z: System Real-Time Undefined (0xFD)

  In addition to the letters above, the letter M may also appear in the
  command-type list.  The letter M refers to the MIDI parameter system
  (see definition in Appendix A.1 and in [MIDI]).  An assignment of M
  to cm_unused codes that no RPN or NRPN transactions may appear in the
  MIDI list.

  Note that if cm_unused is assigned the letter M, Control Change (0xB)
  commands for the controller numbers in the standard controller
  assignment might still appear in the MIDI list.  For an explanation,
  see Appendix A.3.4 for a discussion of the "general-purpose" use of
  parameter system controller numbers.

  In the text below, rules that apply to "MIDI voice channel commands"
  also apply to the letter M.

  The letters in the command-type list MUST be uppercase and MUST
  appear in alphabetical order.  Letters other than
  (ABCFGHJKMNPQTVWXYZ) that appear in the list MUST be ignored.

  For MIDI voice channel commands, the channel list specifies the MIDI
  channels for which the parameter applies.  If no channel list is
  provided, the parameter applies to all MIDI channels (0-15).  The
  channel list takes the form of a list of channel numbers (0 through
  15) and dash-separated channel number ranges (i.e., 0-5, 8-12, etc).
  Dots (i.e., "." characters) separate elements in the channel list.

  Recall that System commands do not have a MIDI channel associated
  with them.  Thus, for most command-type letters that code System
  commands (B, F, G, H, J, K, Q, V, Y, and Z), the channel list is
  ignored.

  For the command-type letter X, the appearance of certain numbers in
  the channel list codes special semantics.

    o  The digit 0 codes that SysEx "cancel" sublists (Section 3.2 in
       the main text) MUST NOT appear in the MIDI list.

    o  The digit 1 codes that cancel sublists MAY appear in the MIDI
       list (the default condition).

    o  The digit 2 codes that commands other than System Real-time MIDI
       commands MUST NOT appear between SysEx command segments in the
       MIDI list (the default condition).




Lazzaro & Wawrzynek         Standards Track                    [Page 99]

RFC 4695              RTP Payload Format for MIDI          November 2006


    o  The digit 3 codes that any MIDI command type may appear between
       SysEx command segments in the MIDI list, with the exception of
       the segmented encoding of a second SysEx command (verbatim SysEx
       commands are OK).

  For command-type X, the channel list MUST NOT contain both digits 0
  and 1, and it MUST NOT contain both digits 2 and 3.  For command-type
  X, channel list numbers other than the numbers defined above are
  ignored.  If X does not have a channel list, the semantics marked
  "the default condition" in the list above apply.

  The syntax for field lists in a parameter assignment follows the
  syntax for channel lists.  If no field list is provided, the
  parameter applies to all controller or note numbers.

  For command-type C (Control Change), the field list codes the
  controller numbers (0-255) for which the parameter applies.

  For command-type M (Parameter System), the field list codes the
  Registered Parameter Numbers (RPNs) and Non-Registered Parameter
  Numbers (NRPNs) for which the parameter applies.  The number range
  0-16383 specifies RPNs, the number range 16384-32767 specifies NRPNs
  (16384 corresponds to NRPN 0, 32767 corresponds to NRPN 16383).

  For command-types N (NoteOn and NoteOff) and A (Poly Aftertouch), the
  field list codes the note numbers for which the parameter applies.

  For command-types J and K (System Common Undefined), the field list
  consists of a single digit, which specifies the number of data octets
  that follow the command octet.

  For command-type X (SysEx), the field list codes the number of data
  octets that may appear in a SysEx command.  Thus, the field list
  0-255 specifies SysEx commands with 255 or fewer data octets, the
  field list 256-4294967295 specifies SysEx commands with more than 255
  data octets but excludes commands with 255 or fewer data octets, and
  the field list 0 excludes all commands.

  A secondary parameter assignment syntax customizes command-type X
  (see Appendix D for complete ABNF):

    <parameter> = "__" <h-list> ["_" <h-list>] "__"

  The assignment defines the class of SysEx commands that obeys the
  semantics of the assigned parameter.  The command class is specified
  by listing the permitted values of the first N data octets that
  follow the SysEx 0xF0 command octet.  Any SysEx command whose first N
  data octets match the list is a member of the class.



Lazzaro & Wawrzynek         Standards Track                   [Page 100]

RFC 4695              RTP Payload Format for MIDI          November 2006


  Each <h-list> defines a data octet of the command, as a dot-separated
  (".") list of one or more hexadecimal constants (such as "7F") or
  dash-separated hexadecimal ranges (such as "01-1F").  Underscores
  ("_") separate each <h-list>.  Double-underscores ("__") delineate
  the data octet list.

  Using this syntax, each assignment specifies a single SysEx command
  class.  Session descriptions may use several assignments to cm_used
  and cm_unused to specify complex behaviors.

  The example session description below illustrates the use of the
  stream subsetting parameters:

  v=0
  o=lazzaro 2520644554 2838152170 IN IP6 first.example.net
  s=Example
  t=0 0
  m=audio 5004 RTP/AVP 96
  c=IN IP6 2001:DB80::7F2E:172A:1E24
  a=rtpmap:96 rtp-midi/44100
  a=fmtp:96 cm_unused=ACGHJKNMPTVWXYZ; cm_used=__7F_00-7F_01_01__

  The session description configures the stream for use in clock
  applications.  All voice channels are unused, as are all System
  Commands except those used for MIDI Time Code (command-type F, and
  the Full Frame SysEx command that is matched by the string assigned
  to cm_used), the System Sequencer commands (command-type Q), and
  System Reset (command-type B).

C.2.  Configuration Tools: The Journalling System

  In this appendix, we define the payload format parameters that
  configure stream journalling and the recovery journal system.

  The j_sec parameter (Appendix C.2.1) sets the journalling method for
  the stream.  The j_update parameter (Appendix C.2.2) sets the
  recovery journal sending policy for the stream.  Appendix C.2.2 also
  defines the sending policies of the recovery journal system.

  Appendix C.2.3 defines several parameters that modify the recovery
  journal semantics.  These parameters change the default recovery
  journal semantics as defined in Section 5 and Appendices A-B.

  The journalling method for a stream is set at the start of a session
  and MUST NOT be changed thereafter.  This requirement forbids changes
  to the j_sec parameter once a session has begun.





Lazzaro & Wawrzynek         Standards Track                   [Page 101]

RFC 4695              RTP Payload Format for MIDI          November 2006


  A related requirement, defined in the appendix sections below,
  forbids the acceptance of parameter values that would violate the
  recovery journal mandate.  In many cases, a change in one of the
  parameters defined in this appendix during an ongoing session would
  result in a violation of the recovery journal mandate for an
  implementation; in this case, the parameter change MUST NOT be
  accepted.

C.2.1.  The j_sec Parameter

  Section 2.2 defines the default journalling method for a stream.
  Streams that use unreliable transport (such as UDP) default to using
  the recovery journal.  Streams that use reliable transport (such as
  TCP) default to not using a journal.

  The parameter j_sec may be used to override this default.  This memo
  defines two symbolic values for j_sec: "none", to indicate that all
  stream payloads MUST NOT contain a journal section, and "recj", to
  indicate that all stream payloads MUST contain a journal section that
  uses the recovery journal format.

  For example, the j_sec parameter might be set to "none" for a UDP
  stream that travels between two hosts on a local network that is
  known to provide reliable datagram delivery.

  The session description below configures a UDP stream that does not
  use the recovery journal:

  v=0
  o=lazzaro 2520644554 2838152170 IN IP4 first.example.net
  s=Example
  t=0 0
  m=audio 5004 RTP/AVP 96
  c=IN IP4 192.0.2.94
  a=rtpmap:96 rtp-midi/44100
  a=fmtp:96 j_sec=none

  Other IETF standards-track documents may define alternative journal
  formats.  These documents MUST define new symbolic values for the
  j_sec parameter to signal the use of the format.

  Parties MUST NOT accept a j_sec value that violates the recovery
  journal mandate (see Section 4 for details).  If a session
  description uses a j_sec value unknown to the recipient, the
  recipient MUST NOT accept the description.






Lazzaro & Wawrzynek         Standards Track                   [Page 102]

RFC 4695              RTP Payload Format for MIDI          November 2006


  Special j_sec issues arise when sessions are managed by session
  management tools (like RTSP, [RFC2326]) that use SDP for "declarative
  usage" purposes (see the preamble of Section 6 for details).  For
  these session management tools, SDP does not code transport details
  (such as UDP or TCP) for the session.  Instead, server and client
  negotiate transport details via other means (for RTSP, the SETUP
  method).

  In this scenario, the use of the j_sec parameter may be ill-advised,
  as the creator of the session description may not yet know the
  transport type for the session.  In this case, the session
  description SHOULD configure the journalling system using the
  parameters defined in the remainder of Appendix C.2, but it SHOULD
  NOT use j_sec to set the journalling status.  Recall that if j_sec
  does not appear in the session description, the default method for
  choosing the journalling method is in effect (no journal for reliable
  transport, recovery journal for unreliable transport).

  However, in declarative usage situations where the creator of the
  session description knows that journalling is always required or
  never required, the session description SHOULD use the j_sec
  parameter.

C.2.2.  The j_update Parameter

  In Section 4, we use the term "sending policy" to describe the method
  a sender uses to choose the checkpoint packet identity for each
  recovery journal in a stream.  In the sub-sections that follow, we
  normatively define three sending policies: anchor, closed-loop, and
  open-loop.

  As stated in Section 4, the default sending policy for a stream is
  the closed-loop policy.  The j_update parameter may be used to
  override this default.

  We define three symbolic values for j_update: "anchor", to indicate
  that the stream uses the anchor sending policy, "open-loop", to
  indicate that the stream uses the open-loop sending policy, and
  "closed-loop", to indicate that the stream uses the closed-loop
  sending policy.  See Appendix C.2.3 for examples session descriptions
  that use the j_update parameter.

  Parties MUST NOT accept a j_update value that violates the recovery
  journal mandate (Section 4).

  Other IETF standards-track documents may define additional sending
  policies for the recovery journal system.  These documents MUST
  define new symbolic values for the j_update parameter to signal the



Lazzaro & Wawrzynek         Standards Track                   [Page 103]

RFC 4695              RTP Payload Format for MIDI          November 2006


  use of the new policy.  If a session description uses a j_update
  value unknown to the recipient, the recipient MUST NOT accept the
  description.

C.2.2.1.  The anchor Sending Policy

  In the anchor policy, the sender uses the first packet in the stream
  as the checkpoint packet for all packets in the stream.  The anchor
  policy satisfies the recovery journal mandate (Section 4), as the
  checkpoint history always covers the entire stream.

  The anchor policy does not require the use of the RTP control
  protocol (RTCP, [RFC3550]) or other feedback from receiver to sender.
  Senders do not need to take special actions to ensure that received
  streams start up free of artifacts, as the recovery journal always
  covers the entire history of the stream.  Receivers are relieved of
  the responsibility of tracking the changing identity of the
  checkpoint packet, because the checkpoint packet never changes.

  The main drawback of the anchor policy is bandwidth efficiency.
  Because the checkpoint history covers the entire stream, the size of
  the recovery journals produced by this policy usually exceeds the
  journal size of alternative policies.  For single-channel MIDI data
  streams, the bandwidth overhead of the anchor policy is often
  acceptable (see Appendix A.4 of [NMP]).  For dense streams, the
  closed-loop or open-loop policies may be more appropriate.

C.2.2.2.  The closed-loop Sending Policy

  The closed-loop policy is the default policy of the recovery journal
  system.  For each packet in the stream, the policy lets senders
  choose the smallest possible checkpoint history that satisfies the
  recovery journal mandate.  As smaller checkpoint histories generally
  yield smaller recovery journals, the closed-loop policy reduces the
  bandwidth of a stream, relative to the anchor policy.

  The closed-loop policy relies on feedback from receiver to sender.
  The policy assumes that a receiver periodically informs the sender of
  the highest sequence number it has seen so far in the stream, coded
  in the 32-bit extension format defined in [RFC3550].  For RTCP,
  receivers transmit this information in the Extended Highest Sequence
  Number Received (EHSNR) field of Receiver Reports.  RTCP Sender or
  Receiver Reports MUST be sent by any participant in a session with
  closed loop sending policy, unless another feedback mechanism has
  been agreed upon.






Lazzaro & Wawrzynek         Standards Track                   [Page 104]

RFC 4695              RTP Payload Format for MIDI          November 2006


  The sender may safely use receiver sequence number feedback to guide
  checkpoint history management, because Section 4 requires that
  receivers repair indefinite artifacts whenever a packet loss event
  occur.

  We now normatively define the closed-loop policy.  At the moment a
  sender prepares an RTP packet for transmission, the sender is aware
  of R >= 0 receivers for the stream.  Senders may become aware of a
  receiver via RTCP traffic from the receiver, via RTP packets from a
  paired stream sent by the receiver to the sender, via messages from a
  session management tool, or by other means.  As receivers join and
  leave a session, the value of R changes.

  Each known receiver k (1 <= k <= R) is associated with a 32-bit
  extended packet sequence number M(k), where the extension reflects
  the sequence number rollover count of the sender.

  If the sender has received at least one feedback report from receiver
  k, M(k) is the most recent report of the highest RTP packet sequence
  number seen by the receiver, normalized to reflect the rollover count
  of the sender.

  If the sender has not received a feedback report from the receiver,
  M(k) is the extended sequence number of the last packet the sender
  transmitted before it became aware of the receiver.  If the sender
  became aware of this receiver before it sent the first packet in the
  stream, M(k) is the extended sequence number of the first packet in
  the stream.

  Given this definition of M(), we now state the closed-loop policy.
  When preparing a new packet for transmission, a sender MUST choose a
  checkpoint packet with extended sequence number N, such that M(k) >=
  (N - 1) for all k, 1 <= k <= R, where R >= 1.  The policy does not
  restrict sender behavior in the R == 0 (no known receivers) case.

  Under the closed-loop policy as defined above, a sender may transmit
  packets whose checkpoint history is shorter than the session history
  (as defined in Appendix A.1).  In this event, a new receiver that
  joins the stream may experience indefinite artifacts.

  For example, if a Control Change (0xB) command for Channel Volume
  (controller number 7) was sent early in a stream, and later a new
  receiver joins the session, the closed-loop policy may permit all
  packets sent to the new receiver to use a checkpoint history that
  does not include the Channel Volume Control Change command.  As a
  result, the new receiver experiences an indefinite artifact, and
  plays all notes on a channel too loudly or too softly.




Lazzaro & Wawrzynek         Standards Track                   [Page 105]

RFC 4695              RTP Payload Format for MIDI          November 2006


  To address this issue, the closed-loop policy states that whenever a
  sender becomes aware of a new receiver, the sender MUST determine if
  the receiver would be subject to indefinite artifacts under the
  closed-loop policy.  If so, the sender MUST ensure that the receiver
  starts the session free of indefinite artifacts.

  For example, to solve the Channel Volume issue described above, the
  sender may code the current state of the Channel Volume controller
  numbers in the recovery journal Chapter C, until it receives the
  first RTCP RR report that signals that a packet containing this
  Chapter C has been received.

  In satisfying this requirement, senders MAY infer the initial MIDI
  state of the receiver from the session description.  For example, the
  stream example in Section 6.2 has the initial state defined in [MIDI]
  for General MIDI.

  In a unicast RTP session, a receiver may safely assume that the
  sender is aware of its presence of a receiver from the first packet
  sent in the RTP stream.  However, in other types of RTP sessions
  (multicast, conference focus, RTP translator/mixer), a receiver is
  often not able to determine if the sender is initially aware of its
  presence as a receiver.

  To address this issue, the closed-loop policy states that if a
  receiver participates in a session where it may have access to a
  stream whose sender is not aware of the receiver, the receiver MUST
  take actions to ensure that its rendered MIDI performance does not
  contain indefinite artifacts.  These protections will be necessarily
  incomplete.  For example, a receiver may monitor the Checkpoint
  Packet Seqnum for uncovered loss events, and "err on the side of
  caution" with respect to handling stuck notes due to lost MIDI
  NoteOff commands, but the receiver is not able to compensate for the
  lack of Channel Volume initialization data in the recovery journal.

  The receiver MUST NOT discontinue these protective actions until it
  is certain that the sender is aware of its presence.  If a receiver
  is not able to ascertain sender awareness, the receiver MUST continue
  these protective actions for the duration of the session.

  Note that in a multicast session where all parties are expected to
  send and receive, the reception of RTCP receiver reports from the
  sender about the RTP stream a receiver is multicasting is evidence of
  the sender's awareness that the RTP stream multicast by the sender is
  being monitored by the receiver.  Receivers may also obtain sender
  awareness evidence from session management tools, or by other means.
  In practice, ongoing observation of the Checkpoint Packet Seqnum to
  determine if the sender is taking actions to prevent loss events for



Lazzaro & Wawrzynek         Standards Track                   [Page 106]

RFC 4695              RTP Payload Format for MIDI          November 2006


  a receiver is a good indication of sender awareness, as is the sudden
  appearance of recovery journal chapters with numerous Control Change
  controller data that was not foreshadowed by recent commands coded in
  the MIDI list shortly after sending an RTCP RR.

  The final set of normative closed-loop policy requirements concern
  how senders and receivers handle unplanned disruptions of RTCP
  feedback from a receiver to a sender.  By "unplanned", we refer to
  disruptions that are not due to the signalled termination of an RTP
  stream, via an RTCP BYE or via session management tools.

  As defined earlier in this section, the closed-loop policy states
  that a sender MUST choose a checkpoint packet with extended sequence
  number N, such that M(k) >= (N - 1) for all k, 1 <= k <= R, where R
  >= 1.  If the sender has received at least one feedback report from
  receiver k, M(k) is the most recent report of the highest RTP packet
  sequence number seen by the receiver, normalized to reflect the
  rollover count of the sender.

  If this receiver k stops sending feedback to the sender, the M(k)
  value used by the sender reflects the last feedback report from the
  receiver.  As time progresses without feedback from receiver k, this
  fixed M(k) value forces the sender to increase the size of the
  checkpoint history, and thus increases the bandwidth of the stream.

  At some point, the sender may need to take action in order to limit
  the bandwidth of the stream.  In most envisioned uses of RTP MIDI,
  long before this point is reached, the SSRC time-out mechanism
  defined in [RFC3550] will remove the uncooperative receiver from the
  session (note that the closed-loop policy does not suggest or require
  any special sender behavior upon an SSRC time-out, other than the
  sender actions related to changing R, described earlier in this
  section).

  However, in rare situations, the bandwidth of the stream (due to a
  lack of feedback reports from the sender) may become too large to
  continue sending the stream to the receiver before the SSRC time-out
  occurs for the receiver.  In this case, the closed-loop policy states
  that the sender should invoke the SSRC time-out for the receiver
  early.

  We now discuss receiver responsibilities in the case of unplanned
  disruptions of RTCP feedback from receiver to sender.

  In the unicast case, if a sender invokes the SSRC time-out mechanism
  for a receiver, the receiver stops receiving packets from the sender.
  The sender behavior imposed by the guardtime parameter (Appendix




Lazzaro & Wawrzynek         Standards Track                   [Page 107]

RFC 4695              RTP Payload Format for MIDI          November 2006


  C.4.2) lets the receiver conclude that an SSRC time-out has occurred
  in a reasonable time period.

  In this case of a time-out, a receiver MUST keep sending RTCP
  feedback, in order to re-establish the RTP flow from the sender.
  Unless the receiver expects a prompt recovery of the RTP flow, the
  receiver MUST take actions to ensure that the rendered MIDI
  performance does not exhibit "very long transient artifacts" (for
  example, by silencing NoteOns to prevent stuck notes) while awaiting
  reconnection of the flow.

  In the multicast case, if a sender invokes the SSRC time-out
  mechanism for a receiver, the receiver may continue to receive
  packets, but the sender will no longer be using the M(k) feedback
  from the receiver to choose each checkpoint packet.  If the receiver
  does not have additional information that precludes an SSRC time-out
  (such as RTCP Receiver Reports from the sender about an RTP stream
  the receiver is multicasting back to the sender), the receiver MUST
  monitor the Checkpoint Packet Seqnum to detect an SSRC time-out.  If
  an SSRC time-out is detected, the receiver MUST follow the
  instructions for SSRC time-outs described for the unicast case above.

  Finally, we note that the closed-loop policy is suitable for use in
  RTP/RTCP sessions that use multicast transport.  However, aspects of
  the closed-loop policy do not scale well to sessions with large
  numbers of participants.  The sender state scales linearly with the
  number of receivers, as the sender needs to track the identity and
  M(k) value for each receiver k.  The average recovery journal size is
  not independent of the number of receivers, as the RTCP reporting
  interval backoff slows down the rate of a full update of M(k) values.
  The backoff algorithm may also increase the amount of ancillary state
  used by implementations of the normative sender and receiver
  behaviors defined in Section 4.

C.2.2.3.  The open-loop Sending Policy

  The open-loop policy is suitable for sessions that are not able to
  implement the receiver-to-sender feedback required by the closed-loop
  policy, and that are also not able to use the anchor policy because
  of bandwidth constraints.

  The open-loop policy does not place constraints on how a sender
  chooses the checkpoint packet for each packet in the stream.  In the
  absence of such constraints, a receiver may find that the recovery
  journal in the packet that ends a loss event has a checkpoint history
  that does not cover the entire loss event.  We refer to loss events
  of this type as uncovered loss events.




Lazzaro & Wawrzynek         Standards Track                   [Page 108]

RFC 4695              RTP Payload Format for MIDI          November 2006


  To ensure that uncovered loss events do not compromise the recovery
  journal mandate, the open-loop policy assigns specific recovery tasks
  to senders, receivers, and the creators of session descriptions.  The
  underlying premise of the open-loop policy is that the indefinite
  artifacts produced during uncovered loss events fall into two
  classes.

  One class of artifacts is recoverable indefinite artifacts.
  Receivers are able to repair recoverable artifacts that occur during
  an uncovered loss event without intervention from the sender, at the
  potential cost of unpleasant transient artifacts.

  For example, after an uncovered loss event, receivers are able to
  repair indefinite artifacts due to NoteOff (0x8) commands that may
  have occurred during the loss event, by executing NoteOff commands
  for all active NoteOns commands.  This action causes a transient
  artifact (a sudden silent period in the performance), but ensures
  that no stuck notes sound indefinitely.  We refer to MIDI commands
  that are amenable to repair in this fashion as recoverable MIDI
  commands.

  A second class of artifacts is unrecoverable indefinite artifacts.
  If this class of artifact occurs during an uncovered loss event, the
  receiver is not able to repair the stream.

  For example, after an uncovered loss event, receivers are not able to
  repair indefinite artifacts due to Control Change (0xB) Channel
  Volume (controller number 7) commands that have occurred during the
  loss event.  A repair is impossible because the receiver has no way
  of determining the data value of a lost Channel Volume command.  We
  refer to MIDI commands that are fragile in this way as unrecoverable
  MIDI commands.

  The open-loop policy does not specify how to partition the MIDI
  command set into recoverable and unrecoverable commands.  Instead, it
  assumes that the creators of the session descriptions are able to
  come to agreement on a suitable recoverable/unrecoverable MIDI
  command partition for an application.

  Given these definitions, we now state the normative requirements for
  the open-loop policy.

  In the open-loop policy, the creators of the session description MUST
  use the ch_anchor parameter (defined in Appendix C.2.3) to protect
  all unrecoverable MIDI command types from indefinite artifacts, or
  alternatively MUST use the cm_unused parameter (defined in Appendix





Lazzaro & Wawrzynek         Standards Track                   [Page 109]

RFC 4695              RTP Payload Format for MIDI          November 2006


  C.1) to exclude the command types from the stream.  These options act
  to shield command types from artifacts during an uncovered loss
  event.

  In the open-loop policy, receivers MUST examine the Checkpoint Packet
  Seqnum field of the recovery journal header after every loss event,
  to check if the loss event is an uncovered loss event.  Section 5
  shows how to perform this check.  If an uncovered loss event has
  occurred, a receiver MUST perform indefinite artifact recovery for
  all MIDI command types that are not shielded by ch_anchor and
  cm_unused parameter assignments in the session description.

  The open-loop policy does not place specific constraints on the
  sender.  However, the open-loop policy works best if the sender
  manages the size of the checkpoint history to ensure that uncovered
  losses occur infrequently, by taking into account the delay and loss
  characteristics of the network.  Also, as each checkpoint packet
  change incurs the risk of an uncovered loss, senders should only move
  the checkpoint if it reduces the size of the journal.

C.2.3.  Recovery Journal Chapter Inclusion Parameters

  The recovery journal chapter definitions (Appendices A-B) specify
  under what conditions a chapter MUST appear in the recovery journal.
  In most cases, the definition states that if a certain command
  appears in the checkpoint history, a certain chapter type MUST appear
  in the recovery journal to protect the command.

  In this section, we describe the chapter inclusion parameters.  These
  parameters modify the conditions under which a chapter appears the
  journal.  These parameters are essential to the use of the open-loop
  policy (Appendix C.2.2.3) and may also be used to simplify
  implementations of the closed-loop (Appendix C.2.2.2) and anchor
  (Appendix C.2.2.1) policies.

  Each parameter represents a type of chapter inclusion semantics.  An
  assignment to a parameter declares which chapters (or chapter
  subsets) obey the inclusion semantics.  We describe the assignment
  syntax for these parameters later in this section.

  A party MUST NOT accept chapter inclusion parameter values that
  violate the recovery journal mandate (Section 4).  All assignments of
  the subsetting parameters (cm_used and cm_unused) MUST precede the
  first assignment of a chapter inclusion parameter in the parameter
  list.






Lazzaro & Wawrzynek         Standards Track                   [Page 110]

RFC 4695              RTP Payload Format for MIDI          November 2006


  Below, we normatively define the semantics of the chapter inclusion
  parameters.  For clarity, we define the action of parameters on
  complete chapters.  If a parameter is assigned a subset of a chapter,
  the definition applies only to the chapter subset.

    o  ch_never.  A chapter assigned to the ch_never parameter MUST NOT
       appear in the recovery journal (Appendix A.4.1-2 defines
       exceptions to this rule for Chapter M).  To signal the exclusion
       of a chapter from the journal, an assignment to ch_never MUST be
       made, even if the commands coded by the chapter are assigned to
       cm_unused.  This rule simplifies the handling of commands types
       that may be coded in several chapters.

    o  ch_default.  A chapter assigned to the ch_default parameter MUST
       follow the default semantics for the chapter, as defined in
       Appendices A-B.

    o  ch_anchor.  A chapter assigned to the ch_anchor MUST obey a
       modified version of the default chapter semantics.  In the
       modified semantics, all references to the checkpoint history are
       replaced with references to the session history, and all
       references to the checkpoint packet are replaced with references
       to the first packet sent in the stream.

  Parameter assignments obey the following syntax (see Appendix D for
  ABNF):

    <parameter> = [channel list]<chapter list>[field list]

  The chapter list is mandatory; the channel and field lists are
  optional.  Multiple assignments to parameters have a cumulative
  effect and are applied in the order of parameter appearance in a
  media description.

  To determine the semantics of a list of chapter inclusion parameter
  assignments, we begin by assuming an implicit assignment of all
  channel and system chapters to the ch_default parameter, with the
  default values for the channel list and field list for each chapter
  that are defined below.

  We then interpret the semantics of the actual parameter assignments,
  using the rules below.

  A later assignment of a chapter to the same parameter expands the
  scope of the earlier assignment.  In most cases, a later assignment
  of a chapter to a different parameter cancels (partially or
  completely) the effect of an earlier assignment.




Lazzaro & Wawrzynek         Standards Track                   [Page 111]

RFC 4695              RTP Payload Format for MIDI          November 2006


  The chapter list specifies the channel or system chapters for which
  the parameter applies.  The chapter list is a concatenated sequence
  of one or more of the letters corresponding to the chapter types
  (ACDEFMNPQTVWX).  In addition, the list may contain one or more of
  the letters for the sub-chapter types (BGHJKYZ) of System Chapter D.

  The letters in a chapter list MUST be uppercase and MUST appear in
  alphabetical order.  Letters other than (ABCDEFGHJKMNPQTVWXYZ) that
  appear in the chapter list MUST be ignored.

  The channel list specifies the channel journals for which this
  parameter applies; if no channel list is provided, the parameter
  applies to all channel journals.  The channel list takes the form of
  a list of channel numbers (0 through 15) and dash-separated channel
  number ranges (i.e., 0-5, 8-12, etc.).  Dots (i.e., "." characters)
  separate elements in the channel list.

  Several of the systems chapters may be configured to have special
  semantics.  Configuration occurs by specifying a channel list for the
  systems channel, using the coding described below (note that MIDI
  Systems commands do not have a "channel", and thus the original
  purpose of the channel list does not apply to systems chapters).  The
  expression "the digit N" in the text below refers to the inclusion of
  N as a "channel" in the channel list for a systems chapter.

  For the J and K Chapter D sub-chapters (undefined System Common), the
  digit 0 codes that the parameter applies to the LEGAL field of the
  associated command log (Figure B.1.4 of Appendix B.1), the digit 1
  codes that the parameter applies to the VALUE field of the command
  log, and the digit 2 codes that the parameter applies to the COUNT
  field of the command log.

  For the Y and Z Chapter D sub-chapters (undefined System Real-time),
  the digit 0 codes that the parameter applies to the LEGAL field of
  the associated command log (Figure B.1.5 of Appendix B.1) and the
  digit 1 codes that the parameter applies to the COUNT field of the
  command log.

  For Chapter Q (Sequencer State Commands), the digit 0 codes that the
  parameter applies to the default Chapter Q definition, which forbids
  the TIME field.  The digit 1 codes that the parameter applies to the
  optional Chapter Q definition, which supports the TIME field.

  The syntax for field lists follows the syntax for channel lists.  If
  no field list is provided, the parameter applies to all controller or
  note numbers.  For Chapter C, if no field list is provided, the
  controller numbers do not use enhanced Chapter C encoding (Appendix
  A.3.3).



Lazzaro & Wawrzynek         Standards Track                   [Page 112]

RFC 4695              RTP Payload Format for MIDI          November 2006


  For Chapter C, the field list may take on values in the range 0 to
  255.  A field value X in the range 0-127 refers to a controller
  number X, and indicates that the controller number does not use
  enhanced Chapter C encoding.  A field value X in the range 128-255
  refers to a controller number "X minus 128" and indicates the
  controller number does use the enhanced Chapter C encoding.

  Assignments made to configure the Chapter C encoding method for a
  controller number MUST be made to the ch_default or ch_anchor
  parameters, as assignments to ch_never act to exclude the number from
  the recovery journal (and thus the indicated encoding method is
  irrelevant).

  A Chapter C field list MUST NOT encode conflicting information about
  the enhanced encoding status of a particular controller number.  For
  example, values 0 and 128 MUST NOT both be coded by a field list.

  For Chapter M, the field list codes the Registered Parameter Numbers
  (RPNs) and Non-Registered Parameter Numbers (NRPNs) for which the
  parameter applies.  The number range 0-16383 specifies RPNs, the
  number range 16384-32767 specifies NRPNs (16384 corresponds to NRPN
  0, 32767 corresponds to NRPN 16383).

  For Chapters N and A, the field list codes the note numbers for which
  the parameter applies.  The note number range specified for Chapter N
  also applies to Chapter E.

  For Chapter E, the digit 0 codes that the parameter applies to
  Chapter E note logs whose V bit is set to 0, and the digit 1 codes
  that the parameter applies to note logs whose V bit is set to 1.

  For Chapter X, the field list codes the number of data octets that
  may appear in a SysEx command that is coded in the chapter.  Thus,
  the field list 0-255 specifies SysEx commands with 255 or fewer data
  octets, the field list 256-4294967295 specifies SysEx commands with
  more than 255 data octets but excludes commands with 255 or fewer
  data octets, and the field list 0 excludes all commands.

  A secondary parameter assignment syntax customizes Chapter X (see
  Appendix D for complete ABNF):

    <parameter> = "__" <h-list> ["_" <h-list>] "__"

  The assignment defines a class of SysEx commands whose Chapter X
  coding obeys the semantics of the assigned parameter.  The command
  class is specified by listing the permitted values of the first N





Lazzaro & Wawrzynek         Standards Track                   [Page 113]

RFC 4695              RTP Payload Format for MIDI          November 2006


  data octets that follow the SysEx 0xF0 command octet.  Any SysEx
  command whose first N data octets match the list is a member of the
  class.

  Each <h-list> defines a data octet of the command, as a dot-separated
  (".") list of one or more hexadecimal constants (such as "7F") or
  dash-separated hexadecimal ranges (such as "01-1F").  Underscores
  ("_") separate each <h-list>.  Double-underscores ("__") delineate
  the data octet list.

  Using this syntax, each assignment specifies a single SysEx command
  class.  Session descriptions may use several assignments to the same
  (or different) parameters to specify complex Chapter X behaviors.
  The ordering behavior of multiple assignments follows the guidelines
  for chapter parameter assignments described earlier in this section.

  The example session description below illustrates the use of the
  chapter inclusion parameters:

  v=0
  o=lazzaro 2520644554 2838152170 IN IP6 first.example.net
  s=Example
  t=0 0
  m=audio 5004 RTP/AVP 96
  c=IN IP6 2001:DB80::7F2E:172A:1E24
  a=rtpmap:96 rtp-midi/44100
  a=fmtp:96 j_update=open-loop; cm_unused=ABCFGHJKMQTVWXYZ;
  cm_used=__7E_00-7F_09_01.02.03__;
  cm_used=__7F_00-7F_04_01.02__; cm_used=C7.64;
  ch_never=ABCDEFGHJKMQTVWXYZ; ch_never=4.11-13N;
  ch_anchor=P; ch_anchor=C7.64;
  ch_anchor=__7E_00-7F_09_01.02.03__;
  ch_anchor=__7F_00-7F_04_01.02__

  (The a=fmtp line has been wrapped to fit the page to accommodate
   memo formatting restrictions; it comprises a single line in SDP.)

  The j_update parameter codes that the stream uses the open-loop
  policy.  Most MIDI command-types are assigned to cm_unused and thus
  do not appear in the stream.  As a consequence, the assignments to
  the first ch_never parameter reflect that most chapters are not in
  use.

  Chapter N for several MIDI channels is assigned to ch_never.  Chapter
  N for MIDI channels other than 4, 11, 12, and 13 may appear in the
  recovery journal, using the (default) ch_default semantics.  In
  practice, this assignment pattern would reflect knowledge about a
  resilient rendering method in use for the excluded channels.



Lazzaro & Wawrzynek         Standards Track                   [Page 114]

RFC 4695              RTP Payload Format for MIDI          November 2006


  The MIDI Program Change command and several MIDI Control Change
  controller numbers are assigned to ch_anchor.  Note that the ordering
  of the ch_anchor chapter C assignment after the ch_never command acts
  to override the ch_never assignment for the listed controller numbers
  (7 and 64).

  The assignment of command-type X to cm_unused excludes most SysEx
  commands from the stream.  Exceptions are made for General MIDI
  System On/Off commands and for the Master Volume and Balance
  commands, via the use of the secondary assignment syntax.  The
  cm_used assignment codes the exception, and the ch_anchor assignment
  codes how these commands are protected in Chapter X.

C.3.  Configuration Tools: Timestamp Semantics

  The MIDI command section of the payload format consists of a list of
  commands, each with an associated timestamp.  The semantics of
  command timestamps may be set during session configuration, using the
  parameters we describe in this section

  The parameter "tsmode" specifies the timestamp semantics for a
  stream.  The parameter takes on one of three token values: "comex",
  "async", or "buffer".

  The default "comex" value specifies that timestamps code the
  execution time for a command (Appendix C.3.1) and supports the
  accurate transcoding Standard MIDI Files (SMFs, [MIDI]).  The "comex"
  value is also RECOMMENDED for new MIDI user-interface controller
  designs.  The "async" value specifies an asynchronous timestamp
  sampling algorithm for time-of-arrival sources (Appendix C.3.2).  The
  "buffer" value specifies a synchronous timestamp sampling algorithm
  (Appendix C.3.3) for time-of-arrival sources.

  Ancillary parameters MAY follow tsmode in a media description.  We
  define these parameters in Appendices C.3.2-3 below.

C.3.1.  The comex Algorithm

  The default "comex" (COMmand EXecution) tsmode value specifies the
  execution time for the command.  With comex, the difference between
  two timestamps indicates the time delay between the execution of the
  commands.  This difference may be zero, coding simultaneous
  execution.

  The comex interpretation of timestamps works well for transcoding a
  Standard MIDI File (SMF, [MIDI]) into an RTP MIDI stream, as SMFs
  code a timestamp for each MIDI command stored in the file.  To
  transcode an SMF that uses metric time markers, use the SMF tempo map



Lazzaro & Wawrzynek         Standards Track                   [Page 115]

RFC 4695              RTP Payload Format for MIDI          November 2006


  (encoded in the SMF as meta-events) to convert metric SMF timestamp
  units into seconds-based RTP timestamp units.

  New MIDI controller designs (piano keyboard, drum pads, etc.) that
  support RTP MIDI and that have direct access to sensor data SHOULD
  use comex interpretation for timestamps, so that simultaneous
  gestural events may be accurately coded by RTP MIDI.

  Comex is a poor choice for transcoding MIDI 1.0 DIN cables [MIDI],
  for a reason that we will now explain.  A MIDI DIN cable is an
  asynchronous serial protocol (320 microseconds per MIDI byte).  MIDI
  commands on a DIN cable are not tagged with timestamps.  Instead,
  MIDI DIN receivers infer command timing from the time of arrival of
  the bytes.  Thus, two two-byte MIDI commands that occur at a source
  simultaneously are encoded on a MIDI 1.0 DIN cable with a 640
  microsecond time offset.  A MIDI DIN receiver is unable to tell if
  this time offset existed in the source performance or is an artifact
  of the serial speed of the cable.  However, the RTP MIDI comex
  interpretation of timestamps declares that a timestamp offset between
  two commands reflects the timing of the source performance.

  This semantic mismatch is the reason that comex is a poor choice for
  transcoding MIDI DIN cables.  Note that the choice of the RTP
  timestamp rate (Section 6.1-2 in the main text) cannot fix this
  inaccuracy issue.  In the sections that follow, we describe two
  alternative timestamp interpretations ("async" and "buffer") that are
  a better match to MIDI 1.0 DIN cable timing, and to other MIDI time-
  of-arrival sources.

  The "octpos", "linerate", and "mperiod" ancillary parameters (defined
  below) SHOULD NOT be used with comex.

C.3.2.  The async Algorithm

  The "async" tsmode value specifies the asynchronous sampling of a
  MIDI time-of-arrival source.  In asynchronous sampling, the moment an
  octet is received from a source, it is labelled with a wall-clock
  time value.  The time value has RTP timestamp units.

  The "octpos" ancillary parameter defines how RTP command timestamps
  are derived from octet time values.  If octpos has the token value
  "first", a timestamp codes the time value of the first octet of the
  command.  If octpos has the token value "last", a timestamp codes the
  time value of the last octet of the command.  If the octpos parameter
  does not appear in the media description, the sender does not know
  which octet of the command the timestamp references (for example, the
  sender may be relying on an operating system service that does not
  specify this information).



Lazzaro & Wawrzynek         Standards Track                   [Page 116]

RFC 4695              RTP Payload Format for MIDI          November 2006


  The octpos semantics refer to the first or last octet of a command as
  it appears on a time-of-arrival MIDI source, not as it appears in an
  RTP MIDI packet.  This distinction is significant because the RTP
  coding may contain octets that are not present in the source.  For
  example, the status octet of the first MIDI command in a packet may
  have been added to the MIDI stream during transcoding, to comply with
  the RTP MIDI running status requirements (Section 3.2).

  The "linerate" ancillary parameter defines the timespan of one MIDI
  octet on the transmission medium of the MIDI source to be sampled
  (such as a MIDI 1.0 DIN cable).  The parameter has units of
  nanoseconds, and takes on integral values.  For MIDI 1.0 DIN cables,
  the correct linerate value is 320000 (this value is also the default
  value for the parameter).

  We now show a session description example for the async algorithm.
  Consider a sender that is transcoding a MIDI 1.0 DIN cable source
  into RTP.  The sender runs on a computing platform that assigns time
  values to every incoming octet of the source, and the sender uses the
  time values to label the first octet of each command in the RTP
  packet.  This session description describes the transcoding:

  v=0
  o=lazzaro 2520644554 2838152170 IN IP4 first.example.net
  s=Example
  t=0 0
  m=audio 5004 RTP/AVP 96
  c=IN IP4 192.0.2.94
  a=rtpmap:96 rtp-midi/44100
  a=sendonly
  a=fmtp:96 tsmode=async; linerate=320000; octpos=first

C.3.3.  The buffer Algorithm

  The "buffer" tsmode value specifies the synchronous sampling of a
  MIDI time-of-arrival source.

  In synchronous sampling, octets received from a source are placed in
  a holding buffer upon arrival.  At periodic intervals, the RTP sender
  examines the buffer.  The sender removes complete commands from the
  buffer and codes those commands in an RTP packet.  The command
  timestamp codes the moment of buffer examination, expressed in RTP
  timestamp units.  Note that several commands may have the same
  timestamp value.

  The "mperiod" ancillary parameter defines the nominal periodic
  sampling interval.  The parameter takes on positive integral values
  and has RTP timestamp units.



Lazzaro & Wawrzynek         Standards Track                   [Page 117]

RFC 4695              RTP Payload Format for MIDI          November 2006


  The "octpos" ancillary parameter, defined in Appendix C.3.1 for
  asynchronous sampling, plays a different role in synchronous
  sampling.  In synchronous sampling, the parameter specifies the
  timestamp semantics of a command whose octets span several sampling
  periods.

  If octpos has the token value "first", the timestamp reflects the
  arrival period of the first octet of the command.  If octpos has the
  token value "last", the timestamp reflects the arrival period of the
  last octet of the command.  The octpos semantics refer to the first
  or last octet of the command as it appears on a time-of-arrival
  source, not as it appears in the RTP packet.

  If the octpos parameter does not appear in the media description, the
  timestamp MAY reflect the arrival period of any octet of the command;
  senders use this option to signal a lack of knowledge about the
  timing details of the buffering process at sub-command granularity.

  We now show a session description example for the buffer algorithm.
  Consider a sender that is transcoding a MIDI 1.0 DIN cable source
  into RTP.  The sender runs on a computing platform that places source
  data into a buffer upon receipt.  The sender polls the buffer 1000
  times a second, extracts all complete commands from the buffer, and
  places the commands in an RTP packet.  This session description
  describes the transcoding:

  v=0
  o=lazzaro 2520644554 2838152170 IN IP6 first.example.net
  s=Example
  t=0 0
  m=audio 5004 RTP/AVP 96
  c=IN IP6 2001:DB80::7F2E:172A:1E24
  a=rtpmap:96 rtp-midi/44100
  a=sendonly
  a=fmtp:96 tsmode=buffer; linerate=320000; octpos=last; mperiod=44

  The mperiod value of 44 is derived by dividing the clock rate
  specified by the rtpmap attribute (44100 Hz) by the 1000 Hz buffer
  sampling rate and rounding to the nearest integer.  Command
  timestamps might not increment by exact multiples of 44, as the
  actual sampling period might not precisely match the nominal mperiod
  value.

C.4.  Configuration Tools: Packet Timing Tools

  In this appendix, we describe session configuration tools for
  customizing the temporal behavior of MIDI stream packets.




Lazzaro & Wawrzynek         Standards Track                   [Page 118]

RFC 4695              RTP Payload Format for MIDI          November 2006


C.4.1.  Packet Duration Tools

  Senders control the granularity of a stream by setting the temporal
  duration ("media time") of the packets in the stream.  Short media
  times (20 ms or less) often imply an interactive session.  Longer
  media times (100 ms or more) usually indicate a content streaming
  session.  The RTP AVP profile [RFC3551] recommends audio packet media
  times in a range from 0 to 200 ms.

  By default, an RTP receiver dynamically senses the media time of
  packets in a stream and chooses the length of its playout buffer to
  match the stream.  A receiver typically sizes its playout buffer to
  fit several audio packets and adjusts the buffer length to reflect
  the network jitter and the sender timing fidelity.

  Alternatively, the packet media time may be statically set during
  session configuration.  Session descriptions MAY use the RTP MIDI
  parameter "rtp_ptime" to set the recommended media time for a packet.
  Session descriptions MAY also use the RTP MIDI parameter
  "rtp_maxptime" to set the maximum media time for a packet permitted
  in a stream.  Both parameters MAY be used together to configure a
  stream.

  The values assigned to the rtp_ptime and rtp_maxptime parameters have
  the units of the RTP timestamp for the stream, as set by the rtpmap
  attribute (see Section 6.1).  Thus, if rtpmap sets the clock rate of
  a stream to 44100 Hz, a maximum packet media time of 10 ms is coded
  by setting rtp_maxptime=441.  As stated in the Appendix C preamble,
  the senders and receivers of a stream MUST agree on common values for
  rtp_ptime and rtp_maxptime if the parameters appear in the media
  description for the stream.

  0 ms is a reasonable media time value for MIDI packets and is often
  used in low-latency interactive applications.  In a packet with a 0
  ms media time, all commands execute at the instant they are coded by
  the packet timestamp.  The session description below configures all
  packets in the stream to have 0 ms media time:

  v=0
  o=lazzaro 2520644554 2838152170 IN IP4 first.example.net
  s=Example
  t=0 0
  m=audio 5004 RTP/AVP 96
  c=IN IP4 192.0.2.94
  a=rtpmap:96 rtp-midi/44100
  a=fmtp:96 rtp_ptime=0; rtp_maxptime=0





Lazzaro & Wawrzynek         Standards Track                   [Page 119]

RFC 4695              RTP Payload Format for MIDI          November 2006


  The session attributes ptime and maxptime [RFC4566] MUST NOT be used
  to configure an RTP MIDI stream.  Sessions MUST use rtp_ptime in lieu
  of ptime and MUST use rtp_maxptime in lieu of maxptime.  RTP MIDI
  defines its own parameters for media time configuration because 0 ms
  values for ptime and maxptime are forbidden by [RFC3264] but are
  essential for certain applications of RTP MIDI.

  See the Appendix C.7 examples for additional discussion about using
  rtp_ptime and rtp_maxptime for session configuration.

C.4.2.  The guardtime Parameter

  RTP permits a sender to stop sending audio packets for an arbitrary
  period of time during a session.  When sending resumes, the RTP
  sequence number series continues unbroken, and the RTP timestamp
  value reflects the media time silence gap.

  This RTP feature has its roots in telephony, but it is also well
  matched to interactive MIDI sessions, as players may fall silent for
  several seconds during (or between) songs.

  Certain MIDI applications benefit from a slight enhancement to this
  RTP feature.  In interactive applications, receivers may use on-line
  network models to guide heuristics for handling lost and late RTP
  packets.  These models may work poorly if a sender ceases packet
  transmission for long periods of time.

  Session descriptions may use the parameter "guardtime" to set a
  minimum sending rate for a media session.  The value assigned to
  guardtime codes the maximum separation time between two sequential
  packets, as expressed in RTP timestamp units.

  Typical guardtime values are 500-2000 ms.  This value range is not a
  normative bound, and parties SHOULD be prepared to process values
  outside this range.

  The congestion control requirements for sender implementations
  (described in Section 8 and [RFC3550]) take precedence over the
  guardtime parameter.  Thus, if the guardtime parameter requests a
  minimum sending rate, but sending at this rate would violate the
  congestion control requirements, senders MUST ignore the guardtime
  parameter value.  In this case, senders SHOULD use the lowest minimum
  sending rate that satisfies the congestion control requirements.








Lazzaro & Wawrzynek         Standards Track                   [Page 120]

RFC 4695              RTP Payload Format for MIDI          November 2006


  Below, we show a session description that uses the guardtime
  parameter.

  v=0
  o=lazzaro 2520644554 2838152170 IN IP6 first.example.net
  s=Example
  t=0 0
  m=audio 5004 RTP/AVP 96
  c=IN IP6 2001:DB80::7F2E:172A:1E24
  a=rtpmap:96 rtp-midi/44100
  a=fmtp:96 guardtime=44100; rtp_ptime=0; rtp_maxptime=0

C.5.  Configuration Tools: Stream Description

  As we discussed in Section 2.1, a party may send several RTP MIDI
  streams in the same RTP session, and several RTP sessions that carry
  MIDI may appear in a multimedia session.

  By default, the MIDI name space (16 channels + systems) of each RTP
  stream sent by a party in a multimedia session is independent.  By
  independent, we mean three distinct things:

    o  If a party sends two RTP MIDI streams (A and B), MIDI voice
       channel 0 in stream A is a different "channel 0" than MIDI voice
       channel 0 in stream B.

    o  MIDI voice channel 0 in stream B is not considered to be
       "channel 16" of a 32-channel MIDI voice channel space whose
       "channel 0" is channel 0 of stream A.

    o  Streams sent by different parties over different RTP sessions,
       or over the same RTP session but with different payload type
       numbers, do not share the association that is shared by a MIDI
       cable pair that cross-connects two devices in a MIDI 1.0 DIN
       network.  By default, this association is only held by streams
       sent by different parties in the same RTP session that use the
       same payload type number.

  In this appendix, we show how to express that specific RTP MIDI
  streams in a multimedia session are not independent but instead are
  related in one of the three ways defined above.  We use two tools to
  express these relations:

    o  The musicport parameter.  This parameter is assigned a non-
       negative integer value between 0 and 4294967295.  It appears in
       the fmtp lines of payload types.





Lazzaro & Wawrzynek         Standards Track                   [Page 121]

RFC 4695              RTP Payload Format for MIDI          November 2006


    o  The FID grouping attribute [RFC3388] signals that several RTP
       sessions in a multimedia session are using the musicport
       parameter to express an inter-session relationship.

  If a multimedia session has several payload types whose musicport
  parameters are assigned the same integer value, streams using these
  payload types share an "identity relationship" (including streams
  that use the same payload type).  Streams in an identity relationship
  share two properties:

    o  Identity relationship streams sent by the same party target the
       same MIDI name space.  Thus, if streams A and B share an
       identity relationship, voice channel 0 in stream A is the same
       "channel 0" as voice channel 0 in stream B.

    o  Pairs of identity relationship streams that are sent by
       different parties share the association that is shared by a MIDI
       cable pair that cross-connects two devices in a MIDI 1.0 DIN
       network.

  A party MUST NOT send two RTP MIDI streams that share an identity
  relationship in the same RTP session.  Instead, each stream MUST be
  in a separate RTP session.  As explained in Section 2.1, this
  restriction is necessary to support the RTP MIDI method for the
  synchronization of streams that share a MIDI name space.

  If a multimedia session has several payload types whose musicport
  parameters are assigned sequential values (i.e., i, i+1, ... i+k),
  the streams using the payload types share an "ordered relationship".
  For example, if payload type A assigns 2 to musicport and payload
  type B assigns 3 to musicport, A and B are in an ordered
  relationship.

  Streams in an ordered relationship that are sent by the same party
  are considered by renderers to form a single larger MIDI space.  For
  example, if stream A has a musicport value of 2 and stream B has a
  musicport value of 3, MIDI voice channel 0 in stream B is considered
  to be voice channel 16 in the larger MIDI space formed by the
  relationship.  Note that it is possible for streams to participate in
  both an identity relationship and an ordered relationship.

  We now state several rules for using musicport:

    o  If streams from several RTP sessions in a multimedia session use
       the musicport parameter, the RTP sessions MUST be grouped using
       the FID grouping attribute defined in [RFC3388].





Lazzaro & Wawrzynek         Standards Track                   [Page 122]

RFC 4695              RTP Payload Format for MIDI          November 2006


    o  An ordered or identity relationship MUST NOT contain both native
       RTP MIDI streams and mpeg4-generic RTP MIDI streams.  An
       exception applies if a relationship consists of sendonly and
       recvonly (but not sendrecv) streams.  In this case, the sendonly
       streams MUST NOT contain both types of streams, and the recvonly
       streams MUST NOT contain both types of streams.

    o  It is possible to construct identity relationships that violate
       the recovery journal mandate (for example, sending NoteOns for a
       voice channel on stream A and NoteOffs for the same voice
       channel on stream B).  Parties MUST NOT generate (or accept)
       session descriptions that exhibit this flaw.

    o  Other payload formats MAY define musicport media type
       parameters.  Formats would define these parameters so that their
       sessions could be bundled into RTP MIDI name spaces.  The
       parameter definitions MUST be compatible with the musicport
       semantics defined in this appendix.

  As a rule, at most one payload type in a relationship may specify a
  MIDI renderer.  An exception to the rule applies to relationships
  that contain sendonly and recvonly streams but no sendrecv streams.
  In this case, one sendonly session and one recvonly session may each
  define a renderer.

  Renderer specification in a relationship may be done using the tools
  described in Appendix C.6.  These tools work for both native streams
  and mpeg4-generic streams.  An mpeg4-generic stream that uses the
  Appendix C.6 tools MUST set all "config" parameters to the empty
  string ("").

  Alternatively, for mpeg4-generic streams, renderer specification may
  be done by setting one "config" parameter in the relationship to the
  renderer configuration string, and all other config parameters to the
  empty string ("").

  We now define sender and receiver rules that apply when a party sends
  several streams that target the same MIDI name space.

  Senders MAY use the subsetting parameters (Appendix C.1) to predefine
  the partitioning of commands between streams, or they MAY use a
  dynamic partitioning strategy.

  Receivers that merge identity relationship streams into a single MIDI
  command stream MUST maintain the structural integrity of the MIDI
  commands coded in each stream during the merging process, in the same
  way that software that merges traditional MIDI 1.0 DIN cable flows is




Lazzaro & Wawrzynek         Standards Track                   [Page 123]

RFC 4695              RTP Payload Format for MIDI          November 2006


  responsible for creating a merged command flow compatible with
  [MIDI].

  Senders MUST partition the name space so that the rendered MIDI
  performance does not contain indefinite artifacts (as defined in
  Section 4).  This responsibility holds even if all streams are sent
  over reliable transport, as different stream latencies may yield
  indefinite artifacts.  For example, stuck notes may occur in a
  performance split over two TCP streams, if NoteOn commands are sent
  on one stream and NoteOff commands are sent on the other.

  Senders MUST NOT split a Registered Parameter Name (RPN) or Non-
  Registered Parameter Name (NRPN) transaction appearing on a MIDI
  channel across multiple identity relationship sessions.  Receivers
  MUST assume that the RPN/NRPN transactions that appear on different
  identity relationship sessions are independent and MUST preserve
  transactional integrity during the MIDI merge.

  A simple way to safely partition voice channel commands is to place
  all MIDI commands for a particular voice channel into the same
  session.  Safe partitioning of MIDI Systems commands may be more
  complicated for sessions that extensively use System Exclusive.

  We now show several session description examples that use the
  musicport parameter.

  Our first session description example shows two RTP MIDI streams that
  drive the same General MIDI decoder.  The sender partitions MIDI
  commands between the streams dynamically.  The musicport values
  indicate that the streams share an identity relationship.





















Lazzaro & Wawrzynek         Standards Track                   [Page 124]

RFC 4695              RTP Payload Format for MIDI          November 2006


  v=0
  o=lazzaro 2520644554 2838152170 IN IP4 first.example.net
  s=Example
  t=0 0
  a=group:FID 1 2
  c=IN IP4 192.0.2.94
  m=audio 5004 RTP/AVP 96
  a=rtpmap:96 mpeg4-generic/44100
  a=mid:1
  a=fmtp:96 streamtype=5; mode=rtp-midi; profile-level-id=12;
  config=7A0A0000001A4D546864000000060000000100604D54726B0
  000000600FF2F000; musicport=12
  m=audio 5006 RTP/AVP 96
  a=rtpmap:96 mpeg4-generic/44100
  a=mid:2
  a=fmtp:96 streamtype=5; mode=rtp-midi; config="";
  profile-level-id=12; musicport=12

  (The a=fmtp lines have been wrapped to fit the page to accommodate
   memo formatting restrictions; they comprise single lines in SDP.)

  Recall that Section 2.1 defines rules for streams that target the
  same MIDI name space.  Those rules, implemented in the example above,
  require that each stream resides in a separate RTP session, and that
  the grouping mechanisms defined in [RFC3388] signal an inter-session
  relationship.  The "group" and "mid" attribute lines implement this
  grouping mechanism.

  A variant on this example, whose session description is not shown,
  would use two streams in an identity relationship driving the same
  MIDI renderer, each with a different transport type.  One stream
  would use UDP and would be dedicated to real-time messages.  A second
  stream would use TCP [RFC4571] and would be used for SysEx bulk data
  messages.

















Lazzaro & Wawrzynek         Standards Track                   [Page 125]

RFC 4695              RTP Payload Format for MIDI          November 2006


  In the next example, two mpeg4-generic streams form an ordered
  relationship to drive a Structured Audio decoder with 32 MIDI voice
  channels.  Both streams reside in the same RTP session.

  v=0
  o=lazzaro 2520644554 2838152170 IN IP6 first.example.net
  s=Example
  t=0 0
  m=audio 5006 RTP/AVP 96 97
  c=IN IP6 2001:DB80::7F2E:172A:1E24
  a=rtpmap:96 mpeg4-generic/44100
  a=fmtp:96 streamtype=5; mode=rtp-midi; config="";
  profile-level-id=13; musicport=5
  a=rtpmap:97 mpeg4-generic/44100
  a=fmtp:97 streamtype=5; mode=rtp-midi; config="";
  profile-level-id=13; musicport=6; render=synthetic;
  rinit="audio/asc";
  url="http://example.com/cardinal.asc";
  cid="azsldkaslkdjqpwojdkmsldkfpe"

  (The a=fmtp lines have been wrapped to fit the page to accommodate
   memo formatting restrictions; they comprise single lines in SDP.)

  The sequential musicport values for the two sessions establish the
  ordered relationship.  The musicport=5 session maps to Structured
  Audio extended channels range 0-15, the musicport=6 session maps to
  Structured Audio extended channels range 16-31.

  Both config strings are empty.  The configuration data is specified
  by parameters that appear in the fmtp line of the second media
  description.  We define this configuration method in Appendix C.6.




















Lazzaro & Wawrzynek         Standards Track                   [Page 126]

RFC 4695              RTP Payload Format for MIDI          November 2006


  The next example shows two RTP MIDI streams (one recvonly, one
  sendonly) that form a "virtual sendrecv" session.  Each stream
  resides in a different RTP session (a requirement because sendonly
  and recvonly are RTP session attributes).

  v=0
  o=lazzaro 2520644554 2838152170 IN IP4 first.example.net
  s=Example
  t=0 0
  a=group:FID 1 2
  c=IN IP4 192.0.2.94
  m=audio 5004 RTP/AVP 96
  a=sendonly
  a=rtpmap:96 mpeg4-generic/44100
  a=mid:1
  a=fmtp:96 streamtype=5; mode=rtp-midi; profile-level-id=12;
  config=7A0A0000001A4D546864000000060000000100604D54726B0
  000000600FF2F000; musicport=12
  m=audio 5006 RTP/AVP 96
  a=recvonly
  a=rtpmap:96 mpeg4-generic/44100
  a=mid:2
  a=fmtp:96 streamtype=5; mode=rtp-midi; profile-level-id=12;
  config=7A0A0000001A4D546864000000060000000100604D54726B0
  000000600FF2F000; musicport=12

  (The a=fmtp lines have been wrapped to fit the page to accommodate
   memo formatting restrictions; they comprise single lines in SDP.)

  To signal the "virtual sendrecv" semantics, the two streams assign
  musicport to the same value (12).  As defined earlier in this
  section, pairs of identity relationship streams that are sent by
  different parties share the association that is shared by a MIDI
  cable pair that cross-connects two devices in a MIDI 1.0 network.  We
  use the term "virtual sendrecv" because streams sent by different
  parties in a true sendrecv session also have this property.

  As discussed in the preamble to Appendix C, the primary advantage of
  the virtual sendrecv configuration is that each party can customize
  the property of the stream it receives.  In the example above, each
  stream defines its own "config" string that could customize the
  rendering algorithm for each party (in fact, the particular strings
  shown in this example are identical, because General MIDI is not a
  configurable MPEG 4 renderer).







Lazzaro & Wawrzynek         Standards Track                   [Page 127]

RFC 4695              RTP Payload Format for MIDI          November 2006


C.6.  Configuration Tools: MIDI Rendering

  This appendix defines the session configuration tools for rendering.

  The "render" parameter specifies a rendering method for a stream.
  The parameter is assigned a token value that signals the top-level
  rendering class.  This memo defines four token values for render:
  "unknown", "synthetic", "api", and "null":

    o  An "unknown" renderer is a renderer whose nature is unspecified.
       It is the default renderer for native RTP MIDI streams.

    o  A "synthetic" renderer transforms the MIDI stream into audio
       output (or sometimes into stage lighting changes or other
       actions).  It is the default renderer for mpeg4-generic RTP MIDI
       streams.

    o  An "api" renderer presents the command stream to applications
       via an Application Programmer Interface (API).

    o  The "null" renderer discards the MIDI stream.

  The "null" render value plays special roles during Offer/Answer
  negotiations [RFC3264].  A party uses the "null" value in an answer
  to reject an offered renderer.  Note that rejecting a renderer is
  independent from rejecting a payload type (coded by removing the
  payload type from a media line) and rejecting a media stream (coded
  by zeroing the port of a media line that uses the renderer).

  Other render token values MAY be registered with IANA.  The token
  value MUST adhere to the ABNF for render tokens defined in Appendix
  D.  Registrations MUST include a complete specification of parameter
  value usage, similar in depth to the specifications that appear
  throughout Appendix C.6 for "synthetic" and "api" render values.  If
  a party is offered a session description that uses a render token
  value that is not known to the party, the party MUST NOT accept the
  renderer.  Options include rejecting the renderer (using the "null"
  value), the payload type, the media stream, or the session
  description.

  Other parameters MAY follow a render parameter in a parameter list.
  The additional parameters act to define the exact nature of the
  renderer.  For example, the "subrender" parameter (defined in
  Appendix C.6.2) specifies the exact nature of the renderer.

  Special rules apply to using the render parameter in an mpeg4-generic
  stream.  We define these rules in Appendix C.6.5.




Lazzaro & Wawrzynek         Standards Track                   [Page 128]

RFC 4695              RTP Payload Format for MIDI          November 2006


C.6.1.  The multimode Parameter

  A media description MAY contain several render parameters.  By
  default, if a parameter list includes several render parameters, a
  receiver MUST choose exactly one renderer from the list to render the
  stream.  The "multimode" parameter may be used to override this
  default.  We define two token values for multimode: "one" and "all":

    o  The default "one" value requests rendering by exactly one of the
       listed renderers.

    o  The "all" value requests the synchronized rendering of the RTP
       MIDI stream by all listed renderers, if possible.

  If the multimode parameter appears in a parameter list, it MUST
  appear before the first render parameter assignment.

  Render parameters appear in the parameter list in order of decreasing
  priority.  A receiver MAY use the priority ordering to decide which
  renderer(s) to retain in a session.

  If the "offer" in an Offer/Answer-style negotiation [RFC3264]
  contains a parameter list with one or more render parameters, the
  "answer" MUST set the render parameters of all unchosen renderers to
  "null".

C.6.2.  Renderer Specification

  The render parameter (Appendix C.6 preamble) specifies, in a broad
  sense, what a renderer does with a MIDI stream.  In this appendix, we
  describe the "subrender" parameter.  The token value assigned to
  subrender defines the exact nature of the renderer.  Thus, "render"
  and "subrender" combine to define a renderer, in the same way as MIME
  types and MIME subtypes combine to define a type of media [RFC2045].

  If the subrender parameter is used for a renderer definition, it MUST
  appear immediately after the render parameter in the parameter list.
  At most one subrender parameter may appear in a renderer definition.

  This document defines one value for subrender: the value "default".
  The "default" token specifies the use of the default renderer for the
  stream type (native or mpeg4-generic).  The default renderer for
  native RTP MIDI streams is a renderer whose nature is unspecified
  (see point 6 in Section 6.1 for details).  The default renderer for
  mpeg4-generic RTP MIDI streams is an MPEG 4 Audio Object Type whose
  ID number is 13, 14, or 15 (see Section 6.2 for details).





Lazzaro & Wawrzynek         Standards Track                   [Page 129]

RFC 4695              RTP Payload Format for MIDI          November 2006


  If a renderer definition does not use the subrender parameter, the
  value "default" is assumed for subrender.

  Other subrender token values may be registered with IANA.  We now
  discuss guidelines for registering subrender values.

  A subrender value is registered for a specific stream type (native or
  mpeg4-generic) and a specific render value (excluding "null" and
  "unknown").  Registrations for mpeg4-generic subrender values are
  restricted to new MPEG 4 Audio Object Types that accept MIDI input.
  The syntax of the token MUST adhere to the token definition in
  Appendix D.

  For "render=synthetic" renderers, a subrender value registration
  specifies an exact method for transforming the MIDI stream into audio
  (or sometimes into video or control actions, such as stage lighting).
  For standardized renderers, this specification is usually a pointer
  to a standards document, perhaps supplemented by RTP-MIDI-specific
  information.  For commercial products and open-source projects, this
  specification usually takes the form of instructions for interfacing
  the RTP MIDI stream with the product or project software.  A
  "render=synthetic" registration MAY specify additional Reset State
  commands for the renderer (Appendix A.1).

  A "render=api" subrender value registration specifies how an RTP MIDI
  stream interfaces with an API (Application Programmers Interface).
  This specification is usually a pointer to programmer's documentation
  for the API, perhaps supplemented by RTP-MIDI-specific information.

  A subrender registration MAY specify an initialization file (referred
  to in this document as an initialization data object) for the stream.
  The initialization data object MAY be encoded in the parameter list
  (verbatim or by reference) using the coding tools defined in Appendix
  C.6.3.  An initialization data object MUST have a registered
  [RFC4288] media type and subtype [RFC2045].

  For "render=synthetic" renderers, the data object usually encodes
  initialization data for the renderer (sample files, synthesis patch
  parameters, reverberation room impulse responses, etc.).

  For "render=api" renderers, the data object usually encodes data
  about the stream used by the API (for example, for an RTP MIDI stream
  generated by a piano keyboard controller, the manufacturer and model
  number of the keyboard, for use in GUI presentation).







Lazzaro & Wawrzynek         Standards Track                   [Page 130]

RFC 4695              RTP Payload Format for MIDI          November 2006


  Usually, only one initialization object is encoded for a renderer.
  If a renderer uses multiple data objects, the correct receiver
  interpretation of multiple data objects MUST be defined in the
  subrender registration.

  A subrender value registration may also specify additional
  parameters, to appear in the parameter list immediately after
  subrender.  These parameter names MUST begin with the subrender
  value, followed by an underscore ("_"), to avoid name space
  collisions with future RTP MIDI parameter names (for example, a
  parameter "foo_bar" defined for subrender value "foo").

  We now specify guidelines for interpreting the subrender parameter
  during session configuration.

  If a party is offered a session description that uses a renderer
  whose subrender value is not known to the party, the party MUST NOT
  accept the renderer.  Options include rejecting the renderer (using
  the "null" value), the payload type, the media stream, or the session
  description.

  Receivers MUST be aware of the Reset State commands (Appendix A.1)
  for the renderer specified by the subrender parameter and MUST insure
  that the renderer does not experience indefinite artifacts due to the
  presence (or the loss) of a Reset State command.

C.6.3.  Renderer Initialization

  If the renderer for a stream uses an initialization data object, an
  "rinit" parameter MUST appear in the parameter list immediately after
  the "subrender" parameter.  If the renderer parameter list does not
  include a subrender parameter (recall the semantics for "default" in
  Appendix C.6.2), the "rinit" parameter MUST appear immediately after
  the "render" parameter.

  The value assigned to the rinit parameter MUST be the media
  type/subtype [RFC2045] for the initialization data object.  If an
  initialization object type is registered with several media types,
  including audio, the assignment to rinit MUST use the audio media
  type.

  RTP MIDI supports several parameters for encoding initialization data
  objects for renderers in the parameter list: "inline", "url", and
  "cid".

  If the "inline", "url", and/or "cid" parameters are used by a
  renderer, these parameters MUST immediately follow the "rinit"
  parameter.



Lazzaro & Wawrzynek         Standards Track                   [Page 131]

RFC 4695              RTP Payload Format for MIDI          November 2006


  If a "url" parameter appears for a renderer, an "inline" parameter
  MUST NOT appear.  If an "inline" parameter appears for a renderer, a
  "url" parameter MUST NOT appear.  However, neither "url" or "inline"
  is required to appear.  If neither "url" or "inline" parameters
  follow "rinit", the "cid" parameter MUST follow "rinit".

  The "inline" parameter supports the inline encoding of the data
  object.  The parameter is assigned a double-quoted Base64 [RFC2045]
  encoding of the binary data object, with no line breaks.  Appendix
  E.4 shows an example that constructs an inline parameter value.

  The "url" parameter is assigned a double-quoted string representation
  of a Uniform Resource Locator (URL) for the data object.  The string
  MUST specify a HyperText Transport Protocol URL (HTTP, [RFC2616]).
  HTTP MAY be used over TCP or MAY be used over a secure network
  transport, such as the method described in [RFC2818].  The media
  type/subtype for the data object SHOULD be specified in the
  appropriate HTTP transport header.

  The "cid" parameter supports data object caching.  The parameter is
  assigned a double-quoted string value that encodes a globally unique
  identifier for the data object.

  A cid parameter MAY immediately follow an inline parameter, in which
  case the cid identifier value MUST be associated with the inline data
  object.

  If a url parameter is present, and if the data object for the URL is
  expected to be unchanged for the life of the URL, a cid parameter MAY
  immediately follow the url parameter.  The cid identifier value MUST
  be associated with the data object for the URL.  A cid parameter
  assigned to the same identifier value SHOULD be specified following
  the data object type/subtype in the appropriate HTTP transport
  header.

  If a url parameter is present, and if the data object for the URL is
  expected to change during the life of the URL, a cid parameter MUST
  NOT follow the url parameter.  A receiver interprets the presence of
  a cid parameter as an indication that it is safe to use a cached copy
  of the url data object; the absence of a cid parameter is an
  indication that it is not safe to use a cached copy, as it may
  change.

  Finally, the cid parameter MAY be used without the inline and url
  parameters.  In this case, the identifier references a local or
  distributed catalog of data objects.





Lazzaro & Wawrzynek         Standards Track                   [Page 132]

RFC 4695              RTP Payload Format for MIDI          November 2006


  In most cases, only one data object is coded in the parameter list
  for each renderer.  For example, the default renderer for mpeg4-
  generic streams uses a single data object (see Appendix C.6.5 for
  example usage).

  However, a subrender registration MAY permit the use of multiple data
  objects for a renderer.  If multiple data objects are encoded for a
  renderer, each object encoding begins with an "rinit" parameter,
  followed by "inline", "url", and/or "cid" parameters.

  Initialization data objects MAY encapsulate a Standard MIDI File
  (SMF).  By default, the SMFs that are encapsulated in a data object
  MUST be ignored by an RTP MIDI receiver.  We define parameters to
  override this default in Appendix C.6.4.

  To end this section, we offer guidelines for registering media types
  for initialization data objects.  These guidelines are in addition to
  the information in [RFC4288] [RFC4289].

  Some initialization data objects are also capable of encoding MIDI
  note information and thus complete audio performances.  These objects
  SHOULD be registered using the "audio" media type, so that the
  objects may also be used for store-and-forward rendering, and
  "application" media type, to support editing tools.  Initialization
  objects without note storage, or initialization objects for non-audio
  renderers, SHOULD be registered only for an "application" media type.

C.6.4.  MIDI Channel Mapping

  In this appendix, we specify how to map MIDI name spaces (16 voice
  channels + systems) onto a renderer.

  In the general case:

    o  A session may define an ordered relationship (Appendix C.5) that
       presents more than one MIDI name space to a renderer.

    o  A renderer may accept an arbitrary number of MIDI name spaces,
       or it may expect a specific number of MIDI name spaces.

  A session description SHOULD provide a compatible MIDI name space to
  each renderer in the session.  If a receiver detects that a session
  description has too many or too few MIDI name spaces for a renderer,
  MIDI data from extra stream name spaces MUST be discarded, and extra
  renderer name spaces MUST NOT be driven with MIDI data (except as
  described in Appendix C.6.4.1, below).





Lazzaro & Wawrzynek         Standards Track                   [Page 133]

RFC 4695              RTP Payload Format for MIDI          November 2006


  If a parameter list defines several renderers and assigns the "all"
  token value to the multimode parameter, the same name space is
  presented to each renderer.  However, the "chanmask" parameter may be
  used to mask out selected voice channels to each renderer.  We define
  "chanmask" and other MIDI management parameters in the sub-sections
  below.

C.6.4.1.  The smf_info Parameter

  The smf_info parameter defines the use of the SMFs encapsulated in
  renderer data objects (if any).  The smf_info parameter also defines
  the use of SMFs coded in the smf_inline, smf_url, and smf_cid
  parameters (defined in Appendix C.6.4.2).

  The smf_info parameter describes the "render" parameter that most
  recently precedes it in the parameter list.  The smf_info parameter
  MUST NOT appear in parameter lists that do not use the "render"
  parameter, and MUST NOT appear before the first use of "render" in
  the parameter list.

  We define three token values for smf_info: "ignore", "sdp_start", and
  "identity":

    o  The "ignore" value indicates that the SMFs MUST be discarded.
       This behavior is the default SMF rendering behavior.

    o  The "sdp_start" value codes that SMFs MUST be rendered, and that
       the rendering MUST begin upon the acceptance of the session
       description.  If a receiver is offered a session description
       with a renderer that uses an smf_info parameter set to
       sdp_start, and if the receiver does not support rendering SMFs,
       the receiver MUST NOT accept the renderer associated with the
       smf_info parameter.  Options include rejecting the renderer (by
       setting the "render" parameter to "null"), the payload type, the
       media stream, or the entire session description.

    o  The "identity" value indicates that the SMFs code the identity
       of the renderer.  The value is meant for use with the "unknown"
       renderer (see Appendix C.6 preamble).  The MIDI commands coded
       in the SMF are informational in nature and MUST NOT be presented
       to a renderer for audio presentation.  In typical use, the SMF
       would use SysEx Identity Reply commands (F0 7E nn 06 02, as
       defined in [MIDI]) to identify devices, and use device-specific
       SysEx commands to describe current state of the devices (patch
       memory contents, etc.).

  Other smf_info token values MAY be registered with IANA.  The token
  value MUST adhere to the ABNF for render tokens defined in Appendix



Lazzaro & Wawrzynek         Standards Track                   [Page 134]

RFC 4695              RTP Payload Format for MIDI          November 2006


  D.  Registrations MUST include a complete specification of parameter
  usage, similar in depth to the specifications that appear in this
  appendix for "sdp_start" and "identity".

  If a party is offered a session description that uses an smf_info
  parameter value that is not known to the party, the party MUST NOT
  accept the renderer associated with the smf_info parameter.  Options
  include rejecting the renderer, the payload type, the media stream,
  or the entire session description.

  We now define the rendering semantics for the "sdp_start" token value
  in detail.

  The SMFs and RTP MIDI streams in a session description share the same
  MIDI name space(s).  In the simple case of a single RTP MIDI stream
  and a single SMF, the SMF MIDI commands and RTP MIDI commands are
  merged into a single name space and presented to the renderer.  The
  indefinite artifact responsibilities for merged MIDI streams defined
  in Appendix C.5 also apply to merging RTP and SMF MIDI data.

  If a payload type codes multiple SMFs, the SMF name spaces are
  presented as an ordered entity to the renderer.  To determine the
  ordering of SMFs for a renderer (which SMF is "first", which is
  "second", etc.), use the following rules:

    o  If the renderer uses a single data object, the order of
       appearance of the SMFs in the object's internal structure
       defines the order of the SMFs (the earliest SMF in the object is
       "first", the next SMF in the object is "second", etc.).

    o  If multiple data objects are encoded for a renderer, the
       appearance of each data object in the parameter list sets the
       relative order of the SMFs encoded in each data object (SMFs
       encoded in parameters that appear earlier in the list are
       ordered before SMFs encoded in parameters that appear later in
       the list).

    o  If SMFs are encoded in data objects parameters and in the
       parameters defined in C.6.4.2, the relative order of the data
       object parameters and C.6.4.2 parameters in the parameter list
       sets the relative order of SMFs (SMFs encoded in parameters that
       appear earlier in the list are ordered before SMFs in parameters
       that appear later in the list).

  Given this ordering of SMFs, we now define the mapping of SMFs to
  renderer name spaces.  The SMF that appears first for a renderer maps
  to the first renderer name space.  The SMF that appears second for a
  renderer maps to the second renderer name space, etc.  If the



Lazzaro & Wawrzynek         Standards Track                   [Page 135]

RFC 4695              RTP Payload Format for MIDI          November 2006


  associated RTP MIDI streams also form an ordered relationship, the
  first SMF is merged with the first name space of the relationship,
  the second SMF is merged to the second name space of the
  relationship, etc.

  Unless the streams and the SMFs both use MIDI Time Code, the time
  offset between SMF and stream data is unspecified.  This restriction
  limits the use of SMFs to applications where synchronization is not
  critical, such as the transport of System Exclusive commands for
  renderer initialization, or human-SMF interactivity.

  Finally, we note that each SMF in the sdp_start discussion above
  encodes exactly one MIDI name space (16 voice channels + systems).
  Thus, the use of the Device Name SMF meta event to specify several
  MIDI name spaces in an SMF is not supported for sdp_start.

C.6.4.2.  The smf_inline, smf_url, and smf_cid Parameters

  In some applications, the renderer data object may not encapsulate
  SMFs, but an application may wish to use SMFs in the manner defined
  in Appendix C.6.4.1.

  The "smf_inline", "smf_url", and "smf_cid" parameters address this
  situation.  These parameters use the syntax and semantics of the
  inline, url, and cid parameters defined in Appendix C.6.3, except
  that the encoded data object is an SMF.

  The "smf_inline", "smf_url", and "smf_cid" parameters belong to the
  "render" parameter that most recently precedes it in the session
  description.  The "smf_inline", "smf_url", and "smf_cid" parameters
  MUST NOT appear in parameter lists that do not use the "render"
  parameter and MUST NOT appear before the first use of "render" in the
  parameter list.  If several "smf_inline", "smf_url", or "smf_cid"
  parameters appear for a renderer, the order of the parameters defines
  the SMF name space ordering.

C.6.4.3.  The chanmask Parameter

  The chanmask parameter instructs the renderer to ignore all MIDI
  voice commands for certain channel numbers.  The parameter value is a
  concatenated string of "1" and "0" digits.  Each string position maps
  to a MIDI voice channel number (system channels may not be masked).
  A "1" instructs the renderer to process the voice channel; a "0"
  instructs the renderer to ignore the voice channel.

  The string length of the chanmask parameter value MUST be 16 (for a
  single stream or an identity relationship) or a multiple of 16 (for
  an ordered relationship).



Lazzaro & Wawrzynek         Standards Track                   [Page 136]

RFC 4695              RTP Payload Format for MIDI          November 2006


  The chanmask parameter describes the "render" parameter that most
  recently precedes it in the session description; chanmask MUST NOT
  appear in parameter lists that do not use the "render" parameter and
  MUST NOT appear before the first use of "render" in the parameter
  list.

  The chanmask parameter describes the final MIDI name spaces presented
  to the renderer.  The SMF and stream components of the MIDI name
  spaces may not be independently masked.

  If a receiver is offered a session description with a renderer that
  uses the chanmask parameter, and if the receiver does not implement
  the semantics of the chanmask parameter, the receiver MUST NOT accept
  the renderer unless the chanmask parameter value contains only "1"s.

C.6.5.  The audio/asc Media Type

  In Appendix 11.3, we register the audio/asc media type.  The data
  object for audio/asc is a binary encoding of the AudioSpecificConfig
  data block used to initialize mpeg4-generic streams (Section 6.2 and
  [MPEGAUDIO]).

  An mpeg4-generic parameter list MAY use the render, subrender, and
  rinit parameters with the audio/asc media type for renderer
  configuration.  Several restrictions apply to the use of these
  parameters in mpeg4-generic parameter lists:

    o  An mpeg4-generic media description that uses the render
       parameter MUST assign the empty string ("") to the mpeg4-generic
       "config" parameter.  The use of the streamtype, mode, and
       profile-level-id parameters MUST follow the normative text in
       Section 6.2.

    o  Sessions that use identity or ordered relationships MUST follow
       the mpeg4-generic configuration restrictions in Appendix C.5.

    o  The render parameter MUST be assigned the value "synthetic",
       "unknown", "null", or a render value that has been added to the
       IANA repository for use with mpeg4-generic RTP MIDI streams.
       The "api" token value for render MUST NOT be used.

    o  If a subrender parameter is present, it MUST immediately follow
       the render parameter, and it MUST be assigned the token value
       "default" or assigned a subrender value added to the IANA
       repository for use with mpeg4-generic RTP MIDI streams.  A
       subrender parameter assignment may be left out of the renderer
       configuration, in which case the implied value of subrender is
       the default value of "default".



Lazzaro & Wawrzynek         Standards Track                   [Page 137]

RFC 4695              RTP Payload Format for MIDI          November 2006


    o  If the render parameter is assigned the value "synthetic" and
       the subrender parameter has the value "default" (assigned or
       implied), the rinit parameter MUST be assigned the value
       "audio/asc", and an AudioSpecificConfig data object MUST be
       encoded using the mechanisms defined in C.6.2-3.  The
       AudioSpecificConfig data MUST encode one of the MPEG 4 Audio
       Object Types defined for use with mpeg4-generic in Section 6.2.
       If the subrender value is other than "default", refer to the
       subrender registration for information on the use of "audio/asc"
       with the renderer.

    o  If the render parameter is assigned the value "null" or
       "unknown", the data object MAY be omitted.

  Several general restrictions apply to the use of the audio/asc media
  type in RTP MIDI:

    o  A native stream MUST NOT assign "audio/asc" to rinit.  The
       audio/asc media type is not intended to be a general-purpose
       container for rendering systems outside of MPEG usage.

    o  The audio/asc media type defines a stored object type; it does
       not define semantics for RTP streams.  Thus, audio/asc MUST NOT
       appear on an rtpmap line of a session description.

  Below, we show session description examples for audio/asc.  The
  session description below uses the inline parameter to code the
  AudioSpecificConfig block for a mpeg4-generic General MIDI stream.
  We derive the value assigned to the inline parameter in Appendix E.4.
  The subrender token value of "default" is implied by the absence of
  the subrender parameter in the parameter list.

  v=0
  o=lazzaro 2520644554 2838152170 IN IP4 first.example.net
  s=Example
  t=0 0
  m=audio 5004 RTP/AVP 96
  c=IN IP4 192.0.2.94
  a=rtpmap:96 mpeg4-generic/44100
  a=fmtp:96 streamtype=5; mode=rtp-midi; config="";
  profile-level-id=12; render=synthetic; rinit="audio/asc";
  inline="egoAAAAaTVRoZAAAAAYAAAABAGBNVHJrAAAABgD/LwAA"

  (The a=fmtp line has been wrapped to fit the page to accommodate
   memo formatting restrictions; it comprises a single line in SDP.)






Lazzaro & Wawrzynek         Standards Track                   [Page 138]

RFC 4695              RTP Payload Format for MIDI          November 2006


  The session description below uses the url parameter to code the
  AudioSpecificConfig block for the same General MIDI stream:

  v=0
  o=lazzaro 2520644554 2838152170 IN IP4 first.example.net
  s=Example
  t=0 0
  m=audio 5004 RTP/AVP 96
  c=IN IP4 192.0.2.94
  a=rtpmap:96 mpeg4-generic/44100
  a=fmtp:96 streamtype=5; mode=rtp-midi; config="";
  profile-level-id=12; render=synthetic; rinit="audio/asc";
  url="http://example.net/oski.asc";
  cid="xjflsoeiurvpa09itnvlduihgnvet98pa3w9utnuighbuk"

  (The a=fmtp line has been wrapped to fit the page to accommodate
   memo formatting restrictions; it comprises a single line in SDP.)

C.7.  Interoperability

  In this appendix, we define interoperability guidelines for two
  application areas:

    o  MIDI content-streaming applications.  RTP MIDI is added to
       RTSP-based content-streaming servers, so that viewers may
       experience MIDI performances (produced by a specified client-
       side renderer) in synchronization with other streams (video,
       audio).

    o  Long-distance network musical performance applications.  RTP
       MIDI is added to SIP-based voice chat or videoconferencing
       programs, as an alternative, or as an addition, to audio and/or
       video RTP streams.

  For each application, we define a core set of functionality that all
  implementations MUST implement.

  The applications we address in this section are not an exhaustive
  list of potential RTP MIDI uses.  We expect framework documents for
  other applications to be developed, within the IETF or within other
  organizations.  We discuss other potential application areas for RTP
  MIDI in Section 1 of the main text of this memo.

C.7.1.  MIDI Content Streaming Applications

  In content-streaming applications, a user invokes an RTSP client to
  initiate a request to an RTSP server to view a multimedia session.
  For example, clicking on a web page link for an Internet Radio



Lazzaro & Wawrzynek         Standards Track                   [Page 139]

RFC 4695              RTP Payload Format for MIDI          November 2006


  channel launches an RTSP client that uses the link's RTSP URL to
  contact the RTSP server hosting the radio channel.

  The content may be pre-recorded (for example, on-demand replay of
  yesterday's football game) or "live" (for example, football game
  coverage as it occurs), but in either case the user is usually an
  "audience member" as opposed to a "participant" (as the user would be
  in telephony).

  Note that these examples describe the distribution of audio content
  to an audience member.  The interoperability guidelines in this
  appendix address RTP MIDI applications of this nature, not
  applications such as the transmission of raw MIDI command streams for
  use in a professional environment (recording studio, performance
  stage, etc.).

  In an RTSP session, a client accesses a session description that is
  "declared" by the server, either via the RTSP DESCRIBE method, or via
  other means, such as HTTP or email.  The session description defines
  the session from the perspective of the client.  For example, if a
  media line in the session description contains a non-zero port
  number, it encodes the server's preference for the client's port
  numbers for RTP and RTCP reception.  Once media flow begins, the
  server sends an RTP MIDI stream to the client, which renders it for
  presentation, perhaps in synchrony with video or other audio streams.

  We now define the interoperability text for content-streaming RTSP
  applications.

  In most cases, server interoperability responsibilities are described
  in terms of limits on the "reference" session description a server
  provides for a performance if it has no information about the
  capabilities of the client.  The reference session is a "lowest
  common denominator" session that maximizes the odds that a client
  will be able to view the session.  If a server is aware of the
  capabilities of the client, the server is free to provide a session
  description customized for the client in the DESCRIBE reply.

  Clients MUST support unicast UDP RTP MIDI streams that use the
  recovery journal with the closed-loop or the anchor sending policies.
  Clients MUST be able to interpret stream subsetting and chapter
  inclusion parameters in the session description that qualify the
  sending policies.  Client support of enhanced Chapter C encoding is
  OPTIONAL.

  The reference session description offered by a server MUST send all
  RTP MIDI UDP streams as unicast streams that use the recovery journal
  and the closed-loop or anchor sending policies.  Servers SHOULD use



Lazzaro & Wawrzynek         Standards Track                   [Page 140]

RFC 4695              RTP Payload Format for MIDI          November 2006


  the stream subsetting and chapter inclusion parameters in the
  reference session description, to simplify the rendering task of the
  client.  Server support of enhanced Chapter C encoding is OPTIONAL.

  Clients and servers MUST support the use of RTSP interleaved mode (a
  method for interleaving RTP onto the RTSP TCP transport).

  Clients MUST be able to interpret the timestamp semantics signalled
  by the "comex" value of the tsmode parameter (i.e., the timestamp
  semantics of Standard MIDI Files [MIDI]).  Servers MUST use the
  "comex" value for the "tsmode" parameter in the reference session
  description.

  Clients MUST be able to process an RTP MIDI stream whose packets
  encode an arbitrary temporal duration ("media time").  Thus, in
  practice, clients MUST implement a MIDI playout buffer.  Clients MUST
  NOT depend on the presence of rtp_ptime, rtp_maxtime, and guardtime
  parameters in the session description in order to process packets,
  but they SHOULD be able to use these parameters to improve packet
  processing.

  Servers SHOULD strive to send RTP MIDI streams in the same way media
  servers send conventional audio streams: a sequence of packets that
  either all code the same temporal duration (non-normative example: 50
  ms packets) or that code one of an integral number of temporal
  durations (non-normative example: 50 ms, 100 ms, 250 ms, or 500 ms
  packets).  Servers SHOULD encode information about the packetization
  method in the rtp_ptime and rtp_maxtime parameters in the session
  description.

  Clients MUST be able to examine the render and subrender parameter,
  to determine if a multimedia session uses a renderer it supports.
  Clients MUST be able to interpret the default "one" value of the
  "multimode" parameter, to identify supported renderers from a list of
  renderer descriptions.  Clients MUST be able to interpret the
  musicport parameter, to the degree that it is relevant to the
  renderers it supports.  Clients MUST be able to interpret the
  chanmask parameter.

  Clients supporting renderers whose data object (as encoded by a
  parameter value for "inline") could exceed 300 octets in size MUST
  support the url and cid parameters and thus must implement the HTTP
  protocol in addition to RTSP.

  Servers MUST specify complete rendering systems for RTP MIDI streams.
  Note that a minimal RTP MIDI native stream does not meet this
  requirement (Section 6.1), as the rendering method for such streams
  is "not specified".



Lazzaro & Wawrzynek         Standards Track                   [Page 141]

RFC 4695              RTP Payload Format for MIDI          November 2006


  At the time of this memo, the only way for servers to specify a
  complete rendering system is to specify an mpeg4-generic RTP MIDI
  stream in mode rtp-midi (Section 6.2 and C.6.5).  As a consequence,
  the only rendering systems that may be presently used are General
  MIDI [MIDI], DLS 2 [DLS2], or Structured Audio [MPEGSA].  Note that
  the maximum inline value for General MIDI is well under 300 octets
  (and thus clients need not support the "url" parameter), and that the
  maximum inline values for DLS 2 and Structured Audio may be much
  larger than 300 octets (and thus clients MUST support the url
  parameter).

  We anticipate that the owners of rendering systems (both standardized
  and proprietary) will register subrender parameters for their
  renderers.  Once registration occurs, native RTP MIDI sessions may
  use render and subrender (Appendix C.6.2) to specify complete
  rendering systems for RTSP content-streaming multimedia sessions.

  Servers MUST NOT use the sdp_start value for the smf_info parameter
  in the reference session description, as this use would require that
  clients be able to parse and render Standard MIDI Files.

  Clients MUST support mpeg4-generic mode rtp-midi General MIDI (GM)
  sessions, at a polyphony limited by the hardware capabilities of the
  client.  This requirement provides a "lowest common denominator"
  rendering system for content providers to target.  Note that this
  requirement does not force implementors of a non-GM renderer (such as
  DLS 2 or Structured Audio) to add a second rendering engine.
  Instead, a client may satisfy the requirement by including a set of
  voice patches that implement the GM instrument set, and using this
  emulation for mpeg4-generic GM sessions.

  It is RECOMMENDED that servers use General MIDI as the renderer for
  the reference session description, because clients are REQUIRED to
  support it.  We do not require General MIDI as the reference
  renderer, because for normative applications it is an inappropriate
  choice.  Servers using General MIDI as a "lowest common denominator"
  renderer SHOULD use Universal Real-Time SysEx MIP message [SPMIDI] to
  communicate the priority of voices to polyphony-limited clients.

C.7.2.  MIDI Network Musical Performance Applications

  In Internet telephony and videoconferencing applications, parties
  interact over an IP network as they would face-to-face.  Good user
  experiences require low end-to-end audio latency and tight
  audiovisual synchronization (for "lip-sync").  The Session Initiation
  Protocol (SIP, [RFC3261]) is used for session management.





Lazzaro & Wawrzynek         Standards Track                   [Page 142]

RFC 4695              RTP Payload Format for MIDI          November 2006


  In this appendix section, we define interoperability guidelines for
  using RTP MIDI streams in interactive SIP applications.  Our primary
  interest is supporting Network Musical Performances (NMP), where
  musicians in different locations interact over the network as if they
  were in the same room.  See [NMP] for background information on NMP,
  and see [RFC4696] for a discussion of low-latency RTP MIDI
  implementation techniques for NMP.

  Note that the goal of NMP applications is telepresence: the parties
  should hear audio that is close to what they would hear if they were
  in the same room.  The interoperability guidelines in this appendix
  address RTP MIDI applications of this nature, not applications such
  as the transmission of raw MIDI command streams for use in a
  professional environment (recording studio, performance stage, etc.).

  We focus on session management for two-party unicast sessions that
  specify a renderer for RTP MIDI streams.  Within this limited scope,
  the guidelines defined here are sufficient to let applications
  interoperate.  We define the REQUIRED capabilities of RTP MIDI
  senders and receivers in NMP sessions and define how session
  descriptions exchanged are used to set up network musical performance
  sessions.

  SIP lets parties negotiate details of the session, using the
  Offer/Answer protocol [RFC3264].  However, RTP MIDI has so many
  parameters that "blind" negotiations between two parties using
  different applications might not yield a common session
  configuration.

  Thus, we now define a set of capabilities that NMP parties MUST
  support.  Session description offers whose options lie outside the
  envelope of REQUIRED party behavior risk negotiation failure.  We
  also define session description idioms that the RTP MIDI part of an
  offer MUST follow, in order to structure the offer for simpler
  analysis.

  We use the term "offerer" for the party making a SIP offer, and
  "answerer" for the party answering the offer.  Finally, we note that
  unless it is qualified by the adjective "sender" or "receiver", a
  statement that a party MUST support X implies that it MUST support X
  for both sending and receiving.

  If an offerer wishes to define a "sendrecv" RTP MIDI stream, it may
  use a true sendrecv session or the "virtual sendrecv" construction
  described in the preamble to Appendix C and in Appendix C.5.  A true
  sendrecv session indicates that the offerer wishes to participate in
  a session where both parties use identically configured renderers.  A
  virtual sendrecv session indicates that the offerer is willing to



Lazzaro & Wawrzynek         Standards Track                   [Page 143]

RFC 4695              RTP Payload Format for MIDI          November 2006


  participate in a session where the two parties may be using different
  renderer configurations.  Thus, parties MUST be prepared to see both
  real and virtual sendrecv sessions in an offer.

  Parties MUST support unicast UDP transport of RTP MIDI streams.
  These streams MUST use the recovery journal with the closed-loop or
  anchor sending policies.  These streams MUST use the stream
  subsetting and chapter inclusion parameters to declare the types of
  MIDI commands that will be sent on the stream (for sendonly streams)
  or will be processed (for recvonly streams), including the size
  limits on System Exclusive commands.  Support of enhanced Chapter C
  encoding is OPTIONAL.

  Note that both TCP and multicast UDP support are OPTIONAL.  We make
  TCP OPTIONAL because we expect NMP renderers to rely on data objects
  (signalled by "rinit" and associated parameters) for initialization
  at the start of the session, and only to use System Exclusive
  commands for interactive control during the session.  These
  interactive commands are small enough to be protected via the
  recovery journal mechanism of RTP MIDI UDP streams.

  We now discuss timestamps, packet timing, and packet sending
  algorithms.

  Recall that the tsmode parameter controls the semantics of command
  timestamps in the MIDI list of RTP packets.

  Parties MUST support clock rates of 44.1 kHz, 48 kHz, 88.2 kHz, and
  96 kHz.  Parties MUST support streams using the "comex", "async", and
  "buffer" tsmode values.  Recvonly offers MUST offer the default
  "comex".

  Parties MUST support a wide range of packet temporal durations: from
  rtp_ptime and rtp_maxptime values of 0, to rtp_ptime and rtp_maxptime
  values that code 100 ms.  Thus, receivers MUST be able to implement a
  playout buffer.

  Offers and answers MUST present rtp_ptime, rtp_maxptime, and
  guardtime values that support the latency that users would expect in
  the application, subject to bandwidth constraints.  As senders MUST
  abide by values set for these parameters in a session description, a
  receiver SHOULD use these values to size its playout buffer to
  produce the lowest reliable latency for a session.  Implementers
  should refer to [RFC4696] for information on packet sending
  algorithms for latency-sensitive applications.  Parties MUST be able
  to implement the semantics of the guardtime parameter, for times from
  5 ms to 5000 ms.




Lazzaro & Wawrzynek         Standards Track                   [Page 144]

RFC 4695              RTP Payload Format for MIDI          November 2006


  We now discuss the use of the render parameter.

  Sessions MUST specify complete rendering systems for all RTP MIDI
  streams.  Note that a minimal RTP MIDI native stream does not meet
  this requirement (Section 6.1), as the rendering method for such
  streams is "not specified".

  At the time this writing, the only way for parties to specify a
  complete rendering system is to specify an mpeg4-generic RTP MIDI
  stream in mode rtp-midi (Section 6.2 and C.6.5).  We anticipate that
  the owners of rendering systems (both standardized and proprietary)
  will register subrender values for their renderers.  Once IANA
  registration occurs, native RTP MIDI sessions may use render and
  subrender (Appendix C.6.2) to specify complete rendering systems for
  SIP network musical performance multimedia sessions.

  All parties MUST support General MIDI (GM) sessions, at a polyphony
  limited by the hardware capabilities of the party.  This requirement
  provides a "lowest common denominator" rendering system, without
  which practical interoperability will be quite difficult.  When using
  GM, parties SHOULD use Universal Real-Time SysEx MIP message [SPMIDI]
  to communicate the priority of voices to polyphony-limited clients.

  Note that this requirement does not force implementors of a non-GM
  renderer (for mpeg4-generic sessions, DLS 2, or Structured Audio) to
  add a second rendering engine.  Instead, a client may satisfy the
  requirement by including a set of voice patches that implement the GM
  instrument set, and using this emulation for mpeg4-generic GM
  sessions.  We require GM support so that an offerer that wishes to
  maximize interoperability may do so by offering GM if its preferred
  renderer is not accepted by the answerer.

  Offerers MUST NOT present several renderers as options in a session
  description by listing several payload types on a media line, as
  Section 2.1 uses this construct to let a party send several RTP MIDI
  streams in the same RTP session.

  Instead, an offerer wishing to present rendering options SHOULD offer
  a single payload type that offers several renderers.  In this
  construct, the parameter list codes a list of render parameters (each
  followed by its support parameters).  As discussed in Appendix C.6.1,
  the order of renderers in the list declares the offerer's preference.
  The "unknown" and "null" values MUST NOT appear in the offer.  The
  answer MUST set all render values except the desired renderer to
  "null".  Thus, "unknown" MUST NOT appear in the answer.






Lazzaro & Wawrzynek         Standards Track                   [Page 145]

RFC 4695              RTP Payload Format for MIDI          November 2006


  We use SHOULD instead of MUST in the first sentence in the paragraph
  above, because this technique does not work in all situations
  (example:  an offerer wishes to offer both mpeg4-generic renderers
  and native RTP MIDI renderers as options).  In this case, the offerer
  MUST present a series of session descriptions, each offering a single
  renderer, until the answerer accepts a session description.

  Parties MUST support the musicport, chanmask, subrender, rinit, and
  inline parameters.  Parties supporting renderers whose data object
  (as encoded by a parameter value for "inline") could exceed 300
  octets in size MUST support the url and cid parameters and thus must
  implement HTTP protocol.  Note that in mpeg4-generic, General MIDI
  data objects cannot exceed 300 octets, but DLS 2 and Structured Audio
  data objects may.  Support for the other rendering parameters
  (smf_cif, smf_info, smf_inline, smf_url) is OPTIONAL.

  Thus far in this document, our discussion has assumed that the only
  MIDI flows that drive a renderer are the network flows described in
  the session description.  In NMP applications, this assumption would
  require two rendering engines: one for local use by a party, a second
  for the remote party.

  In practice, applications may wish to have both parties share a
  single rendering engine.  In this case, the session description MUST
  use a virtual sendrecv session and MUST use the stream subsetting and
  chapter inclusion parameters to allocate which MIDI channels are
  intended for use by a party.  If two parties are sharing a MIDI
  channels, the application MUST ensure that appropriate MIDI merging
  occurs at the input to the renderer.

  We now discuss the use of (non-MIDI) audio streams in the session.

  Audio streams may be used for two purposes: as a "talkback" channel
  for parties to converse, or as a way to conduct a performance that
  includes MIDI and audio channels.  In the latter case, offers MUST
  use sample rates and the packet temporal durations for the audio and
  MIDI streams that support low-latency synchronized rendering.














Lazzaro & Wawrzynek         Standards Track                   [Page 146]

RFC 4695              RTP Payload Format for MIDI          November 2006


  We now show an example of an offer/answer exchange in a network
  musical performance application (next page).  Below, we show an offer
  that complies with the interoperability text in this appendix
  section.

  v=0
  o=first 2520644554 2838152170 IN IP4 first.example.net
  s=Example
  t=0 0
  a=group:FID 1 2
  c=IN IP4 192.0.2.94
  m=audio 16112 RTP/AVP 96
  a=recvonly
  a=mid:1
  a=rtpmap:96 mpeg4-generic/44100
  a=fmtp:96 streamtype=5; mode=rtp-midi; config="";
  profile-level-id=12; cm_unused=ABCFGHJKMNPQTVWXYZ; cm_used=2NPTW;
  cm_used=2C0.1.7.10.11.64.121.123; cm_used=2M0.1.2
  cm_used=X0-16; ch_never=ABCDEFGHJKMNPQTVWXYZ;
  ch_default=2NPTW; ch_default=2C0.1.7.10.11.64.121.123;
  ch_default=2M0.1.2; cm_default=X0-16;
  rtp_ptime=0; rtp_maxptime=0; guardtime=44100;
  musicport=1; render=synthetic; rinit="audio/asc";
  inline="egoAAAAaTVRoZAAAAAYAAAABAGBNVHJrAAAABgD/LwAA"
  m=audio 16114 RTP/AVP 96
  a=sendonly
  a=mid:2
  a=rtpmap:96 mpeg4-generic/44100
  a=fmtp:96 streamtype=5; mode=rtp-midi; config="";
  profile-level-id=12; cm_unused=ABCFGHJKMNPQTVWXYZ; cm_used=1NPTW;
  cm_used=1C0.1.7.10.11.64.121.123; cm_used=1M0.1.2
  cm_used=X0-16; ch_never=ABCDEFGHJKMNPQTVWXYZ;
  ch_default=1NPTW; ch_default=1C0.1.7.10.11.64.121.123;
  ch_default=1M0.1.2; cm_default=X0-16;
  rtp_ptime=0; rtp_maxptime=0; guardtime=44100;
  musicport=1; render=synthetic; rinit="audio/asc";
  inline="egoAAAAaTVRoZAAAAAYAAAABAGBNVHJrAAAABgD/LwAA"

  (The a=fmtp lines have been wrapped to fit the page to accommodate
   memo formatting restrictions; it comprises a single line in SDP.)

  The owner line (o=) identifies the session owner as "first".

  The session description defines two MIDI streams: a recvonly stream
  on which "first" receives a performance, and a sendonly stream that
  "first" uses to send a performance.  The recvonly port number encodes
  the ports on which "first" wishes to receive RTP (16112) and RTCP
  (16113) media at IP4 address 192.0.2.94.  The sendonly port number



Lazzaro & Wawrzynek         Standards Track                   [Page 147]

RFC 4695              RTP Payload Format for MIDI          November 2006


  encodes the port on which "first" wishes to receive RTCP for the
  stream (16115).

  The musicport parameters code that the two streams share and identity
  relationship and thus form a virtual sendrecv stream.

  Both streams are mpeg4-generic RTP MIDI streams that specify a
  General MIDI renderer.  The stream subsetting parameters code that
  the recvonly stream uses MIDI channel 1 exclusively for voice
  commands, and that the sendonly stream uses MIDI channel 2
  exclusively for voice commands.  This mapping permits the application
  software to share a single renderer for local and remote performers.







































Lazzaro & Wawrzynek         Standards Track                   [Page 148]

RFC 4695              RTP Payload Format for MIDI          November 2006


  We now show the answer to the offer.

  v=0
  o=second 2520644554 2838152170 IN IP4 second.example.net
  s=Example
  t=0 0
  a=group:FID 1 2
  c=IN IP4 192.0.2.105
  m=audio 5004 RTP/AVP 96
  a=sendonly
  a=mid:1
  a=rtpmap:96 mpeg4-generic/44100
  a=fmtp:96 streamtype=5; mode=rtp-midi; config="";
  profile-level-id=12; cm_unused=ABCFGHJKMNPQTVWXYZ; cm_used=2NPTW;
  cm_used=2C0.1.7.10.11.64.121.123; cm_used=2M0.1.2
  cm_used=X0-16; ch_never=ABCDEFGHJKMNPQTVWXYZ;
  ch_default=2NPTW; ch_default=2C0.1.7.10.11.64.121.123;
  ch_default=2M0.1.2; cm_default=X0-16;
  rtp_ptime=0; rtp_maxptime=882; guardtime=44100;
  musicport=1; render=synthetic; rinit="audio/asc";
  inline="egoAAAAaTVRoZAAAAAYAAAABAGBNVHJrAAAABgD/LwAA"
  m=audio 5006 RTP/AVP 96
  a=recvonly
  a=mid:2
  a=rtpmap:96 mpeg4-generic/44100
  a=fmtp:96 streamtype=5; mode=rtp-midi; config="";
  profile-level-id=12; cm_unused=ABCFGHJKMNPQTVWXYZ; cm_used=1NPTW;
  cm_used=1C0.1.7.10.11.64.121.123; cm_used=1M0.1.2
  cm_used=X0-16; ch_never=ABCDEFGHJKMNPQTVWXYZ;
  ch_default=1NPTW; ch_default=1C0.1.7.10.11.64.121.123;
  ch_default=1M0.1.2; cm_default=X0-16;
  rtp_ptime=0; rtp_maxptime=0; guardtime=88200;
  musicport=1; render=synthetic; rinit="audio/asc";
  inline="egoAAAAaTVRoZAAAAAYAAAABAGBNVHJrAAAABgD/LwAA"

  (The a=fmtp lines have been wrapped to fit the page to accommodate
   memo formatting restrictions; they comprise single lines in SDP.)

  The owner line (o=) identifies the session owner as "second".

  The port numbers for both media streams are non-zero; thus, "second"
  has accepted the session description.  The stream marked "sendonly"
  in the offer is marked "recvonly" in the answer, and vice versa,
  coding the different view of the session held by "session".  The IP4
  number (192.0.2.105) and the RTP (5004 and 5006) and RTCP (5005 and
  5007) have been changed by "second" to match its transport wishes.





Lazzaro & Wawrzynek         Standards Track                   [Page 149]

RFC 4695              RTP Payload Format for MIDI          November 2006


  In addition, "second" has made several parameter changes:
  rtp_maxptime for the sendonly stream has been changed to code 2 ms
  (441 in clock units), and the guardtime for the recvonly stream has
  been doubled.  As these parameter modifications request capabilities
  that are REQUIRED to be implemented by interoperable parties,
  "second" can make these changes with confidence that "first" can
  abide by them.

D.  Parameter Syntax Definitions

  In this appendix, we define the syntax for the RTP MIDI media type
  parameters in Augmented Backus-Naur Form (ABNF, [RFC4234]).  When
  using these parameters with SDP, all parameters MUST appear on a
  single fmtp attribute line of an RTP MIDI media description.  For
  mpeg4-generic RTP MIDI streams, this line MUST also include any
  mpeg4-generic parameters (usage described in Section 6.2).  An fmtp
  attribute line may be defined (after [RFC3640]) as:

  ;
  ; SDP fmtp line definition
  ;

  fmtp = "a=fmtp:" token SP param-assign 0*(";" SP param-assign) CRLF

  where <token> codes the RTP payload type.  Note that white space MUST
  NOT appear between the "a=fmtp:" and the RTP payload type.

  We now define the syntax of the parameters defined in Appendix C.
  The definition takes the form of the incremental assembly of the
  <param-assign> token.  See [RFC3640] for the syntax of the
  mpeg4-generic parameters discussed in Section 6.2.

  ;
  ;
  ; top-level definition for all parameters
  ;
  ;

  ;
  ; Parameters defined in Appendix C.1

  param-assign =   ("cm_unused="  (([channel-list] command-type
                                    [f-list]) / sysex-data))

  param-assign =/  ("cm_used="    (([channel-list] command-type
                                    [f-list]) / sysex-data))





Lazzaro & Wawrzynek         Standards Track                   [Page 150]

RFC 4695              RTP Payload Format for MIDI          November 2006


  ;
  ; Parameters defined in Appendix C.2

  param-assign =/  ("j_sec="      ("none" / "recj" / *ietf-extension))

  param-assign =/  ("j_update="   ("anchor" / "closed-loop" /
                                   "open-loop" / *ietf-extension))

  param-assign =/  ("ch_default=" (([channel-list] chapter-list
                                    [f-list]) / sysex-data))

  param-assign =/  ("ch_never="   (([channel-list] chapter-list
                                    [f-list]) / sysex-data))

  param-assign =/  ("ch_anchor="  (([channel-list] chapter-list
                                    [f-list]) / sysex-data))

  ;
  ; Parameters defined in Appendix C.3

  param-assign =/  ("tsmode="     ("comex" / "async" / "buffer"))

  param-assign =/  ("linerate="    nonzero-four-octet)

  param-assign =/  ("octpos="      ("first" / "last"))

  param-assign =/  ("mperiod="     nonzero-four-octet)

  ;
  ; Parameter defined in Appendix C.4

  param-assign =/  ("guardtime="     nonzero-four-octet)

  param-assign =/  ("rtp_ptime="     four-octet)

  param-assign =/  ("rtp_maxptime="  four-octet)

  ;
  ; Parameters defined in Appendix C.5

  param-assign =/  ("musicport="     four-octet)










Lazzaro & Wawrzynek         Standards Track                   [Page 151]

RFC 4695              RTP Payload Format for MIDI          November 2006


  ;
  ; Parameters defined in Appendix C.6

  param-assign =/  ("chanmask="     ( 1*( 16( "0" / "1" ) )))

  param-assign =/  ("cid="          double-quote cid-block
                                    double-quote)

  param-assign =/  ("inline="       double-quote base-64-block
                                    double-quote)

  param-assign =/  ("multimode="    ("all" / "one"))

  param-assign =/  ("render="       ("synthetic" / "api" / "null" /
                                     "unknown" / *extension))

  param-assign =/  ("rinit="        mime-type "/" mime-subtype)

  param-assign =/  ("smf_cid="      double-quote cid-block
                                    double-quote)

  param-assign =/  ("smf_info="     ("ignore" / "identity" /
                                    "sdp_start" / *extension))

  param-assign =/  ("smf_inline="   double-quote base-64-block
                                    double-quote)

  param-assign =/  ("smf_url="      double-quote uri-element
                                    double-quote)

  param-assign =/  ("subrender="    ("default" / *extension))

  param-assign =/  ("url="          double-quote uri-element
                                    double-quote)

  ;
  ; list definitions for the cm_ command-type
  ;

  command-type    = command-part1 command-part2 command-part3

  command-part1   = (*1"A") (*1"B") (*1"C") (*1"F") (*1"G") (*1"H")

  command-part2   = (*1"J") (*1"K") (*1"M") (*1"N") (*1"P") (*1"Q")

  command-part3   = (*1"T") (*1"V") (*1"W") (*1"X") (*1"Y") (*1"Z")





Lazzaro & Wawrzynek         Standards Track                   [Page 152]

RFC 4695              RTP Payload Format for MIDI          November 2006


  ;
  ; list definitions for the ch_ chapter-list
  ;

  chapter-list  =  ch-part1 ch-part2 ch-part3

  ch-part1  = (*1"A") (*1"B") (*1"C") (*1"D") (*1"E") (*1"F") (*1"G")

  ch-part2  = (*1"H") (*1"J") (*1"K") (*1"M") (*1"N") (*1"P") (*1"Q")

  ch-part3  = (*1"T") (*1"V") (*1"W") (*1"X") (*1"Y") (*1"Z")

  ;
  ; list definitions for the ch_ channel-list
  ;

  channel-list       = midi-chan-element *("." midi-chan-element)

  midi-chan-element  = midi-chan / midi-chan-range

  midi-chan-range    = midi-chan "-" midi-chan

                     ; decimal value of left midi-chan
                     ; MUST be strictly less than decimal
                     ; value of right midi-chan

  midi-chan          = %d0-15

  ;
  ; list definitions for the ch_ field list (f-list)
  ;

  f-list             = midi-field-element *("." midi-field-element)

  midi-field-element = midi-field / midi-field-range

  midi-field-range   = midi-field "-" midi-field
                     ;
                     ; decimal value of left midi-field
                     ; MUST be strictly less than decimal
                     ; value of right midi-field

  midi-field         = four-octet
                     ;
                     ; large range accommodates Chapter M
                     ; RPN (0-16383) and NRPN (16384-32767)
                     ; parameters, and Chapter X octet sizes.




Lazzaro & Wawrzynek         Standards Track                   [Page 153]

RFC 4695              RTP Payload Format for MIDI          November 2006


  ;
  ; definitions for ch_ sysex-data
  ;

  sysex-data         = "__"  h-list *("_" h-list) "__"

  h-list             = hex-field-element *("." hex-field-element)

  hex-field-element  = hex-octet / hex-field-range

  hex-field-range    = hex-octet "-" hex-octet
                     ;
                     ; hexadecimal value of left hex-octet
                     ; MUST be strictly less than hexadecimal
                     ; value of right hex-octet

  hex-octet          = 2("0" / "1" / "2"/ "3" / "4" /
                         "5" / "6" / "7" / "8" / "9" /
                         "A" / "B" / "C" / "D" / "E" / "F")
                     ;
                     ; rewritten version of hex-octet in [RFC2045]
                     ; (page 23).
                     ; note that a-f are not permitted, only A-F.
                     ; hex-octet values MUST NOT exceed 7F.

  ;
  ; definitions for rinit parameter
  ;

  mime-type          = "audio" / "application"

  mime-subtype       = token
                     ;
                     ; See Appendix C.6.2 for registration
                     ; requirements for rinit type/subtypes.

  ;
  ; definitions for base64 encoding
  ; copied from [RFC4566]

  base-64-block      = *base64-unit [base64-pad]

  base64-unit        =  4base64-char

  base64-pad         =  2base64-char "==" / 3base64-char "="

  base64-char        =  %x41-5A / %x61-7A / %x30-39 / "+" / "/"
                     ;  A-Z, a-z, 0-9, "+" and "/"



Lazzaro & Wawrzynek         Standards Track                   [Page 154]

RFC 4695              RTP Payload Format for MIDI          November 2006


  ;
  ; generic rules
  ;

  ietf-extension     = token
                     ;
                     ; ietf-extension may only be defined in
                     ; standards-track RFCs.

  extension          = token
                     ;
                     ; extension may be defined by filing
                     ; a registration with IANA.

  four-octet         = %d0-4294967295
                     ; unsigned encoding of 32-bits

  nonzero-four-octet = %d1-4294967295
                     ; unsigned encoding of 32-bits, ex-zero

  uri-element        = URI-reference
                     ; as defined in [RFC3986]

  double-quote       = %x22

                     ; the double-quote (") character

  token              =  1*token-char
                     ; copied from [RFC4566]

  token-char         =  %x21 / %x23-27 / %x2A-2B / %x2D-2E /
                        %x30-39 / %x41-5A / %x5E-7E
                     ; copied from [RFC4566]

  cid-block          = 1*cid-char

  cid-char           =  token-char
  cid-char           =/  "@"
  cid-char           =/  ","
  cid-char           =/  ";"
  cid-char           =/  ":"
  cid-char           =/  "\"
  cid-char           =/  "/"
  cid-char           =/  "["
  cid-char           =/  "]"
  cid-char           =/  "?"
  cid-char           =/  "="




Lazzaro & Wawrzynek         Standards Track                   [Page 155]

RFC 4695              RTP Payload Format for MIDI          November 2006


                     ;
                     ; add back in the tspecials [RFC2045], except for
                     ; double-quote and the non-email safe () <>
                     ; note that "cid" defined above ensures that
                     ; cid-block is enclosed with double-quotes

  ; external references
  ; URI-reference: from [RFC3986]

  ;
  ; End of ABNF


  The mpeg4-generic RTP payload [RFC3640] defines a "mode" parameter
  that signals the type of MPEG stream in use.  We add a new mode
  value, "rtp-midi", using the ABNF rule below:

  ;
  ; mpeg4-generic mode parameter extension
  ;

  mode              =/ "rtp-midi"
                    ; as described in Section 6.2 of this memo

E.  A MIDI Overview for Networking Specialists

  This appendix presents an overview of the MIDI standard, for the
  benefit of networking specialists new to musical applications.
  Implementors should consult [MIDI] for a normative description of
  MIDI.

  Musicians make music by performing a controlled sequence of physical
  movements.  For example, a pianist plays by coordinating a series of
  key presses, key releases, and pedal actions.  MIDI represents a
  musical performance by encoding these physical gestures as a sequence
  of MIDI commands.  This high-level musical representation is compact
  but fragile: one lost command may be catastrophic to the performance.

  MIDI commands have much in common with the machine instructions of a
  microprocessor.  MIDI commands are defined as binary elements.
  Bitfields within a MIDI command have a regular structure and a
  specialized purpose.  For example, the upper nibble of the first
  command octet (the opcode field) codes the command type.  MIDI
  commands may consist of an arbitrary number of complete octets, but
  most MIDI commands are 1, 2, or 3 octets in length.






Lazzaro & Wawrzynek         Standards Track                   [Page 156]

RFC 4695              RTP Payload Format for MIDI          November 2006


      ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
      |     Channel Voice Messages     |      Bitfield Pattern      |
      ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
      | NoteOff (end a note)           | 1000cccc 0nnnnnnn 0vvvvvvv |
      |-------------------------------------------------------------|
      | NoteOn (start a note)          | 1001cccc 0nnnnnnn 0vvvvvvv |
      |-------------------------------------------------------------|
      | PTouch (Polyphonic Aftertouch) | 1010cccc 0nnnnnnn 0aaaaaaa |
      |-------------------------------------------------------------|
      | CControl (Controller Change)   | 1011cccc 0xxxxxxx 0yyyyyyy |
      |-------------------------------------------------------------|
      | PChange (Program Change)       | 1100cccc 0ppppppp          |
      |-------------------------------------------------------------|
      | CTouch (Channel Aftertouch)    | 1101cccc 0aaaaaaa          |
      |-------------------------------------------------------------|
      | PWheel (Pitch Wheel)           | 1110cccc 0xxxxxxx 0yyyyyyy |
       -------------------------------------------------------------

                Figure E.1 -- MIDI Channel Messages
































Lazzaro & Wawrzynek         Standards Track                   [Page 157]

RFC 4695              RTP Payload Format for MIDI          November 2006


      ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
      |      System Common Messages    |     Bitfield Pattern       |
      ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
      | System Exclusive               | 11110000, followed by a    |
      |                                | list of 0xxxxxx octets,    |
      |                                | followed by 11110111       |
      |-------------------------------------------------------------|
      | MIDI Time Code Quarter Frame   | 11110001 0xxxxxxx          |
      |-------------------------------------------------------------|
      | Song Position Pointer          | 11110010 0xxxxxxx 0yyyyyyy |
      |-------------------------------------------------------------|
      | Song Select                    | 11110011 0xxxxxxx          |
      |-------------------------------------------------------------|
      | Undefined                      | 11110100                   |
      |-------------------------------------------------------------|
      | Undefined                      | 11110101                   |
      |-------------------------------------------------------------|
      | Tune Request                   | 11110110                   |
      |-------------------------------------------------------------|
      | System Exclusive End Marker    | 11110111                   |
       -------------------------------------------------------------


      ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
      |    System Realtime Messages    |     Bitfield Pattern       |
      ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
      | Clock                          | 11111000                   |
      |-------------------------------------------------------------|
      | Undefined                      | 11111001                   |
      |-------------------------------------------------------------|
      | Start                          | 11111010                   |
      |-------------------------------------------------------------|
      | Continue                       | 11111011                   |
      |-------------------------------------------------------------|
      | Stop                           | 11111100                   |
      |-------------------------------------------------------------|
      | Undefined                      | 11111101                   |
      |-------------------------------------------------------------|
      | Active Sense                   | 11111110                   |
      |-------------------------------------------------------------|
      | System Reset                   | 11111111                   |
       -------------------------------------------------------------

                     Figure E.2 -- MIDI System Messages







Lazzaro & Wawrzynek         Standards Track                   [Page 158]

RFC 4695              RTP Payload Format for MIDI          November 2006


  Figure E.1 and E.2 show the MIDI command family.  There are three
  major classes of commands: voice commands (opcode field values in the
  range 0x8 through 0xE), system common commands (opcode field 0xF,
  commands 0xF0 through 0xF7), and system real-time commands (opcode
  field 0xF, commands 0xF8 through 0xFF).  Voice commands code the
  musical gestures for each timbre in a composition.  Systems commands
  perform functions that usually affect all voice channels, such as
  System Reset (0xFF).

E.1.  Commands Types

  Voice commands execute on one of 16 MIDI channels, as coded by its
  4-bit channel field (field cccc in Figure E.1).  In most
  applications, notes for different timbres are assigned to different
  channels.  To support applications that require more than 16
  channels, MIDI systems use several MIDI command streams in parallel,
  to yield 32, 48, or 64 MIDI channels.

  As an example of a voice command, consider a NoteOn command (opcode
  0x9), with binary encoding 1001cccc 0nnnnnnn 0aaaaaaa.  This command
  signals the start of a musical note on MIDI channel cccc.  The note
  has a pitch coded by the note number nnnnnnn, and an onset amplitude
  coded by note velocity aaaaaaa.

  Other voice commands signal the end of notes (NoteOff, opcode 0x8),
  map a specific timbre to a MIDI channel (PChange, opcode 0xC), or set
  the value of parameters that modulate the timbral quality (all other
  voice commands).  The exact meaning of most voice channel commands
  depends on the rendering algorithms the MIDI receiver uses to
  generate sound.  In most applications, a MIDI sender has a model (in
  some sense) of the rendering method used by the receiver.

  System commands perform a variety of global tasks in the stream,
  including "sequencer" playback control of pre-recorded MIDI commands
  (the Song Position Pointer, Song Select, Clock, Start, Continue, and
  Stop messages), SMPTE time code (the MIDI Time Code Quarter Frame
  command), and the communication of device-specific data (the System
  Exclusive messages).

E.2.  Running Status

  All MIDI command bitfields share a special structure: the leading bit
  of the first octet is set to 1, and the leading bit of all subsequent
  octets is set to 0.  This structure supports a data compression
  system, called running status [MIDI], that improves the coding
  efficiency of MIDI.





Lazzaro & Wawrzynek         Standards Track                   [Page 159]

RFC 4695              RTP Payload Format for MIDI          November 2006


  In running status coding, the first octet of a MIDI voice command may
  be dropped if it is identical to the first octet of the previous MIDI
  voice command.  This rule, in combination with a convention to
  consider NoteOn commands with a null third octet as NoteOff commands,
  supports the coding of note sequences using two octets per command.

  Running status coding is only used for voice commands.  The presence
  of a system common message in the stream cancels running status mode
  for the next voice command.  However, system real-time messages do
  not cancel running status mode.

E.3.  Command Timing

  The bitfield formats in Figures E.1 and E.2 do not encode the
  execution time for a command.  Timing information is not a part of
  the MIDI command syntax itself; different applications of the MIDI
  command language use different methods to encode timing.

  For example, the MIDI command set acts as the transport layer for
  MIDI 1.0 DIN cables [MIDI].  MIDI cables are short asynchronous
  serial lines that facilitate the remote operation of musical
  instruments and audio equipment.  Timestamps are not sent over a MIDI
  1.0 DIN cable.  Instead, the standard uses an implicit "time of
  arrival" code.  Receivers execute MIDI commands at the moment of
  arrival.

  In contrast, Standard MIDI Files (SMFs, [MIDI]), a file format for
  representing complete musical performances, add an explicit timestamp
  to each MIDI command, using a delta encoding scheme that is optimized
  for statistics of musical performance.  SMF timestamps usually code
  timing using the metric notation of a musical score.  SMF meta-events
  are used to add a tempo map to the file, so that score beats may be
  accurately converted into units of seconds during rendering.

E.4.  AudioSpecificConfig Templates for MMA Renderers

  In Section 6.2 and Appendix C.6.5, we describe how session
  descriptions include an AudioSpecificConfig data block to specify a
  MIDI rendering algorithm for mpeg4-generic RTP MIDI streams.

  The bitfield format of AudioSpecificConfig is defined in [MPEGAUDIO].
  StructuredAudioSpecificConfig, a key data structure coded in
  AudioSpecificConfig, is defined in [MPEGSA].

  For implementors wishing to specify Structured Audio renderers, a
  full understanding of [MPEGSA] and [MPEGAUDIO] is essential.
  However, many implementors will limit their rendering options to the
  two MIDI Manufacturers Association renderers that may be specified in



Lazzaro & Wawrzynek         Standards Track                   [Page 160]

RFC 4695              RTP Payload Format for MIDI          November 2006


  AudioSpecificConfig: General MIDI (GM, [MIDI]) and Downloadable
  Sounds 2 (DLS 2, [DLS2]).

  To aid these implementors, we reproduce the AudioSpecificConfig
  bitfield formats for a GM renderer and a DLS 2 renderer below.  We
  have checked these bitfields carefully and believe they are correct.
  However, we stress that the material below is informative, and that
  [MPEGAUDIO] and [MPEGSA] are the normative definitions for
  AudioSpecificConfig.

  As described in Section 6.2, a minimal mpeg4-generic session
  description encodes the AudioSpecificConfig binary bitfield as a
  hexadecimal string (whose format is defined in [RFC3640]) that is
  assigned to the "config" parameter.  As described in Appendix C.6.3,
  a session description that uses the render parameter encodes the
  AudioSpecificConfig binary bitfield as a Base64-encoded string
  assigned to the "inline" parameter, or in the body of an HTTP URL
  assigned to the "url" parameter.

  Below, we show a simplified binary AudioSpecificConfig bitfield
  format, suitable for sending and receiving GM and DLS 2 data:

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     | AOTYPE  |FREQIDX|CHANNEL|SACNK|  FILE_BLK 1 (required) ...    |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |1|SACNK|              FILE_BLK 2 (optional) ...                |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  ...  |1|SACNK| FILE_BLK N (optional) ...                     |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |0|0|        (first "0" bit terminates FILE_BLK list)
     +-+-+

                 Figure E.3 -- Simplified AudioSpecificConfig

  The 5-bit AOTYPE field specifies the Audio Object Type as an unsigned
  integer.  The legal values for use with mpeg4-generic RTP MIDI
  streams are "15" (General MIDI), "14" (DLS 2), and "13" (Structured
  Audio).  Thus, receivers that do not support all three mpeg4-generic
  renderers may parse the first 5 bits of an AudioSpecificConfig coded
  in a session description and reject sessions that specify unsupported
  renderers.

  The 4-bit FREQIDX field specifies the sampling rate of the renderer.
  We show the mapping of FREQIDX values to sampling rates in Figure
  E.4.  Senders MUST specify a sampling frequency that matches the RTP
  clock rate, if possible; if not, senders MUST specify the escape



Lazzaro & Wawrzynek         Standards Track                   [Page 161]

RFC 4695              RTP Payload Format for MIDI          November 2006


  value.  Receivers MUST consult the RTP clock parameter for the true
  sampling rate if the escape value is specified.

                      FREQIDX    Sampling Frequency

                        0x0            96000
                        0x1            88200
                        0x2            64000
                        0x3            48000
                        0x4            44100
                        0x5            32000
                        0x6            24000
                        0x7            22050
                        0x8            16000
                        0x9            12000
                        0xa            11025
                        0xb             8000
                        0xc          reserved
                        0xd          reserved
                        0xe          reserved
                        0xf         escape value

                    Figure E.4 -- FreqIdx encoding

  The 4-bit CHANNEL field specifies the number of audio channels for
  the renderer.  The values 0x1 to 0x5 specify 1 to 5 audio channels;
  the value 0x6 specifies 5+1 surround sound, and the value 0x7
  specifies 7+1 surround sound.  If the rtpmap line in the session
  description specifies one of these formats, CHANNEL MUST be set to
  the corresponding value.  Otherwise, CHANNEL MUST be set to 0x0.

  The CHANNEL field is followed by a list of one or more binary file
  data blocks.  The 3-bit SACNK field (the chunk_type field in class
  StructuredAudioSpecificConfig, defined in [MPEGSA]) specifies the
  type of each data block.

  For General MIDI, only Standard MIDI Files may appear in the list
  (SACNK field value 2).  For DLS 2, only Standard MIDI Files and DLS 2
  RIFF files (SACNK field value 4) may appear.  For both of these file
  types, the FILE_BLK field has the format shown in Figure E.5: a 32-
  bit unsigned integer value (FILE_LEN) coding the number of bytes in
  the SMF or RIFF file, followed by FILE_LEN bytes coding the file
  data.








Lazzaro & Wawrzynek         Standards Track                   [Page 162]

RFC 4695              RTP Payload Format for MIDI          November 2006


      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |     FILE_LEN (32-bit, a byte count SMF file or RIFF file)     |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  FILE_DATA (file contents, a list of FILE_LEN bytes) ...      |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                 Figure E.5 -- The FILE_BLK field format

  Note that several files may follow CHANNEL field.  The "1" constant
  fields in Figure E.3 code the presence of another file; the "0"
  constant field codes the end of the list.  The final "0" bit in
  Figure E.3 codes the absence of special coding tools (see [MPEGAUDIO]
  for details).  Senders not using these tools MUST append this "0"
  bit; receivers that do not understand these coding tools MUST ignore
  all data following a "1" in this position.

  The StructuredAudioSpecificConfig bitfield structure requires the
  presence of one FILE_BLK.  For mpeg4-generic RTP MIDI use of DLS 2,
  FILE_BLKs MUST code RIFF files or SMF files.  For mpeg4-generic RTP
  MIDI use of General MIDI, FILE_BLKs MUST code SMF files.  By default,
  this SMF will be ignored (Appendix C.6.4.1).  In this default case, a
  GM StructuredAudioSpecificConfig bitfield SHOULD code a FILE_BLK
  whose FILE_LEN is 0, and whose FILE_DATA is empty.

  To complete this appendix, we derive the
  StructuredAudioSpecificConfig that we use in the General MIDI session
  examples in this memo.  Referring to Figure E.3, we note that for GM,
  AOTYPE = 15.  Our examples use a 44,100 Hz sample rate (FREQIDX = 4)
  and are in mono (CHANNEL = 1).  For GM, a single SMF is encoded
  (SACNK = 2), using the SMF shown in Figure E.6 (a 26 byte file).

              --------------------------------------------
             |  MIDI File = <Header Chunk> <Track Chunk>  |
              --------------------------------------------

  <Header Chunk> = <chunk type> <length>     <format> <ntrks> <divsn>
                   4D 54 68 64  00 00 00 06  00 00    00 01   00 60

  <Track Chunk> = <chunk type>  <length>     <delta-time> <end-event>
                  4D 54 72 6B   00 00 00 04  00           FF 2F 00

           Figure E.6 -- SMF file encoded in the example







Lazzaro & Wawrzynek         Standards Track                   [Page 163]

RFC 4695              RTP Payload Format for MIDI          November 2006


  Placing these constants in binary format into the data structure
  shown in Figure E.3 yields the constant shown in Figure E.7.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |0 1 1 1 1|0 1 0 0|0 0 0 1|0 1 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0|
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0|0 1 0 0|1 1 0 1|0 1 0 1|0 1 0 0|
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |0 1 1 0|1 0 0 0|0 1 1 0|0 1 0 0|0 0 0 0|0 0 0 0|0 0 0 0|0 0 0 0|
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |0 0 0 0|0 0 0 0|0 0 0 0|0 1 1 0|0 0 0 0|0 0 0 0|0 0 0 0|0 0 0 0|
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |0 0 0 0|0 0 0 0|0 0 0 0|0 0 0 1|0 0 0 0|0 0 0 0|0 1 1 0|0 0 0 0|
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |0 1 0 0|1 1 0 1|0 1 0 1|0 1 0 0|0 1 1 1|0 0 1 0|0 1 1 0|1 0 1 1|
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |0 0 0 0|0 0 0 0|0 0 0 0|0 0 0 0|0 0 0 0|0 0 0 0|0 0 0 0|0 1 1 0|
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |0 0 0 0|0 0 0 0|1 1 1 1|1 1 1 1|0 0 1 0|1 1 1 1|0 0 0 0|0 0 0 0|
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |0|0|
     +-+-+

           Figure E.7 -- AudioSpecificConfig used in GM examples

  Expressing this bitfield as an ASCII hexadecimal string yields:

     7A0A0000001A4D546864000000060000000100604D54726B0000000600FF2F000

  This string is assigned to the "config" parameter in the minimal
  mpeg4-generic General MIDI examples in this memo (such as the example
  in Section 6.2).  Expressing this string in Base64 [RFC2045] yields:

     egoAAAAaTVRoZAAAAAYAAAABAGBNVHJrAAAABgD/LwAA

  This string is assigned to the "inline" parameter in the General MIDI
  example shown in Appendix C.6.5.












Lazzaro & Wawrzynek         Standards Track                   [Page 164]

RFC 4695              RTP Payload Format for MIDI          November 2006


References

Normative References

  [MIDI]      MIDI Manufacturers Association.  "The Complete MIDI 1.0
              Detailed Specification", 1996.

  [RFC3550]   Schulzrinne, H., Casner, S., Frederick, R., and V.
              Jacobson, "RTP: A Transport Protocol for Real-Time
              Applications", STD 64, RFC 3550, July 2003.

  [RFC3551]   Schulzrinne, H. and S. Casner, "RTP Profile for Audio and
              Video Conferences with Minimal Control", STD 65, RFC
              3551, July 2003.

  [RFC3640]   van der Meer, J., Mackie, D., Swaminathan, V., Singer,
              D., and P. Gentric, "RTP Payload Format for Transport of
              MPEG-4 Elementary Streams", RFC 3640, November 2003.

  [MPEGSA]    International Standards Organization.  "ISO/IEC 14496
              MPEG-4", Part 3 (Audio), Subpart 5 (Structured Audio),
              2001.

  [RFC4566]   Handley, M., Jacobson, V., and C. Perkins, "SDP: Session
              Description Protocol", RFC 4566, July 2006.

  [MPEGAUDIO] International Standards Organization.  "ISO 14496 MPEG-
              4", Part 3 (Audio), 2001.

  [RFC2045]   Freed, N. and N. Borenstein, "Multipurpose Internet Mail
              Extensions (MIME) Part One: Format of Internet Message
              Bodies", RFC 2045, November 1996.

  [DLS2]      MIDI Manufacturers Association.  "The MIDI Downloadable
              Sounds Specification", v98.2, 1998.

  [RFC4234]   Crocker, D. and P. Overell, "Augmented BNF for Syntax
              Specifications: ABNF", RFC 4234, October 2005.

  [RFC2119]   Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119, March 1997.

  [RFC3711]   Baugher, M., McGrew, D., Naslund, M., Carrara, E., and K.
              Norrman, "The Secure Real-time Transport Protocol
              (SRTP)", RFC 3711, March 2004.






Lazzaro & Wawrzynek         Standards Track                   [Page 165]

RFC 4695              RTP Payload Format for MIDI          November 2006


  [RFC3264]   Rosenberg, J. and H. Schulzrinne, "An Offer/Answer Model
              with Session Description Protocol (SDP)", RFC 3264, June
              2002.

  [RFC3986]   Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
              Resource Identifier (URI): Generic Syntax", STD 66, RFC
              3986, January 2005.

  [RFC2616]   Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
              Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
              Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

  [RFC3388]   Camarillo, G., Eriksson, G., Holler, J., and H.
              Schulzrinne, "Grouping of Media Lines in the Session
              Description Protocol (SDP)", RFC 3388, December 2002.

  [RP015]     MIDI Manufacturers Association.  "Recommended Practice
              015 (RP-015): Response to Reset All Controllers", 11/98.

  [RFC4288]   Freed, N. and J. Klensin, "Media Type Specifications and
              Registration Procedures", BCP 13, RFC 4288, December
              2005.

  [RFC3555]   Casner, S. and P. Hoschka, "MIME Type Registration of RTP
              Payload Formats", RFC 3555, July 2003.

Informative References

  [NMP]       Lazzaro, J. and J. Wawrzynek.  "A Case for Network
              Musical Performance", 11th International Workshop on
              Network and Operating Systems Support for Digital Audio
              and Video (NOSSDAV 2001) June 25-26, 2001, Port
              Jefferson, New York.

  [GRAME]     Fober, D., Orlarey, Y. and S. Letz.  "Real Time Musical
              Events Streaming over Internet", Proceedings of the
              International Conference on WEB Delivering of Music 2001,
              pages 147-154.

  [RFC3261]   Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
              A., Peterson, J., Sparks, R., Handley, M., and E.
              Schooler, "SIP: Session Initiation Protocol", RFC 3261,
              June 2002.

  [RFC2326]   Schulzrinne, H., Rao, A., and R. Lanphier, "Real Time
              Streaming Protocol (RTSP)", RFC 2326, April 1998.





Lazzaro & Wawrzynek         Standards Track                   [Page 166]

RFC 4695              RTP Payload Format for MIDI          November 2006


  [ALF]       Clark, D. D. and D. L. Tennenhouse. "Architectural
              considerations for a new generation of protocols",
              SIGCOMM Symposium on Communications Architectures and
              Protocols , (Philadelphia, Pennsylvania), pp. 200--208,
              IEEE, Sept. 1990.

  [RFC4696]   Lazzaro, J. and J. Wawrzynek, "An Implementation Guide
              for RTP MIDI", RFC 4696, November 2006.

  [RFC2205]   Braden, R., Zhang, L., Berson, S., Herzog, S., and S.
              Jamin, "Resource ReSerVation Protocol (RSVP) -- Version 1
              Functional Specification", RFC 2205, September 1997.

  [RFC4288]   Freed, N. and J. Klensin, "Media Type Specifications and
              Registration Procedures", BCP 13, RFC 4288, December
              2005.

  [RFC4289]   Freed, N. and J. Klensin, "Multipurpose Internet Mail
              Extensions (MIME) Part Four: Registration Procedures",
              BCP 13, RFC 4289, December 2005.

  [RFC4571]   Lazzaro, J. "Framing Real-time Transport Protocol (RTP)
              and RTP Control Protocol (RTCP) Packets over Connection-
              Oriented Transport", RFC 4571, July 2006.

  [RFC2818]   Rescorla, E., "HTTP Over TLS", RFC 2818, May 2000.

  [SPMIDI]    MIDI Manufacturers Association.  "Scalable Polyphony
              MIDI, Specification and Device Profiles", Document
              Version 1.0a, 2002.

  [LCP]       Apple Computer. "Logic 7 Dedicated Control Surface
              Support", Appendix B.  Product manual available from
              www.apple.com.

















Lazzaro & Wawrzynek         Standards Track                   [Page 167]

RFC 4695              RTP Payload Format for MIDI          November 2006


Authors' Addresses

  John Lazzaro (corresponding author)
  UC Berkeley
  CS Division
  315 Soda Hall
  Berkeley CA 94720-1776

  EMail: [email protected]


  John Wawrzynek
  UC Berkeley
  CS Division
  631 Soda Hall
  Berkeley CA 94720-1776

  EMail: [email protected]

































Lazzaro & Wawrzynek         Standards Track                   [Page 168]

RFC 4695              RTP Payload Format for MIDI          November 2006


Full Copyright Statement

  Copyright (C) The IETF Trust (2006).

  This document is subject to the rights, licenses and restrictions
  contained in BCP 78, and except as set forth therein, the authors
  retain all their rights.

  This document and the information contained herein are provided on an
  "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
  OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST,
  AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES,
  EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT
  THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY
  IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
  PURPOSE.

Intellectual Property

  The IETF takes no position regarding the validity or scope of any
  Intellectual Property Rights or other rights that might be claimed to
  pertain to the implementation or use of the technology described in
  this document or the extent to which any license under such rights
  might or might not be available; nor does it represent that it has
  made any independent effort to identify any such rights.  Information
  on the procedures with respect to rights in RFC documents can be
  found in BCP 78 and BCP 79.

  Copies of IPR disclosures made to the IETF Secretariat and any
  assurances of licenses to be made available, or the result of an
  attempt made to obtain a general license or permission for the use of
  such proprietary rights by implementers or users of this
  specification can be obtained from the IETF on-line IPR repository at
  http://www.ietf.org/ipr.

  The IETF invites any interested party to bring to its attention any
  copyrights, patents or patent applications, or other proprietary
  rights that may cover technology that may be required to implement
  this standard.  Please address the information to the IETF at
  [email protected].

Acknowledgement

  Funding for the RFC Editor function is currently provided by the
  Internet Society.






Lazzaro & Wawrzynek         Standards Track                   [Page 169]