Network Working Group                                            J. Song
Request for Comments: 4615                                 R. Poovendran
Category: Standards Track                       University of Washington
                                                                 J. Lee
                                                    Samsung Electronics
                                                               T. Iwata
                                                      Nagoya University
                                                            August 2006


            The Advanced Encryption Standard-Cipher-based
       Message Authentication Code-Pseudo-Random Function-128
                (AES-CMAC-PRF-128) Algorithm for the
                 Internet Key Exchange Protocol (IKE)

Status of This Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (2006).

Abstract

  Some implementations of IP Security (IPsec) may want to use a
  pseudo-random function (PRF) based on the Advanced Encryption
  Standard (AES).  This memo describes such an algorithm, called
  AES-CMAC-PRF-128.  It supports fixed and variable key sizes.

Table of Contents

  1. Introduction ....................................................2
  2. Basic Definitions ...............................................2
  3. The AES-CMAC-PRF-128 Algorithm ..................................2
  4. Test Vectors ....................................................4
  5. Security Considerations .........................................4
  6. IANA Considerations .............................................5
  7. Acknowledgements ................................................5
  8. References ......................................................5
     8.1. Normative References .......................................5
     8.2. Informative References .....................................5





Song, et al.                Standards Track                     [Page 1]

RFC 4615                AES-CMAC-PRF-128 for IKE             August 2006


1.  Introduction

  [RFC4493] describes a method to use the Advanced Encryption Standard
  (AES) as a Message Authentication Code (MAC) that has a 128-bit
  output length.  The 128-bit output is useful as a long-lived pseudo-
  random function (PRF).  This document specifies a PRF that supports
  fixed and variable key sizes for IKEv2 [RFC4306] Key Derivation
  Function (KDF) and authentication.

2.  Basic Definitions

  VK         Variable-length key for AES-CMAC-PRF-128, denoted
             by VK.

  0^128      The string that consists of 128 zero-bits, which is
             equivalent to 0x00000000000000000000000000000000 in
             hexadecimal notation.

  AES-CMAC   The AES-CMAC algorithm with a 128-bit long key described
             in section 2.4 of [RFC4493].

3.  The AES-CMAC-PRF-128 Algorithm

  The AES-CMAC-PRF-128 algorithm is identical to AES-CMAC defined in
  [RFC4493] except that the 128-bit key length restriction is removed.

  IKEv2 [RFC4306] uses PRFs for multiple purposes, most notably for
  generating keying material and authentication of the IKE_SA.  The
  IKEv2 specification differentiates between PRFs with fixed key sizes
  and those with variable key sizes.

  When using AES-CMAC-PRF-128 as the PRF described in IKEv2, AES-CMAC-
  PRF-128 is considered to take fixed size (16 octets) keys for
  generating keying material but it takes variable key sizes for
  authentication.

  That is, when generating keying material, "half the bits must come
  from Ni and half from Nr, taking the first bits of each" as described
  in IKEv2, section 2.14; but for authenticating with shared secrets
  (IKEv2, section 2.16), the shared secret does not have to be 16
  octets and the length may vary.










Song, et al.                Standards Track                     [Page 2]

RFC 4615                AES-CMAC-PRF-128 for IKE             August 2006


  +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
  +                        AES-CMAC-PRF-128                           +
  +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
  +                                                                   +
  + Input  : VK (Variable-length key)                                 +
  +        : M (Message, i.e., the input data of the PRF)             +
  +        : VKlen (length of VK in octets)                           +
  +        : len (length of M in octets)                              +
  + Output : PRV (128-bit Pseudo-Random Variable)                     +
  +                                                                   +
  +-------------------------------------------------------------------+
  + Variable: K (128-bit key for AES-CMAC)                            +
  +                                                                   +
  + Step 1.   If VKlen is equal to 16                                 +
  + Step 1a.  then                                                    +
  +               K := VK;                                            +
  + Step 1b.  else                                                    +
  +               K := AES-CMAC(0^128, VK, VKlen);                    +
  + Step 2.   PRV := AES-CMAC(K, M, len);                             +
  +           return PRV;                                             +
  +                                                                   +
  +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

                Figure 1.  The AES-CMAC-PRF-128 Algorithm

  In step 1, the 128-bit key, K, for AES-CMAC is derived as follows:

  o If the key, VK, is exactly 128 bits, then we use it as-is.

  o If it is longer or shorter than 128 bits, then we derive the key,
    K, by applying the AES-CMAC algorithm using the 128-bit all-zero
    string as the key and VK as the input message.  This step is
    described in step 1b.

  In step 2, we apply the AES-CMAC algorithm using K as the key and M
  as the input message.  The output of this algorithm is returned.















Song, et al.                Standards Track                     [Page 3]

RFC 4615                AES-CMAC-PRF-128 for IKE             August 2006


4.  Test Vectors

  ------------------------------------------------------------

  Test Case AES-CMAC-PRF-128 with 20-octet input
  Key        : 00010203 04050607 08090a0b 0c0d0e0f edcb
  Key Length : 18
  Message    : 00010203 04050607 08090a0b 0c0d0e0f 10111213
  PRF Output : 84a348a4 a45d235b abfffc0d 2b4da09a

  Test Case AES-CMAC-PRF-128 with 20-octet input
  Key        : 00010203 04050607 08090a0b 0c0d0e0f
  Key Length : 16
  Message    : 00010203 04050607 08090a0b 0c0d0e0f 10111213
  PRF Output : 980ae87b 5f4c9c52 14f5b6a8 455e4c2d

  Test Case AES-CMAC-PRF-128 with 20-octet input
  Key        : 00010203 04050607 0809
  Key Length : 10
  Message    : 00010203 04050607 08090a0b 0c0d0e0f 10111213
  PRF Output : 290d9e11 2edb09ee 141fcf64 c0b72f3d

  ------------------------------------------------------------

5.  Security Considerations

  The security provided by AES-CMAC-PRF-128 is based upon the strength
  of AES and AES-CMAC. At the time of this writing, there are no known
  practical cryptographic attacks against AES or AES-CMAC.  However, as
  is true with any cryptographic algorithm, part of its strength lies
  in the secret key, VK, and the correctness of the implementation in
  all of the participating systems.  The key, VK, needs to be chosen
  independently and randomly based on RFC 4086 [RFC4086], and both
  keys, VK and K, should be kept safe and periodically refreshed.
  Section 4 presents test vectors that assist in verifying the
  correctness of the AES-CMAC-PRF-128 code.

  If VK is longer than 128 bits and it is shortened to meet the AES-128
  key size, then some entropy might be lost.  However, as long as VK is
  longer than 128 bits, then the new key, K, preserves sufficient
  entropy, i.e., the entropy of K is about 128 bits.

  Therefore, we recommend the use of VK that is longer than or equal to
  128 bits, and we discourage the use of VK that is shorter than or
  equal to 64 bits, because of the small entropy.






Song, et al.                Standards Track                     [Page 4]

RFC 4615                AES-CMAC-PRF-128 for IKE             August 2006


6. IANA Considerations

  IANA has allocated a value of 8 for IKEv2 Transform Type 2 (Pseudo-
  Random Function) to the PRF_AES128_CMAC algorithm.

7.  Acknowledgements

  Portions of this text were borrowed from [RFC3664] and [RFC4434].
  Many thanks to Russ Housley and Paul Hoffman for suggestions and
  guidance.  We also thank Alfred Hoenes for many useful comments.

  We acknowledge support from the following grants: Collaborative
  Technology Alliance (CTA) from US Army Research Laboratory,
  DAAD19-01-2-0011; Presidential Award from Army Research Office,-
  W911NF-05-1-0491; ONR YIP N00014-04-1-0479.  Results do not reflect
  any position of the funding agencies.

8.  References

8.1.  Normative References

  [RFC4493]  Song, JH., Poovendran, R., Lee, J., and T. Iwata, "The
             AES-CMAC Algorithm", RFC 4493, June 2006.

  [RFC4306]  Kaufman, C., "Internet Key Exchange (IKEv2) Protocol", RFC
             4306, December 2005.

  [RFC4086]  Eastlake, D., 3rd, Schiller, J., and S. Crocker,
             "Randomness Requirements for Security", BCP 106, RFC 4086,
             June 2005.

8.2.  Informative References

  [RFC3664]  Hoffman, P., "The AES-XCBC-PRF-128 Algorithm for the
             Internet Key Exchange Protocol (IKE)", RFC 3664, January
             2004.

  [RFC4434]  Hoffman, P., "The AES-XCBC-PRF-128 Algorithm for the
             Internet Key Exchange Protocol (IKE)", RFC 4434, February
             2006.











Song, et al.                Standards Track                     [Page 5]

RFC 4615                AES-CMAC-PRF-128 for IKE             August 2006


Authors' Addresses

  JunHyuk Song
  Samsung Electronics
  University of Washington
  Phone: (206) 853-5843

  EMail: [email protected], [email protected]


  Radha Poovendran
  Network Security Lab
  University of Washington
  Phone: (206) 221-6512

  EMail: [email protected]


  Jicheol Lee
  Samsung Electronics
  Phone: +82-31-279-3605

  EMail: [email protected]


  Tetsu Iwata
  Nagoya University

  EMail: [email protected]






















Song, et al.                Standards Track                     [Page 6]

RFC 4615                AES-CMAC-PRF-128 for IKE             August 2006


Full Copyright Statement

  Copyright (C) The Internet Society (2006).

  This document is subject to the rights, licenses and restrictions
  contained in BCP 78, and except as set forth therein, the authors
  retain all their rights.

  This document and the information contained herein are provided on an
  "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
  OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
  ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
  INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
  INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
  WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

  The IETF takes no position regarding the validity or scope of any
  Intellectual Property Rights or other rights that might be claimed to
  pertain to the implementation or use of the technology described in
  this document or the extent to which any license under such rights
  might or might not be available; nor does it represent that it has
  made any independent effort to identify any such rights.  Information
  on the procedures with respect to rights in RFC documents can be
  found in BCP 78 and BCP 79.

  Copies of IPR disclosures made to the IETF Secretariat and any
  assurances of licenses to be made available, or the result of an
  attempt made to obtain a general license or permission for the use of
  such proprietary rights by implementers or users of this
  specification can be obtained from the IETF on-line IPR repository at
  http://www.ietf.org/ipr.

  The IETF invites any interested party to bring to its attention any
  copyrights, patents or patent applications, or other proprietary
  rights that may cover technology that may be required to implement
  this standard.  Please address the information to the IETF at
  [email protected].

Acknowledgement

  Funding for the RFC Editor function is provided by the IETF
  Administrative Support Activity (IASA).







Song, et al.                Standards Track                     [Page 7]