Network Working Group                                           A. Malis
Request for Comments: 4623                                       Tellabs
Category: Standards Track                                    M. Townsley
                                                          Cisco Systems
                                                            August 2006


              Pseudowire Emulation Edge-to-Edge (PWE3)
                    Fragmentation and Reassembly

Status of This Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (2006).

Abstract

  This document defines a generalized method of performing
  fragmentation for use by Pseudowire Emulation Edge-to-Edge (PWE3)
  protocols and services.
























Malis & Townsley            Standards Track                     [Page 1]

RFC 4623          PWE3 Fragmentation and Reassembly          August 2006


Table of Contents

  1. Introduction ....................................................3
  2. Conventions Used in This Document ...............................4
  3. Alternatives to PWE3 Fragmentation/Reassembly ...................5
  4. PWE3 Fragmentation with MPLS ....................................5
     4.1. Fragment Bit Locations for MPLS ............................6
     4.2. Other Considerations .......................................6
  5. PWE3 Fragmentation with L2TP ....................................6
     5.1. PW-Specific Fragmentation vs. IP fragmentation .............7
     5.2. Advertising Reassembly Support in L2TP .....................7
     5.3. L2TP Maximum Receive Unit (MRU) AVP ........................8
     5.4. L2TP Maximum Reassembled Receive Unit (MRRU) AVP ...........8
     5.5. Fragment Bit Locations for L2TPv3 Encapsulation ............9
     5.6. Fragment Bit Locations for L2TPv2 Encapsulation ............9
  6. Security Considerations ........................................10
  7. IANA Considerations ............................................10
     7.1. Control Message Attribute Value Pairs (AVPs) ..............11
     7.2. Default L2-Specific Sublayer Bits .........................11
     7.3. Leading Bits of the L2TPv2 Message Header .................11
  8. Acknowledgements ...............................................11
  9. Normative References ...........................................12
  10. Informative References ........................................12
  Appendix A. Relationship Between This Document and RFC 1990 .......14



























Malis & Townsley            Standards Track                     [Page 2]

RFC 4623          PWE3 Fragmentation and Reassembly          August 2006


1.  Introduction

  The Pseudowire Emulation Edge-to-Edge Architecture Document
  [Architecture] defines a network reference model for PWE3:

        |<-------------- Emulated Service ---------------->|
        |                                                  |
        |          |<------- Pseudowire ------->|          |
        |          |                            |          |
        |          |    |<-- PSN Tunnel -->|    |          |
        | PW End   V    V                  V    V  PW End  |
        V Service  +----+                  +----+  Service V
  +-----+    |     | PE1|==================| PE2|     |    +-----+
  |     |----------|............PW1.............|----------|     |
  | CE1 |    |     |    |                  |    |     |    | CE2 |
  |     |----------|............PW2.............|----------|     |
  +-----+  ^ |     |    |==================|    |     | ^  +-----+
        ^  |       +----+                  +----+     | |  ^
        |  |   Provider Edge 1         Provider Edge 2  |  |
        |  |                                            |  |
  Customer |                                            | Customer
  Edge 1   |                                            | Edge 2
           |                                            |
           |                                            |
     native service                               native service

                 Figure 1: PWE3 Network Reference Model

  A Pseudowire (PW) payload is normally relayed across the PW as a
  single IP or MPLS Packet Switched Network (PSN) Protocol Data Unit
  (PDU).  However, there are cases where the combined size of the
  payload and its associated PWE3 and PSN headers may exceed the PSN
  path Maximum Transmission Unit (MTU).  When a packet exceeds the MTU
  of a given network, fragmentation and reassembly will allow the
  packet to traverse the network and reach its intended destination.

  The purpose of this document is to define a generalized method of
  performing fragmentation for use with all PWE3 protocols and
  services.  This method should be utilized only in cases where MTU-
  management methods fail.  Due to the increased processing overhead,
  fragmentation and reassembly in core network devices should always be
  considered something to avoid whenever possible.

  The PWE3 fragmentation and reassembly domain is shown in Figure 2:







Malis & Townsley            Standards Track                     [Page 3]

RFC 4623          PWE3 Fragmentation and Reassembly          August 2006


        |<-------------- Emulated Service ---------------->|
        |          |<---Fragmentation Domain--->|          |
        |          ||<------- Pseudowire ----->||          |
        |          ||                          ||          |
        |          ||   |<-- PSN Tunnel -->|   ||          |
        | PW End   VV   V                  V   VV  PW End  |
        V Service  +----+                  +----+  Service V
  +-----+    |     | PE1|==================| PE2|     |    +-----+
  |     |----------|............PW1.............|----------|     |
  | CE1 |    |     |    |                  |    |     |    | CE2 |
  |     |----------|............PW2.............|----------|     |
  +-----+  ^ |     |    |==================|    |     | ^  +-----+
        ^  |       +----+                  +----+     | |  ^
        |  |   Provider Edge 1         Provider Edge 2  |  |
        |  |                                            |  |
  Customer |                                            | Customer
  Edge 1   |                                            | Edge 2
           |                                            |
           |                                            |
     native service                               native service

             Figure 2: PWE3 Fragmentation/Reassembly Domain

  Fragmentation takes place in the transmitting PE immediately prior to
  PW encapsulation, and reassembly takes place in the receiving PE
  immediately after PW decapsulation.

  Since a sequence number is necessary for the fragmentation and
  reassembly procedures, using the Sequence Number field on fragmented
  packets is REQUIRED (see Sections 4.1 and 5.5 for the location of the
  Sequence Number fields for MPLS and L2TPv3 encapsulations,
  respectively).  The order of operation is that first fragmentation is
  performed, and then the resulting fragments are assigned sequential
  sequence numbers.

  Depending on the specific PWE3 encapsulation in use, the value 0 may
  not be a part of the sequence number space, in which case its use for
  fragmentation must follow this same rule: as the sequence number is
  incremented, it skips zero and wraps from 65535 to 1.  Conversely, if
  the value 0 is part of the sequence space, then the same sequence
  space is also used for fragmentation and reassembly.

2.  Conventions Used in This Document

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in RFC 2119 [KEYWORDS].




Malis & Townsley            Standards Track                     [Page 4]

RFC 4623          PWE3 Fragmentation and Reassembly          August 2006


3.  Alternatives to PWE3 Fragmentation/Reassembly

  Fragmentation and reassembly in network equipment generally requires
  significantly greater resources than sending a packet as a single
  unit.  As such, fragmentation and reassembly should be avoided
  whenever possible.  Ideal solutions for avoiding fragmentation
  include proper configuration and management of MTU sizes between the
  Customer Edge (CE) router and Provider Edge (PE) router and across
  the PSN, as well as adaptive measures that operate with the
  originating host (e.g., [PATHMTU], [PATHMTUv6]) to reduce the packet
  sizes at the source.

  In some cases, a PE may be able to fragment an IP version 4 (IPv4)
  [RFC791] packet before it enters a PW.  For example, if the PE can
  fragment and forward IPv4 packets with the DF bit clear in a manner
  that is identical to an IPv4 router, it may fragment packets arriving
  from a CE, forwarding the IPv4 fragments with associated framing for
  that attachment circuit (AC) over the PW.  Architecturally, the IPv4
  fragmentation happens before reaching the PW, presenting multiple
  frames to the PW to forward in the normal manner for that PWType.
  Thus, this method is entirely transparent to the PW encapsulation and
  to the remote end of the PW itself.  Packet fragments are ultimately
  reassembled on the destination IPv4 host in the normal way.  IPv6
  packets are not to be fragmented in this manner.

4.  PWE3 Fragmentation with MPLS

  When using the signaling procedures in [MPLS-Control], there is a
  Pseudowire Interface Parameter Sub-TLV type used to signal the use of
  fragmentation when advertising a VC label [IANA]:

     Parameter      Length    Description
          0x09           4    Fragmentation indicator

  The presence of this parameter in the VC FEC element indicates that
  the receiver is able to reassemble fragments when the control word is
  in use for the VC label being advertised.  It does not obligate the
  sender to use fragmentation; it is simply an indication that the
  sender MAY use fragmentation.  The sender MUST NOT use fragmentation
  if this parameter is not present in the VC FEC element.

  If [MPLS-Control] signaling is not in use, then whether or not to use
  fragmentation MUST be configured in the sender.








Malis & Townsley            Standards Track                     [Page 5]

RFC 4623          PWE3 Fragmentation and Reassembly          August 2006


4.1.  Fragment Bit Locations for MPLS

  MPLS-based PWE3 uses the following control word format
  [Control-Word], with the B and E fragmentation bits identified in
  position 8 and 9:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |0 0 0 0| Flags |B|E|   Length  |     Sequence Number           |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                Figure 3: Preferred PW MPLS Control Word

  The B and E bits are defined as follows:

  BE
  --
  00 indicates that the entire (un-fragmented) payload is carried
     in a single packet
  01 indicates the packet carrying the first fragment
  10 indicates the packet carrying the last fragment
  11 indicates a packet carrying an intermediate fragment

  See Appendix A for a discussion of the derivation of these values for
  the B and E bits.

  See Section 1 for the description of the use of the Sequence Number
  field.

4.2.  Other Considerations

  Path MTU [PATHMTU] [PATHMTUv6] may be used to dynamically determine
  the maximum size for fragments.  The application of path MTU to MPLS
  is discussed in [LABELSTACK].  The maximum size of the fragments may
  also be configured.  The signaled Interface MTU parameter in
  [MPLS-Control] SHOULD be used to set the maximum size of the
  reassembly buffer for received packets to make optimal use of
  reassembly buffer resources.

5.  PWE3 Fragmentation with L2TP

  This section defines the location of the B and E bits for L2TPv3
  [L2TPv3] and L2TPv2 [L2TPv2] headers, as well as the signaling
  mechanism for advertising MRU (Maximum Receive Unit) values and
  support for fragmentation on a given PW.  As IP is the most common
  PSN used with L2TP, IP PSN fragmentation and reassembly is discussed
  as well.



Malis & Townsley            Standards Track                     [Page 6]

RFC 4623          PWE3 Fragmentation and Reassembly          August 2006


5.1.  PW-Specific Fragmentation vs. IP fragmentation

  When proper MTU management across a network fails, IP PSN
  fragmentation and reassembly may be used to accommodate MTU
  mismatches between tunnel endpoints.  If the overall traffic
  requiring fragmentation and reassembly is very light, or there are
  sufficient optimized mechanisms for IP PSN fragmentation and
  reassembly available, IP PSN fragmentation and reassembly may be
  sufficient.

  When facing a large number of PW packets requiring fragmentation and
  reassembly, a PW-specific method has properties that potentially
  allow for more resource-friendly implementations.  Specifically, the
  ability to assign buffer usage on a per-PW basis and PW sequencing
  may be utilized to gain advantage over a general mechanism applying
  to all IP packets across all PWs.  Further, PW fragmentation may be
  more easily enabled in a selective manner for some or all PWs, rather
  than enabling reassembly for all IP traffic arriving at a given node.

  Deployments SHOULD avoid a situation that uses a combination of IP
  PSN and PW fragmentation and reassembly on the same node.  Such
  operation clearly defeats the purpose behind the mechanism defined in
  this document.  This is especially important for L2TPv3 pseudowires,
  since potentially fragmentation can take place in three different
  places (the IP PSN, the PW, and the encapsulated payload).  Care must
  be taken to ensure that the MTU/MRU values are set and advertised
  properly at each tunnel endpoint to avoid this.  When fragmentation
  is enabled within a given PW, the DF bit MUST be set on all L2TP over
  IP packets for that PW.

  L2TPv3 nodes SHOULD participate in Path MTU ([PATHMTU], [PATHMTUv6])
  for automatic adjustment of the PSN MTU.  When the payload is IP,
  Path MTU should be used at they payload level as well.

5.2.  Advertising Reassembly Support in L2TP

  The constructs defined in this section for advertising fragmentation
  support in L2TP are applicable to [L2TPv3] and [L2TPv2].

  This document defines two new AVPs to advertise maximum receive unit
  values and reassembly support.  These AVPs MAY be present in the
  Incoming-Call-Request (ICRQ), Incoming-Call-Reply (ICRP), Incoming-
  Call-Connected (ICCN), Outgoing-Call-Request (OCRQ), Outgoing-Call-
  Reply (OCRP), Outgoing-Call-Connected (OCCN), or Set-Link-Info (SLI)
  messages.  The most recent value received always takes precedence
  over a previous value and MUST be dynamic over the life of the





Malis & Townsley            Standards Track                     [Page 7]

RFC 4623          PWE3 Fragmentation and Reassembly          August 2006


  session if received via the SLI message.  One of the two new AVPs
  (MRRU) is used to advertise that PWE3 reassembly is supported by the
  sender of the AVP.  Reassembly support MAY be unidirectional.

5.3.  L2TP Maximum Receive Unit (MRU) AVP

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |M|H|0|0|0|0|    Length         |              0                |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |              MRU              |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

             Figure 4: L2TP Maximum Receive Unit (MRU) AVP

  MRU (Maximum Receive Unit), attribute number 94, is the maximum size,
  in octets, of a fragmented or complete PW frame, including L2TP
  encapsulation, receivable by the side of the PW advertising this
  value.  The advertised MRU does NOT include the PSN header (i.e., the
  IP and/or UDP header).  This AVP does not imply that PWE3
  fragmentation or reassembly is supported.  If reassembly is not
  enabled or unavailable, this AVP may be used alone to advertise the
  MRU for a complete frame.

  This AVP MAY be hidden (the H bit MAY be 0 or 1).  The mandatory (M)
  bit for this AVP SHOULD be set to 0.  The Length (before hiding) is
  8.  The Vendor ID is the IETF Vendor ID of 0.

5.4.  L2TP Maximum Reassembled Receive Unit (MRRU) AVP

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |M|H|0|0|0|0|    Length         |              0                |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |              MRRU             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

      Figure 5: L2TP Maximum Reassembled Receive Unit (MRRU) AVP

  MRRU (Maximum Reassembled Receive Unit AVP), attribute number 95, is
  the maximum size, in octets, of a reassembled frame, including any PW
  framing, but not including the L2TP encapsulation or L2-specific
  sublayer.  Presence of this AVP signifies the ability to receive PW
  fragments and reassemble them.  Packet fragments MUST NOT be sent by
  a peer that has not received this AVP in a control message.  If the
  MRRU is present in a message, the MRU AVP MUST be present as well.



Malis & Townsley            Standards Track                     [Page 8]

RFC 4623          PWE3 Fragmentation and Reassembly          August 2006


  The MRRU SHOULD be used to set the maximum size of the reassembly
  buffer for received packets to make optimal use of reassembly buffer
  resources.

  This AVP MAY be hidden (the H bit MAY be 0 or 1).  The mandatory (M)
  bit for this AVP SHOULD be set to 0.  The Length (before hiding) is
  8.  The Vendor ID is the IETF Vendor ID of 0.

5.5.  Fragment Bit Locations for L2TPv3 Encapsulation

  The usage of the B and E bits is described in Section 4.1.  For
  L2TPv3 encapsulation, the B and E bits are defined as bits 2 and 3 in
  the leading bits of the Default L2-Specific Sublayer (see Section 7).

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |M|H|0|0|0|0|    Length         |              0                |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |x|S|B|E|x|x|x|x|              Sequence Number                  |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Figure 6: B and E Bits Location in the Default L2-Specific Sublayer

  The S (Sequence) bit is as defined in [L2TPv3].  Location of the B
  and E bits for PW-Types that use a variant L2 specific sublayer are
  outside the scope of this document.

  When fragmentation is used, an L2-Specific Sublayer with B and E bits
  defined MUST be present in all data packets for a given session.  The
  presence and format of the L2-Specific Sublayer is advertised via the
  L2-Specific Sublayer AVP, Attribute Type 69, defined in Section 5.4.4
  of [L2TPv3].

  See Section 1 for the description of the use of the Sequence Number
  field.

5.6.  Fragment Bit Locations for L2TPv2 Encapsulation

  The usage of the B and E bits is described in Section 4.1.  For
  L2TPv2 encapsulation, the B and E bits are defined as bits 8 and 9 in
  the leading bits of the L2TPv2 header as depicted below (see Section
  7).








Malis & Townsley            Standards Track                     [Page 9]

RFC 4623          PWE3 Fragmentation and Reassembly          August 2006


   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |M|H|0|0|0|0|    Length         |              0                |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |T|L|x|x|S|x|O|P|B|E|x|x|  Ver  |          Length (opt)         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

      Figure 7: B and E bits location in the L2TPv2 Message Header

6.  Security Considerations

  As with any additional protocol construct, each level of complexity
  adds the potential to exploit protocol and implementation errors.
  Implementers should be especially careful of not tying up an
  abundance of resources, even for the most pathological combination of
  packet fragments that could be received.  Beyond these issues of
  general implementation quality, there are no known notable security
  issues with using the mechanism defined in this document.  It should
  be pointed out that RFC 1990, on which this document is based, and
  its derivatives have been widely implemented and extensively used in
  the Internet and elsewhere.

  [IPFRAG-SEC] and [TINYFRAG] describe potential network attacks
  associated with IP fragmentation and reassembly.  The issues
  described in these documents attempt to bypass IP access controls by
  sending various carefully formed "tiny fragments", or by exploiting
  the IP offset field to cause fragments to overlap and rewrite
  interesting portions of an IP packet after access checks have been
  performed.  The latter is not an issue with the PW-specific
  fragmentation method described in this document, as there is no
  offset field.  However, implementations MUST be sure not to allow
  more than one whole fragment to overwrite another in a reconstructed
  frame.  The former may be a concern if packet filtering and access
  controls are being placed on tunneled frames within the PW
  encapsulation.  To circumvent any possible attacks in either case,
  all filtering and access controls should be applied to the resulting
  reconstructed frame rather than any PW fragments.

7.  IANA Considerations

  This document does not define any new registries for IANA to
  maintain.

  Note that [IANA] has already allocated the Fragmentation Indicator
  interface parameter, so no further IANA action is required.





Malis & Townsley            Standards Track                    [Page 10]

RFC 4623          PWE3 Fragmentation and Reassembly          August 2006


  This document requires IANA to assign new values for registries
  already managed by IANA (see Sections 7.1 and 7.2) and two reserved
  bits in an existing header (see Section 7.3).

7.1.  Control Message Attribute Value Pairs (AVPs)

  Two additional AVP Attributes are specified in Sections 5.3 and 5.4.
  They are required to be defined by IANA as described in Section 2.2
  of [BCP0068].

  Control Message Attribute Value Pairs
  -------------------------------------

  94 - Maximum Receive Unit (MRU) AVP
  95 - Maximum Reassembled Receive Unit (MRRU) AVP

7.2.  Default L2-Specific Sublayer Bits

  This registry was created as part of the publication of [L2TPv3].
  This document defines two reserved bits in the Default L2-Specific
  Sublayer in Section 5.5, which may be assigned by IETF Consensus
  [RFC2434].  They are required to be assigned by IANA.

  Default L2-Specific Sublayer bits - per [L2TPv3]
  ---------------------------------

  Bit 2 - B (Fragmentation) bit
  Bit 3 - E (Fragmentation) bit

7.3.  Leading Bits of the L2TPv2 Message Header

  This document requires definition of two reserved bits in the L2TPv2
  [L2TPv2] header.  Locations are noted by the "B" and "E" bits in
  Section 5.6.

  Leading Bits of the L2TPv2 Message Header - per [L2TPv2, L2TPv3]
  -----------------------------------------

  Bit 8 - B (Fragmentation) bit
  Bit 9 - E (Fragmentation) bit

8.  Acknowledgements

  The authors wish to thank Eric Rosen and Carlos Pignataro, both of
  Cisco Systems, for their review of this document.






Malis & Townsley            Standards Track                    [Page 11]

RFC 4623          PWE3 Fragmentation and Reassembly          August 2006


9.  Normative References

  [Control-Word] Bryant, S., Swallow, G., Martini, L., and D.
                 McPherson, "Pseudowire Emulation Edge-to-Edge (PWE3)
                 Control Word for Use over an MPLS PSN", RFC 4385,
                 February 2006.

  [IANA]         Martini, L., "IANA Allocations for Pseudowire Edge to
                 Edge Emulation (PWE3)", BCP 116, RFC 4446, April 2006.

  [KEYWORDS]     Bradner, S., "Key words for use in RFCs to Indicate
                 Requirement Levels", BCP 14, RFC 2119, March 1997.

  [LABELSTACK]   Rosen, E., Tappan, D., Fedorkow, G., Rekhter, Y.,
                 Farinacci, D., Li, T., and A. Conta, "MPLS Label Stack
                 Encoding", RFC 3032, January 2001.

  [L2TPv2]       Townsley, W., Valencia, A., Rubens, A., Pall, G.,
                 Zorn, G., and B. Palter, "Layer Two Tunneling Protocol
                 "L2TP"", RFC 2661, August 1999.

  [L2TPv3]       Lau, J., Townsley, M., and I. Goyret, "Layer Two
                 Tunneling Protocol - Version 3 (L2TPv3)", RFC 3931,
                 March 2005.

  [MLPPP]        Sklower, K., Lloyd, B., McGregor, G., Carr, D., and T.
                 Coradetti, "The PPP Multilink Protocol (MP)", RFC
                 1990, August 1996.

  [MPLS-Control] Martini, L., Rosen, E., El-Aawar, N., Smith, T., and
                 G. Heron, "Pseudowire Setup and Maintenance Using the
                 Label Distribution Protocol (LDP)", RFC 4447, April
                 2006.

  [PATHMTU]      Mogul, J. and S. Deering, "Path MTU discovery", RFC
                 1191, November 1990.

  [PATHMTUv6]    McCann, J., Deering, S., and J. Mogul, "Path MTU
                 Discovery for IP version 6", RFC 1981, August 1996.

10.  Informative References

  [Architecture] Bryant, S. and P. Pate, "Pseudo Wire Emulation Edge-
                 to-Edge (PWE3) Architecture", RFC 3985, March 2005.







Malis & Townsley            Standards Track                    [Page 12]

RFC 4623          PWE3 Fragmentation and Reassembly          August 2006


  [BCP0068]      Townsley, W., "Layer Two Tunneling Protocol (L2TP)
                 Internet Assigned Numbers Authority (IANA)
                 Considerations Update", BCP 68, RFC 3438, December
                 2002.

  [FAST]         ATM Forum, "Frame Based ATM over SONET/SDH Transport
                 (FAST)", af-fbatm-0151.000, July 2000.

  [FRF.12]       Frame Relay Forum, "Frame Relay Fragmentation
                 Implementation Agreement", FRF.12, December 1997.

  [IPFRAG-SEC]   Ziemba, G., Reed, D., and P. Traina, "Security
                 Considerations for IP Fragment Filtering", RFC 1858,
                 October 1995.

  [RFC2434]      Narten, T. and H. Alvestrand, "Guidelines for Writing
                 an IANA Considerations Section in RFCs", BCP 26, RFC
                 2434, October 1998.

  [RFC791]       Postel, J., "Internet Protocol", STD 5, RFC 791,
                 September 1981.

  [TINYFRAG]     Miller, I., "Protection Against a Variant of the Tiny
                 Fragment Attack (RFC 1858)", RFC 3128, June 2001.



























Malis & Townsley            Standards Track                    [Page 13]

RFC 4623          PWE3 Fragmentation and Reassembly          August 2006


Appendix A.  Relationship between This Document and RFC 1990

  The fragmentation of large packets into smaller units for
  transmission is not new.  One fragmentation and reassembly method was
  defined in RFC 1990, Multi-Link PPP [MLPPP].  This method was also
  adopted for both Frame Relay [FRF.12] and ATM [FAST] network
  technology.  This document adopts the RFC 1990 fragmentation and
  reassembly procedures as well, with some distinct modifications
  described in this appendix.  Familiarity with RFC 1990 is assumed.

  RFC 1990 was designed for use in environments where packet fragments
  may arrive out of order due to their transmission on multiple
  parallel links, specifying that buffering be used to place the
  fragments in correct order.  For PWE3, the ability to reorder
  fragments prior to reassembly is OPTIONAL; receivers MAY choose to
  drop frames when a lost fragment is detected. Thus, when the sequence
  number on received fragments shows that a fragment has been skipped,
  the partially reassembled packet MAY be dropped, or the receiver MAY
  wish to wait for the fragment to arrive out of order.  In the latter
  case, a reassembly timer MUST be used to avoid locking up buffer
  resources for too long a period.

  Dropping out-of-order fragments on a given PW can provide a
  considerable scalability advantage for network equipment performing
  reassembly.  If out-of-order fragments are a relatively rare event on
  a given PW, throughput should not be adversely affected by this.
  Note, however, if there are cases where fragments of a given frame
  are received out-or-order in a consistent manner (e.g., a short
  fragment is always switched ahead of a larger fragment), then
  dropping out-of-order fragments will cause the fragmented frame never
  to be received.  This condition may result in an effective denial of
  service to a higher-lever application.  As such, implementations
  fragmenting a PW frame MUST at the very least ensure that all
  fragments are sent in order from their own egress point.

  An implementation may also choose to allow reassembly of a limited
  number of fragmented frames on a given PW, or across a set of PWs
  with reassembly enabled.  This allows for a more even distribution of
  reassembly resources, reducing the chance that a single or small set
  of PWs will exhaust all reassembly resources for a node.  As with
  dropping out-of-order fragments, there are perceivable cases where
  this may also provide an effective denial of service.  For example,
  if fragments of multiple frames are consistently received before each
  frame can be reconstructed in a set of limited PW reassembly buffers,
  then a set of these fragmented frames will never be delivered.






Malis & Townsley            Standards Track                    [Page 14]

RFC 4623          PWE3 Fragmentation and Reassembly          August 2006


  RFC 1990 headers use two bits that indicate the first and last
  fragments in a frame, and a sequence number.  The sequence number may
  be either 12 or 24 bits in length (from [MLPPP]):

               0             7 8            15
              +-+-+-+-+-------+---------------+
              |B|E|0|0|    sequence number    |
              +-+-+-+-+-------+---------------+

              +-+-+-+-+-+-+-+-+---------------+
              |B|E|0|0|0|0|0|0|sequence number|
              +-+-+-+-+-+-+-+-+---------------+
              |      sequence number (L)      |
              +---------------+---------------+

              Figure 6: RFC 1990 Header Formats

  PWE3 fragmentation takes advantage of existing PW sequence numbers
  and control bit fields wherever possible, rather than defining a
  separate header exclusively for the use of fragmentation.  Thus, it
  uses neither of the RFC 1990 sequence number formats described above,
  relying instead on the sequence number that already exists in the
  PWE3 header.

  RFC 1990 defines two one-bit fields: a (B)eginning fragment bit and
  an (E)nding fragment bit.  The B bit is set to 1 on the first
  fragment derived from a PPP packet and set to 0 for all other
  fragments from the same PPP packet.  The E bit is set to 1 on the
  last fragment and set to 0 for all other fragments.  A complete
  unfragmented frame has both the B and E bits set to 1.

  PWE3 fragmentation inverts the value of the B and E bits, while
  retaining the operational concept of marking the beginning and ending
  of a fragmented frame.  Thus, for PW the B bit is set to 0 on the
  first fragment derived from a PW frame and set to 1 for all other
  fragments derived from the same frame.  The E bit is set to 0 on the
  last fragment and set to 1 for all other fragments.   A complete
  unfragmented frame has both the B and E bits set to 0.  The
  motivation behind this value inversion for the B and E bits is to
  allow complete frames (and particularly, implementations that only
  support complete frames) simply to leave the B and E bits in the
  header set to 0.

  In order to support fragmentation, the B and E bits MUST be defined
  or identified for all PWE3 tunneling protocols.  Sections 4 and 5
  define these locations for PWE3 MPLS [Control-Word], L2TPv2 [L2TPv2],
  and L2TPv3 [L2TPv3] tunneling protocols.




Malis & Townsley            Standards Track                    [Page 15]

RFC 4623          PWE3 Fragmentation and Reassembly          August 2006


Authors' Addresses

  Andrew G. Malis
  Tellabs
  1415 West Diehl Road
  Naperville, IL 60563

  EMail: [email protected]


  W. Mark Townsley
  Cisco Systems
  7025 Kit Creek Road
  PO Box 14987
  Research Triangle Park, NC 27709

  EMail: [email protected]


































Malis & Townsley            Standards Track                    [Page 16]

RFC 4623          PWE3 Fragmentation and Reassembly          August 2006


Full Copyright Statement

  Copyright (C) The Internet Society (2006).

  This document is subject to the rights, licenses and restrictions
  contained in BCP 78, and except as set forth therein, the authors
  retain all their rights.

  This document and the information contained herein are provided on an
  "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
  OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
  ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
  INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
  INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
  WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

  The IETF takes no position regarding the validity or scope of any
  Intellectual Property Rights or other rights that might be claimed to
  pertain to the implementation or use of the technology described in
  this document or the extent to which any license under such rights
  might or might not be available; nor does it represent that it has
  made any independent effort to identify any such rights.  Information
  on the procedures with respect to rights in RFC documents can be
  found in BCP 78 and BCP 79.

  Copies of IPR disclosures made to the IETF Secretariat and any
  assurances of licenses to be made available, or the result of an
  attempt made to obtain a general license or permission for the use of
  such proprietary rights by implementers or users of this
  specification can be obtained from the IETF on-line IPR repository at
  http://www.ietf.org/ipr.

  The IETF invites any interested party to bring to its attention any
  copyrights, patents or patent applications, or other proprietary
  rights that may cover technology that may be required to implement
  this standard.  Please address the information to the IETF at
  [email protected].

Acknowledgement

  Funding for the RFC Editor function is provided by the IETF
  Administrative Support Activity (IASA).







Malis & Townsley            Standards Track                    [Page 17]