Network Working Group                                          B. Fenner
Request for Comments: 4601                          AT&T Labs - Research
Obsoletes: 2362                                               M. Handley
Category: Standards Track                                            UCL
                                                            H. Holbrook
                                                                Arastra
                                                            I. Kouvelas
                                                                  Cisco
                                                            August 2006


        Protocol Independent Multicast - Sparse Mode (PIM-SM):
                   Protocol Specification (Revised)

Status of This Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (2006).

Abstract

  This document specifies Protocol Independent Multicast - Sparse Mode
  (PIM-SM).  PIM-SM is a multicast routing protocol that can use the
  underlying unicast routing information base or a separate multicast-
  capable routing information base.  It builds unidirectional shared
  trees rooted at a Rendezvous Point (RP) per group, and optionally
  creates shortest-path trees per source.

  This document obsoletes RFC 2362, an Experimental version of PIM-SM.















Fenner, et al.              Standards Track                     [Page 1]

RFC 4601                  PIM-SM Specification               August 2006


Table of Contents

  1. Introduction ....................................................5
  2. Terminology .....................................................5
     2.1. Definitions ................................................5
     2.2. Pseudocode Notation ........................................7
  3. PIM-SM Protocol Overview ........................................7
     3.1. Phase One: RP Tree .........................................8
     3.2. Phase Two: Register-Stop ...................................8
     3.3. Phase Three: Shortest-Path Tree ............................9
     3.4. Source-Specific Joins .....................................10
     3.5. Source-Specific Prunes ....................................11
     3.6. Multi-Access Transit LANs .................................11
     3.7. RP Discovery ..............................................12
  4. Protocol Specification .........................................12
     4.1. PIM Protocol State ........................................13
          4.1.1. General Purpose State ..............................14
          4.1.2. (*,*,RP) State .....................................15
          4.1.3. (*,G) State ........................................16
          4.1.4. (S,G) State ........................................17
          4.1.5. (S,G,rpt) State ....................................20
          4.1.6. State Summarization Macros .........................21
     4.2. Data Packet Forwarding Rules ..............................26
          4.2.1. Last-Hop Switchover to the SPT .....................28
          4.2.2. Setting and Clearing the (S,G) SPTbit ..............29
     4.3. Designated Routers (DR) and Hello Messages ................30
          4.3.1. Sending Hello Messages .............................30
          4.3.2. DR Election ........................................32
          4.3.3. Reducing Prune Propagation Delay on LANs ...........34
          4.3.4. Maintaining Secondary Address Lists ................37
     4.4. PIM Register Messages .....................................38
          4.4.1. Sending Register Messages from the DR ..............38
          4.4.2. Receiving Register Messages at the RP ..............43
     4.5. PIM Join/Prune Messages ...................................45
          4.5.1. Receiving (*,*,RP) Join/Prune Messages .............45
          4.5.2. Receiving (*,G) Join/Prune Messages ................49
          4.5.3. Receiving (S,G) Join/Prune Messages ................53
          4.5.4. Receiving (S,G,rpt) Join/Prune Messages ............56
          4.5.5. Sending (*,*,RP) Join/Prune Messages ...............62
          4.5.6. Sending (*,G) Join/Prune Messages ..................66
          4.5.7. Sending (S,G) Join/Prune Messages ..................71
          4.5.8. (S,G,rpt) Periodic Messages ........................76
          4.5.9. State Machine for (S,G,rpt) Triggered Messages .....77
          4.5.10. Background: (*,*,RP) and (S,G,rpt) Interaction ....82
     4.6. PIM Assert Messages .......................................83
          4.6.1. (S,G) Assert Message State Machine .................83
          4.6.2. (*,G) Assert Message State Machine .................91
          4.6.3. Assert Metrics .....................................98



Fenner, et al.              Standards Track                     [Page 2]

RFC 4601                  PIM-SM Specification               August 2006


          4.6.4. AssertCancel Messages ..............................99
          4.6.5. Assert State Macros ...............................100
     4.7. PIM Bootstrap and RP Discovery ...........................103
          4.7.1. Group-to-RP Mapping ...............................104
          4.7.2. Hash Function .....................................105
     4.8. Source-Specific Multicast ................................106
          4.8.1. Protocol Modifications for SSM Destination
                 Addresses .........................................106
          4.8.2. PIM-SSM-Only Routers ..............................107
     4.9. PIM Packet Formats .......................................108
          4.9.1. Encoded Source and Group Address Formats ..........110
          4.9.2. Hello Message Format ..............................113
          4.9.3. Register Message Format ...........................116
          4.9.4. Register-Stop Message Format ......................119
          4.9.5. Join/Prune Message Format .........................119
                 4.9.5.1. Group Set Source List Rules ..............122
                 4.9.5.2. Group Set Fragmentation ..................126
          4.9.6. Assert Message Format .............................126
     4.10. PIM Timers ..............................................128
     4.11. Timer Values ............................................129
  5. IANA Considerations ...........................................135
     5.1. PIM Address Family .......................................135
     5.2. PIM Hello Options ........................................136
  6. Security Considerations .......................................136
     6.1. Attacks Based on Forged Messages .........................136
          6.1.1. Forged Link-Local Messages ........................136
          6.1.2. Forged Unicast Messages ...........................137
     6.2. Non-Cryptographic Authentication Mechanisms ..............137
     6.3. Authentication Using IPsec ...............................138
          6.3.1. Protecting Link-Local Multicast Messages ..........138
          6.3.2. Protecting Unicast Messages .......................139
                 6.3.2.1. Register Messages ........................139
                 6.3.2.2. Register-Stop Messages ...................139
     6.4. Denial-of-Service Attacks ................................140
  7. Acknowledgements ..............................................140
  8. Normative References ..........................................141
  9. Informative References ........................................141
  Appendix A. PIM Multicast Border Router Behavior .................143
     A.1. Sources External to the PIM-SM Domain ....................143
     A.2.  Sources Internal to the PIM-SM Domain ...................144
  Appendix B. Index ................................................146










Fenner, et al.              Standards Track                     [Page 3]

RFC 4601                  PIM-SM Specification               August 2006


List of Figures

  Figure 1. Per-(S,G) register state machine at a DR ................38
  Figure 2. Downstream per-interface (*,*,RP) state machine .........46
  Figure 3. Downstream per-interface (*,G) state machine ............50
  Figure 4. Downstream per-interface (S,G) state machine ............53
  Figure 5. Downstream per-interface (S,G,rpt) state machine ........57
  Figure 6. Upstream (*,*,RP) state machine .........................62
  Figure 7. Upstream (*,G) state machine ............................67
  Figure 8. Upstream (S,G) state machine ............................71
  Figure 9. Upstream (S,G,rpt) state machine for triggered
            messages ................................................77
  Figure 10. Per-interface (S,G) Assert State machine ...............84
  Figure 11. Per-interface (*,G) Assert State machine ...............92





































Fenner, et al.              Standards Track                     [Page 4]

RFC 4601                  PIM-SM Specification               August 2006


1.  Introduction

  This document specifies a protocol for efficiently routing multicast
  groups that may span wide-area (and inter-domain) internets.  This
  protocol is called Protocol Independent Multicast - Sparse Mode
  (PIM-SM) because, although it may use the underlying unicast routing
  to provide reverse-path information for multicast tree building, it
  is not dependent on any particular unicast routing protocol.

  PIM-SM version 2 was originally specified in RFC 2117 and was revised
  in RFC 2362, both Experimental RFCs.  This document is intended to
  obsolete RFC 2362, to correct a number of deficiencies that have been
  identified with the way PIM-SM was previously specified, and to bring
  PIM-SM onto the IETF Standards Track.  As far as possible, this
  document specifies the same protocol as RFC 2362 and only diverges
  from the behavior intended by RFC 2362 when the previously specified
  behavior was clearly incorrect.  Routers implemented according to the
  specification in this document will be able to interoperate
  successfully with routers implemented according to RFC 2362.

2.  Terminology

  In this document, the key words "MUST", "MUST NOT", "REQUIRED",
  "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY",
  and "OPTIONAL" are to be interpreted as described in RFC 2119 [1] and
  indicate requirement levels for compliant PIM-SM implementations.

2.1.  Definitions

  The following terms have special significance for PIM-SM:

  Rendezvous Point (RP):
        An RP is a router that has been configured to be used as the
        root of the non-source-specific distribution tree for a
        multicast group.  Join messages from receivers for a group are
        sent towards the RP, and data from senders is sent to the RP so
        that receivers can discover who the senders are and start to
        receive traffic destined for the group.

  Designated Router (DR):
        A shared-media LAN like Ethernet may have multiple PIM-SM
        routers connected to it.  A single one of these routers, the
        DR, will act on behalf of directly connected hosts with respect
        to the PIM-SM protocol.  A single DR is elected per interface
        (LAN or otherwise) using a simple election process.






Fenner, et al.              Standards Track                     [Page 5]

RFC 4601                  PIM-SM Specification               August 2006


  MRIB  Multicast Routing Information Base.  This is the multicast
        topology table, which is typically derived from the unicast
        routing table, or routing protocols such as Multiprotocol BGP
        (MBGP) that carry multicast-specific topology information.  In
        PIM-SM, the MRIB is used to decide where to send Join/Prune
        messages.  A secondary function of the MRIB is to provide
        routing metrics for destination addresses; these metrics are
        used when sending and processing Assert messages.

  RPF Neighbor
        RPF stands for "Reverse Path Forwarding".  The RPF Neighbor of
        a router with respect to an address is the neighbor that the
        MRIB indicates should be used to forward packets to that
        address.  In the case of a PIM-SM multicast group, the RPF
        neighbor is the router that a Join message for that group would
        be directed to, in the absence of modifying Assert state.

  TIB   Tree Information Base.  This is the collection of state at a
        PIM router that has been created by receiving PIM Join/Prune
        messages, PIM Assert messages, and Internet Group Management
        Protocol (IGMP) or Multicast Listener Discovery (MLD)
        information from local hosts.  It essentially stores the state
        of all multicast distribution trees at that router.

  MFIB  Multicast Forwarding Information Base.  The TIB holds all the
        state that is necessary to forward multicast packets at a
        router.  However, although this specification defines
        forwarding in terms of the TIB, to actually forward packets
        using the TIB is very inefficient.  Instead, a real router
        implementation will normally build an efficient MFIB from the
        TIB state to perform forwarding.  How this is done is
        implementation-specific and is not discussed in this document.

  Upstream
        Towards the root of the tree.  The root of tree may be either
        the source or the RP, depending on the context.

  Downstream
        Away from the root of the tree.

  GenID Generation Identifier, used to detect reboots.

  PMBR  PIM Multicast Border Router, joining a PIM domain with another
        multicast domain.







Fenner, et al.              Standards Track                     [Page 6]

RFC 4601                  PIM-SM Specification               August 2006


2.2.  Pseudocode Notation

  We use set notation in several places in this specification.

  A (+) B is the union of two sets, A and B.

  A (-) B is the elements of set A that are not in set B.

  NULL    is the empty set or list.

  In addition, we use C-like syntax:

  =       denotes assignment of a variable.

  ==      denotes a comparison for equality.

  !=      denotes a comparison for inequality.

  Braces { and } are used for grouping.

3.  PIM-SM Protocol Overview

  This section provides an overview of PIM-SM behavior.  It is intended
  as an introduction to how PIM-SM works, and it is NOT definitive.
  For the definitive specification, see Section 4.

  PIM relies on an underlying topology-gathering protocol to populate a
  routing table with routes.  This routing table is called the
  Multicast Routing Information Base (MRIB).  The routes in this table
  may be taken directly from the unicast routing table, or they may be
  different and provided by a separate routing protocol such as MBGP
  [10].  Regardless of how it is created, the primary role of the MRIB
  in the PIM protocol is to provide the next-hop router along a
  multicast-capable path to each destination subnet.  The MRIB is used
  to determine the next-hop neighbor to which any PIM Join/Prune
  message is sent.  Data flows along the reverse path of the Join
  messages.  Thus, in contrast to the unicast RIB, which specifies the
  next hop that a data packet would take to get to some subnet, the
  MRIB gives reverse-path information and indicates the path that a
  multicast data packet would take from its origin subnet to the router
  that has the MRIB.

  Like all multicast routing protocols that implement the service model
  from RFC 1112 [3], PIM-SM must be able to route data packets from
  sources to receivers without either the sources or receivers knowing
  a priori of the existence of the others.  This is essentially done in
  three phases, although as senders and receivers may come and go at
  any time, all three phases may occur simultaneously.



Fenner, et al.              Standards Track                     [Page 7]

RFC 4601                  PIM-SM Specification               August 2006


3.1.  Phase One: RP Tree

  In phase one, a multicast receiver expresses its interest in
  receiving traffic destined for a multicast group.  Typically, it does
  this using IGMP [2] or MLD [4], but other mechanisms might also serve
  this purpose.  One of the receiver's local routers is elected as the
  Designated Router (DR) for that subnet.  On receiving the receiver's
  expression of interest, the DR then sends a PIM Join message towards
  the RP for that multicast group.  This Join message is known as a
  (*,G) Join because it joins group G for all sources to that group.
  The (*,G) Join travels hop-by-hop towards the RP for the group, and
  in each router it passes through, multicast tree state for group G is
  instantiated.  Eventually, the (*,G) Join either reaches the RP or
  reaches a router that already has (*,G) Join state for that group.
  When many receivers join the group, their Join messages converge on
  the RP and form a distribution tree for group G that is rooted at the
  RP.  This is known as the RP Tree (RPT), and is also known as the
  shared tree because it is shared by all sources sending to that
  group.  Join messages are resent periodically so long as the receiver
  remains in the group.  When all receivers on a leaf-network leave the
  group, the DR will send a PIM (*,G) Prune message towards the RP for
  that multicast group.  However, if the Prune message is not sent for
  any reason, the state will eventually time out.

  A multicast data sender just starts sending data destined for a
  multicast group.  The sender's local router (DR) takes those data
  packets, unicast-encapsulates them, and sends them directly to the
  RP.  The RP receives these encapsulated data packets, decapsulates
  them, and forwards them onto the shared tree.  The packets then
  follow the (*,G) multicast tree state in the routers on the RP Tree,
  being replicated wherever the RP Tree branches, and eventually
  reaching all the receivers for that multicast group.  The process of
  encapsulating data packets to the RP is called registering, and the
  encapsulation packets are known as PIM Register packets.

  At the end of phase one, multicast traffic is flowing encapsulated to
  the RP, and then natively over the RP tree to the multicast
  receivers.

3.2.  Phase Two: Register-Stop

  Register-encapsulation of data packets is inefficient for two
  reasons:

  o Encapsulation and decapsulation may be relatively expensive
    operations for a router to perform, depending on whether or not the
    router has appropriate hardware for these tasks.




Fenner, et al.              Standards Track                     [Page 8]

RFC 4601                  PIM-SM Specification               August 2006


  o Traveling all the way to the RP, and then back down the shared tree
    may result in the packets traveling a relatively long distance to
    reach receivers that are close to the sender.  For some
    applications, this increased latency or bandwidth consumption is
    undesirable.

  Although Register-encapsulation may continue indefinitely, for these
  reasons, the RP will normally choose to switch to native forwarding.
  To do this, when the RP receives a register-encapsulated data packet
  from source S on group G, it will normally initiate an (S,G) source-
  specific Join towards S.  This Join message travels hop-by-hop
  towards S, instantiating (S,G) multicast tree state in the routers
  along the path.  (S,G) multicast tree state is used only to forward
  packets for group G if those packets come from source S.  Eventually
  the Join message reaches S's subnet or a router that already has
  (S,G) multicast tree state, and then packets from S start to flow
  following the (S,G) tree state towards the RP.  These data packets
  may also reach routers with (*,G) state along the path towards the
  RP; if they do, they can shortcut onto the RP tree at this point.

  While the RP is in the process of joining the source-specific tree
  for S, the data packets will continue being encapsulated to the RP.
  When packets from S also start to arrive natively at the RP, the RP
  will be receiving two copies of each of these packets.  At this
  point, the RP starts to discard the encapsulated copy of these
  packets, and it sends a Register-Stop message back to S's DR to
  prevent the DR from unnecessarily encapsulating the packets.

  At the end of phase 2, traffic will be flowing natively from S along
  a source-specific tree to the RP, and from there along the shared
  tree to the receivers.  Where the two trees intersect, traffic may
  transfer from the source-specific tree to the RP tree and thus avoid
  taking a long detour via the RP.

  Note that a sender may start sending before or after a receiver joins
  the group, and thus phase two may happen before the shared tree to
  the receiver is built.

3.3.  Phase Three: Shortest-Path Tree

  Although having the RP join back towards the source removes the
  encapsulation overhead, it does not completely optimize the
  forwarding paths.  For many receivers, the route via the RP may
  involve a significant detour when compared with the shortest path
  from the source to the receiver.






Fenner, et al.              Standards Track                     [Page 9]

RFC 4601                  PIM-SM Specification               August 2006


  To obtain lower latencies or more efficient bandwidth utilization, a
  router on the receiver's LAN, typically the DR, may optionally
  initiate a transfer from the shared tree to a source-specific
  shortest-path tree (SPT).  To do this, it issues an (S,G) Join
  towards S.  This instantiates state in the routers along the path to
  S.  Eventually, this join either reaches S's subnet or reaches a
  router that already has (S,G) state.  When this happens, data packets
  from S start to flow following the (S,G) state until they reach the
  receiver.

  At this point, the receiver (or a router upstream of the receiver)
  will be receiving two copies of the data: one from the SPT and one
  from the RPT.  When the first traffic starts to arrive from the SPT,
  the DR or upstream router starts to drop the packets for G from S
  that arrive via the RP tree.  In addition, it sends an (S,G) Prune
  message towards the RP.  This is known as an (S,G,rpt) Prune.  The
  Prune message travels hop-by-hop, instantiating state along the path
  towards the RP indicating that traffic from S for G should NOT be
  forwarded in this direction.  The prune is propagated until it
  reaches the RP or a router that still needs the traffic from S for
  other receivers.

  By now, the receiver will be receiving traffic from S along the
  shortest-path tree between the receiver and S.  In addition, the RP
  is receiving the traffic from S, but this traffic is no longer
  reaching the receiver along the RP tree.  As far as the receiver is
  concerned, this is the final distribution tree.

3.4.  Source-Specific Joins

  IGMPv3 permits a receiver to join a group and specify that it only
  wants to receive traffic for a group if that traffic comes from a
  particular source.  If a receiver does this, and no other receiver on
  the LAN requires all the traffic for the group, then the DR may omit
  performing a (*,G) join to set up the shared tree, and instead issue
  a source-specific (S,G) join only.

  The range of multicast addresses from 232.0.0.0 to 232.255.255.255 is
  currently set aside for source-specific multicast in IPv4.  For
  groups in this range, receivers should only issue source-specific
  IGMPv3 joins.  If a PIM router receives a non-source-specific join
  for a group in this range, it should ignore it, as described in
  Section 4.8.








Fenner, et al.              Standards Track                    [Page 10]

RFC 4601                  PIM-SM Specification               August 2006


3.5.  Source-Specific Prunes

  IGMPv3 also permits a receiver to join a group and to specify that it
  only wants to receive traffic for a group if that traffic does not
  come from a specific source or sources.  In this case, the DR will
  perform a (*,G) join as normal, but may combine this with an
  (S,G,rpt) prune for each of the sources the receiver does not wish to
  receive.

3.6.  Multi-Access Transit LANs

  The overview so far has concerned itself with point-to-point transit
  links.  However, using multi-access LANs such as Ethernet for transit
  is not uncommon.  This can cause complications for three reasons:

  o Two or more routers on the LAN may issue (*,G) Joins to different
    upstream routers on the LAN because they have inconsistent MRIB
    entries regarding how to reach the RP.  Both paths on the RP tree
    will be set up, causing two copies of all the shared tree traffic
    to appear on the LAN.

  o Two or more routers on the LAN may issue (S,G) Joins to different
    upstream routers on the LAN because they have inconsistent MRIB
    entries regarding how to reach source S.  Both paths on the source-
    specific tree will be set up, causing two copies of all the traffic
    from S to appear on the LAN.

  o A router on the LAN may issue a (*,G) Join to one upstream router
    on the LAN, and another router on the LAN may issue an (S,G) Join
    to a different upstream router on the same LAN.  Traffic from S may
    reach the LAN over both the RPT and the SPT.  If the receiver
    behind the downstream (*,G) router doesn't issue an (S,G,rpt)
    prune, then this condition would persist.

  All of these problems are caused by there being more than one
  upstream router with join state for the group or source-group pair.
  PIM does not prevent such duplicate joins from occurring; instead,
  when duplicate data packets appear on the LAN from different routers,
  these routers notice this and then elect a single forwarder.  This
  election is performed using PIM Assert messages, which resolve the
  problem in favor of the upstream router that has (S,G) state; or, if
  neither or both router has (S,G) state, then the problem is resolved
  in favor of the router with the best metric to the RP for RP trees,
  or the best metric to the source to source-specific trees.

  These Assert messages are also received by the downstream routers on
  the LAN, and these cause subsequent Join messages to be sent to the
  upstream router that won the Assert.



Fenner, et al.              Standards Track                    [Page 11]

RFC 4601                  PIM-SM Specification               August 2006


3.7.  RP Discovery

  PIM-SM routers need to know the address of the RP for each group for
  which they have (*,G) state.  This address is obtained automatically
  (e.g., embedded-RP), through a bootstrap mechanism, or through static
  configuration.

  One dynamic way to do this is to use the Bootstrap Router (BSR)
  mechanism [11].  One router in each PIM domain is elected the
  Bootstrap Router through a simple election process.  All the routers
  in the domain that are configured to be candidates to be RPs
  periodically unicast their candidacy to the BSR.  From the
  candidates, the BSR picks an RP-set, and periodically announces this
  set in a Bootstrap message.  Bootstrap messages are flooded hop-by-
  hop throughout the domain until all routers in the domain know the
  RP-Set.

  To map a group to an RP, a router hashes the group address into the
  RP-set using an order-preserving hash function (one that minimizes
  changes if the RP-Set changes).  The resulting RP is the one that it
  uses as the RP for that group.

4.  Protocol Specification

  The specification of PIM-SM is broken into several parts:

  o Section 4.1 details the protocol state stored.

  o Section 4.2 specifies the data packet forwarding rules.

  o Section 4.3 specifies Designated Router (DR) election and the rules
    for sending and processing Hello messages.

  o Section 4.4 specifies the PIM Register generation and processing
    rules.

  o Section 4.5 specifies the PIM Join/Prune generation and processing
    rules.

  o Section 4.6 specifies the PIM Assert generation and processing
    rules.

  o Section 4.7 specifies the RP discovery mechanisms.

  o The subset of PIM required to support Source-Specific Multicast,
    PIM-SSM, is described in Section 4.8.

  o PIM packet formats are specified in Section 4.9.



Fenner, et al.              Standards Track                    [Page 12]

RFC 4601                  PIM-SM Specification               August 2006


  o A summary of PIM-SM timers and their default values is given in
    Section 4.10.

  o Appendix A specifies the PIM Multicast Border Router behavior.

4.1.  PIM Protocol State

  This section specifies all the protocol state that a PIM
  implementation should maintain in order to function correctly.  We
  term this state the Tree Information Base (TIB), as it holds the
  state of all the multicast distribution trees at this router.  In
  this specification, we define PIM mechanisms in terms of the TIB.
  However, only a very simple implementation would actually implement
  packet forwarding operations in terms of this state.  Most
  implementations will use this state to build a multicast forwarding
  table, which would then be updated when the relevant state in the TIB
  changes.

  Although we specify precisely the state to be kept, this does not
  mean that an implementation of PIM-SM needs to hold the state in this
  form.  This is actually an abstract state definition, which is needed
  in order to specify the router's behavior.  A PIM-SM implementation
  is free to hold whatever internal state it requires and will still be
  conformant with this specification so long as it results in the same
  externally visible protocol behavior as an abstract router that holds
  the following state.

  We divide TIB state into four sections:

  (*,*,RP) state
       State that maintains per-RP trees, for all groups served by a
       given RP.

  (*,G) state
       State that maintains the RP tree for G.

  (S,G) state
       State that maintains a source-specific tree for source S and
       group G.

  (S,G,rpt) state
       State that maintains source-specific information about source S
       on the RP tree for G.  For example, if a source is being
       received on the source-specific tree, it will normally have been
       pruned off the RP tree.  This prune state is (S,G,rpt) state.






Fenner, et al.              Standards Track                    [Page 13]

RFC 4601                  PIM-SM Specification               August 2006


  The state that should be kept is described below.  Of course,
  implementations will only maintain state when it is relevant to
  forwarding operations; for example, the "NoInfo" state might be
  assumed from the lack of other state information rather than being
  held explicitly.

4.1.1.  General Purpose State

  A router holds the following non-group-specific state:

  For each interface:

       o Effective Override Interval

       o Effective Propagation Delay

       o Suppression state: One of {"Enable", "Disable"}

       Neighbor State:

         For each neighbor:

              o Information from neighbor's Hello

              o Neighbor's GenID.

              o Neighbor Liveness Timer (NLT)

       Designated Router (DR) State:

         o Designated Router's IP Address

         o DR's DR Priority

  The Effective Override Interval, the Effective Propagation Delay and
  the Interface suppression state are described in Section 4.3.3.
  Designated Router state is described in Section 4.3.














Fenner, et al.              Standards Track                    [Page 14]

RFC 4601                  PIM-SM Specification               August 2006


4.1.2.  (*,*,RP) State

  For every RP, a router keeps the following state:

  (*,*,RP) state:
       For each interface:

            PIM (*,*,RP) Join/Prune State:

                 o State: One of {"NoInfo" (NI), "Join" (J), "Prune-
                   Pending" (PP)}

                 o Prune-Pending Timer (PPT)

                 o Join/Prune Expiry Timer (ET)

       Not interface specific:

            Upstream (*,*,RP) Join/Prune State:

                 o State: One of {"NotJoined(*,*,RP)",
                   "Joined(*,*,RP)"}

            o Upstream Join/Prune Timer (JT)

            o Last RPF Neighbor towards RP that was used

  PIM (*,*,RP) Join/Prune state is the result of receiving PIM (*,*,RP)
  Join/Prune messages on this interface and is specified in Section
  4.5.1.

  The upstream (*,*,RP) Join/Prune State reflects the state of the
  upstream (*,*,RP) state machine described in Section 4.5.5.

  The upstream (*,*,RP) Join/Prune Timer is used to send out periodic
  Join(*,*,RP) messages, and to override Prune(*,*,RP) messages from
  peers on an upstream LAN interface.

  The last RPF neighbor towards the RP is stored because if the MRIB
  changes, then the RPF neighbor towards the RP may change.  If it does
  so, then we need to trigger a new Join(*,*,RP) to the new upstream
  neighbor and a Prune(*,*,RP) to the old upstream neighbor.
  Similarly, if a router detects through a changed GenID in a Hello
  message that the upstream neighbor towards the RP has rebooted, then
  it should re-instantiate state by sending a Join(*,*,RP).  These
  mechanisms are specified in Section 4.5.5.





Fenner, et al.              Standards Track                    [Page 15]

RFC 4601                  PIM-SM Specification               August 2006


4.1.3.  (*,G) State

  For every group G, a router keeps the following state:

  (*,G) state:
       For each interface:

            Local Membership:
                 State: One of {"NoInfo", "Include"}

            PIM (*,G) Join/Prune State:

                 o State: One of {"NoInfo" (NI), "Join" (J), "Prune-
                   Pending" (PP)}

                 o Prune-Pending Timer (PPT)

                 o Join/Prune Expiry Timer (ET)

            (*,G) Assert Winner State

                 o State: One of {"NoInfo" (NI), "I lost Assert" (L),
                   "I won Assert" (W)}

                 o Assert Timer (AT)

                 o Assert winner's IP Address (AssertWinner)

                 o Assert winner's Assert Metric (AssertWinnerMetric)

       Not interface specific:

            Upstream (*,G) Join/Prune State:

                 o State: One of {"NotJoined(*,G)", "Joined(*,G)"}

            o Upstream Join/Prune Timer (JT)

            o Last RP Used

            o Last RPF Neighbor towards RP that was used

  Local membership is the result of the local membership mechanism
  (such as IGMP or MLD) running on that interface.  It need not be kept
  if this router is not the DR on that interface unless this router won
  a (*,G) assert on this interface for this group, although
  implementations may optionally keep this state in case they become
  the DR or assert winner.  We recommend storing this information if



Fenner, et al.              Standards Track                    [Page 16]

RFC 4601                  PIM-SM Specification               August 2006


  possible, as it reduces latency converging to stable operating
  conditions after a failure causing a change of DR.  This information
  is used by the pim_include(*,G) macro described in Section 4.1.6.

  PIM (*,G) Join/Prune state is the result of receiving PIM (*,G)
  Join/Prune messages on this interface and is specified in Section
  4.5.2.  The state is used by the macros that calculate the outgoing
  interface list in Section 4.1.6, and in the JoinDesired(*,G) macro
  (defined in Section 4.5.6) that is used in deciding whether a
  Join(*,G) should be sent upstream.

  (*,G) Assert Winner state is the result of sending or receiving (*,G)
  Assert messages on this interface.  It is specified in Section 4.6.2.

  The upstream (*,G) Join/Prune State reflects the state of the
  upstream (*,G) state machine described in Section 4.5.6.

  The upstream (*,G) Join/Prune Timer is used to send out periodic
  Join(*,G) messages, and to override Prune(*,G) messages from peers on
  an upstream LAN interface.

  The last RP used must be stored because if the RP-Set changes
  (Section 4.7), then state must be torn down and rebuilt for groups
  whose RP changes.

  The last RPF neighbor towards the RP is stored because if the MRIB
  changes, then the RPF neighbor towards the RP may change.  If it does
  so, then we need to trigger a new Join(*,G) to the new upstream
  neighbor and a Prune(*,G) to the old upstream neighbor.  Similarly,
  if a router detects through a changed GenID in a Hello message that
  the upstream neighbor towards the RP has rebooted, then it should
  re-instantiate state by sending a Join(*,G).  These mechanisms are
  specified in Section 4.5.6.

4.1.4.  (S,G) State

  For every source/group pair (S,G), a router keeps the following
  state:

  (S,G) state:

       For each interface:

            Local Membership:
                 State: One of {"NoInfo", "Include"}






Fenner, et al.              Standards Track                    [Page 17]

RFC 4601                  PIM-SM Specification               August 2006


            PIM (S,G) Join/Prune State:

                 o State: One of {"NoInfo" (NI), "Join" (J), "Prune-
                   Pending" (PP)}

                 o Prune-Pending Timer (PPT)

                 o Join/Prune Expiry Timer (ET)

            (S,G) Assert Winner State

                 o State: One of {"NoInfo" (NI), "I lost Assert" (L),
                   "I won Assert" (W)}

                 o Assert Timer (AT)

                 o Assert winner's IP Address (AssertWinner)

                 o Assert winner's Assert Metric (AssertWinnerMetric)

       Not interface specific:

            Upstream (S,G) Join/Prune State:

                 o State: One of {"NotJoined(S,G)", "Joined(S,G)"}

            o Upstream (S,G) Join/Prune Timer (JT)

            o Last RPF Neighbor towards S that was used

            o SPTbit (indicates (S,G) state is active)

            o (S,G) Keepalive Timer (KAT)


            Additional (S,G) state at the DR:

                 o Register state: One of {"Join" (J), "Prune" (P),
                   "Join-Pending" (JP), "NoInfo" (NI)}

                 o Register-Stop timer

            Additional (S,G) state at the RP:

                 o PMBR: the first PMBR to send a Register for this
                   source with the Border bit set.





Fenner, et al.              Standards Track                    [Page 18]

RFC 4601                  PIM-SM Specification               August 2006


  Local membership is the result of the local source-specific
  membership mechanism (such as IGMP version 3) running on that
  interface and specifying that this particular source should be
  included.  As stored here, this state is the resulting state after
  any IGMPv3 inconsistencies have been resolved.  It need not be kept
  if this router is not the DR on that interface unless this router won
  a (S,G) assert on this interface for this group.  However, we
  recommend storing this information if possible, as it reduces latency
  converging to stable operating conditions after a failure causing a
  change of DR.  This information is used by the pim_include(S,G) macro
  described in Section 4.1.6.

  PIM (S,G) Join/Prune state is the result of receiving PIM (S,G)
  Join/Prune messages on this interface and is specified in Section
  4.5.2.  The state is used by the macros that calculate the outgoing
  interface list in Section 4.1.6, and in the JoinDesired(S,G) macro
  (defined in Section 4.5.7) that is used in deciding whether a
  Join(S,G) should be sent upstream.

  (S,G) Assert Winner state is the result of sending or receiving (S,G)
  Assert messages on this interface.  It is specified in Section 4.6.1.

  The upstream (S,G) Join/Prune State reflects the state of the
  upstream (S,G) state machine described in Section 4.5.7.

  The upstream (S,G) Join/Prune Timer is used to send out periodic
  Join(S,G) messages, and to override Prune(S,G) messages from peers on
  an upstream LAN interface.

  The last RPF neighbor towards S is stored because if the MRIB
  changes, then the RPF neighbor towards S may change.  If it does so,
  then we need to trigger a new Join(S,G) to the new upstream neighbor
  and a Prune(S,G) to the old upstream neighbor.  Similarly, if the
  router detects through a changed GenID in a Hello message that the
  upstream neighbor towards S has rebooted, then it should re-
  instantiate state by sending a Join(S,G).  These mechanisms are
  specified in Section 4.5.7.

  The SPTbit is used to indicate whether forwarding is taking place on
  the (S,G) Shortest Path Tree (SPT) or on the (*,G) tree.  A router
  can have (S,G) state and still be forwarding on (*,G) state during
  the interval when the source-specific tree is being constructed.
  When SPTbit is FALSE, only (*,G) forwarding state is used to forward
  packets from S to G.  When SPTbit is TRUE, both (*,G) and (S,G)
  forwarding state are used.






Fenner, et al.              Standards Track                    [Page 19]

RFC 4601                  PIM-SM Specification               August 2006


  The (S,G) Keepalive Timer is updated by data being forwarded using
  this (S,G) forwarding state.  It is used to keep (S,G) state alive in
  the absence of explicit (S,G) Joins.  Amongst other things, this is
  necessary for the so-called "turnaround rules" -- when the RP uses
  (S,G) joins to stop encapsulation, and then (S,G) prunes to prevent
  traffic from unnecessarily reaching the RP.

  On a DR, the (S,G) Register State is used to keep track of whether to
  encapsulate data to the RP on the Register Tunnel; the (S,G)
  Register-Stop timer tracks how long before encapsulation begins again
  for a given (S,G).

  On an RP, the PMBR value must be cleared when the Keepalive Timer
  expires.

4.1.5.  (S,G,rpt) State

  For every source/group pair (S,G) for which a router also has (*,G)
  state, it also keeps the following state:

  (S,G,rpt) state:

       For each interface:

            Local Membership:
                 State: One of {"NoInfo", "Exclude"}

            PIM (S,G,rpt) Join/Prune State:

                 o State: One of {"NoInfo", "Pruned", "Prune-
                   Pending"}

                 o Prune-Pending Timer (PPT)

                 o Join/Prune Expiry Timer (ET)

       Not interface specific:

            Upstream (S,G,rpt) Join/Prune State:

                 o State: One of {"RPTNotJoined(G)",
                   "NotPruned(S,G,rpt)", "Pruned(S,G,rpt)"}

                 o Override Timer (OT)

  Local membership is the result of the local source-specific
  membership mechanism (such as IGMPv3) running on that interface and
  specifying that although there is (*,G) Include state, this



Fenner, et al.              Standards Track                    [Page 20]

RFC 4601                  PIM-SM Specification               August 2006


  particular source should be excluded.  As stored here, this state is
  the resulting state after any IGMPv3 inconsistencies between LAN
  members have been resolved.  It need not be kept if this router is
  not the DR on that interface unless this router won a (*,G) assert on
  this interface for this group.  However, we recommend storing this
  information if possible, as it reduces latency converging to stable
  operating conditions after a failure causing a change of DR.  This
  information is used by the pim_exclude(S,G) macro described in
  Section 4.1.6.

  PIM (S,G,rpt) Join/Prune state is the result of receiving PIM
  (S,G,rpt) Join/Prune messages on this interface and is specified in
  Section 4.5.4.  The state is used by the macros that calculate the
  outgoing interface list in Section 4.1.6, and in the rules for adding
  Prune(S,G,rpt) messages to Join(*,G) messages specified in Section
  4.5.8.

  The upstream (S,G,rpt) Join/Prune state is used along with the
  Override Timer to send the correct override messages in response to
  Join/Prune messages sent by upstream peers on a LAN.  This state and
  behavior are specified in Section 4.5.9.

4.1.6.  State Summarization Macros

  Using this state, we define the following "macro" definitions, which
  we will use in the descriptions of the state machines and pseudocode
  in the following sections.

  The most important macros are those that define the outgoing
  interface list (or "olist") for the relevant state.  An olist can be
  "immediate" if it is built directly from the state of the relevant
  type.  For example, the immediate_olist(S,G) is the olist that would
  be built if the router only had (S,G) state and no (*,G) or (S,G,rpt)
  state.  In contrast, the "inherited" olist inherits state from other
  types.  For example, the inherited_olist(S,G) is the olist that is
  relevant for forwarding a packet from S to G using both source-
  specific and group-specific state.

  There is no immediate_olist(S,G,rpt) as (S,G,rpt) state is negative
  state; it removes interfaces in the (*,G) olist from the olist that
  is actually used to forward traffic.  The inherited_olist(S,G,rpt) is
  therefore the olist that would be used for a packet from S to G
  forwarding on the RP tree.  It is a strict subset of
  (immediate_olist(*,*,RP) (+) immediate_olist(*,G)).

  Generally speaking, the inherited olists are used for forwarding, and
  the immediate_olists are used to make decisions about state
  maintenance.



Fenner, et al.              Standards Track                    [Page 21]

RFC 4601                  PIM-SM Specification               August 2006


  immediate_olist(*,*,RP) =
      joins(*,*,RP)

  immediate_olist(*,G) =
      joins(*,G) (+) pim_include(*,G) (-) lost_assert(*,G)

  immediate_olist(S,G) =
      joins(S,G) (+) pim_include(S,G) (-) lost_assert(S,G)

  inherited_olist(S,G,rpt) =
          ( joins(*,*,RP(G)) (+) joins(*,G) (-) prunes(S,G,rpt) )
      (+) ( pim_include(*,G) (-) pim_exclude(S,G))
      (-) ( lost_assert(*,G) (+) lost_assert(S,G,rpt) )

  inherited_olist(S,G) =
      inherited_olist(S,G,rpt) (+)
      joins(S,G) (+) pim_include(S,G) (-) lost_assert(S,G)

  The macros pim_include(*,G) and pim_include(S,G) indicate the
  interfaces to which traffic might be forwarded because of hosts that
  are local members on that interface.  Note that normally only the DR
  cares about local membership, but when an assert happens, the assert
  winner takes over responsibility for forwarding traffic to local
  members that have requested traffic on a group or source/group pair.

  pim_include(*,G) =
     { all interfaces I such that:
       ( ( I_am_DR( I ) AND lost_assert(*,G,I) == FALSE )
         OR AssertWinner(*,G,I) == me )
       AND  local_receiver_include(*,G,I) }

  pim_include(S,G) =
      { all interfaces I such that:
        ( (I_am_DR( I ) AND lost_assert(S,G,I) == FALSE )
          OR AssertWinner(S,G,I) == me )
         AND  local_receiver_include(S,G,I) }

  pim_exclude(S,G) =
      { all interfaces I such that:
        ( (I_am_DR( I ) AND lost_assert(*,G,I) == FALSE )
          OR AssertWinner(*,G,I) == me )
         AND  local_receiver_exclude(S,G,I) }

  The clause "local_receiver_include(S,G,I)" is true if the IGMP/MLD
  module or other local membership mechanism has determined that local
  members on interface I desire to receive traffic sent specifically by
  S to G.  "local_receiver_include(*,G,I)" is true if the IGMP/MLD
  module or other local membership mechanism has determined that local



Fenner, et al.              Standards Track                    [Page 22]

RFC 4601                  PIM-SM Specification               August 2006


  members on interface I desire to receive all traffic sent to G
  (possibly excluding traffic from a specific set of sources).
  "local_receiver_exclude(S,G,I) is true if
  "local_receiver_include(*,G,I)" is true but none of the local members
  desire to receive traffic from S.

  The set "joins(*,*,RP)" is the set of all interfaces on which the
  router has received (*,*,RP) Joins:

  joins(*,*,RP) =
      { all interfaces I such that
        DownstreamJPState(*,*,RP,I) is either Join or
            Prune-Pending }

  DownstreamJPState(*,*,RP,I) is the state of the finite state machine
  in Section 4.5.1.

  The set "joins(*,G)" is the set of all interfaces on which the router
  has received (*,G) Joins:

  joins(*,G) =
      { all interfaces I such that
        DownstreamJPState(*,G,I) is either Join or Prune-Pending }

  DownstreamJPState(*,G,I) is the state of the finite state machine in
  Section 4.5.2.

  The set "joins(S,G)" is the set of all interfaces on which the router
  has received (S,G) Joins:

  joins(S,G) =
      { all interfaces I such that
        DownstreamJPState(S,G,I) is either Join or Prune-Pending }

  DownstreamJPState(S,G,I) is the state of the finite state machine in
  Section 4.5.3.

  The set "prunes(S,G,rpt)" is the set of all interfaces on which the
  router has received (*,G) joins and (S,G,rpt) prunes.

  prunes(S,G,rpt) =
      { all interfaces I such that
        DownstreamJPState(S,G,rpt,I) is Prune or PruneTmp }

  DownstreamJPState(S,G,rpt,I) is the state of the finite state machine
  in Section 4.5.4.





Fenner, et al.              Standards Track                    [Page 23]

RFC 4601                  PIM-SM Specification               August 2006


  The set "lost_assert(*,G)" is the set of all interfaces on which the
  router has received (*,G) joins but has lost a (*,G) assert.  The
  macro lost_assert(*,G,I) is defined in Section 4.6.5.

  lost_assert(*,G) =
      { all interfaces I such that
        lost_assert(*,G,I) == TRUE }

  The set "lost_assert(S,G,rpt)" is the set of all interfaces on which
  the router has received (*,G) joins but has lost an (S,G) assert.
  The macro lost_assert(S,G,rpt,I) is defined in Section 4.6.5.

  lost_assert(S,G,rpt) =
      { all interfaces I such that
        lost_assert(S,G,rpt,I) == TRUE }

  The set "lost_assert(S,G)" is the set of all interfaces on which the
  router has received (S,G) joins but has lost an (S,G) assert.  The
  macro lost_assert(S,G,I) is defined in Section 4.6.5.

  lost_assert(S,G) =
      { all interfaces I such that
        lost_assert(S,G,I) == TRUE }

  The following pseudocode macro definitions are also used in many
  places in the specification.  Basically, RPF' is the RPF neighbor
  towards an RP or source unless a PIM-Assert has overridden the normal
  choice of neighbor.

    neighbor RPF'(*,G) {
        if ( I_Am_Assert_Loser(*, G, RPF_interface(RP(G))) ) {
             return AssertWinner(*, G, RPF_interface(RP(G)) )
        } else {
             return NBR( RPF_interface(RP(G)), MRIB.next_hop( RP(G) ) )
        }
    }

    neighbor RPF'(S,G,rpt) {
        if( I_Am_Assert_Loser(S, G, RPF_interface(RP(G)) ) ) {
             return AssertWinner(S, G, RPF_interface(RP(G)) )
        } else {
             return RPF'(*,G)
        }
    }







Fenner, et al.              Standards Track                    [Page 24]

RFC 4601                  PIM-SM Specification               August 2006


    neighbor RPF'(S,G) {
        if ( I_Am_Assert_Loser(S, G, RPF_interface(S) )) {
             return AssertWinner(S, G, RPF_interface(S) )
        } else {
             return NBR( RPF_interface(S), MRIB.next_hop( S ) )
        }
    }

  RPF'(*,G) and RPF'(S,G) indicate the neighbor from which data packets
  should be coming and to which joins should be sent on the RP tree and
  SPT, respectively.

  RPF'(S,G,rpt) is basically RPF'(*,G) modified by the result of an
  Assert(S,G) on RPF_interface(RP(G)).  In such a case, packets from S
  will be originating from a different router than RPF'(*,G).  If we
  only have active (*,G) Join state, we need to accept packets from
  RPF'(S,G,rpt) and add a Prune(S,G,rpt) to the periodic Join(*,G)
  messages that we send to RPF'(*,G) (see Section 4.5.8).

  The function MRIB.next_hop( S ) returns an address of the next-hop
  PIM neighbor toward the host S, as indicated by the current MRIB.  If
  S is directly adjacent, then MRIB.next_hop( S ) returns NULL.  At the
  RP for G, MRIB.next_hop( RP(G)) returns NULL.

  The function NBR( I, A ) uses information gathered through PIM Hello
  messages to map the IP address A of a directly connected PIM neighbor
  router on interface I to the primary IP address of the same router
  (Section 4.3.4).  The primary IP address of a neighbor is the address
  that it uses as the source of its PIM Hello messages.  Note that a
  neighbor's IP address may be non-unique within the PIM neighbor
  database due to scope issues.  The address must, however, be unique
  amongst the addresses of all the PIM neighbors on a specific
  interface.

  I_Am_Assert_Loser(S, G, I) is true if the Assert state machine (in
  Section 4.6.1) for (S,G) on Interface I is in "I am Assert Loser"
  state.

  I_Am_Assert_Loser(*, G, I) is true if the Assert state machine (in
  Section 4.6.2) for (*,G) on Interface I is in "I am Assert Loser"
  state.










Fenner, et al.              Standards Track                    [Page 25]

RFC 4601                  PIM-SM Specification               August 2006


4.2.  Data Packet Forwarding Rules

  The PIM-SM packet forwarding rules are defined below in pseudocode.

     iif is the incoming interface of the packet.
     S is the source address of the packet.
     G is the destination address of the packet (group address).
     RP is the address of the Rendezvous Point for this group.
     RPF_interface(S) is the interface the MRIB indicates would be used
     to route packets to S.
     RPF_interface(RP) is the interface the MRIB indicates would be
     used to route packets to RP, except at the RP when it is the
     decapsulation interface (the "virtual" interface on which register
     packets are received).

  First, we restart (or start) the Keepalive Timer if the source is on
  a directly connected subnet.

  Second, we check to see if the SPTbit should be set because we've now
  switched from the RP tree to the SPT.

  Next, we check to see whether the packet should be accepted based on
  TIB state and the interface that the packet arrived on.

  If the packet should be forwarded using (S,G) state, we then build an
  outgoing interface list for the packet.  If this list is not empty,
  then we restart the (S,G) state Keepalive Timer.

  If the packet should be forwarded using (*,*,RP) or (*,G) state, then
  we just build an outgoing interface list for the packet.  We also
  check if we should initiate a switch to start receiving this source
  on a shortest path tree.

  Finally we remove the incoming interface from the outgoing interface
  list we've created, and if the resulting outgoing interface list is
  not empty, we forward the packet out of those interfaces.















Fenner, et al.              Standards Track                    [Page 26]

RFC 4601                  PIM-SM Specification               August 2006


  On receipt of data from S to G on interface iif:
   if( DirectlyConnected(S) == TRUE AND iif == RPF_interface(S) ) {
        set KeepaliveTimer(S,G) to Keepalive_Period
        # Note: a register state transition or UpstreamJPState(S,G)
        # transition may happen as a result of restarting
        # KeepaliveTimer, and must be dealt with here.
   }

  if( iif == RPF_interface(S) AND UpstreamJPState(S,G) == Joined AND
     inherited_olist(S,G) != NULL ) {
         set KeepaliveTimer(S,G) to Keepalive_Period
  }

  Update_SPTbit(S,G,iif)
  oiflist = NULL

  if( iif == RPF_interface(S) AND SPTbit(S,G) == TRUE ) {
     oiflist = inherited_olist(S,G)
  } else if( iif == RPF_interface(RP(G)) AND SPTbit(S,G) == FALSE) {
    oiflist = inherited_olist(S,G,rpt)
    CheckSwitchToSpt(S,G)
  } else {
     # Note: RPF check failed
     # A transition in an Assert FSM may cause an Assert(S,G)
     # or Assert(*,G) message to be sent out interface iif.
     # See section 4.6 for details.
     if ( SPTbit(S,G) == TRUE AND iif is in inherited_olist(S,G) ) {
        send Assert(S,G) on iif
     } else if ( SPTbit(S,G) == FALSE AND
                 iif is in inherited_olist(S,G,rpt) {
        send Assert(*,G) on iif
     }
  }

  oiflist = oiflist (-) iif
  forward packet on all interfaces in oiflist

  This pseudocode employs several "macro" definitions:

  DirectlyConnected(S) is TRUE if the source S is on any subnet that is
  directly connected to this router (or for packets originating on this
  router).

  inherited_olist(S,G) and inherited_olist(S,G,rpt) are defined in
  Section 4.1.






Fenner, et al.              Standards Track                    [Page 27]

RFC 4601                  PIM-SM Specification               August 2006


  Basically, inherited_olist(S,G) is the outgoing interface list for
  packets forwarded on (S,G) state, taking into account (*,*,RP) state,
  (*,G) state, asserts, etc.

  inherited_olist(S,G,rpt) is the outgoing interface list for packets
  forwarded on (*,*,RP) or (*,G) state, taking into account (S,G,rpt)
  prune state, asserts, etc.

  Update_SPTbit(S,G,iif) is defined in Section 4.2.2.

  CheckSwitchToSpt(S,G) is defined in Section 4.2.1.

  UpstreamJPState(S,G) is the state of the finite state machine in
  Section 4.5.7.

  Keepalive_Period is defined in Section 4.10.

  Data-triggered PIM-Assert messages sent from the above forwarding
  code should be rate-limited in a implementation-dependent manner.

4.2.1.  Last-Hop Switchover to the SPT

  In Sparse-Mode PIM, last-hop routers join the shared tree towards the
  RP.  Once traffic from sources to joined groups arrives at a last-hop
  router, it has the option of switching to receive the traffic on a
  shortest path tree (SPT).

  The decision for a router to switch to the SPT is controlled as
  follows:

    void
    CheckSwitchToSpt(S,G) {
      if ( ( pim_include(*,G) (-) pim_exclude(S,G)
             (+) pim_include(S,G) != NULL )
           AND SwitchToSptDesired(S,G) ) {
             # Note: Restarting the KAT will result in the SPT switch
             set KeepaliveTimer(S,G) to Keepalive_Period
      }
    }

  SwitchToSptDesired(S,G) is a policy function that is implementation
  defined.  An "infinite threshold" policy can be implemented by making
  SwitchToSptDesired(S,G) return false all the time.  A "switch on
  first packet" policy can be implemented by making
  SwitchToSptDesired(S,G) return true once a single packet has been
  received for the source and group.





Fenner, et al.              Standards Track                    [Page 28]

RFC 4601                  PIM-SM Specification               August 2006


4.2.2.  Setting and Clearing the (S,G) SPTbit

  The (S,G) SPTbit is used to distinguish whether to forward on
  (*,*,RP)/(*,G) or on (S,G) state.  When switching from the RP tree to
  the source tree, there is a transition period when data is arriving
  due to upstream (*,*,RP)/(*,G) state while upstream (S,G) state is
  being established, during which time a router should continue to
  forward only on (*,*,RP)/(*,G) state.  This prevents temporary
  black-holes that would be caused by sending a Prune(S,G,rpt) before
  the upstream (S,G) state has finished being established.

  Thus, when a packet arrives, the (S,G) SPTbit is updated as follows:

    void
    Update_SPTbit(S,G,iif) {
      if ( iif == RPF_interface(S)
            AND JoinDesired(S,G) == TRUE
            AND ( DirectlyConnected(S) == TRUE
                  OR RPF_interface(S) != RPF_interface(RP(G))
                  OR inherited_olist(S,G,rpt) == NULL
                  OR ( ( RPF'(S,G) == RPF'(*,G) ) AND
                       ( RPF'(S,G) != NULL ) )
                  OR ( I_Am_Assert_Loser(S,G,iif) ) {
         Set SPTbit(S,G) to TRUE
      }
    }

  Additionally, a router can set SPTbit(S,G) to TRUE in other cases,
  such as when it receives an Assert(S,G) on RPF_interface(S) (see
  Section 4.6.1).

  JoinDesired(S,G) is defined in Section 4.5.7 and indicates whether we
  have the appropriate (S,G) Join state to wish to send a Join(S,G)
  upstream.

  Basically, Update_SPTbit will set the SPTbit if we have the
  appropriate (S,G) join state, and if the packet arrived on the
  correct upstream interface for S, and if one or more of the following
  conditions applies:

  1.  The source is directly connected, in which case the switch to the
      SPT is a no-op.

  2.  The RPF interface to S is different from the RPF interface to the
      RP.  The packet arrived on RPF_interface(S), and so the SPT must
      have been completed.

  3.  Noone wants the packet on the RP tree.



Fenner, et al.              Standards Track                    [Page 29]

RFC 4601                  PIM-SM Specification               August 2006


  4.  RPF'(S,G) == RPF'(*,G).  In this case, the router will never be
      able to tell if the SPT has been completed, so it should just
      switch immediately.

  In the case where the RPF interface is the same for the RP and for S,
  but RPF'(S,G) and RPF'(*,G) differ, we wait for an Assert(S,G), which
  indicates that the upstream router with (S,G) state believes the SPT
  has been completed.  However, item (3) above is needed because there
  may not be any (*,G) state to trigger an Assert(S,G) to happen.

  The SPTbit is cleared in the (S,G) upstream state machine (see
  Section 4.5.7) when JoinDesired(S,G) becomes FALSE.

4.3.  Designated Routers (DR) and Hello Messages

  A shared-media LAN like Ethernet may have multiple PIM-SM routers
  connected to it.  A single one of these routers, the DR, will act on
  behalf of directly connected hosts with respect to the PIM-SM
  protocol.  Because the distinction between LANs and point-to-point
  interfaces can sometimes be blurred, and because routers may also
  have multicast host functionality, the PIM-SM specification makes no
  distinction between the two.  Thus, DR election will happen on all
  interfaces, LAN or otherwise.

  DR election is performed using Hello messages.  Hello messages are
  also the way that option negotiation takes place in PIM, so that
  additional functionality can be enabled, or parameters tuned.

4.3.1.  Sending Hello Messages

  PIM Hello messages are sent periodically on each PIM-enabled
  interface.  They allow a router to learn about the neighboring PIM
  routers on each interface.  Hello messages are also the mechanism
  used to elect a Designated Router (DR), and to negotiate additional
  capabilities.  A router must record the Hello information received
  from each PIM neighbor.

  Hello messages MUST be sent on all active interfaces, including
  physical point-to-point links, and are multicast to the 'ALL-PIM-
  ROUTERS' group address ('224.0.0.13' for IPv4 and 'ff02::d' for
  IPv6).

    We note that some implementations do not send Hello messages on
    point-to-point interfaces.  This is non-compliant behavior.  A
    compliant PIM router MUST send Hello messages, even on point-to-
    point interfaces.





Fenner, et al.              Standards Track                    [Page 30]

RFC 4601                  PIM-SM Specification               August 2006


  A per-interface Hello Timer (HT(I)) is used to trigger sending Hello
  messages on each active interface.  When PIM is enabled on an
  interface or a router first starts, the Hello Timer of that interface
  is set to a random value between 0 and Triggered_Hello_Delay.  This
  prevents synchronization of Hello messages if multiple routers are
  powered on simultaneously.  After the initial randomized interval,
  Hello messages must be sent every Hello_Period seconds.  The Hello
  Timer should not be reset except when it expires.

  Note that neighbors will not accept Join/Prune or Assert messages
  from a router unless they have first heard a Hello message from that
  router.  Thus, if a router needs to send a Join/Prune or Assert
  message on an interface on which it has not yet sent a Hello message
  with the currently configured IP address, then it MUST immediately
  send the relevant Hello message without waiting for the Hello Timer
  to expire, followed by the Join/Prune or Assert message.

  The DR_Priority Option allows a network administrator to give
  preference to a particular router in the DR election process by
  giving it a numerically larger DR Priority.  The DR_Priority Option
  SHOULD be included in every Hello message, even if no DR Priority is
  explicitly configured on that interface.  This is necessary because
  priority-based DR election is only enabled when all neighbors on an
  interface advertise that they are capable of using the DR_Priority
  Option.  The default priority is 1.

  The Generation_Identifier (GenID) Option SHOULD be included in all
  Hello messages.  The GenID option contains a randomly generated
  32-bit value that is regenerated each time PIM forwarding is started
  or restarted on the interface, including when the router itself
  restarts.  When a Hello message with a new GenID is received from a
  neighbor, any old Hello information about that neighbor SHOULD be
  discarded and superseded by the information from the new Hello
  message.  This may cause a new DR to be chosen on that interface.

  The LAN Prune Delay Option SHOULD be included in all Hello messages
  sent on multi-access LANs.  This option advertises a router's
  capability to use values other than the defaults for the
  Propagation_Delay and Override_Interval, which affect the setting of
  the Prune-Pending, Upstream Join, and Override Timers (defined in
  Section 4.10).

  The Address List Option advertises all the secondary addresses
  associated with the source interface of the router originating the
  message.  The option MUST be included in all Hello messages if there
  are secondary addresses associated with the source interface and MAY
  be omitted if no secondary addresses exist.




Fenner, et al.              Standards Track                    [Page 31]

RFC 4601                  PIM-SM Specification               August 2006


  To allow new or rebooting routers to learn of PIM neighbors quickly,
  when a Hello message is received from a new neighbor, or a Hello
  message with a new GenID is received from an existing neighbor, a new
  Hello message should be sent on this interface after a randomized
  delay between 0 and Triggered_Hello_Delay.  This triggered message
  need not change the timing of the scheduled periodic message.  If a
  router needs to send a Join/Prune to the new neighbor or send an
  Assert message in response to an Assert message from the new neighbor
  before this randomized delay has expired, then it MUST immediately
  send the relevant Hello message without waiting for the Hello Timer
  to expire, followed by the Join/Prune or Assert message.  If it does
  not do this, then the new neighbor will discard the Join/Prune or
  Assert message.

  Before an interface goes down or changes primary IP address, a Hello
  message with a zero HoldTime should be sent immediately (with the old
  IP address if the IP address changed).  This will cause PIM neighbors
  to remove this neighbor (or its old IP address) immediately.  After
  an interface has changed its IP address, it MUST send a Hello message
  with its new IP address.  If an interface changes one of its
  secondary IP addresses, a Hello message with an updated Address_List
  option and a non-zero HoldTime should be sent immediately.  This will
  cause PIM neighbors to update this neighbor's list of secondary
  addresses immediately.

4.3.2.  DR Election

  When a PIM Hello message is received on interface I, the following
  information about the sending neighbor is recorded:

    neighbor.interface
         The interface on which the Hello message arrived.

    neighbor.primary_ip_address
         The IP address that the PIM neighbor used as the source
         address of the Hello message.

    neighbor.genid
         The Generation ID of the PIM neighbor.

    neighbor.dr_priority
         The DR Priority field of the PIM neighbor, if it is present in
         the Hello message.

    neighbor.dr_priority_present
         A flag indicating if the DR Priority field was present in the
         Hello message.




Fenner, et al.              Standards Track                    [Page 32]

RFC 4601                  PIM-SM Specification               August 2006


    neighbor.timeout
         A timer value to time out the neighbor state when it becomes
         stale, also known as the Neighbor Liveness Timer.

         The Neighbor Liveness Timer (NLT(N,I)) is reset to
         Hello_Holdtime (from the Hello Holdtime option) whenever a
         Hello message is received containing a Holdtime option, or to
         Default_Hello_Holdtime if the Hello message does not contain
         the Holdtime option.

         Neighbor state is deleted when the neighbor timeout expires.

  The function for computing the DR on interface I is:

    host
    DR(I) {
        dr = me
        for each neighbor on interface I {
            if ( dr_is_better( neighbor, dr, I ) == TRUE ) {
                dr = neighbor
            }
        }
        return dr
    }

  The function used for comparing DR "metrics" on interface I is:

    bool
    dr_is_better(a,b,I) {
        if( there is a neighbor n on I for which n.dr_priority_present
                is false ) {
            return a.primary_ip_address > b.primary_ip_address
        } else {
            return ( a.dr_priority > b.dr_priority ) OR
                   ( a.dr_priority == b.dr_priority AND
                     a.primary_ip_address > b.primary_ip_address )
        }
    }

  The trivial function I_am_DR(I) is defined to aid readability:

    bool
    I_am_DR(I) {
       return DR(I) == me
    }






Fenner, et al.              Standards Track                    [Page 33]

RFC 4601                  PIM-SM Specification               August 2006


  The DR Priority is a 32-bit unsigned number, and the numerically
  larger priority is always preferred.  A router's idea of the current
  DR on an interface can change when a PIM Hello message is received,
  when a neighbor times out, or when a router's own DR Priority
  changes.  If the router becomes the DR or ceases to be the DR, this
  will normally cause the DR Register state machine to change state.
  Subsequent actions are determined by that state machine.

    We note that some PIM implementations do not send Hello messages on
    point-to-point interfaces and thus cannot perform DR election on
    such interfaces.  This is non-compliant behavior.  DR election MUST
    be performed on ALL active PIM-SM interfaces.

4.3.3.  Reducing Prune Propagation Delay on LANs

  In addition to the information recorded for the DR Election, the
  following per neighbor information is obtained from the LAN Prune
  Delay Hello option:

    neighbor.lan_prune_delay_present
         A flag indicating if the LAN Prune Delay option was present in
         the Hello message.

    neighbor.tracking_support
         A flag storing the value of the T bit in the LAN Prune Delay
         option if it is present in the Hello message.  This indicates
         the neighbor's capability to disable Join message suppression.

    neighbor.propagation_delay
         The Propagation Delay field of the LAN Prune Delay option (if
         present) in the Hello message.

    neighbor.override_interval
         The Override_Interval field of the LAN Prune Delay option (if
         present) in the Hello message.

  The additional state described above is deleted along with the DR
  neighbor state when the neighbor timeout expires.

  Just like the DR_Priority option, the information provided in the LAN
  Prune Delay option is not used unless all neighbors on a link
  advertise the option.  The function below computes this state:









Fenner, et al.              Standards Track                    [Page 34]

RFC 4601                  PIM-SM Specification               August 2006


    bool
    lan_delay_enabled(I) {
        for each neighbor on interface I {
            if ( neighbor.lan_prune_delay_present == false ) {
                return false
            }
        }
        return true
    }

  The Propagation Delay inserted by a router in the LAN Prune Delay
  option expresses the expected message propagation delay on the link
  and should be configurable by the system administrator.  It is used
  by upstream routers to figure out how long they should wait for a
  Join override message before pruning an interface.

  PIM implementers should enforce a lower bound on the permitted values
  for this delay to allow for scheduling and processing delays within
  their router.  Such delays may cause received messages to be
  processed later as well as triggered messages to be sent later than
  intended.  Setting this Propagation Delay to too low a value may
  result in temporary forwarding outages because a downstream router
  will not be able to override a neighbor's Prune message before the
  upstream neighbor stops forwarding.

  When all routers on a link are in a position to negotiate a
  Propagation Delay different from the default, the largest value from
  those advertised by each neighbor is chosen.  The function for
  computing the Effective_Propagation_Delay of interface I is:

    time_interval
    Effective_Propagation_Delay(I) {
        if ( lan_delay_enabled(I) == false ) {
            return Propagation_delay_default
        }
        delay = Propagation_Delay(I)
        for each neighbor on interface I {
            if ( neighbor.propagation_delay > delay ) {
                delay = neighbor.propagation_delay
            }
        }
        return delay
    }

  To avoid synchronization of override messages when multiple
  downstream routers share a multi-access link, sending of such
  messages is delayed by a small random amount of time.  The period of
  randomization should represent the size of the PIM router population



Fenner, et al.              Standards Track                    [Page 35]

RFC 4601                  PIM-SM Specification               August 2006


  on the link.  Each router expresses its view of the amount of
  randomization necessary in the Override Interval field of the LAN
  Prune Delay option.

  When all routers on a link are in a position to negotiate an Override
  Interval different from the default, the largest value from those
  advertised by each neighbor is chosen.  The function for computing
  the Effective Override Interval of interface I is:

    time_interval
    Effective_Override_Interval(I) {
        if ( lan_delay_enabled(I) == false ) {
            return t_override_default
        }
        delay = Override_Interval(I)
        for each neighbor on interface I {
            if ( neighbor.override_interval > delay ) {
                delay = neighbor.override_interval
            }
        }
        return delay
    }

  Although the mechanisms are not specified in this document, it is
  possible for upstream routers to explicitly track the join membership
  of individual downstream routers if Join suppression is disabled.  A
  router can advertise its willingness to disable Join suppression by
  using the T bit in the LAN Prune Delay Hello option.  Unless all PIM
  routers on a link negotiate this capability, explicit tracking and
  the disabling of the Join suppression mechanism are not possible.
  The function for computing the state of Suppression on interface I
  is:

    bool
    Suppression_Enabled(I) {
        if ( lan_delay_enabled(I) == false ) {
            return true
        }
        for each neighbor on interface I {
            if ( neighbor.tracking_support == false ) {
                return true
            }
        }
        return false
    }

  Note that the setting of Suppression_Enabled(I) affects the value of
  t_suppressed (see Section 4.10).



Fenner, et al.              Standards Track                    [Page 36]

RFC 4601                  PIM-SM Specification               August 2006


4.3.4.  Maintaining Secondary Address Lists

  Communication of a router's interface secondary addresses to its PIM
  neighbors is necessary to provide the neighbors with a mechanism for
  mapping next_hop information obtained through their MRIB to a primary
  address that can be used as a destination for Join/Prune messages.
  The mapping is performed through the NBR macro.  The primary address
  of a PIM neighbor is obtained from the source IP address used in its
  PIM Hello messages.  Secondary addresses are carried within the Hello
  message in an Address List Hello option.  The primary address of the
  source interface of the router MUST NOT be listed within the Address
  List Hello option.

  In addition to the information recorded for the DR Election, the
  following per neighbor information is obtained from the Address List
  Hello option:

    neighbor.secondary_address_list
         The list of secondary addresses used by the PIM neighbor on
         the interface through which the Hello message was transmitted.

  When processing a received PIM Hello message containing an Address
  List Hello option, the list of secondary addresses in the message
  completely replaces any previously associated secondary addresses for
  that neighbor.  If a received PIM Hello message does not contain an
  Address List Hello option, then all secondary addresses associated
  with the neighbor must be deleted.  If a received PIM Hello message
  contains an Address List Hello option that includes the primary
  address of the sending router in the list of secondary addresses
  (although this is not expected), then the addresses listed in the
  message, excluding the primary address, are used to update the
  associated secondary addresses for that neighbor.

  All the advertised secondary addresses in received Hello messages
  must be checked against those previously advertised by all other PIM
  neighbors on that interface.  If there is a conflict and the same
  secondary address was previously advertised by another neighbor, then
  only the most recently received mapping MUST be maintained, and an
  error message SHOULD be logged to the administrator in a rate-limited
  manner.

  Within one Address List Hello option, all the addresses MUST be of
  the same address family.  It is not permitted to mix IPv4 and IPv6
  addresses within the same message.  In addition, the address family
  of the fields in the message SHOULD be the same as the IP source and
  destination addresses of the packet header.





Fenner, et al.              Standards Track                    [Page 37]

RFC 4601                  PIM-SM Specification               August 2006


4.4.  PIM Register Messages

  The Designated Router (DR) on a LAN or point-to-point link
  encapsulates multicast packets from local sources to the RP for the
  relevant group unless it recently received a Register-Stop message
  for that (S,G) or (*,G) from the RP.  When the DR receives a
  Register-Stop message from the RP, it starts a Register-Stop Timer to
  maintain this state.  Just before the Register-Stop Timer expires,
  the DR sends a Null-Register Message to the RP to allow the RP to
  refresh the Register-Stop information at the DR.  If the Register-
  Stop Timer actually expires, the DR will resume encapsulating packets
  from the source to the RP.

4.4.1.  Sending Register Messages from the DR

  Every PIM-SM router has the capability to be a DR.  The state machine
  below is used to implement Register functionality.  For the purposes
  of specification, we represent the mechanism to encapsulate packets
  to the RP as a Register-Tunnel interface, which is added to or
  removed from the (S,G) olist.  The tunnel interface then takes part
  in the normal packet forwarding rules as specified in Section 4.2.

  If register state is maintained, it is maintained only for directly
  connected sources and is per-(S,G).  There are four states in the
  DR's per-(S,G) Register state machine:

  Join (J)
       The register tunnel is "joined" (the join is actually implicit,
       but the DR acts as if the RP has joined the DR on the tunnel
       interface).

  Prune (P)
       The register tunnel is "pruned" (this occurs when a Register-
       Stop is received).

  Join-Pending (JP)
       The register tunnel is pruned but the DR is contemplating adding
       it back.

  NoInfo (NI)
       No information.  This is the initial state, and the state when
       the router is not the DR.

  In addition, a Register-Stop Timer (RST) is kept if the state machine
  is not in the NoInfo state.






Fenner, et al.              Standards Track                    [Page 38]

RFC 4601                  PIM-SM Specification               August 2006


  Figure 1: Per-(S,G) register state machine at a DR in tabular form

+----------++----------------------------------------------------------+
|          ||                          Event                           |
|          ++----------+-----------+-----------+-----------+-----------+
|Prev State||Register- | Could     | Could     | Register- | RP changed|
|          ||Stop Timer| Register  | Register  | Stop      |           |
|          ||expires   | ->True    | ->False   | received  |           |
+----------++----------+-----------+-----------+-----------+-----------+
|NoInfo    ||-         | -> J state| -         | -         | -         |
|(NI)      ||          | add reg   |           |           |           |
|          ||          | tunnel    |           |           |           |
+----------++----------+-----------+-----------+-----------+-----------+
|          ||-         | -         | -> NI     | -> P state| -> J state|
|          ||          |           | state     |           |           |
|          ||          |           | remove reg| remove reg| update reg|
|Join (J)  ||          |           | tunnel    | tunnel;   | tunnel    |
|          ||          |           |           | set       |           |
|          ||          |           |           | Register- |           |
|          ||          |           |           | Stop      |           |
|          ||          |           |           | Timer(*)  |           |
+----------++----------+-----------+-----------+-----------+-----------+
|          ||-> J state| -         | -> NI     | -> P state| -> J state|
|          ||          |           | state     |           |           |
|Join-     ||add reg   |           |           | set       | add reg   |
|Pending   ||tunnel    |           |           | Register- | tunnel;   |
|(JP)      ||          |           |           | Stop      | cancel    |
|          ||          |           |           | Timer(*)  | Register- |
|          ||          |           |           |           | Stop Timer|
+----------++----------+-----------+-----------+-----------+-----------+
|          ||-> JP     | -         | -> NI     | -         | -> J state|
|          ||state     |           | state     |           |           |
|          ||set       |           |           |           | add reg   |
|Prune (P) ||Register- |           |           |           | tunnel;   |
|          ||Stop      |           |           |           | cancel    |
|          ||Timer(**);|           |           |           | Register- |
|          ||send Null-|           |           |           | Stop Timer|
|          ||Register  |           |           |           |           |
+----------++----------+-----------+-----------+-----------+-----------+

  Notes:

  (*)  The Register-Stop Timer is set to a random value chosen
       uniformly from the interval ( 0.5 * Register_Suppression_Time,
       1.5 * Register_Suppression_Time) minus Register_Probe_Time.






Fenner, et al.              Standards Track                    [Page 39]

RFC 4601                  PIM-SM Specification               August 2006


       Subtracting off Register_Probe_Time is a bit unnecessary because
       it is really small compared to Register_Suppression_Time, but
       this was in the old spec and is kept for compatibility.

  (**) The Register-Stop Timer is set to Register_Probe_Time.

  The following three actions are defined:

  Add Register Tunnel

     A Register-Tunnel virtual interface, VI, is created (if it doesn't
     already exist) with its encapsulation target being RP(G).
     DownstreamJPState(S,G,VI) is set to Join state, causing the tunnel
     interface to be added to immediate_olist(S,G) and
     inherited_olist(S,G).

  Remove Register Tunnel

     VI is the Register-Tunnel virtual interface with encapsulation
     target of RP(G).  DownstreamJPState(S,G,VI) is set to NoInfo
     state, causing the tunnel interface to be removed from
     immediate_olist(S,G) and inherited_olist(S,G).  If
     DownstreamJPState(S,G,VI) is NoInfo for all (S,G), then VI can be
     deleted.

  Update Register Tunnel

     This action occurs when RP(G) changes.

     VI_old is the Register-Tunnel virtual interface with encapsulation
     target old_RP(G).  A Register-Tunnel virtual interface, VI_new, is
     created (if it doesn't already exist) with its encapsulation
     target being new_RP(G).  DownstreamJPState(S,G,VI_old) is set to
     NoInfo state and DownstreamJPState(S,G,VI_new) is set to Join
     state.  If DownstreamJPState(S,G,VI_old) is NoInfo for all (S,G),
     then VI_old can be deleted.

     Note that we cannot simply change the encapsulation target of
     VI_old because not all groups using that encapsulation tunnel will
     have moved to the same new RP.











Fenner, et al.              Standards Track                    [Page 40]

RFC 4601                  PIM-SM Specification               August 2006


  CouldRegister(S,G)

     The macro "CouldRegister" in the state machine is defined as:

     bool CouldRegister(S,G) {
        return ( I_am_DR( RPF_interface(S) ) AND
                 KeepaliveTimer(S,G) is running AND
                 DirectlyConnected(S) == TRUE )
     }

     Note that on reception of a packet at the DR from a directly
     connected source, KeepaliveTimer(S,G) needs to be set by the
     packet forwarding rules before computing CouldRegister(S,G) in the
     register state machine, or the first packet from a source won't be
     registered.

  Encapsulating Data Packets in the Register Tunnel

     Conceptually, the Register Tunnel is an interface with a smaller
     MTU than the underlying IP interface towards the RP.  IP
     fragmentation on packets forwarded on the Register Tunnel is
     performed based upon this smaller MTU.  The encapsulating DR may
     perform Path MTU Discovery to the RP to determine the effective
     MTU of the tunnel.  Fragmentation for the smaller MTU should take
     both the outer IP header and the PIM register header overhead into
     account.  If a multicast packet is fragmented on the way into the
     Register Tunnel, each fragment is encapsulated individually so it
     contains IP, PIM, and inner IP headers.

     In IPv6, the DR MUST perform Path MTU discovery, and an ICMP
     Packet Too Big message MUST be sent by the encapsulating DR if it
     receives a packet that will not fit in the effective MTU of the
     tunnel.  If the MTU between the DR and the RP results in the
     effective tunnel MTU being smaller than 1280 (the IPv6 minimum
     MTU), the DR MUST send Fragmentation Required messages with an MTU
     value of 1280 and MUST fragment its PIM register messages as
     required, using an IPv6 fragmentation header between the outer
     IPv6 header and the PIM Register header.

     The TTL of a forwarded data packet is decremented before it is
     encapsulated in the Register Tunnel.  The encapsulating packet
     uses the normal TTL that the router would use for any locally-
     generated IP packet.

     The IP ECN bits should be copied from the original packet to the
     IP header of the encapsulating packet.  They SHOULD NOT be set
     independently by the encapsulating router.




Fenner, et al.              Standards Track                    [Page 41]

RFC 4601                  PIM-SM Specification               August 2006


     The Diffserv Code Point (DSCP) should be copied from the original
     packet to the IP header of the encapsulating packet.  It MAY be
     set independently by the encapsulating router, based upon static
     configuration or traffic classification.  See [12] for more
     discussion on setting the DSCP on tunnels.

  Handling Register-Stop(*,G) Messages at the DR

     An old RP might send a Register-Stop message with the source
     address set to all zeros.  This was the normal course of action in
     RFC 2362 when the Register message matched against (*,G) state at
     the RP, and it was defined as meaning "stop encapsulating all
     sources for this group".  However, the behavior of such a
     Register-Stop(*,G) is ambiguous or incorrect in some
     circumstances.

     We specify that an RP should not send Register-Stop(*,G) messages,
     but for compatibility, a DR should be able to accept one if it is
     received.

     A Register-Stop(*,G) should be treated as a Register-Stop(S,G) for
     all (S,G) Register state machines that are not in the NoInfo
     state.  A router should not apply a Register-Stop(*,G) to sources
     that become active after the Register-Stop(*,G) was received.



























Fenner, et al.              Standards Track                    [Page 42]

RFC 4601                  PIM-SM Specification               August 2006


4.4.2.  Receiving Register Messages at the RP

  When an RP receives a Register message, the course of action is
  decided according to the following pseudocode:

  packet_arrives_on_rp_tunnel( pkt ) {
      if( outer.dst is not one of my addresses ) {
          drop the packet silently.
          # Note: this may be a spoofing attempt
      }
      if( I_am_RP(G) AND outer.dst == RP(G) ) {
            sentRegisterStop = FALSE;
            if ( register.borderbit == TRUE ) {
                 if ( PMBR(S,G) == unknown ) {
                      PMBR(S,G) = outer.src
                 } else if ( outer.src != PMBR(S,G) ) {
                      send Register-Stop(S,G) to outer.src
                      drop the packet silently.
                 }
            }
            if ( SPTbit(S,G) OR
             ( SwitchToSptDesired(S,G) AND
               ( inherited_olist(S,G) == NULL ))) {
              send Register-Stop(S,G) to outer.src
              sentRegisterStop = TRUE;
            }
            if ( SPTbit(S,G) OR SwitchToSptDesired(S,G) ) {
                 if ( sentRegisterStop == TRUE ) {
                      set KeepaliveTimer(S,G) to RP_Keepalive_Period;
                 } else {
                      set KeepaliveTimer(S,G) to Keepalive_Period;
                 }
            }
            if( !SPTbit(S,G) AND ! pkt.NullRegisterBit ) {
                 decapsulate and forward the inner packet to
                 inherited_olist(S,G,rpt) # Note (+)
            }
      } else {
          send Register-Stop(S,G) to outer.src
          # Note (*)
      }
  }

  outer.dst is the IP destination address of the encapsulating header.

  outer.src is the IP source address of the encapsulating header, i.e.,
  the DR's address.




Fenner, et al.              Standards Track                    [Page 43]

RFC 4601                  PIM-SM Specification               August 2006


  I_am_RP(G) is true if the group-to-RP mapping indicates that this
  router is the RP for the group.

  Note (*): This may block traffic from S for Register_Suppression_Time
     if the DR learned about a new group-to-RP mapping before the RP
     did.  However, this doesn't matter unless we figure out some way
     for the RP also to accept (*,G) joins when it doesn't yet realize
     that it is about to become the RP for G.  This will all get sorted
     out once the RP learns the new group-to-rp mapping.  We decided to
     do nothing about this and just accept the fact that PIM may suffer
     interrupted (*,G) connectivity following an RP change.

  Note (+): Implementations are advised not to make this a special
     case, but to arrange that this path rejoin the normal packet
     forwarding path.  All of the appropriate actions from the "On
     receipt of data from S to G on interface iif" pseudocode in
     Section 4.2 should be performed.

  KeepaliveTimer(S,G) is restarted at the RP when packets arrive on the
  proper tunnel interface and the RP desires to switch to the SPT or
  the SPTbit is already set.  This may cause the upstream (S,G) state
  machine to trigger a join if the inherited_olist(S,G) is not NULL.

  An RP should preserve (S,G) state that was created in response to a
  Register message for at least ( 3 * Register_Suppression_Time );
  otherwise, the RP may stop joining (S,G) before the DR for S has
  restarted sending registers.  Traffic would then be interrupted until
  the Register-Stop Timer expires at the DR.

  Thus, at the RP, KeepaliveTimer(S,G) should be restarted to ( 3 *
  Register_Suppression_Time + Register_Probe_Time ).

  When forwarding a packet from the Register Tunnel, the TTL of the
  original data packet is decremented after it is decapsulated.

  The IP ECN bits should be copied from the IP header of the Register
  packet to the decapsulated packet.

  The Diffserv Code Point (DSCP) should be copied from the IP header of
  the Register packet to the decapsulated packet.  The RP MAY retain
  the DSCP of the inner packet or re-classify the packet and apply a
  different DSCP.  Scenarios where each of these might be useful are
  discussed in [12].








Fenner, et al.              Standards Track                    [Page 44]

RFC 4601                  PIM-SM Specification               August 2006


4.5.  PIM Join/Prune Messages

  A PIM Join/Prune message consists of a list of groups and a list of
  Joined and Pruned sources for each group.  When processing a received
  Join/Prune message, each Joined or Pruned source for a Group is
  effectively considered individually, and applies to one or more of
  the following state machines.  When considering a Join/Prune message
  whose Upstream Neighbor Address field addresses this router, (*,G)
  Joins and Prunes can affect both the (*,G) and (S,G,rpt) downstream
  state machines, while (*,*,RP), (S,G), and (S,G,rpt) Joins and Prunes
  can only affect their respective downstream state machines.  When
  considering a Join/Prune message whose Upstream Neighbor Address
  field addresses another router, most Join or Prune messages could
  affect each upstream state machine.

  In general, a PIM Join/Prune message should only be accepted for
  processing if it comes from a known PIM neighbor.  A PIM router hears
  about PIM neighbors through PIM Hello messages.  If a router receives
  a Join/Prune message from a particular IP source address and it has
  not seen a PIM Hello message from that source address, then the
  Join/Prune message SHOULD be discarded without further processing.
  In addition, if the Hello message from a neighbor was authenticated
  using IPsec AH (see Section 6.3), then all Join/Prune messages from
  that neighbor MUST also be authenticated using IPsec AH.

  We note that some older PIM implementations incorrectly fail to send
  Hello messages on point-to-point interfaces, so we also RECOMMEND
  that a configuration option be provided to allow interoperation with
  such older routers, but that this configuration option SHOULD NOT be
  enabled by default.

4.5.1.  Receiving (*,*,RP) Join/Prune Messages

  The per-interface state machine for receiving (*,*,RP) Join/Prune
  Messages is given below.  There are three states:

    NoInfo (NI)
         The interface has no (*,*,RP) Join state and no timers
         running.

    Join (J)
         The interface has (*,*,RP) Join state, which will cause the
         router to forward packets destined for any group handled by RP
         from this interface except if there is also (S,G,rpt) prune
         information (see Section 4.5.4) or the router lost an assert
         on this interface.





Fenner, et al.              Standards Track                    [Page 45]

RFC 4601                  PIM-SM Specification               August 2006


    Prune-Pending (PP)
         The router has received a Prune(*,*,RP) on this interface from
         a downstream neighbor and is waiting to see whether the prune
         will be overridden by another downstream router.  For
         forwarding purposes, the Prune-Pending state functions exactly
         like the Join state.

  In addition, the state machine uses two timers:

    ExpiryTimer (ET)
         This timer is restarted when a valid Join(*,*,RP) is received.
         Expiry of the ExpiryTimer causes the interface state to revert
         to NoInfo for this RP.

    Prune-Pending Timer (PPT)
         This timer is set when a valid Prune(*,*,RP) is received.
         Expiry of the Prune-Pending Timer causes the interface state
         to revert to NoInfo for this RP.

      Figure 2: Downstream per-interface (*,*,RP) state machine
                           in tabular form

+------------++--------------------------------------------------------+
|            ||                          Event                         |
|            ++-------------+-------------+--------------+-------------+
|Prev State  ||Receive      | Receive     | Prune-       | Expiry Timer|
|            ||Join(*,*,RP) | Prune       | Pending      | Expires     |
|            ||             | (*,*,RP)    | Timer        |             |
|            ||             |             | Expires      |             |
+------------++-------------+-------------+--------------+-------------+
|            ||-> J state   | -> NI state | -            | -           |
|NoInfo (NI) ||start Expiry |             |              |             |
|            ||Timer        |             |              |             |
+------------++-------------+-------------+--------------+-------------+
|            ||-> J state   | -> PP state | -            | -> NI state |
|Join (J)    ||restart      | start Prune-|              |             |
|            ||Expiry Timer | Pending     |              |             |
|            ||             | Timer       |              |             |
+------------++-------------+-------------+--------------+-------------+
|Prune-      ||-> J state   | -> PP state | -> NI state  | -> NI state |
|Pending (PP)||restart      |             | Send Prune-  |             |
|            ||Expiry Timer |             | Echo(*,*,RP) |             |
+------------++-------------+-------------+--------------+-------------+








Fenner, et al.              Standards Track                    [Page 46]

RFC 4601                  PIM-SM Specification               August 2006


  The transition events "Receive Join(*,*,RP)" and "Receive
  Prune(*,*,RP)" imply receiving a Join or Prune targeted to this
  router's primary IP address on the received interface.  If the
  upstream neighbor address field is not correct, these state
  transitions in this state machine must not occur, although seeing
  such a packet may cause state transitions in other state machines.

  On unnumbered interfaces on point-to-point links, the router's
  address should be the same as the source address it chose for the
  Hello message it sent over that interface.  However, on point-to-
  point links we also recommend that for backwards compatibility PIM
  Join/Prune messages with an upstream neighbor address field of all
  zeros are also accepted.

  Transitions from NoInfo State

  When in NoInfo state, the following event may trigger a transition:

    Receive Join(*,*,RP)
         A Join(*,*,RP) is received on interface I with its Upstream
         Neighbor Address set to the router's primary IP address on I.

         The (*,*,RP) downstream state machine on interface I
         transitions to the Join state.  The Expiry Timer (ET) is
         started and set to the HoldTime from the triggering Join/Prune
         message.

         Note that it is possible to receive a Join(*,*,RP) message for
         an RP for which we do not have information telling us that it
         is an RP.  In the case of (*,*,RP) state, so long as we have a
         route to the RP, this will not cause a problem, and the
         transition should still take place.

  Transitions from Join State

  When in Join state, the following events may trigger a transition:

    Receive Join(*,*,RP)
         A Join(*,*,RP) is received on interface I with its Upstream
         Neighbor Address set to the router's primary IP address on I.

         The (*,*,RP) downstream state machine on interface I remains
         in Join state, and the Expiry Timer (ET) is restarted, set to
         maximum of its current value and the HoldTime from the
         triggering Join/Prune message.






Fenner, et al.              Standards Track                    [Page 47]

RFC 4601                  PIM-SM Specification               August 2006


    Receive Prune(*,*,RP)
         A Prune(*,*,RP) is received on interface I with its Upstream
         Neighbor Address set to the router's primary IP address on I.

         The (*,*,RP) downstream state machine on interface I
         transitions to the Prune-Pending state.  The Prune-Pending
         Timer is started.  It is set to the J/P_Override_Interval(I)
         if the router has more than one neighbor on that interface;
         otherwise, it is set to zero, causing it to expire
         immediately.

    Expiry Timer Expires
         The Expiry Timer for the (*,*,RP) downstream state machine on
         interface I expires.

         The (*,*,RP) downstream state machine on interface I
         transitions to the NoInfo state.

  Transitions from Prune-Pending State

  When in Prune-Pending state, the following events may trigger a
  transition:

    Receive Join(*,*,RP)
         A Join(*,*,RP) is received on interface I with its Upstream
         Neighbor Address set to the router's primary IP address on I.

         The (*,*,RP) downstream state machine on interface I
         transitions to the Join state.  The Prune-Pending Timer is
         canceled (without triggering an expiry event).  The Expiry
         Timer is restarted, set to maximum of its current value and
         the HoldTime from the triggering Join/Prune message.

    Expiry Timer Expires
         The Expiry Timer for the (*,*,RP) downstream state machine on
         interface I expires.

         The (*,*,RP) downstream state machine on interface I
         transitions to the NoInfo state.

    Prune-Pending Timer Expires
         The Prune-Pending Timer for the (*,*,RP) downstream state
         machine on interface I expires.

         The (*,*,RP) downstream state machine on interface I
         transitions to the NoInfo state.  A PruneEcho(*,*,RP) is sent
         onto the subnet connected to interface I.




Fenner, et al.              Standards Track                    [Page 48]

RFC 4601                  PIM-SM Specification               August 2006


         The action "Send PruneEcho(*,*,RP)" is triggered when the
         router stops forwarding on an interface as a result of a
         prune.  A PruneEcho(*,*,RP) is simply a Prune(*,*,RP) message
         sent by the upstream router on a LAN with its own address in
         the Upstream Neighbor Address field.  Its purpose is to add
         additional reliability so that if a Prune that should have
         been overridden by another router is lost locally on the LAN,
         then the PruneEcho may be received and cause the override to
         happen.  A PruneEcho(*,*,RP) need not be sent on an interface
         that contains only a single PIM neighbor during the time this
         state machine was in Prune-Pending state.

4.5.2.  Receiving (*,G) Join/Prune Messages

  When a router receives a Join(*,G), it must first check to see
  whether the RP in the message matches RP(G) (the router's idea of who
  the RP is).  If the RP in the message does not match RP(G), the
  Join(*,G) should be silently dropped.  (Note that other source list
  entries, such as (S,G,rpt) or (S,G), in the same Group-Specific Set
  should still be processed.)  If a router has no RP information (e.g.,
  has not recently received a BSR message), then it may choose to
  accept Join(*,G) and treat the RP in the message as RP(G).  Received
  Prune(*,G) messages are processed even if the RP in the message does
  not match RP(G).

  The per-interface state machine for receiving (*,G) Join/Prune
  Messages is given below.  There are three states:

    NoInfo (NI)
         The interface has no (*,G) Join state and no timers running.

    Join (J)
         The interface has (*,G) Join state, which will cause the
         router to forward packets destined for G from this interface
         except if there is also (S,G,rpt) prune information (see
         Section 4.5.4) or the router lost an assert on this interface.

    Prune-Pending (PP)
         The router has received a Prune(*,G) on this interface from a
         downstream neighbor and is waiting to see whether the prune
         will be overridden by another downstream router.  For
         forwarding purposes, the Prune-Pending state functions exactly
         like the Join state.








Fenner, et al.              Standards Track                    [Page 49]

RFC 4601                  PIM-SM Specification               August 2006


  In addition, the state machine uses two timers:

    Expiry Timer (ET)
         This timer is restarted when a valid Join(*,G) is received.
         Expiry of the Expiry Timer causes the interface state to
         revert to NoInfo for this group.

    Prune-Pending Timer (PPT)
         This timer is set when a valid Prune(*,G) is received.  Expiry
         of the Prune-Pending Timer causes the interface state to
         revert to NoInfo for this group.

Figure 3: Downstream per-interface (*,G) state machine in tabular form

+------------++--------------------------------------------------------+
|            ||                         Event                          |
|            ++-------------+--------------+-------------+-------------+
|Prev State  ||Receive      | Receive      | Prune-      | Expiry Timer|
|            ||Join(*,G)    | Prune(*,G)   | Pending     | Expires     |
|            ||             |              | Timer       |             |
|            ||             |              | Expires     |             |
+------------++-------------+--------------+-------------+-------------+
|            ||-> J state   | -> NI state  | -           | -           |
|NoInfo (NI) ||start Expiry |              |             |             |
|            ||Timer        |              |             |             |
+------------++-------------+--------------+-------------+-------------+
|            ||-> J state   | -> PP state  | -           | -> NI state |
|Join (J)    ||restart      | start Prune- |             |             |
|            ||Expiry Timer | Pending      |             |             |
|            ||             | Timer        |             |             |
+------------++-------------+--------------+-------------+-------------+
|Prune-      ||-> J state   | -> PP state  | -> NI state | -> NI state |
|Pending (PP)||restart      |              | Send Prune- |             |
|            ||Expiry Timer |              | Echo(*,G)   |             |
+------------++-------------+--------------+-------------+-------------+

  The transition events "Receive Join(*,G)" and "Receive Prune(*,G)"
  imply receiving a Join or Prune targeted to this router's primary IP
  address on the received interface.  If the upstream neighbor address
  field is not correct, these state transitions in this state machine
  must not occur, although seeing such a packet may cause state
  transitions in other state machines.

  On unnumbered interfaces on point-to-point links, the router's
  address should be the same as the source address it chose for the
  Hello message it sent over that interface.  However, on point-to-





Fenner, et al.              Standards Track                    [Page 50]

RFC 4601                  PIM-SM Specification               August 2006


  point links we also recommend that for backwards compatibility PIM
  Join/Prune messages with an upstream neighbor address field of all
  zeros are also accepted.

  Transitions from NoInfo State

  When in NoInfo state, the following event may trigger a transition:

    Receive Join(*,G)
         A Join(*,G) is received on interface I with its Upstream
         Neighbor Address set to the router's primary IP address on I.

         The (*,G) downstream state machine on interface I transitions
         to the Join state.  The Expiry Timer (ET) is started and set
         to the HoldTime from the triggering Join/Prune message.

  Transitions from Join State

  When in Join state, the following events may trigger a transition:

    Receive Join(*,G)
         A Join(*,G) is received on interface I with its Upstream
         Neighbor Address set to the router's primary IP address on I.

         The (*,G) downstream state machine on interface I remains in
         Join state, and the Expiry Timer (ET) is restarted, set to
         maximum of its current value and the HoldTime from the
         triggering Join/Prune message.

    Receive Prune(*,G)
         A Prune(*,G) is received on interface I with its Upstream
         Neighbor Address set to the router's primary IP address on I.

         The (*,G) downstream state machine on interface I transitions
         to the Prune-Pending state.  The Prune-Pending Timer is
         started.  It is set to the J/P_Override_Interval(I) if the
         router has more than one neighbor on that interface;
         otherwise, it is set to zero, causing it to expire
         immediately.

    Expiry Timer Expires
         The Expiry Timer for the (*,G) downstream state machine on
         interface I expires.

         The (*,G) downstream state machine on interface I transitions
         to the NoInfo state.





Fenner, et al.              Standards Track                    [Page 51]

RFC 4601                  PIM-SM Specification               August 2006


  Transitions from Prune-Pending State

  When in Prune-Pending state, the following events may trigger a
  transition:

    Receive Join(*,G)
         A Join(*,G) is received on interface I with its Upstream
         Neighbor Address set to the router's primary IP address on I.

         The (*,G) downstream state machine on interface I transitions
         to the Join state.  The Prune-Pending Timer is canceled
         (without triggering an expiry event).  The Expiry Timer is
         restarted, set to maximum of its current value and the
         HoldTime from the triggering Join/Prune message.

    Expiry Timer Expires
         The Expiry Timer for the (*,G) downstream state machine on
         interface I expires.

         The (*,G) downstream state machine on interface I transitions
         to the NoInfo state.

    Prune-Pending Timer Expires
         The Prune-Pending Timer for the (*,G) downstream state machine
         on interface I expires.

         The (*,G) downstream state machine on interface I transitions
         to the NoInfo state.  A PruneEcho(*,G) is sent onto the subnet
         connected to interface I.

         The action "Send PruneEcho(*,G)" is triggered when the router
         stops forwarding on an interface as a result of a prune.  A
         PruneEcho(*,G) is simply a Prune(*,G) message sent by the
         upstream router on a LAN with its own address in the Upstream
         Neighbor Address field.  Its purpose is to add additional
         reliability so that if a Prune that should have been
         overridden by another router is lost locally on the LAN, then
         the PruneEcho may be received and cause the override to
         happen.  A PruneEcho(*,G) need not be sent on an interface
         that contains only a single PIM neighbor during the time this
         state machine was in Prune-Pending state.










Fenner, et al.              Standards Track                    [Page 52]

RFC 4601                  PIM-SM Specification               August 2006


4.5.3.  Receiving (S,G) Join/Prune Messages

  The per-interface state machine for receiving (S,G) Join/Prune
  messages is given below and is almost identical to that for (*,G)
  messages.  There are three states:

    NoInfo (NI)
         The interface has no (S,G) Join state and no (S,G) timers
         running.

    Join (J)
         The interface has (S,G) Join state, which will cause the
         router to forward packets from S destined for G from this
         interface if the (S,G) state is active (the SPTbit is set)
         except if the router lost an assert on this interface.

    Prune-Pending (PP)
         The router has received a Prune(S,G) on this interface from a
         downstream neighbor and is waiting to see whether the prune
         will be overridden by another downstream router.  For
         forwarding purposes, the Prune-Pending state functions exactly
         like the Join state.

  In addition, there are two timers:

    Expiry Timer (ET)
         This timer is set when a valid Join(S,G) is received.  Expiry
         of the Expiry Timer causes this state machine to revert to
         NoInfo state.

    Prune-Pending Timer (PPT)
         This timer is set when a valid Prune(S,G) is received.  Expiry
         of the Prune-Pending Timer causes this state machine to revert
         to NoInfo state.

















Fenner, et al.              Standards Track                    [Page 53]

RFC 4601                  PIM-SM Specification               August 2006


Figure 4: Downstream per-interface (S,G) state machine in tabular form

+------------++--------------------------------------------------------+
|            ||                         Event                          |
|            ++-------------+--------------+-------------+-------------+
|Prev State  ||Receive      | Receive      | Prune-      | Expiry Timer|
|            ||Join(S,G)    | Prune(S,G)   | Pending     | Expires     |
|            ||             |              | Timer       |             |
|            ||             |              | Expires     |             |
+------------++-------------+--------------+-------------+-------------+
|            ||-> J state   | -> NI state  | -           | -           |
|NoInfo (NI) ||start Expiry |              |             |             |
|            ||Timer        |              |             |             |
+------------++-------------+--------------+-------------+-------------+
|            ||-> J state   | -> PP state  | -           | -> NI state |
|Join (J)    ||restart      | start Prune- |             |             |
|            ||Expiry Timer | Pending      |             |             |
|            ||             | Timer        |             |             |
+------------++-------------+--------------+-------------+-------------+
|Prune-      ||-> J state   | -> PP state  | -> NI state | -> NI state |
|Pending (PP)||restart      |              | Send Prune- |             |
|            ||Expiry Timer |              | Echo(S,G)   |             |
+------------++-------------+--------------+-------------+-------------+

  The transition events "Receive Join(S,G)" and "Receive Prune(S,G)"
  imply receiving a Join or Prune targeted to this router's primary IP
  address on the received interface.  If the upstream neighbor address
  field is not correct, these state transitions in this state machine
  must not occur, although seeing such a packet may cause state
  transitions in other state machines.

  On unnumbered interfaces on point-to-point links, the router's
  address should be the same as the source address it chose for the
  Hello message it sent over that interface.  However, on point-to-
  point links we also recommend that for backwards compatibility PIM
  Join/Prune messages with an upstream neighbor address field of all
  zeros are also accepted.

  Transitions from NoInfo State

  When in NoInfo state, the following event may trigger a transition:

    Receive Join(S,G)
         A Join(S,G) is received on interface I with its Upstream
         Neighbor Address set to the router's primary IP address on I.






Fenner, et al.              Standards Track                    [Page 54]

RFC 4601                  PIM-SM Specification               August 2006


         The (S,G) downstream state machine on interface I transitions
         to the Join state.  The Expiry Timer (ET) is started and set
         to the HoldTime from the triggering Join/Prune message.

  Transitions from Join State

  When in Join state, the following events may trigger a transition:

    Receive Join(S,G)
         A Join(S,G) is received on interface I with its Upstream
         Neighbor Address set to the router's primary IP address on I.

         The (S,G) downstream state machine on interface I remains in
         Join state, and the Expiry Timer (ET) is restarted, set to
         maximum of its current value and the HoldTime from the
         triggering Join/Prune message.

    Receive Prune(S,G)
         A Prune(S,G) is received on interface I with its Upstream
         Neighbor Address set to the router's primary IP address on I.

         The (S,G) downstream state machine on interface I transitions
         to the Prune-Pending state.  The Prune-Pending Timer is
         started.  It is set to the J/P_Override_Interval(I) if the
         router has more than one neighbor on that interface;
         otherwise, it is set to zero, causing it to expire
         immediately.

    Expiry Timer Expires
         The Expiry Timer for the (S,G) downstream state machine on
         interface I expires.

         The (S,G) downstream state machine on interface I transitions
         to the NoInfo state.

  Transitions from Prune-Pending State

  When in Prune-Pending state, the following events may trigger a
  transition:

    Receive Join(S,G)
         A Join(S,G) is received on interface I with its Upstream
         Neighbor Address set to the router's primary IP address on I.








Fenner, et al.              Standards Track                    [Page 55]

RFC 4601                  PIM-SM Specification               August 2006


         The (S,G) downstream state machine on interface I transitions
         to the Join state.  The Prune-Pending Timer is canceled
         (without triggering an expiry event).  The Expiry Timer is
         restarted, set to maximum of its current value and the
         HoldTime from the triggering Join/Prune message.

    Expiry Timer Expires
         The Expiry Timer for the (S,G) downstream state machine on
         interface I expires.

         The (S,G) downstream state machine on interface I transitions
         to the NoInfo state.

    Prune-Pending Timer Expires
         The Prune-Pending Timer for the (S,G) downstream state machine
         on interface I expires.

         The (S,G) downstream state machine on interface I transitions
         to the NoInfo state.  A PruneEcho(S,G) is sent onto the subnet
         connected to interface I.

         The action "Send PruneEcho(S,G)" is triggered when the router
         stops forwarding on an interface as a result of a prune.  A
         PruneEcho(S,G) is simply a Prune(S,G) message sent by the
         upstream router on a LAN with its own address in the Upstream
         Neighbor Address field.  Its purpose is to add additional
         reliability so that if a Prune that should have been
         overridden by another router is lost locally on the LAN, then
         the PruneEcho may be received and cause the override to
         happen.  A PruneEcho(S,G) need not be sent on an interface
         that contains only a single PIM neighbor during the time this
         state machine was in Prune-Pending state.

4.5.4.  Receiving (S,G,rpt) Join/Prune Messages

  The per-interface state machine for receiving (S,G,rpt) Join/Prune
  messages is given below.  There are five states:

    NoInfo (NI)
         The interface has no (S,G,rpt) Prune state and no (S,G,rpt)
         timers running.

    Prune (P)
         The interface has (S,G,rpt) Prune state, which will cause the
         router not to forward packets from S destined for G from this
         interface even though the interface has active (*,G) Join
         state.




Fenner, et al.              Standards Track                    [Page 56]

RFC 4601                  PIM-SM Specification               August 2006


    Prune-Pending (PP)
         The router has received a Prune(S,G,rpt) on this interface
         from a downstream neighbor and is waiting to see whether the
         prune will be overridden by another downstream router.  For
         forwarding purposes, the Prune-Pending state functions exactly
         like the NoInfo state.

    PruneTmp (P')
         This state is a transient state that for forwarding purposes
         behaves exactly like the Prune state.  A (*,G) Join has been
         received (which may cancel the (S,G,rpt) Prune).  As we parse
         the Join/Prune message from top to bottom, we first enter this
         state if the message contains a (*,G) Join.  Later in the
         message, we will normally encounter an (S,G,rpt) prune to
         reinstate the Prune state.  However, if we reach the end of
         the message without encountering such a (S,G,rpt) prune, then
         we will revert to NoInfo state in this state machine.

         As no time is spent in this state, no timers can expire.

    Prune-Pending-Tmp (PP')
         This state is a transient state that is identical to P' except
         that it is associated with the PP state rather than the P
         state.  For forwarding purposes, PP' behaves exactly like PP
         state.

  In addition, there are two timers:

    Expiry Timer (ET)
         This timer is set when a valid Prune(S,G,rpt) is received.
         Expiry of the Expiry Timer causes this state machine to revert
         to NoInfo state.

    Prune-Pending Timer (PPT)
         This timer is set when a valid Prune(S,G,rpt) is received.
         Expiry of the Prune-Pending Timer causes this state machine to
         move on to Prune state.














Fenner, et al.              Standards Track                    [Page 57]

RFC 4601                  PIM-SM Specification               August 2006


     Figure 5: Downstream per-interface (S,G,rpt) state machine
                           in tabular form

+----------++----------------------------------------------------------+
|          ||                          Event                           |
|          ++---------+----------+----------+--------+--------+--------+
|Prev      ||Receive  | Receive  | Receive  | End of | Prune- | Expiry |
|State     ||Join(*,G)| Join     | Prune    | Message| Pending| Timer  |
|          ||         | (S,G,rpt)| (S,G,rpt)|        | Timer  | Expires|
|          ||         |          |          |        | Expires|        |
+----------++---------+----------+----------+--------+--------+--------+
|          ||-        | -        | -> PP    | -      | -      | -      |
|          ||         |          | state    |        |        |        |
|          ||         |          | start    |        |        |        |
|NoInfo    ||         |          | Prune-   |        |        |        |
|(NI)      ||         |          | Pending  |        |        |        |
|          ||         |          | Timer;   |        |        |        |
|          ||         |          | start    |        |        |        |
|          ||         |          | Expiry   |        |        |        |
|          ||         |          | Timer    |        |        |        |
+----------++---------+----------+----------+--------+--------+--------+
|          ||-> P'    | -> NI    | -> P     | -      | -      | -> NI  |
|          ||state    | state    | state    |        |        | state  |
|Prune (P) ||         |          | restart  |        |        |        |
|          ||         |          | Expiry   |        |        |        |
|          ||         |          | Timer    |        |        |        |
+----------++---------+----------+----------+--------+--------+--------+
|Prune-    ||-> PP'   | -> NI    | -        | -      | -> P   | -      |
|Pending   ||state    | state    |          |        | state  |        |
|(PP)      ||         |          |          |        |        |        |
+----------++---------+----------+----------+--------+--------+--------+
|          ||-        | -        | -> P     | -> NI  | -      | -      |
|PruneTmp  ||         |          | state    | state  |        |        |
|(P')      ||         |          | restart  |        |        |        |
|          ||         |          | Expiry   |        |        |        |
|          ||         |          | Timer    |        |        |        |
+----------++---------+----------+----------+--------+--------+--------+
|          ||-        | -        | -> PP    | -> NI  | -      | -      |
|Prune-    ||         |          | state    | state  |        |        |
|Pending-  ||         |          | restart  |        |        |        |
|Tmp (PP') ||         |          | Expiry   |        |        |        |
|          ||         |          | Timer    |        |        |        |
+----------++---------+----------+----------+--------+--------+--------+

  The transition events "Receive Join(S,G,rpt)", "Receive
  Prune(S,G,rpt)", and "Receive Join(*,G)" imply receiving a Join or
  Prune targeted to this router's primary IP address on the received
  interface.  If the upstream neighbor address field is not correct,



Fenner, et al.              Standards Track                    [Page 58]

RFC 4601                  PIM-SM Specification               August 2006


  these state transitions in this state machine must not occur,
  although seeing such a packet may cause state transitions in other
  state machines.

  On unnumbered interfaces on point-to-point links, the router's
  address should be the same as the source address it chose for the
  Hello message it sent over that interface.  However, on point-to-
  point links we also recommend that PIM Join/Prune messages with an
  upstream neighbor address field of all zeros are also accepted.

  Transitions from NoInfo State

  When in NoInfo (NI) state, the following event may trigger a
  transition:

    Receive Prune(S,G,rpt)
         A Prune(S,G,rpt) is received on interface I with its Upstream
         Neighbor Address set to the router's primary IP address on I.

         The (S,G,rpt) downstream state machine on interface I
         transitions to the Prune-Pending state.  The Expiry Timer (ET)
         is started and set to the HoldTime from the triggering
         Join/Prune message.  The Prune-Pending Timer is started.  It
         is set to the J/P_Override_Interval(I) if the router has more
         than one neighbor on that interface; otherwise, it is set to
         zero, causing it to expire immediately.

  Transitions from Prune-Pending State

  When in Prune-Pending (PP) state, the following events may trigger a
  transition:

    Receive Join(*,G)
         A Join(*,G) is received on interface I with its Upstream
         Neighbor Address set to the router's primary IP address on I.

         The (S,G,rpt) downstream state machine on interface I
         transitions to Prune-Pending-Tmp state whilst the remainder of
         the compound Join/Prune message containing the Join(*,G) is
         processed.

    Receive Join(S,G,rpt)
         A Join(S,G,rpt) is received on interface I with its Upstream
         Neighbor Address set to the router's primary IP address on I.

         The (S,G,rpt) downstream state machine on interface I
         transitions to NoInfo state.  ET and PPT are canceled.




Fenner, et al.              Standards Track                    [Page 59]

RFC 4601                  PIM-SM Specification               August 2006


    Prune-Pending Timer Expires
         The Prune-Pending Timer for the (S,G,rpt) downstream state
         machine on interface I expires.

         The (S,G,rpt) downstream state machine on interface I
         transitions to the Prune state.

  Transitions from Prune State

  When in Prune (P) state, the following events may trigger a
  transition:

    Receive Join(*,G)
         A Join(*,G) is received on interface I with its Upstream
         Neighbor Address set to the router's primary IP address on I.

         The (S,G,rpt) downstream state machine on interface I
         transitions to PruneTmp state whilst the remainder of the
         compound Join/Prune message containing the Join(*,G) is
         processed.

    Receive Join(S,G,rpt)
         A Join(S,G,rpt) is received on interface I with its Upstream
         Neighbor Address set to the router's primary IP address on I.

         The (S,G,rpt) downstream state machine on interface I
         transitions to NoInfo state.  ET and PPT are canceled.

    Receive Prune(S,G,rpt)
         A Prune(S,G,rpt) is received on interface I with its Upstream
         Neighbor Address set to the router's primary IP address on I.

         The (S,G,rpt) downstream state machine on interface I remains
         in Prune state.  The Expiry Timer (ET) is restarted, set to
         maximum of its current value and the HoldTime from the
         triggering Join/Prune message.

    Expiry Timer Expires
         The Expiry Timer for the (S,G,rpt) downstream state machine on
         interface I expires.

         The (S,G,rpt) downstream state machine on interface I
         transitions to the NoInfo state.

  Transitions from Prune-Pending-Tmp State

  When in Prune-Pending-Tmp (PP') state and processing a compound
  Join/Prune message, the following events may trigger a transition:



Fenner, et al.              Standards Track                    [Page 60]

RFC 4601                  PIM-SM Specification               August 2006


    Receive Prune(S,G,rpt)
         The compound Join/Prune message contains a Prune(S,G,rpt).

         The (S,G,rpt) downstream state machine on interface I
         transitions back to the Prune-Pending state.  The Expiry Timer
         (ET) is restarted, set to maximum of its current value and the
         HoldTime from the triggering Join/Prune message.

    End of Message
         The end of the compound Join/Prune message is reached.

         The (S,G,rpt) downstream state machine on interface I
         transitions to the NoInfo state.  ET and PPT are canceled.

  Transitions from PruneTmp State

  When in PruneTmp (P') state and processing a compound Join/Prune
  message, the following events may trigger a transition:

    Receive Prune(S,G,rpt)
         The compound Join/Prune message contains a Prune(S,G,rpt).

         The (S,G,rpt) downstream state machine on interface I
         transitions back to the Prune state.  The Expiry Timer (ET) is
         restarted, set to maximum of its current value and the
         HoldTime from the triggering Join/Prune message.

    End of Message
         The end of the compound Join/Prune message is reached.

         The (S,G,rpt) downstream state machine on interface I
         transitions to the NoInfo state.  ET is canceled.

  Notes:

  Receiving a Prune(*,G) does not affect the (S,G,rpt) downstream state
  machine.

  Receiving a Join(*,*,RP) does not affect the (S,G,rpt) downstream
  state machine.  If a router has originated Join(*,*,RP) and pruned a
  source off it using Prune(S,G,rpt), then to receive that source again
  it should explicitly re-join using Join(S,G,rpt) or Join(*,G).  In
  some LAN topologies it is possible for a router sending a new
  Join(*,*,RP) to have to wait as much as a Join/Prune Interval before
  noticing that it needs to override a neighbor's preexisting
  Prune(S,G,rpt).  This is considered acceptable, as (*,*,RP) state is
  intended to be used only in long-lived and persistent scenarios.




Fenner, et al.              Standards Track                    [Page 61]

RFC 4601                  PIM-SM Specification               August 2006


4.5.5.  Sending (*,*,RP) Join/Prune Messages

  The per-interface state machines for (*,*,RP) hold join state from
  downstream PIM routers.  This state then determines whether a router
  needs to propagate a Join(*,*,RP) upstream towards the RP.

  If a router wishes to propagate a Join(*,*,RP) upstream, it must also
  watch for messages on its upstream interface from other routers on
  that subnet, and these may modify its behavior.  If it sees a
  Join(*,*,RP) to the correct upstream neighbor, it should suppress its
  own Join(*,*,RP).  If it sees a Prune(*,*,RP) to the correct upstream
  neighbor, it should be prepared to override that prune by sending a
  Join(*,*,RP) almost immediately.  Finally, if it sees the Generation
  ID (see Section 4.3) of the correct upstream neighbor change, it
  knows that the upstream neighbor has lost state, and it should be
  prepared to refresh the state by sending a Join(*,*,RP) almost
  immediately.

  In addition, if the MRIB changes to indicate that the next hop
  towards the RP has changed, the router should prune off from the old
  next hop and join towards the new next hop.

  The upstream (*,*,RP) state machine contains only two states:

  Not Joined
     The downstream state machines and local membership information do
     not indicate that the router needs to join the (*,*,RP) tree for
     this RP.

  Joined
     The downstream state machines and local membership information
     indicate that the router should join the (*,*,RP) tree for this
     RP.

  In addition, one timer JT(*,*,RP) is kept that is used to trigger the
  sending of a Join(*,*,RP) to the upstream next hop towards the RP,
  NBR(RPF_interface(RP), MRIB.next_hop(RP)).














Fenner, et al.              Standards Track                    [Page 62]

RFC 4601                  PIM-SM Specification               August 2006


      Figure 6: Upstream (*,*,RP) state machine in tabular form

+-------------------++-------------------------------------------------+
|                   ||                      Event                      |
|  Prev State       ++-------------------------+-----------------------+
|                   ||   JoinDesired           |    JoinDesired        |
|                   ||   (*,*,RP) ->True       |    (*,*,RP) ->False   |
+-------------------++-------------------------+-----------------------+
|                   ||   -> J state            |    -                  |
|  NotJoined (NJ)   ||   Send Join(*,*,RP);    |                       |
|                   ||   Set Join Timer to     |                       |
|                   ||   t_periodic            |                       |
+-------------------++-------------------------+-----------------------+
|  Joined (J)       ||   -                     |    -> NJ state        |
|                   ||                         |    Send Prune         |
|                   ||                         |    (*,*,RP); Cancel   |
|                   ||                         |    Join Timer         |
+-------------------++-------------------------+-----------------------+

  In addition, we have the following transitions, which occur within
  the Joined state:

+----------------------------------------------------------------------+
|                         In Joined (J) State                          |
+-------------------+--------------------+-----------------------------+
| Timer Expires     |  See               |   See                       |
|                   |  Join(*,*,RP)      |   Prune(*,*,RP)             |
|                   |  to MRIB.          |   to MRIB.                  |
|                   |  next_hop(RP)      |   next_hop(RP)              |
+-------------------+--------------------+-----------------------------+
| Send              |  Increase Join     |   Decrease Join             |
| Join(*,*,RP);     |  Timer to          |   Timer to                  |
| Set Join Timer    |  t_joinsuppress    |   t_override                |
| to t_periodic     |                    |                             |
+-------------------+--------------------+-----------------------------+
















Fenner, et al.              Standards Track                    [Page 63]

RFC 4601                  PIM-SM Specification               August 2006


+----------------------------------------------------------------------+
|                         In Joined (J) State                          |
+-----------------------------------+----------------------------------+
|    NBR(RPF_interface(RP),         |       MRIB.next_hop(RP) GenID    |
|    MRIB.next_hop(RP))             |       changes                    |
|    changes                        |                                  |
+-----------------------------------+----------------------------------+
|    Send Join(*,*,RP) to new       |       Decrease Join Timer to     |
|    next hop; Send                 |       t_override                 |
|    Prune(*,*,RP) to old           |                                  |
|    next hop; set Join Timer       |                                  |
|    to t_periodic                  |                                  |
+-----------------------------------+----------------------------------+

  This state machine uses the following macro:

    bool JoinDesired(*,*,RP) {
       if immediate_olist(*,*,RP) != NULL
           return TRUE
       else
           return FALSE
    }

  JoinDesired(*,*,RP) is true when the router has received (*,*,RP)
  Joins from any downstream interface.  Note that although JoinDesired
  is true, the router's sending of a Join(*,*,RP) message may be
  suppressed by another router sending a Join(*,*,RP) onto the upstream
  interface.

  Transitions from NotJoined State

  When the upstream (*,*,RP) state machine is in NotJoined state, the
  following event may trigger a state transition:

    JoinDesired(*,*,RP) becomes True
         The downstream state for (*,*,RP) has changed so that at least
         one interface is in immediate_olist(*,*,RP), making
         JoinDesired(*,*,RP) become True.

         The upstream (*,*,RP) state machine transitions to Joined
         state.  Send Join(*,*,RP) to the appropriate upstream
         neighbor, which is NBR(RPF_interface(RP), MRIB.next_hop(RP)).
         Set the Join Timer (JT) to expire after t_periodic seconds.

  Transitions from Joined State

  When the upstream (*,*,RP) state machine is in Joined state, the
  following events may trigger state transitions:



Fenner, et al.              Standards Track                    [Page 64]

RFC 4601                  PIM-SM Specification               August 2006


    JoinDesired(*,*,RP) becomes False
         The downstream state for (*,*,RP) has changed so no interface
         is in immediate_olist(*,*,RP), making JoinDesired(*,*,RP)
         become False.

         The upstream (*,*,RP) state machine transitions to NotJoined
         state.  Send Prune(*,*,RP) to the appropriate upstream
         neighbor, which is NBR(RPF_interface(RP), MRIB.next_hop(RP)).
         Cancel the Join Timer (JT).

    Join Timer Expires
         The Join Timer (JT) expires, indicating time to send a
         Join(*,*,RP)

         Send Join(*,*,RP) to the appropriate upstream neighbor, which
         is NBR(RPF_interface(RP), MRIB.next_hop(RP)).  Restart the
         Join Timer (JT) to expire after t_periodic seconds.

    See Join(*,*,RP) to MRIB.next_hop(RP)
         This event is only relevant if RPF_interface(RP) is a shared
         medium.  This router sees another router on RPF_interface(RP)
         send a Join(*,*,RP) to NBR(RPF_interface(RP),
         MRIB.next_hop(RP)).  This causes this router to suppress its
         own Join.

         The upstream (*,*,RP) state machine remains in Joined state.

         Let t_joinsuppress be the minimum of t_suppressed and the
         HoldTime from the Join/Prune message triggering this event.
         If the Join Timer is set to expire in less than t_joinsuppress
         seconds, reset it so that it expires after t_joinsuppress
         seconds.  If the Join Timer is set to expire in more than
         t_joinsuppress seconds, leave it unchanged.

    See Prune(*,*,RP) to MRIB.next_hop(RP)
         This event is only relevant if RPF_interface(RP) is a shared
         medium.  This router sees another router on RPF_interface(RP)
         send a Prune(*,*,RP) to NBR(RPF_interface(RP),
         MRIB.next_hop(RP)).  As this router is in Joined state, it
         must override the Prune after a short random interval.

         The upstream (*,*,RP) state machine remains in Joined state.
         If the Join Timer is set to expire in more than t_override
         seconds, reset it so that it expires after t_override seconds.
         If the Join Timer is set to expire in less than t_override
         seconds, leave it unchanged.





Fenner, et al.              Standards Track                    [Page 65]

RFC 4601                  PIM-SM Specification               August 2006


    NBR(RPF_interface(RP), MRIB.next_hop(RP)) changes
         A change in the MRIB routing base causes the next hop towards
         the RP to change.

         The upstream (*,*,RP) state machine remains in Joined state.
         Send Join(*,*,RP) to the new upstream neighbor, which is the
         new value of NBR(RPF_interface(RP), MRIB.next_hop(RP)).  Send
         Prune(*,*,RP) to the old upstream neighbor, which is the old
         value of NBR(RPF_interface(RP), MRIB.next_hop(RP)).  Set the
         Join Timer (JT) to expire after t_periodic seconds.

    MRIB.next_hop(RP) GenID changes
         The Generation ID of the router that is MRIB.next_hop(RP)
         changes.  This normally means that this neighbor has lost
         state, and so the state must be refreshed.

         The upstream (*,*,RP) state machine remains in Joined state.
         If the Join Timer is set to expire in more than t_override
         seconds, reset it so that it expires after t_override seconds.

4.5.6.  Sending (*,G) Join/Prune Messages

  The per-interface state machines for (*,G) hold join state from
  downstream PIM routers.  This state then determines whether a router
  needs to propagate a Join(*,G) upstream towards the RP.

  If a router wishes to propagate a Join(*,G) upstream, it must also
  watch for messages on its upstream interface from other routers on
  that subnet, and these may modify its behavior.  If it sees a
  Join(*,G) to the correct upstream neighbor, it should suppress its
  own Join(*,G).  If it sees a Prune(*,G) to the correct upstream
  neighbor, it should be prepared to override that prune by sending a
  Join(*,G) almost immediately.  Finally, if it sees the Generation ID
  (see Section 4.3) of the correct upstream neighbor change, it knows
  that the upstream neighbor has lost state, and it should be prepared
  to refresh the state by sending a Join(*,G) almost immediately.

  If a (*,G) Assert occurs on the upstream interface, and this changes
  this router's idea of the upstream neighbor, it should be prepared to
  ensure that the Assert winner is aware of downstream routers by
  sending a Join(*,G) almost immediately.

  In addition, if the MRIB changes to indicate that the next hop
  towards the RP has changed, and either the upstream interface changes
  or there is no Assert winner on the upstream interface, the router
  should prune off from the old next hop and join towards the new next
  hop.




Fenner, et al.              Standards Track                    [Page 66]

RFC 4601                  PIM-SM Specification               August 2006


  The upstream (*,G) state machine only contains two states:

  Not Joined
     The downstream state machines indicate that the router does not
     need to join the RP tree for this group.

  Joined
     The downstream state machines indicate that the router should join
     the RP tree for this group.

  In addition, one timer JT(*,G) is kept that is used to trigger the
  sending of a Join(*,G) to the upstream next hop towards the RP,
  RPF'(*,G).

        Figure 7: Upstream (*,G) state machine in tabular form

+-------------------++-------------------------------------------------+
|                   ||                      Event                      |
|  Prev State       ++------------------------+------------------------+
|                   ||   JoinDesired(*,G)     |    JoinDesired(*,G)    |
|                   ||   ->True               |    ->False             |
+-------------------++------------------------+------------------------+
|                   ||   -> J state           |    -                   |
|  NotJoined (NJ)   ||   Send Join(*,G);      |                        |
|                   ||   Set Join Timer to    |                        |
|                   ||   t_periodic           |                        |
+-------------------++------------------------+------------------------+
|  Joined (J)       ||   -                    |    -> NJ state         |
|                   ||                        |    Send Prune(*,G);    |
|                   ||                        |    Cancel Join Timer   |
+-------------------++------------------------+------------------------+

  In addition, we have the following transitions, which occur within
  the Joined state:

+----------------------------------------------------------------------+
|                        In Joined (J) State                           |
+----------------+-----------------+-----------------+-----------------+
|Timer Expires   | See Join(*,G)   | See Prune(*,G)  | RPF'(*,G)       |
|                | to RPF'(*,G)    | to RPF'(*,G)    | changes due to  |
|                |                 |                 | an Assert       |
+----------------+-----------------+-----------------+-----------------+
|Send            | Increase Join   | Decrease Join   | Decrease Join   |
|Join(*,G); Set  | Timer to        | Timer to        | Timer to        |
|Join Timer to   | t_joinsuppress  | t_override      | t_override      |
|t_periodic      |                 |                 |                 |
+----------------+-----------------+-----------------+-----------------+




Fenner, et al.              Standards Track                    [Page 67]

RFC 4601                  PIM-SM Specification               August 2006


+----------------------------------------------------------------------+
|                         In Joined (J) State                          |
+----------------------------------+-----------------------------------+
|    RPF'(*,G) changes not         |       RPF'(*,G) GenID changes     |
|    due to an Assert              |                                   |
+----------------------------------+-----------------------------------+
|    Send Join(*,G) to new         |       Decrease Join Timer to      |
|    next hop; Send                |       t_override                  |
|    Prune(*,G) to old next        |                                   |
|    hop; Set Join Timer to        |                                   |
|    t_periodic                    |                                   |
+----------------------------------+-----------------------------------+

  This state machine uses the following macro:

    bool JoinDesired(*,G) {
       if (immediate_olist(*,G) != NULL OR
           (JoinDesired(*,*,RP(G)) AND
            AssertWinner(*, G, RPF_interface(RP(G))) != NULL))
           return TRUE
       else
           return FALSE
    }

  JoinDesired(*,G) is true when the router has forwarding state that
  would cause it to forward traffic for G using shared tree state.
  Note that although JoinDesired is true, the router's sending of a
  Join(*,G) message may be suppressed by another router sending a
  Join(*,G) onto the upstream interface.

  Transitions from NotJoined State

  When the upstream (*,G) state machine is in NotJoined state, the
  following event may trigger a state transition:

    JoinDesired(*,G) becomes True
         The macro JoinDesired(*,G) becomes True, e.g., because the
         downstream state for (*,G) has changed so that at least one
         interface is in immediate_olist(*,G).

         The upstream (*,G) state machine transitions to Joined state.
         Send Join(*,G) to the appropriate upstream neighbor, which is
         RPF'(*,G).  Set the Join Timer (JT) to expire after t_periodic
         seconds.







Fenner, et al.              Standards Track                    [Page 68]

RFC 4601                  PIM-SM Specification               August 2006


  Transitions from Joined State

  When the upstream (*,G) state machine is in Joined state, the
  following events may trigger state transitions:

    JoinDesired(*,G) becomes False
         The macro JoinDesired(*,G) becomes False, e.g., because the
         downstream state for (*,G) has changed so no interface is in
         immediate_olist(*,G).

         The upstream (*,G) state machine transitions to NotJoined
         state.  Send Prune(*,G) to the appropriate upstream neighbor,
         which is RPF'(*,G).  Cancel the Join Timer (JT).

    Join Timer Expires
         The Join Timer (JT) expires, indicating time to send a
         Join(*,G)

         Send Join(*,G) to the appropriate upstream neighbor, which is
         RPF'(*,G).  Restart the Join Timer (JT) to expire after
         t_periodic seconds.

    See Join(*,G) to RPF'(*,G)
         This event is only relevant if RPF_interface(RP(G)) is a
         shared medium.  This router sees another router on
         RPF_interface(RP(G)) send a Join(*,G) to RPF'(*,G).  This
         causes this router to suppress its own Join.

         The upstream (*,G) state machine remains in Joined state.

         Let t_joinsuppress be the minimum of t_suppressed and the
         HoldTime from the Join/Prune message triggering this event.
         If the Join Timer is set to expire in less than t_joinsuppress
         seconds, reset it so that it expires after t_joinsuppress
         seconds.  If the Join Timer is set to expire in more than
         t_joinsuppress seconds, leave it unchanged.

    See Prune(*,G) to RPF'(*,G)
         This event is only relevant if RPF_interface(RP(G)) is a
         shared medium.  This router sees another router on
         RPF_interface(RP(G)) send a Prune(*,G) to RPF'(*,G).  As this
         router is in Joined state, it must override the Prune after a
         short random interval.








Fenner, et al.              Standards Track                    [Page 69]

RFC 4601                  PIM-SM Specification               August 2006


         The upstream (*,G) state machine remains in Joined state.  If
         the Join Timer is set to expire in more than t_override
         seconds, reset it so that it expires after t_override seconds.
         If the Join Timer is set to expire in less than t_override
         seconds, leave it unchanged.

    RPF'(*,G) changes due to an Assert
         The current next hop towards the RP changes due to an
         Assert(*,G) on the RPF_interface(RP(G)).

         The upstream (*,G) state machine remains in Joined state.  If
         the Join Timer is set to expire in more than t_override
         seconds, reset it so that it expires after t_override seconds.
         If the Join Timer is set to expire in less than t_override
         seconds, leave it unchanged.

    RPF'(*,G) changes not due to an Assert
         An event occurred that caused the next hop towards the RP for
         G to change.  This may be caused by a change in the MRIB
         routing database or the group-to-RP mapping.  Note that this
         transition does not occur if an Assert is active and the
         upstream interface does not change.

         The upstream (*,G) state machine remains in Joined state.
         Send Join(*,G) to the new upstream neighbor, which is the new
         value of RPF'(*,G).  Send Prune(*,G) to the old upstream
         neighbor, which is the old value of RPF'(*,G).  Use the new
         value of RP(G) in the Prune(*,G) message or all zeros if RP(G)
         becomes unknown (old value of RP(G) may be used instead to
         improve behavior in routers implementing older versions of
         this spec).  Set the Join Timer (JT) to expire after
         t_periodic seconds.

    RPF'(*,G) GenID changes
         The Generation ID of the router that is RPF'(*,G) changes.
         This normally means that this neighbor has lost state, and so
         the state must be refreshed.

         The upstream (*,G) state machine remains in Joined state.  If
         the Join Timer is set to expire in more than t_override
         seconds, reset it so that it expires after t_override seconds.










Fenner, et al.              Standards Track                    [Page 70]

RFC 4601                  PIM-SM Specification               August 2006


4.5.7.  Sending (S,G) Join/Prune Messages

  The per-interface state machines for (S,G) hold join state from
  downstream PIM routers.  This state then determines whether a router
  needs to propagate a Join(S,G) upstream towards the source.

  If a router wishes to propagate a Join(S,G) upstream, it must also
  watch for messages on its upstream interface from other routers on
  that subnet, and these may modify its behavior.  If it sees a
  Join(S,G) to the correct upstream neighbor, it should suppress its
  own Join(S,G).  If it sees a Prune(S,G), Prune(S,G,rpt), or
  Prune(*,G) to the correct upstream neighbor towards S, it should be
  prepared to override that prune by scheduling a Join(S,G) to be sent
  almost immediately.  Finally, if it sees the Generation ID of its
  upstream neighbor change, it knows that the upstream neighbor has
  lost state, and it should refresh the state by scheduling a Join(S,G)
  to be sent almost immediately.

  If a (S,G) Assert occurs on the upstream interface, and this changes
  the this router's idea of the upstream neighbor, it should be
  prepared to ensure that the Assert winner is aware of downstream
  routers by scheduling a Join(S,G) to be sent almost immediately.

  In addition, if MRIB changes cause the next hop towards the source to
  change, and either the upstream interface changes or there is no
  Assert winner on the upstream interface, the router should send a
  prune to the old next hop and a join to the new next hop.

  The upstream (S,G) state machine only contains two states:

  Not Joined
     The downstream state machines and local membership information do
     not indicate that the router needs to join the shortest-path tree
     for this (S,G).

  Joined
     The downstream state machines and local membership information
     indicate that the router should join the shortest-path tree for
     this (S,G).

  In addition, one timer JT(S,G) is kept that is used to trigger the
  sending of a Join(S,G) to the upstream next hop towards S, RPF'(S,G).









Fenner, et al.              Standards Track                    [Page 71]

RFC 4601                  PIM-SM Specification               August 2006


        Figure 8: Upstream (S,G) state machine in tabular form

+-------------------+--------------------------------------------------+
|                   |                      Event                       |
|  Prev State       +-------------------------+------------------------+
|                   |   JoinDesired(S,G)      |   JoinDesired(S,G)     |
|                   |   ->True                |   ->False              |
+-------------------+-------------------------+------------------------+
|  NotJoined (NJ)   |   -> J state            |   -                    |
|                   |   Send Join(S,G);       |                        |
|                   |   Set Join Timer to     |                        |
|                   |   t_periodic            |                        |
+-------------------+-------------------------+------------------------+
|  Joined (J)       |   -                     |   -> NJ state          |
|                   |                         |   Send Prune(S,G);     |
|                   |                         |   Set SPTbit(S,G) to   |
|                   |                         |   FALSE; Cancel Join   |
|                   |                         |   Timer                |
+-------------------+-------------------------+------------------------+

  In addition, we have the following transitions, which occur within
  the Joined state:

+----------------------------------------------------------------------+
|                         In Joined (J) State                          |
+-----------------+-----------------+-----------------+----------------+
| Timer Expires   | See Join(S,G)   | See Prune(S,G)  | See Prune      |
|                 | to RPF'(S,G)    | to RPF'(S,G)    | (S,G,rpt) to   |
|                 |                 |                 | RPF'(S,G)      |
+-----------------+-----------------+-----------------+----------------+
| Send            | Increase Join   | Decrease Join   | Decrease Join  |
| Join(S,G); Set  | Timer to        | Timer to        | Timer to       |
| Join Timer to   | t_joinsuppress  | t_override      | t_override     |
| t_periodic      |                 |                 |                |
+-----------------+-----------------+-----------------+----------------+
















Fenner, et al.              Standards Track                    [Page 72]

RFC 4601                  PIM-SM Specification               August 2006


+----------------------------------------------------------------------+
|                        In Joined (J) State                           |
+-----------------+-----------------+----------------+-----------------+
| See Prune(*,G)  | RPF'(S,G)       | RPF'(S,G)      | RPF'(S,G)       |
| to RPF'(S,G)    | changes not     | GenID changes  | changes due to  |
|                 | due to an       |                | an Assert       |
|                 | Assert          |                |                 |
+-----------------+-----------------+----------------+-----------------+
| Decrease Join   | Send Join(S,G)  | Decrease Join  | Decrease Join   |
| Timer to        | to new next     | Timer to       | Timer to        |
| t_override      | hop; Send       | t_override     | t_override      |
|                 | Prune(S,G) to   |                |                 |
|                 | old next hop;   |                |                 |
|                 | Set Join Timer  |                |                 |
|                 | to t_periodic   |                |                 |
+-----------------+-----------------+----------------+-----------------+

  This state machine uses the following macro:

    bool JoinDesired(S,G) {
        return( immediate_olist(S,G) != NULL
                OR ( KeepaliveTimer(S,G) is running
                     AND inherited_olist(S,G) != NULL ) )
    }

  JoinDesired(S,G) is true when the router has forwarding state that
  would cause it to forward traffic for G using source tree state.  The
  source tree state can be as a result of either active source-specific
  join state, or the (S,G) Keepalive Timer and active non-source-
  specific state.  Note that although JoinDesired is true, the router's
  sending of a Join(S,G) message may be suppressed by another router
  sending a Join(S,G) onto the upstream interface.

  Transitions from NotJoined State

  When the upstream (S,G) state machine is in NotJoined state, the
  following event may trigger a state transition:

    JoinDesired(S,G) becomes True
         The macro JoinDesired(S,G) becomes True, e.g., because the
         downstream state for (S,G) has changed so that at least one
         interface is in inherited_olist(S,G).

         The upstream (S,G) state machine transitions to Joined state.
         Send Join(S,G) to the appropriate upstream neighbor, which is
         RPF'(S,G).  Set the Join Timer (JT) to expire after t_periodic
         seconds.




Fenner, et al.              Standards Track                    [Page 73]

RFC 4601                  PIM-SM Specification               August 2006


  Transitions from Joined State

  When the upstream (S,G) state machine is in Joined state, the
  following events may trigger state transitions:

    JoinDesired(S,G) becomes False
         The macro JoinDesired(S,G) becomes False, e.g., because the
         downstream state for (S,G) has changed so no interface is in
         inherited_olist(S,G).

         The upstream (S,G) state machine transitions to NotJoined
         state.  Send Prune(S,G) to the appropriate upstream neighbor,
         which is RPF'(S,G).  Cancel the Join Timer (JT), and set
         SPTbit(S,G) to FALSE.

    Join Timer Expires
         The Join Timer (JT) expires, indicating time to send a
         Join(S,G)

         Send Join(S,G) to the appropriate upstream neighbor, which is
         RPF'(S,G).  Restart the Join Timer (JT) to expire after
         t_periodic seconds.

    See Join(S,G) to RPF'(S,G)
         This event is only relevant if RPF_interface(S) is a shared
         medium.  This router sees another router on RPF_interface(S)
         send a Join(S,G) to RPF'(S,G).  This causes this router to
         suppress its own Join.

         The upstream (S,G) state machine remains in Joined state.

         Let t_joinsuppress be the minimum of t_suppressed and the
         HoldTime from the Join/Prune message triggering this event.

         If the Join Timer is set to expire in less than t_joinsuppress
         seconds, reset it so that it expires after t_joinsuppress
         seconds.  If the Join Timer is set to expire in more than
         t_joinsuppress seconds, leave it unchanged.

    See Prune(S,G) to RPF'(S,G)
         This event is only relevant if RPF_interface(S) is a shared
         medium.  This router sees another router on RPF_interface(S)
         send a Prune(S,G) to RPF'(S,G).  As this router is in Joined
         state, it must override the Prune after a short random
         interval.






Fenner, et al.              Standards Track                    [Page 74]

RFC 4601                  PIM-SM Specification               August 2006


         The upstream (S,G) state machine remains in Joined state.  If
         the Join Timer is set to expire in more than t_override
         seconds, reset it so that it expires after t_override seconds.

    See Prune(S,G,rpt) to RPF'(S,G)
         This event is only relevant if RPF_interface(S) is a shared
         medium.  This router sees another router on RPF_interface(S)
         send a Prune(S,G,rpt) to RPF'(S,G).  If the upstream router is
         an RFC-2362-compliant PIM router, then the Prune(S,G,rpt) will
         cause it to stop forwarding.  For backwards compatibility,
         this router should override the prune so that forwarding
         continues.

         The upstream (S,G) state machine remains in Joined state.  If
         the Join Timer is set to expire in more than t_override
         seconds, reset it so that it expires after t_override seconds.

    See Prune(*,G) to RPF'(S,G)
         This event is only relevant if RPF_interface(S) is a shared
         medium.  This router sees another router on RPF_interface(S)
         send a Prune(*,G) to RPF'(S,G).  If the upstream router is an
         RFC-2362-compliant PIM router, then the Prune(*,G) will cause
         it to stop forwarding.  For backwards compatibility, this
         router should override the prune so that forwarding continues.

         The upstream (S,G) state machine remains in Joined state.  If
         the Join Timer is set to expire in more than t_override
         seconds, reset it so that it expires after t_override seconds.

    RPF'(S,G) changes due to an Assert
         The current next hop towards S changes due to an Assert(S,G)
         on the RPF_interface(S).

         The upstream (S,G) state machine remains in Joined state.  If
         the Join Timer is set to expire in more than t_override
         seconds, reset it so that it expires after t_override seconds.
         If the Join Timer is set to expire in less than t_override
         seconds, leave it unchanged.

    RPF'(S,G) changes not due to an Assert
         An event occurred that caused the next hop towards S to
         change.  Note that this transition does not occur if an Assert
         is active and the upstream interface does not change.








Fenner, et al.              Standards Track                    [Page 75]

RFC 4601                  PIM-SM Specification               August 2006


         The upstream (S,G) state machine remains in Joined state.
         Send Join(S,G) to the new upstream neighbor, which is the new
         value of RPF'(S,G).  Send Prune(S,G) to the old upstream
         neighbor, which is the old value of RPF'(S,G).  Set the Join
         Timer (JT) to expire after t_periodic seconds.

    RPF'(S,G) GenID changes
         The Generation ID of the router that is RPF'(S,G) changes.
         This normally means that this neighbor has lost state, and so
         the state must be refreshed.

         The upstream (S,G) state machine remains in Joined state.  If
         the Join Timer is set to expire in more than t_override
         seconds, reset it so that it expires after t_override seconds.

4.5.8.  (S,G,rpt) Periodic Messages

  (S,G,rpt) Joins and Prunes are (S,G) Joins or Prunes sent on the RP
  tree with the RPT bit set, either to modify the results of (*,G)
  Joins, or to override the behavior of other upstream LAN peers.  The
  next section describes the rules for sending triggered messages.
  This section describes the rules for including a Prune(S,G,rpt)
  message with a Join(*,G).

  When a router is going to send a Join(*,G), it should use the
  following pseudocode, for each (S,G) for which it has state, to
  decide whether to include a Prune(S,G,rpt) in the compound Join/Prune
  message:

    if( SPTbit(S,G) == TRUE ) {
        # Note: If receiving (S,G) on the SPT, we only prune off the
        # shared tree if the RPF neighbors differ.
         if( RPF'(*,G) != RPF'(S,G) ) {
             add Prune(S,G,rpt) to compound message
         }
    } else if ( inherited_olist(S,G,rpt) == NULL ) {
      # Note: all (*,G) olist interfaces received RPT prunes for (S,G).
      add Prune(S,G,rpt) to compound message
    } else if ( RPF'(*,G) != RPF'(S,G,rpt) {
      # Note: we joined the shared tree, but there was an (S,G) assert
      # and the source tree RPF neighbor is different.
      add Prune(S,G,rpt) to compound message
    }

  Note that Join(S,G,rpt) is normally sent not as a periodic message,
  but only as a triggered message.





Fenner, et al.              Standards Track                    [Page 76]

RFC 4601                  PIM-SM Specification               August 2006


4.5.9.  State Machine for (S,G,rpt) Triggered Messages

  The state machine for (S,G,rpt) triggered messages is required per-
  (S,G) when there is (*,G) or (*,*,RP) join state at a router, and the
  router or any of its upstream LAN peers wishes to prune S off the RP
  tree.

  There are three states in the state machine.  One of the states is
  when there is neither (*,G) nor (*,*,RP(G)) join state at this
  router.  If there is (*,G) or (*,*,RP(G)) join state at the router,
  then the state machine must be at one of the other two states.  The
  three states are:

  Pruned(S,G,rpt)
     (*,G) or (*,*,RP(G)) Joined, but (S,G,rpt) pruned

  NotPruned(S,G,rpt)
     (*,G) or (*,*,RP(G)) Joined, and (S,G,rpt) not pruned

  RPTNotJoined(G)
     neither (*,G) nor (*,*,RP(G)) has been joined.

  In addition, there is an (S,G,rpt) Override Timer, OT(S,G,rpt), which
  is used to delay triggered Join(S,G,rpt) messages to prevent
  implosions of triggered messages.


























Fenner, et al.              Standards Track                    [Page 77]

RFC 4601                  PIM-SM Specification               August 2006


  Figure 9: Upstream (S,G,rpt) state machine for triggered messages
                           in tabular form

+------------++--------------------------------------------------------+
|            ||                           Event                        |
|            ++--------------+--------------+-------------+------------+
|Prev State  || PruneDesired | PruneDesired | RPTJoin     | inherited_ |
|            || (S,G,rpt)    | (S,G,rpt)    | Desired(G)  | olist      |
|            || ->True       | ->False      | ->False     | (S,G,rpt)  |
|            ||              |              |             | ->non-NULL |
+------------++--------------+--------------+-------------+------------+
|RPTNotJoined|| -> P state   | -            | -           | -> NP state|
|(G) (NJ)    ||              |              |             |            |
+------------++--------------+--------------+-------------+------------+
|Pruned      || -            | -> NP state  | -> NJ state | -          |
|(S,G,rpt)   ||              | Send Join    |             |            |
|(P)         ||              | (S,G,rpt)    |             |            |
+------------++--------------+--------------+-------------+------------+
|NotPruned   || -> P state   | -            | -> NJ state | -          |
|(S,G,rpt)   || Send Prune   |              | Cancel OT   |            |
|(NP)        || (S,G,rpt);   |              |             |            |
|            || Cancel OT    |              |             |            |
+------------++--------------+--------------+-------------+------------+

  Additionally, we have the following transitions within the
  NotPruned(S,G,rpt) state, which are all used for prune override
  behavior.

+----------------------------------------------------------------------+
|                    In NotPruned(S,G,rpt) State                       |
+----------+--------------+--------------+--------------+--------------+
|Override  | See Prune    | See Join     | See Prune    | RPF'         |
|Timer     | (S,G,rpt) to | (S,G,rpt) to | (S,G) to     | (S,G,rpt) -> |
|expires   | RPF'         | RPF'         | RPF'         | RPF' (*,G)   |
|          | (S,G,rpt)    | (S,G,rpt)    | (S,G,rpt)    |              |
+----------+--------------+--------------+--------------+--------------+
|Send Join | OT = min(OT, | Cancel OT    | OT = min(OT, | OT = min(OT, |
|(S,G,rpt);| t_override)  |              | t_override)  | t_override)  |
|Leave OT  |              |              |              |              |
|unset     |              |              |              |              |
+----------+--------------+--------------+--------------+--------------+

  Note that the min function in the above state machine considers a
  non-running timer to have an infinite value (e.g., min(not-running,
  t_override) = t_override).






Fenner, et al.              Standards Track                    [Page 78]

RFC 4601                  PIM-SM Specification               August 2006


  This state machine uses the following macros:

    bool RPTJoinDesired(G) {
      return (JoinDesired(*,G) OR JoinDesired(*,*,RP(G)))
    }

  RPTJoinDesired(G) is true when the router has forwarding state that
  would cause it to forward traffic for G using either (*,G) or
  (*,*,RP) shared tree state.

    bool PruneDesired(S,G,rpt) {
         return ( RPTJoinDesired(G) AND
                  ( inherited_olist(S,G,rpt) == NULL
                    OR (SPTbit(S,G)==TRUE
                        AND (RPF'(*,G) != RPF'(S,G)) )))
    }

  PruneDesired(S,G,rpt) can only be true if RPTJoinDesired(G) is true.
  If RPTJoinDesired(G) is true, then PruneDesired(S,G,rpt) is true
  either if there are no outgoing interfaces that S would be forwarded
  on, or if the router has active (S,G) forwarding state but RPF'(*,G)
  != RPF'(S,G).

  The state machine contains the following transition events:

  See Join(S,G,rpt) to RPF'(S,G,rpt)
     This event is only relevant in the "Not Pruned" state.

     The router sees a Join(S,G,rpt) from someone else to
     RPF'(S,G,rpt), which is the correct upstream neighbor.  If we're
     in "NotPruned" state and the (S,G,rpt) Override Timer is running,
     then this is because we have been triggered to send our own
     Join(S,G,rpt) to RPF'(S,G,rpt).  Someone else beat us to it, so
     there's no need to send our own Join.

     The action is to cancel the Override Timer.

  See Prune(S,G,rpt) to RPF'(S,G,rpt)
     This event is only relevant in the "NotPruned" state.

     The router sees a Prune(S,G,rpt) from someone else to
     RPF'(S,G,rpt), which is the correct upstream neighbor.  If we're
     in the "NotPruned" state, then we want to continue to receive
     traffic from S destined for G, and that traffic is being supplied
     by RPF'(S,G,rpt).  Thus, we need to override the Prune.






Fenner, et al.              Standards Track                    [Page 79]

RFC 4601                  PIM-SM Specification               August 2006


     The action is to set the (S,G,rpt) Override Timer to the
     randomized prune-override interval, t_override.  However, if the
     Override Timer is already running, we only set the timer if doing
     so would set it to a lower value.  At the end of this interval, if
     noone else has sent a Join, then we will do so.

  See Prune(S,G) to RPF'(S,G,rpt)
     This event is only relevant in the "NotPruned" state.

     This transition and action are the same as the above transition
     and action, except that the Prune does not have the RPT bit set.
     This transition is necessary to be compatible with routers
     implemented from RFC2362 that don't maintain separate (S,G) and
     (S,G,rpt) state.

  The (S,G,rpt) prune Override Timer expires
     This event is only relevant in the "NotPruned" state.

     When the Override Timer expires, we must send a Join(S,G,rpt) to
     RPF'(S,G,rpt) to override the Prune message that caused the timer
     to be running.  We only send this if RPF'(S,G,rpt) equals
     RPF'(*,G); if this were not the case, then the Join might be sent
     to a router that does not have (*,G) or (*,*,RP(G)) Join state,
     and so the behavior would not be well defined.  If RPF'(S,G,rpt)
     is not the same as RPF'(*,G), then it may stop forwarding S.
     However, if this happens, then the router will send an
     AssertCancel(S,G), which would then cause RPF'(S,G,rpt) to become
     equal to RPF'(*,G) (see below).

  RPF'(S,G,rpt) changes to become equal to RPF'(*,G)
     This event is only relevant in the "NotPruned" state.

     RPF'(S,G,rpt) can only be different from RPF'(*,G) if an (S,G)
     Assert has happened, which means that traffic from S is arriving
     on the SPT, and so Prune(S,G,rpt) will have been sent to
     RPF'(*,G).  When RPF'(S,G,rpt) changes to become equal to
     RPF'(*,G), we need to trigger a Join(S,G,rpt) to RPF'(*,G) to
     cause that router to start forwarding S again.

     The action is to set the (S,G,rpt) Override Timer to the
     randomized prune-override interval t_override.  However, if the
     timer is already running, we only set the timer if doing so would
     set it to a lower value.  At the end of this interval, if noone
     else has sent a Join, then we will do so.

  PruneDesired(S,G,rpt)->TRUE
     See macro above.  This event is relevant in the "NotPruned" and
     "RPTNotJoined(G)" states.



Fenner, et al.              Standards Track                    [Page 80]

RFC 4601                  PIM-SM Specification               August 2006


     The router wishes to receive traffic for G, but does not wish to
     receive traffic from S destined for G.  This causes the router to
     transition into the Pruned state.

     If the router was previously in NotPruned state, then the action
     is to send a Prune(S,G,rpt) to RPF'(S,G,rpt), and to cancel the
     Override Timer.  If the router was previously in RPTNotJoined(G)
     state, then there is no need to trigger an action in this state
     machine because sending a Prune(S,G,rpt) is handled by the rules
     for sending the Join(*,G) or Join(*,*,RP).

  PruneDesired(S,G,rpt)->FALSE
     See macro above.  This transition is only relevant in the "Pruned"
     state.

     If the router is in the Pruned(S,G,rpt) state, and
     PruneDesired(S,G,rpt) changes to FALSE, this could be because the
     router no longer has RPTJoinDesired(G) true, or it now wishes to
     receive traffic from S again.  If it is the former, then this
     transition should not happen, but instead the
     "RPTJoinDesired(G)->FALSE" transition should happen.  Thus, this
     transition should be interpreted as "PruneDesired(S,G,rpt)->FALSE
     AND RPTJoinDesired(G)==TRUE".

     The action is to send a Join(S,G,rpt) to RPF'(S,G,rpt).

  RPTJoinDesired(G)->FALSE
     This event is relevant in the "Pruned" and "NotPruned" states.

     The router no longer wishes to receive any traffic destined for G
     on the RP Tree.  This causes a transition to the RPTNotJoined(G)
     state, and the Override Timer is canceled if it was running.  Any
     further actions are handled by the appropriate upstream state
     machine for (*,G) or (*,*,RP).

  inherited_olist(S,G,rpt) becomes non-NULL
     This transition is only relevant in the RPTNotJoined(G) state.

     The router has joined the RP tree (handled by the (*,G) or
     (*,*,RP) upstream state machine as appropriate) and wants to
     receive traffic from S.  This does not trigger any events in this
     state machine, but causes a transition to the NotPruned(S,G,rpt)
     state.








Fenner, et al.              Standards Track                    [Page 81]

RFC 4601                  PIM-SM Specification               August 2006


4.5.10.  Background: (*,*,RP) and (S,G,rpt) Interaction

  In Sections 4.5.8 and 4.5.9, the mechanisms for sending periodic and
  triggered (S,G,rpt) messages are described.  The astute reader will
  note that periodic Prune(S,G,rpt) messages are only sent in PIM
  Join/Prune messages containing a Join(*,G), whereas it is possible
  for a triggered Prune(S,G,rpt) message to be sent when the router has
  no (*,G) join state.  This may seem like a contradiction, but in fact
  it is intentional and is a side effect of not optimizing (*,*,RP)
  behavior.

  We first note that reception of a Join(*,*,RP) by itself does not
  cancel (S,G,rpt) prune state on that interface, whereas receiving a
  Join(*,G) by itself does cancel (S,G,rpt) prune state on that
  interface.  Similarly, reception of a Prune(*,G) on an interface with
  (*,*,RP) join state does not by itself prevent forwarding of G using
  the (*,*,RP) state; this is because a Prune(*,G) only serves to
  cancel (*,G) join state.  Conceptually (*,*,RP) state functions
  "above" the normal (*,G) and (S,G) mechanisms, and so neither
  Join(*,*,RP) nor Prune(*,*,RP) messages affect any other state.

  The upshot of this is that to prevent forwarding (S,G) on (*,*,RP)
  state, a Prune(S,G,rpt) must be used.

  We also note that for historical reasons there is no Assert(*,*,RP)
  message, so any forwarding contention is resolved using Assert(*,G)
  messages.

  We now need to consider the interaction between (*,*,RP) state and
  (*,G) state.  If there is a need for an assert between two upstream
  routers on a LAN, we need to ensure that the correct thing happens
  for all combinations of (*,*,RP) and (*,G) forwarding state.  As
  there is no Assert(*,*,RP) message, no router can tell whether the
  assert winner has (*,*,RP) state or (*,G) state.  Thus, a downstream
  router has to treat the two the same and send its periodic
  Prune(S,G,rpt) messages to RPF'(*,G).

  To avoid needing to specify all the complex override rules between
  (*,*,RP), (*,G), and (S,G,rpt), we simply require that to prune (S,G)
  off the (*,*,RP) tree, a Join(*,G) must also be sent.

  If a router is receiving on (*,*,RP) state and has not yet had (*,G)
  state instantiated, it may still need to send a triggered
  Join(S,G,rpt) to override a Prune(S,G,rpt) that it sees directed to
  RPF'(*,G) on its upstream interface.  Hence, triggered (S,G,rpt)
  messages may be sent when JoinDesired(*,G) is false but
  JoinDesired(*,*,RP) is true.




Fenner, et al.              Standards Track                    [Page 82]

RFC 4601                  PIM-SM Specification               August 2006


  Finally, we note that there is an unoptimized case when the upstream
  router on a LAN already has (*,G) join and (S,G,rpt) prune state
  caused by an existing downstream router.  If at this time a new
  Join(*,*,RP) is sent to the upstream router from a different
  downstream router, this will not override the (S,G,rpt) prune state
  at the upstream router.  The override will not occur until the next
  time the original downstream router resends its Prune(S,G,rpt).  This
  case was not considered worth optimizing, as (*,*,RP) state is
  generally very long lived, and so any minor delays in getting traffic
  to a new PMBR seem unimportant.

4.6.  PIM Assert Messages

  Where multiple PIM routers peer over a shared LAN, it is possible for
  more than one upstream router to have valid forwarding state for a
  packet, which can lead to packet duplication (see Section 3.6).  PIM
  does not attempt to prevent this from occurring.  Instead, it detects
  when this has happened and elects a single forwarder amongst the
  upstream routers to prevent further duplication.  This election is
  performed using PIM Assert messages.  Assert messages are also
  received by downstream routers on the LAN, and these cause subsequent
  Join/Prune messages to be sent to the upstream router that won the
  Assert.

  In general, a PIM Assert message should only be accepted for
  processing if it comes from a known PIM neighbor.  A PIM router hears
  about PIM neighbors through PIM Hello messages.  If a router receives
  an Assert message from a particular IP source address and it has not
  seen a PIM Hello message from that source address, then the Assert
  message SHOULD be discarded without further processing.  In addition,
  if the Hello message from a neighbor was authenticated using the
  IPsec Authentication Header (AH) (see Section 6.3), then all Assert
  messages from that neighbor MUST also be authenticated using IPsec
  AH.

  We note that some older PIM implementations incorrectly fail to send
  Hello messages on point-to-point interfaces, so we also RECOMMEND
  that a configuration option be provided to allow interoperation with
  such older routers, but that this configuration option SHOULD NOT be
  enabled by default.

4.6.1.  (S,G) Assert Message State Machine

  The (S,G) Assert state machine for interface I is shown in Figure 10.
  There are three states:

  NoInfo (NI)
     This router has no (S,G) assert state on interface I.



Fenner, et al.              Standards Track                    [Page 83]

RFC 4601                  PIM-SM Specification               August 2006


  I am Assert Winner (W)
     This router has won an (S,G) assert on interface I.  It is now
     responsible for forwarding traffic from S destined for G out of
     interface I.  Irrespective of whether it is the DR for I, while a
     router is the assert winner, it is also responsible for forwarding
     traffic onto I on behalf of local hosts on I that have made
     membership requests that specifically refer to S (and G).

  I am Assert Loser (L)
     This router has lost an (S,G) assert on interface I.  It must not
     forward packets from S destined for G onto interface I.  If it is
     the DR on I, it is no longer responsible for forwarding traffic
     onto I to satisfy local hosts with membership requests that
     specifically refer to S and G.

  In addition, there is also an Assert Timer (AT) that is used to time
  out asserts on the assert losers and to resend asserts on the assert
  winner.

 Figure 10: Per-interface (S,G) Assert State machine in tabular form

+----------------------------------------------------------------------+
|                         In NoInfo (NI) State                         |
+---------------+-------------------+------------------+---------------+
| Receive       |  Receive Assert   |  Data arrives    |  Receive      |
| Inferior      |  with RPTbit      |  from S to G on  |  Acceptable   |
| Assert with   |  set and          |  I and           |  Assert with  |
| RPTbit clear  |  CouldAssert      |  CouldAssert     |  RPTbit clear |
| and           |  (S,G,I)          |  (S,G,I)         |  and AssTrDes |
| CouldAssert   |                   |                  |  (S,G,I)      |
| (S,G,I)       |                   |                  |               |
+---------------+-------------------+------------------+---------------+
| -> W state    |  -> W state       |  -> W state      |  -> L state   |
| [Actions A1]  |  [Actions A1]     |  [Actions A1]    |  [Actions A6] |
+---------------+-------------------+------------------+---------------+

+----------------------------------------------------------------------+
|                   In I Am Assert Winner (W) State                    |
+----------------+------------------+-----------------+----------------+
| Assert Timer   |   Receive        |  Receive        |  CouldAssert   |
| Expires        |   Inferior       |  Preferred      |  (S,G,I) ->    |
|                |   Assert         |  Assert         |  FALSE         |
+----------------+------------------+-----------------+----------------+
| -> W state     |   -> W state     |  -> L state     |  -> NI state   |
| [Actions A3]   |   [Actions A3]   |  [Actions A2]   |  [Actions A4]  |
+----------------+------------------+-----------------+----------------+





Fenner, et al.              Standards Track                    [Page 84]

RFC 4601                  PIM-SM Specification               August 2006


+---------------------------------------------------------------------+
|                   In I Am Assert Loser (L) State                    |
+-------------+-------------+-------------+-------------+-------------+
|Receive      |Receive      |Receive      |Assert Timer |Current      |
|Preferred    |Acceptable   |Inferior     |Expires      |Winner's     |
|Assert       |Assert with  |Assert or    |             |GenID        |
|             |RPTbit clear |Assert       |             |Changes or   |
|             |from Current |Cancel from  |             |NLT Expires  |
|             |Winner       |Current      |             |             |
|             |             |Winner       |             |             |
+-------------+-------------+-------------+-------------+-------------+
|-> L state   |-> L state   |-> NI state  |-> NI state  |-> NI state  |
|[Actions A2] |[Actions A2] |[Actions A5] |[Actions A5] |[Actions A5] |
+-------------+-------------+-------------+-------------+-------------+

+----------------------------------------------------------------------+
|                    In I Am Assert Loser (L) State                    |
+----------------+-----------------+------------------+----------------+
| AssTrDes       |  my_metric ->   |  RPF_interface   |  Receive       |
| (S,G,I) ->     |  better than    |  (S) stops       |  Join(S,G) on  |
| FALSE          |  winner's       |  being I         |  interface I   |
|                |  metric         |                  |                |
+----------------+-----------------+------------------+----------------+
| -> NI state    |  -> NI state    |  -> NI state     |  -> NI State   |
| [Actions A5]   |  [Actions A5]   |  [Actions A5]    |  [Actions A5]  |
+----------------+-----------------+------------------+----------------+

  Note that for reasons of compactness, "AssTrDes(S,G,I)" is used in
  the state machine table to refer to AssertTrackingDesired(S,G,I).

  Terminology:

     A "preferred assert" is one with a better metric than the current
     winner.

     An "acceptable assert" is one that has a better metric than
     my_assert_metric(S,G,I).  An assert is never considered acceptable
     if its metric is infinite.

     An "inferior assert" is one with a worse metric than
     my_assert_metric(S,G,I).  An assert is never considered inferior
     if my_assert_metric(S,G,I) is infinite.









Fenner, et al.              Standards Track                    [Page 85]

RFC 4601                  PIM-SM Specification               August 2006


  The state machine uses the following macros:

CouldAssert(S,G,I) =
    SPTbit(S,G)==TRUE
    AND (RPF_interface(S) != I)
    AND (I in ( ( joins(*,*,RP(G)) (+) joins(*,G) (-) prunes(S,G,rpt) )
                (+) ( pim_include(*,G) (-) pim_exclude(S,G) )
                (-) lost_assert(*,G)
                (+) joins(S,G) (+) pim_include(S,G) ) )

  CouldAssert(S,G,I) is true for downstream interfaces that would be in
  the inherited_olist(S,G) if (S,G) assert information was not taken
  into account.

  AssertTrackingDesired(S,G,I) =
       (I in ( ( joins(*,*,RP(G)) (+) joins(*,G) (-) prunes(S,G,rpt) )
               (+) ( pim_include(*,G) (-) pim_exclude(S,G) )
               (-) lost_assert(*,G)
               (+) joins(S,G) ) )
       OR (local_receiver_include(S,G,I) == TRUE
           AND (I_am_DR(I) OR (AssertWinner(S,G,I) == me)))
       OR ((RPF_interface(S) == I) AND (JoinDesired(S,G) == TRUE))
       OR ((RPF_interface(RP(G)) == I) AND (JoinDesired(*,G) == TRUE)
           AND (SPTbit(S,G) == FALSE))

  AssertTrackingDesired(S,G,I) is true on any interface in which an
  (S,G) assert might affect our behavior.

  The first three lines of AssertTrackingDesired account for (*,G) join
  and local membership information received on I that might cause the
  router to be interested in asserts on I.

  The 4th line accounts for (S,G) join information received on I that
  might cause the router to be interested in asserts on I.

  The 5th and 6th lines account for (S,G) local membership information
  on I.  Note that we can't use the pim_include(S,G) macro since it
  uses lost_assert(S,G,I) and would result in the router forgetting
  that it lost an assert if the only reason it was interested was local
  membership.  The AssertWinner(S,G,I) check forces an assert winner to
  keep on being responsible for forwarding as long as local receivers
  are present.  Removing this check would make the assert winner give
  up forwarding as soon as the information that originally caused it to
  forward went away, and the task of forwarding for local receivers
  would revert back to the DR.






Fenner, et al.              Standards Track                    [Page 86]

RFC 4601                  PIM-SM Specification               August 2006


  The last three lines account for the fact that a router must keep
  track of assert information on upstream interfaces in order to send
  joins and prunes to the proper neighbor.

  Transitions from NoInfo State

  When in NoInfo state, the following events may trigger transitions:

    Receive Inferior Assert with RPTbit cleared AND
         CouldAssert(S,G,I)==TRUE
         An assert is received for (S,G) with the RPT bit cleared that
         is inferior to our own assert metric.  The RPT bit cleared
         indicates that the sender of the assert had (S,G) forwarding
         state on this interface.  If the assert is inferior to our
         metric, then we must also have (S,G) forwarding state (i.e.,
         CouldAssert(S,G,I)==TRUE) as (S,G) asserts beat (*,G) asserts,
         and so we should be the assert winner.  We transition to the
         "I am Assert Winner" state and perform Actions A1 (below).

    Receive Assert with RPTbit set AND CouldAssert(S,G,I)==TRUE
         An assert is received for (S,G) on I with the RPT bit set
         (it's a (*,G) assert).  CouldAssert(S,G,I) is TRUE only if we
         have (S,G) forwarding state on this interface, so we should be
         the assert winner.  We transition to the "I am Assert Winner"
         state and perform Actions A1 (below).

    An (S,G) data packet arrives on interface I, AND
         CouldAssert(S,G,I)==TRUE
         An (S,G) data packet arrived on an downstream interface that
         is in our (S,G) outgoing interface list.  We optimistically
         assume that we will be the assert winner for this (S,G), and
         so we transition to the "I am Assert Winner" state and perform
         Actions A1 (below), which will initiate the assert negotiation
         for (S,G).

    Receive Acceptable Assert with RPT bit clear AND
         AssertTrackingDesired(S,G,I)==TRUE
         We're interested in (S,G) Asserts, either because I is a
         downstream interface for which we have (S,G) or (*,G)
         forwarding state, or because I is the upstream interface for S
         and we have (S,G) forwarding state.  The received assert has a
         better metric than our own, so we do not win the Assert.  We
         transition to "I am Assert Loser" and perform Actions A6
         (below).







Fenner, et al.              Standards Track                    [Page 87]

RFC 4601                  PIM-SM Specification               August 2006


  Transitions from "I am Assert Winner" State

  When in "I am Assert Winner" state, the following events trigger
  transitions:

    Assert Timer Expires
         The (S,G) Assert Timer expires.  As we're in the Winner state,
         we must still have (S,G) forwarding state that is actively
         being kept alive.  We resend the (S,G) Assert and restart the
         Assert Timer (Actions A3 below).  Note that the assert
         winner's Assert Timer is engineered to expire shortly before
         timers on assert losers; this prevents unnecessary thrashing
         of the forwarder and periodic flooding of duplicate packets.

    Receive Inferior Assert
         We receive an (S,G) assert or (*,G) assert mentioning S that
         has a worse metric than our own.  Whoever sent the assert is
         in error, and so we resend an (S,G) Assert and restart the
         Assert Timer (Actions A3 below).

    Receive Preferred Assert
         We receive an (S,G) assert that has a better metric than our
         own.  We transition to "I am Assert Loser" state and perform
         Actions A2 (below).  Note that this may affect the value of
         JoinDesired(S,G) and PruneDesired(S,G,rpt), which could cause
         transitions in the upstream (S,G) or (S,G,rpt) state machines.

    CouldAssert(S,G,I) -> FALSE
         Our (S,G) forwarding state or RPF interface changed so as to
         make CouldAssert(S,G,I) become false.  We can no longer
         perform the actions of the assert winner, and so we transition
         to NoInfo state and perform Actions A4 (below).  This includes
         sending a "canceling assert" with an infinite metric.

  Transitions from "I am Assert Loser" State

  When in "I am Assert Loser" state, the following transitions can
  occur:

    Receive Preferred Assert
         We receive an assert that is better than that of the current
         assert winner.  We stay in Loser state and perform Actions A2
         below.








Fenner, et al.              Standards Track                    [Page 88]

RFC 4601                  PIM-SM Specification               August 2006


    Receive Acceptable Assert with RPTbit clear from Current Winner
         We receive an assert from the current assert winner that is
         better than our own metric for this (S,G) (although the metric
         may be worse than the winner's previous metric).  We stay in
         Loser state and perform Actions A2 below.

    Receive Inferior Assert or Assert Cancel from Current Winner
         We receive an assert from the current assert winner that is
         worse than our own metric for this group (typically, because
         the winner's metric became worse or because it is an assert
         cancel).  We transition to NoInfo state, deleting the (S,G)
         assert information and allowing the normal PIM Join/Prune
         mechanisms to operate.  Usually, we will eventually re-assert
         and win when data packets from S have started flowing again.

    Assert Timer Expires
         The (S,G) Assert Timer expires.  We transition to NoInfo
         state, deleting the (S,G) assert information (Actions A5
         below).

    Current Winner's GenID Changes or NLT Expires
         The Neighbor Liveness Timer associated with the current winner
         expires or we receive a Hello message from the current winner
         reporting a different GenID from the one it previously
         reported.  This indicates that the current winner's interface
         or router has gone down (and may have come back up), and so we
         must assume it no longer knows it was the winner.  We
         transition to the NoInfo state, deleting this (S,G) assert
         information (Actions A5 below).

    AssertTrackingDesired(S,G,I)->FALSE
         AssertTrackingDesired(S,G,I) becomes FALSE.  Our forwarding
         state has changed so that (S,G) Asserts on interface I are no
         longer of interest to us.  We transition to the NoInfo state,
         deleting the (S,G) assert information.

    My metric becomes better than the assert winner's metric
         my_assert_metric(S,G,I) has changed so that now my assert
         metric for (S,G) is better than the metric we have stored for
         current assert winner.  This might happen when the underlying
         routing metric changes, or when CouldAssert(S,G,I) becomes
         true; for example, when SPTbit(S,G) becomes true.  We
         transition to NoInfo state, delete this (S,G) assert state
         (Actions A5 below), and allow the normal PIM Join/Prune
         mechanisms to operate.  Usually, we will eventually re-assert
         and win when data packets from S have started flowing again.





Fenner, et al.              Standards Track                    [Page 89]

RFC 4601                  PIM-SM Specification               August 2006


    RPF_interface(S) stops being interface I
         Interface I used to be the RPF interface for S, and now it is
         not.  We transition to NoInfo state, deleting this (S,G)
         assert state (Actions A5 below).

    Receive Join(S,G) on Interface I
         We receive a Join(S,G) that has the Upstream Neighbor Address
         field set to my primary IP address on interface I.  The action
         is to transition to NoInfo state, delete this (S,G) assert
         state (Actions A5 below), and allow the normal PIM Join/Prune
         mechanisms to operate.  If whoever sent the Join was in error,
         then the normal assert mechanism will eventually re-apply, and
         we will lose the assert again.  However, whoever sent the
         assert may know that the previous assert winner has died, and
         so we may end up being the new forwarder.

  (S,G) Assert State machine Actions

    A1:  Send Assert(S,G).
         Set Assert Timer to (Assert_Time - Assert_Override_Interval).
         Store self as AssertWinner(S,G,I).
         Store spt_assert_metric(S,I) as AssertWinnerMetric(S,G,I).

    A2:  Store new assert winner as AssertWinner(S,G,I) and assert
         winner metric as AssertWinnerMetric(S,G,I).
         Set Assert Timer to Assert_Time.

    A3:  Send Assert(S,G).
         Set Assert Timer to (Assert_Time - Assert_Override_Interval).

    A4:  Send AssertCancel(S,G).
         Delete assert info (AssertWinner(S,G,I) and
         AssertWinnerMetric(S,G,I) will then return their default
         values).

    A5:  Delete assert info (AssertWinner(S,G,I) and
         AssertWinnerMetric(S,G,I) will then return their default
         values).

    A6:  Store new assert winner as AssertWinner(S,G,I) and assert
         winner metric as AssertWinnerMetric(S,G,I).
         Set Assert Timer to Assert_Time.
         If (I is RPF_interface(S)) AND (UpstreamJPState(S,G) == true)
         set SPTbit(S,G) to TRUE.

  Note that some of these actions may cause the value of
  JoinDesired(S,G), PruneDesired(S,G,rpt), or RPF'(S,G) to change,
  which could cause further transitions in other state machines.



Fenner, et al.              Standards Track                    [Page 90]

RFC 4601                  PIM-SM Specification               August 2006


4.6.2.  (*,G) Assert Message State Machine

  The (*,G) Assert state machine for interface I is shown in Figure 11.
  There are three states:

  NoInfo (NI)
     This router has no (*,G) assert state on interface I.

  I am Assert Winner (W)
     This router has won an (*,G) assert on interface I.  It is now
     responsible for forwarding traffic destined for G onto interface I
     with the exception of traffic for which it has (S,G) "I am Assert
     Loser" state.  Irrespective of whether it is the DR for I, it is
     also responsible for handling the membership requests for G from
     local hosts on I.

  I am Assert Loser (L)
     This router has lost an (*,G) assert on interface I.  It must not
     forward packets for G onto interface I with the exception of
     traffic from sources for which is has (S,G) "I am Assert Winner"
     state.  If it is the DR, it is no longer responsible for handling
     the membership requests for group G from local hosts on I.

  In addition, there is also an Assert Timer (AT) that is used to time
  out asserts on the assert losers and to resend asserts on the assert
  winner.

  When an Assert message is received with a source address other than
  zero, a PIM implementation must first match it against the possible
  events in the (S,G) assert state machine and process any transitions
  and actions, before considering whether the Assert message matches
  against the (*,G) assert state machine.

  It is important to note that NO TRANSITION CAN OCCUR in the (*,G)
  state machine as a result of receiving an Assert message unless the
  (S,G) assert state machine for the relevant S and G is in the
  "NoInfo" state after the (S,G) state machine has processed the
  message.  Also, NO TRANSITION CAN OCCUR in the (*,G) state machine as
  a result of receiving an assert message if that message triggers any
  change of state in the (S,G) state machine.  Obviously, when the
  source address in the received message is set to zero, an (S,G) state
  machine for the S and G does not exist and can be assumed to be in
  the "NoInfo" state.








Fenner, et al.              Standards Track                    [Page 91]

RFC 4601                  PIM-SM Specification               August 2006


  For example, if both the (S,G) and (*,G) assert state machines are in
  the NoInfo state when an Assert message arrives, and the message
  causes the (S,G) state machine to transition to either "W" or "L"
  state, then the assert will not be processed by the (*,G) assert
  state machine.

  Another example: if the (S,G) assert state machine is in "L" state
  when an assert message is received, and the assert metric in the
  message is worse than my_assert_metric(S,G,I), then the (S,G) assert
  state machine will transition to NoInfo state.  In such a case, if
  the (*,G) assert state machine were in NoInfo state, it might appear
  that it would transition to "W" state, but this is not the case
  because this message already triggered a transition in the (S,G)
  assert state machine.

 Figure 11: Per-interface (*,G) Assert State machine in tabular form

+----------------------------------------------------------------------+
|                         In NoInfo (NI) State                         |
+-----------------------+-----------------------+----------------------+
| Receive Inferior      |  Data arrives for G   |  Receive Acceptable  |
| Assert with RPTbit    |  on I and             |  Assert with RPTbit  |
| set and               |  CouldAssert          |  set and AssTrDes    |
| CouldAssert(*,G,I)    |  (*,G,I)              |  (*,G,I)             |
+-----------------------+-----------------------+----------------------+
| -> W state            |  -> W state           |  -> L state          |
| [Actions A1]          |  [Actions A1]         |  [Actions A2]        |
+-----------------------+-----------------------+----------------------+

+---------------------------------------------------------------------+
|                    In I Am Assert Winner (W) State                  |
+----------------+-----------------+-----------------+----------------+
| Assert Timer   |  Receive        |  Receive        |  CouldAssert   |
| Expires        |  Inferior       |  Preferred      |  (*,G,I) ->    |
|                |  Assert         |  Assert         |  FALSE         |
+----------------+-----------------+-----------------+----------------+
| -> W state     |  -> W state     |  -> L state     |  -> NI state   |
| [Actions A3]   |  [Actions A3]   |  [Actions A2]   |  [Actions A4]  |
+----------------+-----------------+-----------------+----------------+












Fenner, et al.              Standards Track                    [Page 92]

RFC 4601                  PIM-SM Specification               August 2006


+---------------------------------------------------------------------+
|                    In I Am Assert Loser (L) State                   |
+-------------+-------------+-------------+-------------+-------------+
|Receive      |Receive      |Receive      |Assert Timer |Current      |
|Preferred    |Acceptable   |Inferior     |Expires      |Winner's     |
|Assert with  |Assert from  |Assert or    |             |GenID        |
|RPTbit set   |Current      |Assert       |             |Changes or   |
|             |Winner with  |Cancel from  |             |NLT Expires  |
|             |RPTbit set   |Current      |             |             |
|             |             |Winner       |             |             |
+-------------+-------------+-------------+-------------+-------------+
|-> L state   |-> L state   |-> NI state  |-> NI state  |-> NI state  |
|[Actions A2] |[Actions A2] |[Actions A5] |[Actions A5] |[Actions A5] |
+-------------+-------------+-------------+-------------+-------------+

+----------------------------------------------------------------------+
|                    In I Am Assert Loser (L) State                    |
+----------------+----------------+-----------------+------------------+
| AssTrDes       | my_metric ->   |  RPF_interface  |  Receive         |
| (*,G,I) ->     | better than    |  (RP(G)) stops  |  Join(*,G) or    |
| FALSE          | Winner's       |  being I        |  Join            |
|                | metric         |                 |  (*,*,RP(G)) on  |
|                |                |                 |  Interface I     |
+----------------+----------------+-----------------+------------------+
| -> NI state    | -> NI state    |  -> NI state    |  -> NI State     |
| [Actions A5]   | [Actions A5]   |  [Actions A5]   |  [Actions A5]    |
+----------------+----------------+-----------------+------------------+

  The state machine uses the following macros:

  CouldAssert(*,G,I) =
      ( I in ( joins(*,*,RP(G)) (+) joins(*,G)
               (+) pim_include(*,G)) )
      AND (RPF_interface(RP(G)) != I)

  CouldAssert(*,G,I) is true on downstream interfaces for which we have
  (*,*,RP(G)) or (*,G) join state, or local members that requested any
  traffic destined for G.

  AssertTrackingDesired(*,G,I) =
      CouldAssert(*,G,I)
      OR (local_receiver_include(*,G,I)==TRUE
          AND (I_am_DR(I) OR AssertWinner(*,G,I) == me))
      OR (RPF_interface(RP(G)) == I AND RPTJoinDesired(G))

  AssertTrackingDesired(*,G,I) is true on any interface on which an
  (*,G) assert might affect our behavior.




Fenner, et al.              Standards Track                    [Page 93]

RFC 4601                  PIM-SM Specification               August 2006


  Note that for reasons of compactness, "AssTrDes(*,G,I)" is used in
  the state machine table to refer to AssertTrackingDesired(*,G,I).

  Terminology:

     A "preferred assert" is one with a better metric than the current
     winner.

     An "acceptable assert" is one that has a better metric than
     my_assert_metric(*,G,I).  An assert is never considered acceptable
     if its metric is infinite.

     An "inferior assert" is one with a worse metric than
     my_assert_metric(*,G,I).  An assert is never considered inferior
     if my_assert_metric(*,G,I) is infinite.

  Transitions from NoInfo State

  When in NoInfo state, the following events trigger transitions, but
  only if the (S,G) assert state machine is in NoInfo state before and
  after consideration of the received message:

    Receive Inferior Assert with RPTbit set AND
         CouldAssert(*,G,I)==TRUE
         An Inferior (*,G) assert is received for G on Interface I.  If
         CouldAssert(*,G,I) is TRUE, then I is our downstream
         interface, and we have (*,G) forwarding state on this
         interface, so we should be the assert winner.  We transition
         to the "I am Assert Winner" state and perform Actions A1
         (below).

    A data packet destined for G arrives on interface I, AND
         CouldAssert(*,G,I)==TRUE
         A data packet destined for G arrived on a downstream interface
         that is in our (*,G) outgoing interface list.  We therefore
         believe we should be the forwarder for this (*,G), and so we
         transition to the "I am Assert Winner" state and perform
         Actions A1 (below).

    Receive Acceptable Assert with RPT bit set AND
         AssertTrackingDesired(*,G,I)==TRUE
         We're interested in (*,G) Asserts, either because I is a
         downstream interface for which we have (*,G) forwarding state,
         or because I is the upstream interface for RP(G) and we have
         (*,G) forwarding state.  We get a (*,G) Assert that has a
         better metric than our own, so we do not win the Assert.  We
         transition to "I am Assert Loser" and perform Actions A2
         (below).



Fenner, et al.              Standards Track                    [Page 94]

RFC 4601                  PIM-SM Specification               August 2006


  Transitions from "I am Assert Winner" State

  When in "I am Assert Winner" state, the following events trigger
  transitions, but only if the (S,G) assert state machine is in NoInfo
  state before and after consideration of the received message:

    Receive Inferior Assert
         We receive a (*,G) assert that has a worse metric than our
         own.  Whoever sent the assert has lost, and so we resend a
         (*,G) Assert and restart the Assert Timer (Actions A3 below).

    Receive Preferred Assert
         We receive a (*,G) assert that has a better metric than our
         own.  We transition to "I am Assert Loser" state and perform
         Actions A2 (below).

  When in "I am Assert Winner" state, the following events trigger
  transitions:

    Assert Timer Expires
         The (*,G) Assert Timer expires.  As we're in the Winner state,
         then we must still have (*,G) forwarding state that is
         actively being kept alive.  To prevent unnecessary thrashing
         of the forwarder and periodic flooding of duplicate packets,
         we resend the (*,G) Assert and restart the Assert Timer
         (Actions A3 below).

    CouldAssert(*,G,I) -> FALSE
         Our (*,G) forwarding state or RPF interface changed so as to
         make CouldAssert(*,G,I) become false.  We can no longer
         perform the actions of the assert winner, and so we transition
         to NoInfo state and perform Actions A4 (below).

  Transitions from "I am Assert Loser" State

  When in "I am Assert Loser" state, the following events trigger
  transitions, but only if the (S,G) assert state machine is in NoInfo
  state before and after consideration of the received message:

    Receive Preferred Assert with RPTbit set
         We receive a (*,G) assert that is better than that of the
         current assert winner.  We stay in Loser state and perform
         Actions A2 below.








Fenner, et al.              Standards Track                    [Page 95]

RFC 4601                  PIM-SM Specification               August 2006


    Receive Acceptable Assert from Current Winner with RPTbit set
         We receive a (*,G) assert from the current assert winner that
         is better than our own metric for this group (although the
         metric may be worse than the winner's previous metric).  We
         stay in Loser state and perform Actions A2 below.

    Receive Inferior Assert or Assert Cancel from Current Winner
         We receive an assert from the current assert winner that is
         worse than our own metric for this group (typically because
         the winner's metric became worse or is now an assert cancel).
         We transition to NoInfo state, delete this (*,G) assert state
         (Actions A5), and allow the normal PIM Join/Prune mechanisms
         to operate.  Usually, we will eventually re-assert and win
         when data packets for G have started flowing again.

  When in "I am Assert Loser" state, the following events trigger
  transitions:

    Assert Timer Expires
         The (*,G) Assert Timer expires.  We transition to NoInfo state
         and delete this (*,G) assert info (Actions A5).

    Current Winner's GenID Changes or NLT Expires
         The Neighbor Liveness Timer associated with the current winner
         expires or we receive a Hello message from the current winner
         reporting a different GenID from the one it previously
         reported.  This indicates that the current winner's interface
         or router has gone down (and may have come back up), and so we
         must assume it no longer knows it was the winner.  We
         transition to the NoInfo state, deleting the (*,G) assert
         information (Actions A5).

    AssertTrackingDesired(*,G,I)->FALSE
         AssertTrackingDesired(*,G,I) becomes FALSE.  Our forwarding
         state has changed so that (*,G) Asserts on interface I are no
         longer of interest to us.  We transition to NoInfo state and
         delete this (*,G) assert info (Actions A5).

    My metric becomes better than the assert winner's metric
         My routing metric, rpt_assert_metric(G,I), has changed so that
         now my assert metric for (*,G) is better than the metric we
         have stored for current assert winner.  We transition to
         NoInfo state, delete this (*,G) assert state (Actions A5), and
         allow the normal PIM Join/Prune mechanisms to operate.
         Usually, we will eventually re-assert and win when data
         packets for G have started flowing again.





Fenner, et al.              Standards Track                    [Page 96]

RFC 4601                  PIM-SM Specification               August 2006


    RPF_interface(RP(G)) stops being interface I
         Interface I used to be the RPF interface for RP(G), and now it
         is not.  We transition to NoInfo state and delete this (*,G)
         assert state (Actions A5).

    Receive Join(*,G) or Join(*,*,RP(G)) on interface I
         We receive a Join(*,G) or a Join(*,*,RP(G)) that has the
         Upstream Neighbor Address field set to my primary IP address
         on interface I.  The action is to transition to NoInfo state,
         delete this (*,G) assert state (Actions A5), and allow the
         normal PIM Join/Prune mechanisms to operate.  If whoever sent
         the Join was in error, then the normal assert mechanism will
         eventually re-apply, and we will lose the assert again.
         However, whoever sent the assert may know that the previous
         assert winner has died, so we may end up being the new
         forwarder.

  (*,G) Assert State machine Actions

    A1:  Send Assert(*,G).
         Set Assert Timer to (Assert_Time - Assert_Override_Interval).
         Store self as AssertWinner(*,G,I).
         Store rpt_assert_metric(G,I) as AssertWinnerMetric(*,G,I).

    A2:  Store new assert winner as AssertWinner(*,G,I) and assert
         winner metric as AssertWinnerMetric(*,G,I).
         Set Assert Timer to Assert_Time.

    A3:  Send Assert(*,G)
         Set Assert Timer to (Assert_Time - Assert_Override_Interval).

    A4:  Send AssertCancel(*,G).
         Delete assert info (AssertWinner(*,G,I) and
         AssertWinnerMetric(*,G,I) will then return their default
         values).

    A5:  Delete assert info (AssertWinner(*,G,I) and
         AssertWinnerMetric(*,G,I) will then return their default
         values).

  Note that some of these actions may cause the value of
  JoinDesired(*,G) or RPF'(*,G)) to change, which could cause further
  transitions in other state machines.








Fenner, et al.              Standards Track                    [Page 97]

RFC 4601                  PIM-SM Specification               August 2006


4.6.3.  Assert Metrics

  Assert metrics are defined as:

    struct assert_metric {
      rpt_bit_flag;
      metric_preference;
      route_metric;
      ip_address;
    };

  When comparing assert_metrics, the rpt_bit_flag, metric_preference,
  and route_metric field are compared in order, where the first lower
  value wins.  If all fields are equal, the primary IP address of the
  router that sourced the Assert message is used as a tie-breaker, with
  the highest IP address winning.

  An assert metric for (S,G) to include in (or compare against) an
  Assert message sent on interface I should be computed using the
  following pseudocode:

    assert_metric
    my_assert_metric(S,G,I) {
        if( CouldAssert(S,G,I) == TRUE ) {
            return spt_assert_metric(S,I)
        } else if( CouldAssert(*,G,I) == TRUE ) {
            return rpt_assert_metric(G,I)
        } else {
            return infinite_assert_metric()
        }
    }

  spt_assert_metric(S,I) gives the assert metric we use if we're
  sending an assert based on active (S,G) forwarding state:

    assert_metric
    spt_assert_metric(S,I) {
       return {0,MRIB.pref(S),MRIB.metric(S),my_ip_address(I)}
    }

  rpt_assert_metric(G,I) gives the assert metric we use if we're
  sending an assert based only on (*,G) forwarding state:

    assert_metric
    rpt_assert_metric(G,I) {
        return {1,MRIB.pref(RP(G)),MRIB.metric(RP(G)),my_ip_address(I)}
    }




Fenner, et al.              Standards Track                    [Page 98]

RFC 4601                  PIM-SM Specification               August 2006


  MRIB.pref(X) and MRIB.metric(X) are the routing preference and
  routing metrics associated with the route to a particular (unicast)
  destination X, as determined by the MRIB.  my_ip_address(I) is simply
  the router's primary IP address that is associated with the local
  interface I.

  infinite_assert_metric() gives the assert metric we need to send an
  assert but don't match either (S,G) or (*,G) forwarding state:

    assert_metric
    infinite_assert_metric() {
         return {1,infinity,infinity,0}
    }

4.6.4.  AssertCancel Messages

  An AssertCancel message is simply an RPT Assert message but with
  infinite metric.  It is sent by the assert winner when it deletes the
  forwarding state that had caused the assert to occur.  Other routers
  will see this metric, and it will cause any other router that has
  forwarding state to send its own assert, and to take over forwarding.

  An AssertCancel(S,G) is an infinite metric assert with the RPT bit
  set that names S as the source.

  An AssertCancel(*,G) is an infinite metric assert with the RPT bit
  set and the source set to zero.

  AssertCancel messages are simply an optimization.  The original
  Assert timeout mechanism will allow a subnet to eventually become
  consistent; the AssertCancel mechanism simply causes faster
  convergence.  No special processing is required for an AssertCancel
  message, since it is simply an Assert message from the current
  winner.

















Fenner, et al.              Standards Track                    [Page 99]

RFC 4601                  PIM-SM Specification               August 2006


4.6.5.  Assert State Macros

  The macros lost_assert(S,G,rpt,I), lost_assert(S,G,I), and
  lost_assert(*,G,I) are used in the olist computations of Section 4.1,
  and are defined as:

    bool lost_assert(S,G,rpt,I) {
      if ( RPF_interface(RP(G)) == I  OR
           ( RPF_interface(S) == I AND SPTbit(S,G) == TRUE ) ) {
         return FALSE
      } else {
         return ( AssertWinner(S,G,I) != NULL AND
                  AssertWinner(S,G,I) != me )
      }
    }

    bool lost_assert(S,G,I) {
      if ( RPF_interface(S) == I ) {
         return FALSE
      } else {
         return ( AssertWinner(S,G,I) != NULL AND
                  AssertWinner(S,G,I) != me  AND
                  (AssertWinnerMetric(S,G,I) is better
                     than spt_assert_metric(S,I) )
      }
    }

  Note: the term "AssertWinnerMetric(S,G,I) is better than
  spt_assert_metric(S,I)" is required to correctly handle the
  transition phase when a router has (S,G) join state, but has not yet
  set the SPT bit.  In this case, it needs to ignore the assert state
  if it will win the assert once the SPTbit is set.

    bool lost_assert(*,G,I) {
      if ( RPF_interface(RP(G)) == I ) {
         return FALSE
      } else {
         return ( AssertWinner(*,G,I) != NULL AND
                  AssertWinner(*,G,I) != me )
      }
    }

  AssertWinner(S,G,I) is the IP source address of the Assert(S,G)
  packet that won an Assert.

  AssertWinner(*,G,I) is the IP source address of the Assert(*,G)
  packet that won an Assert.




Fenner, et al.              Standards Track                   [Page 100]

RFC 4601                  PIM-SM Specification               August 2006


  AssertWinnerMetric(S,G,I) is the Assert metric of the Assert(S,G)
  packet that won an Assert.

  AssertWinnerMetric(*,G,I) is the Assert metric of the Assert(*,G)
  packet that won an Assert.

  AssertWinner(S,G,I) defaults to NULL and AssertWinnerMetric(S,G,I)
  defaults to Infinity when in the NoInfo state.

  Summary of Assert Rules and Rationale

  This section summarizes the key rules for sending and reacting to
  asserts and the rationale for these rules.  This section is not
  intended to be and should not be treated as a definitive
  specification of protocol behavior.  The state machines and
  pseudocode should be consulted for that purpose.  Rather, this
  section is intended to document important aspects of the Assert
  protocol behavior and to provide information that may prove helpful
  to the reader in understanding and implementing this part of the
  protocol.

  1.  Behavior: Downstream neighbors send Join(*,G) and Join(S,G)
      periodic messages to the appropriate RPF' neighbor, i.e., the RPF
      neighbor as modified by the assert process.  They are not always
      sent to the RPF neighbor as indicated by the MRIB.  Normal
      suppression and override rules apply.

      Rationale: By sending the periodic and triggered Join messages to
      the RPF' neighbor instead of to the RPF neighbor, the downstream
      router avoids re-triggering the Assert process with every Join.
      A side effect of sending Joins to the Assert winner is that
      traffic will not switch back to the "normal" RPF neighbor until
      the Assert times out.  This will not happen until data stops
      flowing, if item 8, below, is implemented.

  2.  Behavior: The assert winner for (*,G) acts as the local DR for
      (*,G) on behalf of IGMP/MLD members.

      Rationale: This is required to allow a single router to merge PIM
      and IGMP/MLD joins and leaves.  Without this, overrides don't
      work.

  3.  Behavior: The assert winner for (S,G) acts as the local DR for
      (S,G) on behalf of IGMPv3 members.

      Rationale: Same rationale as for item 2.





Fenner, et al.              Standards Track                   [Page 101]

RFC 4601                  PIM-SM Specification               August 2006


  4.  Behavior: (S,G) and (*,G) prune overrides are sent to the RPF'
      neighbor and not to the regular RPF neighbor.

      Rationale: Same rationale as for item 1.

  5.  Behavior: An (S,G,rpt) prune override is not sent (at all) if
      RPF'(S,G,rpt) != RPF'(*,G).

      Rationale: This avoids keeping state alive on the (S,G) tree when
      only (*,G) downstream members are left.  Also, it avoids sending
      (S,G,rpt) joins to a router that is not on the (*,G) tree.  This
      behavior might be confusing although this specification does
      indicate that such a join should be dropped.

  6.  Behavior: An assert loser that receives a Join(S,G) with an
      Upstream Neighbor Address that is its primary IP address on that
      interface cancels the (S,G) Assert Timer.

      Rationale: This is necessary in order to have rapid convergence
      in the event that the downstream router that initially sent a
      join to the prior Assert winner has undergone a topology change.

  7.  Behavior: An assert loser that receives a Join(*,G) or a
      Join(*,*,RP(G)) with an Upstream Neighbor Address that is its
      primary IP address on that interface cancels the (*,G) Assert
      Timer and all (S,G) assert timers that do not have corresponding
      Prune(S,G,rpt) messages in the compound Join/Prune message.

      Rationale: Same rationale as for item 6.

  8.  Behavior: An assert winner for (*,G) or (S,G) sends a canceling
      assert when it is about to stop forwarding on a (*,G) or an (S,G)
      entry.  This behavior does not apply to (S,G,rpt).

      Rationale: This allows switching back to the shared tree after
      the last SPT router on the LAN leaves.  Doing this prevents
      downstream routers on the shared tree from keeping SPT state
      alive.

  9.  Behavior: Resend the assert messages before timing out an assert.
      (This behavior is optional.)

      Rationale: This prevents the periodic duplicates that would
      otherwise occur each time that an assert times out and is then
      re-established.

  10. Behavior: When RPF'(S,G,rpt) changes to be the same as RPF'(*,G)
      we need to trigger a Join(S,G,rpt) to RPF'(*,G).



Fenner, et al.              Standards Track                   [Page 102]

RFC 4601                  PIM-SM Specification               August 2006


      Rationale: This allows switching back to the RPT after the last
      SPT member leaves.

4.7.  PIM Bootstrap and RP Discovery

  For correct operation, every PIM router within a PIM domain must be
  able to map a particular multicast group address to the same RP.  If
  this is not the case, then black holes may appear, where some
  receivers in the domain cannot receive some groups.  A domain in this
  context is a contiguous set of routers that all implement PIM and are
  configured to operate within a common boundary.

  A notable exception to this is where a PIM domain is broken up into
  multiple administrative scope regions; these are regions where a
  border has been configured so that a range of multicast groups will
  not be forwarded across that border.  For more information on
  Administratively Scoped IP Multicast, see RFC 2365.  The modified
  criteria for admin-scoped regions are that the region is convex with
  respect to forwarding based on the MRIB, and that all PIM routers
  within the scope region map scoped groups to the same RP within that
  region.

  This specification does not mandate the use of a single mechanism to
  provide routers with the information to perform the group-to-RP
  mapping.  Currently four mechanisms are possible, and all four have
  associated problems:

  Static Configuration
       A PIM router MUST support the static configuration of group-to-
       RP mappings.  Such a mechanism is not robust to failures, but
       does at least provide a basic interoperability mechanism.

  Embedded-RP
       Embedded-RP defines an address allocation policy in which the
       address of the Rendezvous Point (RP) is encoded in an IPv6
       multicast group address [17].

  Cisco's Auto-RP
       Auto-RP uses a PIM Dense-Mode multicast group to announce
       group-to-RP mappings from a central location.  This mechanism is
       not useful if PIM Dense-Mode is not being run in parallel with
       PIM Sparse-Mode, and was only intended for use with PIM Sparse-
       Mode Version 1.  No standard specification currently exists.

  BootStrap Router (BSR)
       RFC 2362 specifies a bootstrap mechanism based on the automatic
       election of a bootstrap router (BSR).  Any router in the domain
       that is configured to be a possible RP reports its candidacy to



Fenner, et al.              Standards Track                   [Page 103]

RFC 4601                  PIM-SM Specification               August 2006


       the BSR, and then a domain-wide flooding mechanism distributes
       the BSR's chosen set of RPs throughout the domain.  As specified
       in RFC 2362, BSR is flawed in its handling of admin-scoped
       regions that are smaller than a PIM domain, but the mechanism
       does work for global-scoped groups.

  As far as PIM-SM is concerned, the only important requirement is that
  all routers in the domain (or admin scope zone for scoped regions)
  receive the same set of group-range-to-RP mappings.  This may be
  achieved through the use of any of these mechanisms, or through
  alternative mechanisms not currently specified.

  It must be operationally ensured that any RP address configured,
  learned, or advertised is reachable from all routers in the PIM
  domain.

4.7.1.  Group-to-RP Mapping

  Using one of the mechanisms described above, a PIM router receives
  one or more possible group-range-to-RP mappings.  Each mapping
  specifies a range of multicast groups (expressed as a group and mask)
  and the RP to which such groups should be mapped.  Each mapping may
  also have an associated priority.  It is possible to receive multiple
  mappings, all of which might match the same multicast group; this is
  the common case with BSR.  The algorithm for performing the group-
  to-RP mapping is as follows:

  1.  Perform longest match on group-range to obtain a list of RPs.

  2.  From this list of matching RPs, find the one with highest
      priority.  Eliminate any RPs from the list that have lower
      priorities.

  3.  If only one RP remains in the list, use that RP.

  4.  If multiple RPs are in the list, use the PIM hash function to
      choose one.

  Thus, if two or more group-range-to-RP mappings cover a particular
  group, the one with the longest mask is the mapping to use.  If the
  mappings have the same mask length, then the one with the highest
  priority is chosen.  If there is more than one matching entry with
  the same longest mask and the priorities are identical, then a hash
  function (see Section 4.7.2) is applied to choose the RP.

  This algorithm is invoked by a DR when it needs to determine an RP
  for a given group, e.g., upon reception of a packet or IGMP/MLD
  membership indication for a group for which the DR does not know the



Fenner, et al.              Standards Track                   [Page 104]

RFC 4601                  PIM-SM Specification               August 2006


  RP.  It is invoked by any router that has (*,*,RP) state when a
  packet is received for which there is no corresponding (S,G) or (*,G)
  entry.  Furthermore, the mapping function is invoked by all routers
  upon receiving a (*,G) or (*,*,RP) Join/Prune message.

  Note that if the set of possible group-range-to-RP mappings changes,
  each router will need to check whether any existing groups are
  affected.  This may, for example, cause a DR or acting DR to re-join
  a group, or cause it to restart register encapsulation to the new RP.

    Implementation note: the bootstrap mechanism described in RFC 2362
    omitted step 1 above.  However, of the implementations we are aware
    of, approximately half performed step 1 anyway.  Note that
    implementations of BSR that omit step 1 will not correctly
    interoperate with implementations of this specification when used
    with the BSR mechanism described in [11].

4.7.2.  Hash Function

  The hash function is used by all routers within a domain, to map a
  group to one of the RPs from the matching set of group-range-to-RP
  mappings (this set all have the same longest mask length and same
  highest priority).  The algorithm takes as input the group address,
  and the addresses of the candidate RPs from the mappings, and gives
  as output one RP address to be used.

  The protocol requires that all routers hash to the same RP within a
  domain (except for transients).  The following hash function must be
  used in each router:

  1.  For RP addresses in the matching group-range-to-RP mappings,
      compute a value:

  Value(G,M,C(i))=
  (1103515245 * ((1103515245 * (G&M)+12345) XOR C(i)) + 12345) mod 2^31

      where C(i) is the RP address and M is a hash-mask.  If BSR is
      being used, the hash-mask is given in the Bootstrap messages.  If
      BSR is not being used, the alternative mechanism that supplies
      the group-range-to-RP mappings may supply the value, or else it
      defaults to a mask with the most significant 30 bits being one
      for IPv4 and the most significant 126 bits being one for IPv6.
      The hash-mask allows a small number of consecutive groups (e.g.,
      4) to always hash to the same RP.  For instance, hierarchically-
      encoded data can be sent on consecutive group addresses to get
      the same delay and fate-sharing characteristics.





Fenner, et al.              Standards Track                   [Page 105]

RFC 4601                  PIM-SM Specification               August 2006


      For address families other than IPv4, a 32-bit digest to be used
      as C(i) and G must first be derived from the actual RP or group
      address.  Such a digest method must be used consistently
      throughout the PIM domain.  For IPv6 addresses, we recommend
      using the equivalent IPv4 address for an IPv4-compatible address,
      and the exclusive-or of each 32-bit segment of the address for
      all other IPv6 addresses.  For example, the digest of the IPv6
      address 3ffe:b00:c18:1::10 would be computed as 0x3ffe0b00 ^
      0x0c180001 ^ 0x00000000 ^ 0x00000010, where ^ represents the
      exclusive-or operation.

  2.  The candidate RP with the highest resulting hash value is then
      the RP chosen by this Hash Function.  If more than one RP has the
      same highest hash value, the RP with the highest IP address is
      chosen.

4.8.  Source-Specific Multicast

  The Source-Specific Multicast (SSM) service model [6] can be
  implemented with a strict subset of the PIM-SM protocol mechanisms.
  Both regular IP Multicast and SSM semantics can coexist on a single
  router, and both can be implemented using the PIM-SM protocol.  A
  range of multicast addresses, currently 232.0.0.0/8 in IPv4 and
  FF3x::/32 for IPv6, is reserved for SSM, and the choice of semantics
  is determined by the multicast group address in both data packets and
  PIM messages.

4.8.1.  Protocol Modifications for SSM Destination Addresses

  The following rules override the normal PIM-SM behavior for a
  multicast address G in the SSM range:

  o A router MUST NOT send a (*,G) Join/Prune message for any reason.

  o A router MUST NOT send an (S,G,rpt) Join/Prune message for any
  reason.

  o A router MUST NOT send a Register message for any packet that is
    destined to an SSM address.

  o A router MUST NOT forward packets based on (*,G) or (S,G,rpt)
    state.  The (*,G)- and (S,G,rpt)-related state summarization macros
    are NULL for any SSM address, for the purposes of packet
    forwarding.

  o A router acting as an RP MUST NOT forward any Register-encapsulated
    packet that has an SSM destination address.




Fenner, et al.              Standards Track                   [Page 106]

RFC 4601                  PIM-SM Specification               August 2006


  The last two rules are present to deal with "legacy" routers unaware
  of SSM that may be sending (*,G) and (S,G,rpt) Join/Prunes, or
  Register messages for SSM destination addresses.

  Additionally:

  o A router MAY be configured to advertise itself as a Candidate RP
    for an SSM address.  If so, it SHOULD respond with a Register-Stop
    message to any Register message containing a packet destined for an
    SSM address.

  o A router MAY optimize out the creation and maintenance of (S,G,rpt)
    and (*,G) state for SSM destination addresses -- this state is not
    needed for SSM packets.

4.8.2.  PIM-SSM-Only Routers

  An implementer may choose to implement only the subset of PIM
  Sparse-Mode that provides SSM forwarding semantics.

  A PIM-SSM-only router MUST implement the following portions of this
  specification:

  o Upstream (S,G) state machine (Section 4.5.7)

  o Downstream (S,G) state machine (Section 4.5.3)

  o (S,G) Assert state machine (Section 4.6.1)

  o Hello messages, neighbor discovery, and DR election (Section 4.3)

  o Packet forwarding rules (Section 4.2)

  A PIM-SSM-only router does not need to implement the following
  protocol elements:

  o Register state machine (Section 4.4)

  o (*,G), (S,G,rpt), and (*,*,RP) Downstream state machines (Sections
    4.5.2, 4.5.4, and 4.5.1)

  o (*,G), (S,G,rpt), and (*,*,RP) Upstream state machines (Sections
    4.5.6, 4.5.8, and 4.5.5)

  o (*,G) Assert state machine (Section 4.6.2)

  o Bootstrap RP Election (Section 4.7)




Fenner, et al.              Standards Track                   [Page 107]

RFC 4601                  PIM-SM Specification               August 2006


  o Keepalive Timer

  o SPTbit (Section 4.2.2)

  The Keepalive Timer should be treated as always running, and SPTbit
  should be treated as always being set for an SSM address.
  Additionally, the Packet forwarding rules of Section 4.2 can be
  simplified in a PIM-SSM-only router:

    if( iif == RPF_interface(S) AND UpstreamJPState(S,G) == Joined ) {
        oiflist = inherited_olist(S,G)
    } else if( iif is in inherited_olist(S,G) ) {
        send Assert(S,G) on iif
    }

    oiflist = oiflist (-) iif
    forward packet on all interfaces in oiflist

  This is nothing more than the reduction of the normal PIM-SM
  forwarding rule, with all (S,G,rpt) and (*,G) clauses replaced with
  NULL.

4.9.  PIM Packet Formats

  This section describes the details of the packet formats for PIM
  control messages.

  All PIM control messages have IP protocol number 103.

  PIM messages are either unicast (e.g., Registers and Register-Stop)
  or multicast with TTL 1 to the 'ALL-PIM-ROUTERS' group (e.g.,
  Join/Prune, Asserts, etc.).  The source address used for unicast
  messages is a domain-wide reachable address; the source address used
  for multicast messages is the link-local address of the interface on
  which the message is being sent.

  The IPv4 'ALL-PIM-ROUTERS' group is '224.0.0.13'.  The IPv6 'ALL-PIM-
  ROUTERS' group is 'ff02::d'.













Fenner, et al.              Standards Track                   [Page 108]

RFC 4601                  PIM-SM Specification               August 2006


  The PIM header common to all PIM messages is:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |PIM Ver| Type  |   Reserved    |           Checksum            |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  PIM Ver
       PIM Version number is 2.

  Type Types for specific PIM messages.  PIM Types are:

  Message Type                          Destination
  ---------------------------------------------------------------------
  0 = Hello                             Multicast to ALL-PIM-ROUTERS
  1 = Register                          Unicast to RP
  2 = Register-Stop                     Unicast to source of Register
                                           packet
  3 = Join/Prune                        Multicast to ALL-PIM-ROUTERS
  4 = Bootstrap                         Multicast to ALL-PIM-ROUTERS
  5 = Assert                            Multicast to ALL-PIM-ROUTERS
  6 = Graft (used in PIM-DM only)       Unicast to RPF'(S)
  7 = Graft-Ack (used in PIM-DM only)   Unicast to source of Graft
                                           packet
  8 = Candidate-RP-Advertisement        Unicast to Domain's BSR

  Reserved
       Set to zero on transmission.  Ignored upon receipt.

  Checksum
       The checksum is a standard IP checksum, i.e., the 16-bit one's
       complement of the one's complement sum of the entire PIM
       message, excluding the "Multicast data packet" section of the
       Register message.  For computing the checksum, the checksum
       field is zeroed.  If the packet's length is not an integral
       number of 16-bit words, the packet is padded with a trailing
       byte of zero before performing the checksum.

       For IPv6, the checksum also includes the IPv6 "pseudo-header",
       as specified in RFC 2460, Section 8.1 [5].  This "pseudo-header"
       is prepended to the PIM header for the purposes of calculating
       the checksum.  The "Upper-Layer Packet Length" in the pseudo-
       header is set to the length of the PIM message, except in
       Register messages where it is set to the length of the PIM
       register header (8).  The Next Header value used in the pseudo-
       header is 103.




Fenner, et al.              Standards Track                   [Page 109]

RFC 4601                  PIM-SM Specification               August 2006


  If a message is received with an unrecognized PIM Ver or Type field,
  or if a message's destination does not correspond to the table above,
  the message MUST be discarded, and an error message SHOULD be logged
  to the administrator in a rate-limited manner.

4.9.1.  Encoded Source and Group Address Formats

  Encoded-Unicast Address

  An Encoded-Unicast address takes the following format:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |  Addr Family  | Encoding Type |     Unicast Address
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+...

  Addr Family
       The PIM address family of the 'Unicast Address' field of this
       address.

       Values 0-127 are as assigned by the IANA for Internet Address
       Families in [7].  Values 128-250 are reserved to be assigned by
       the IANA for PIM-specific Address Families.  Values 251 though
       255 are designated for private use.  As there is no assignment
       authority for this space, collisions should be expected.

  Encoding Type
       The type of encoding used within a specific Address Family.  The
       value '0' is reserved for this field and represents the native
       encoding of the Address Family.

  Unicast Address
       The unicast address as represented by the given Address Family
       and Encoding Type.
















Fenner, et al.              Standards Track                   [Page 110]

RFC 4601                  PIM-SM Specification               August 2006


  Encoded-Group Address

  Encoded-Group addresses take the following format:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |  Addr Family  | Encoding Type |B| Reserved  |Z|  Mask Len     |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                Group multicast Address
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+...

  Addr Family
       Described above.

  Encoding Type
       Described above.

  [B]idirectional PIM
       Indicates the group range should use Bidirectional PIM [13].
       For PIM-SM defined in this specification, this bit MUST be zero.

  Reserved
       Transmitted as zero.  Ignored upon receipt.

  Admin Scope [Z]one
       indicates the group range is an admin scope zone.  This is used
       in the Bootstrap Router Mechanism [11] only.  For all other
       purposes, this bit is set to zero and ignored on receipt.

  Mask Len
       The Mask length field is 8 bits.  The value is the number of
       contiguous one bits that are left justified and used as a mask;
       when combined with the group address, it describes a range of
       groups.  It is less than or equal to the address length in bits
       for the given Address Family and Encoding Type.  If the message
       is sent for a single group, then the Mask length must equal the
       address length in bits for the given Address Family and Encoding
       Type (e.g., 32 for IPv4 native encoding, 128 for IPv6 native
       encoding).

  Group multicast Address
       Contains the group address.








Fenner, et al.              Standards Track                   [Page 111]

RFC 4601                  PIM-SM Specification               August 2006


  Encoded-Source Address

  Encoded-Source address takes the following format:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | Addr Family   | Encoding Type | Rsrvd   |S|W|R|  Mask Len     |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                        Source Address
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-...

  Addr Family
       Described above.

  Encoding Type
       Described above.

  Reserved
       Transmitted as zero, ignored on receipt.

  S    The Sparse bit is a 1-bit value, set to 1 for PIM-SM.  It is
       used for PIM version 1 compatibility.

  W    The WC (or WildCard) bit is a 1-bit value for use with PIM
       Join/Prune messages (see Section 4.9.5.1).

  R    The RPT (or Rendezvous Point Tree) bit is a 1-bit value for use
       with PIM Join/Prune messages (see Section 4.9.5.1).  If the WC
       bit is 1, the RPT bit MUST be 1.

  Mask Len
       The mask length field is 8 bits.  The value is the number of
       contiguous one bits left justified used as a mask which,
       combined with the Source Address, describes a source subnet.
       The mask length MUST be equal to the mask length in bits for the
       given Address Family and Encoding Type (32 for IPv4 native and
       128 for IPv6 native).  A router SHOULD ignore any messages
       received with any other mask length.

  Source Address
       The source address.









Fenner, et al.              Standards Track                   [Page 112]

RFC 4601                  PIM-SM Specification               August 2006


4.9.2.  Hello Message Format

  It is sent periodically by routers on all interfaces.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |PIM Ver| Type  |   Reserved    |           Checksum            |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |          OptionType           |         OptionLength          |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                          OptionValue                          |
  |                              ...                              |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                               .                               |
  |                               .                               |
  |                               .                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |          OptionType           |         OptionLength          |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                          OptionValue                          |
  |                              ...                              |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  PIM Version, Type, Reserved, Checksum
       Described in Section 4.9.

  OptionType
       The type of the option given in the following OptionValue field.

  OptionLength
       The length of the OptionValue field in bytes.

  OptionValue
       A variable length field, carrying the value of the option.
















Fenner, et al.              Standards Track                   [Page 113]

RFC 4601                  PIM-SM Specification               August 2006


  The Option fields may contain the following values:

  o OptionType 1: Holdtime

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |          Type = 1             |         Length = 2            |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |          Holdtime             |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

    Holdtime is the amount of time a receiver must keep the neighbor
    reachable, in seconds.  If the Holdtime is set to '0xffff', the
    receiver of this message never times out the neighbor.  This may be
    used with dial-on-demand links, to avoid keeping the link up with
    periodic Hello messages.

    Hello messages with a Holdtime value set to '0' are also sent by a
    router on an interface about to go down or changing IP address (see
    Section 4.3.1).  These are effectively goodbye messages, and the
    receiving routers should immediately time out the neighbor
    information for the sender.

  o OptionType 2: LAN Prune Delay

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |          Type = 2             |          Length = 4           |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |T|      Propagation_Delay      |      Override_Interval        |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

    The LAN Prune Delay option is used to tune the prune propagation
    delay on multi-access LANs.  The T bit specifies the ability of the
    sending router to disable joins suppression.  Propagation_Delay and
    Override_Interval are time intervals in units of milliseconds.  A
    router originating a LAN Prune Delay option on interface I sets the
    Propagation_Delay field to the configured value of
    Propagation_Delay(I) and the value of the Override_Interval field
    to the value of Override_Interval(I).  On a receiving router, the
    values of the fields are used to tune the value of the
    Effective_Override_Interval(I) and its derived timer values.
    Section 4.3.3 describes how these values affect the behavior of a
    router.





Fenner, et al.              Standards Track                   [Page 114]

RFC 4601                  PIM-SM Specification               August 2006


  o OptionType 3 to 16: reserved to be defined in future versions of
    this document.

  o OptionType 18: deprecated and should not be used.

  o OptionType 19: DR Priority

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |          Type = 19            |          Length = 4           |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                         DR Priority                           |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

    DR Priority is a 32-bit unsigned number and should be considered in
    the DR election as described in Section 4.3.2.

  o OptionType 20: Generation ID

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |          Type = 20            |          Length = 4           |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                       Generation ID                           |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

    Generation ID is a random 32-bit value for the interface on which
    the Hello message is sent.  The Generation ID is regenerated
    whenever PIM forwarding is started or restarted on the interface.




















Fenner, et al.              Standards Track                   [Page 115]

RFC 4601                  PIM-SM Specification               August 2006


  o OptionType 24: Address List

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |          Type = 24            |      Length = <Variable>      |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |         Secondary Address 1 (Encoded-Unicast format)          |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                                   ...
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |         Secondary Address N (Encoded-Unicast format)          |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

    The contents of the Address List Hello option are described in
    Section 4.3.4. All addresses within a single Address List must
    belong to the same address family.

  OptionTypes 17 through 65000 are assigned by the IANA.  OptionTypes
  65001 through 65535 are reserved for Private Use, as defined in [9].

  Unknown options MUST be ignored and MUST NOT prevent a neighbor
  relationship from being formed.  The "Holdtime" option MUST be
  implemented; the "DR Priority" and "Generation ID" options SHOULD be
  implemented.  The "Address List" option MUST be implemented for IPv6.

4.9.3.  Register Message Format

  A Register message is sent by the DR or a PMBR to the RP when a
  multicast packet needs to be transmitted on the RP-tree.  The IP
  source address is set to the address of the DR, the destination
  address to the RP's address.  The IP TTL of the PIM packet is the
  system's normal unicast TTL.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |PIM Ver| Type  |   Reserved    |           Checksum            |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |B|N|                       Reserved2                           |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  .                     Multicast data packet                     .
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+






Fenner, et al.              Standards Track                   [Page 116]

RFC 4601                  PIM-SM Specification               August 2006


  PIM Version, Type, Reserved, Checksum
       Described in Section 4.9. Note that in order to reduce
       encapsulation overhead, the checksum for Registers is done only
       on the first 8 bytes of the packet, including the PIM header and
       the next 4 bytes, excluding the data packet portion.  For
       interoperability reasons, a message carrying a checksum
       calculated over the entire PIM Register message should also be
       accepted.  When calculating the checksum, the IPv6 pseudoheader
       "Upper-Layer Packet Length" is set to 8.

  B    The Border bit.  If the router is a DR for a source that it is
       directly connected to, it sets the B bit to 0.  If the router is
       a PMBR for a source in a directly connected cloud, it sets the B
       bit to 1.

  N    The Null-Register bit.  Set to 1 by a DR that is probing the RP
       before expiring its local Register-Suppression Timer.  Set to 0
       otherwise.

  Reserved2
       Transmitted as zero, ignored on receipt.

  Multicast data packet
       The original packet sent by the source.  This packet must be of
       the same address family as the encapsulating PIM packet, e.g.,
       an IPv6 data packet must be encapsulated in an IPv6 PIM packet.
       Note that the TTL of the original packet is decremented before
       encapsulation, just like any other packet that is forwarded.  In
       addition, the RP decrements the TTL after decapsulating, before
       forwarding the packet down the shared tree.

       For (S,G) Null-Registers, the Multicast data packet portion
       contains a dummy IP header with S as the source address, G as
       the destination address.  When generating an IPv4 Null-Register
       message, the fields in the dummy IPv4 header SHOULD be filled in
       according to the following table.  Other IPv4 header fields may
       contain any value that is valid for that field.

       Field                  Value
       ---------------------------------------
       IP Version             4
       Header Length          5
       Checksum               Header checksum
       Fragmentation offset   0
       More Fragments         0
       Total Length           20
       IP Protocol            103 (PIM)




Fenner, et al.              Standards Track                   [Page 117]

RFC 4601                  PIM-SM Specification               August 2006


       On receipt of an (S,G) Null-Register, if the Header Checksum
       field is non-zero, the recipient SHOULD check the checksum and
       discard null registers that have a bad checksum.  The recipient
       SHOULD NOT check the value of any individual fields; a correct
       IP header checksum is sufficient.  If the Header Checksum field
       is zero, the recipient MUST NOT check the checksum.

       With IPv6, an implementation generates a dummy IP header
       followed by a dummy PIM header with values according to the
       following table in addition to the source and group.  Other IPv6
       header fields may contain any value that is valid for that
       field.

       Header Field   Value
       --------------------------------------
       IP Version     6
       Next Header    103 (PIM)
       Length         4
       PIM Version    0
       PIM Type       0
       PIM Reserved   0
       PIM Checksum   PIM checksum including
                      IPv6 "pseudo-header";
                      see Section 4.9

       On receipt of an IPv6 (S,G) Null-Register, if the dummy PIM
       header is present, the recipient SHOULD check the checksum and
       discard Null-Registers that have a bad checksum.























Fenner, et al.              Standards Track                   [Page 118]

RFC 4601                  PIM-SM Specification               August 2006


4.9.4.  Register-Stop Message Format

  A Register-Stop is unicast from the RP to the sender of the Register
  message.  The IP source address is the address to which the register
  was addressed.  The IP destination address is the source address of
  the register message.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |PIM Ver| Type  |   Reserved    |           Checksum            |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |             Group Address (Encoded-Group format)              |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |            Source Address (Encoded-Unicast format)            |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  PIM Version, Type, Reserved, Checksum
       Described in Section 4.9.

  Group Address
       The group address from the multicast data packet in the
       Register.  Format described in Section 4.9.1. Note that for
       Register-Stops the Mask Len field contains the full address
       length * 8 (e.g., 32 for IPv4 native encoding), if the message
       is sent for a single group.

  Source Address
       The host address of the source from the multicast data packet in
       the register.  The format for this address is given in the
       Encoded-Unicast address in Section 4.9.1. A special wild card
       value consisting of an address field of all zeros can be used to
       indicate any source.

4.9.5.  Join/Prune Message Format

  A Join/Prune message is sent by routers towards upstream sources and
  RPs.  Joins are sent to build shared trees (RP trees) or source trees
  (SPT).  Prunes are sent to prune source trees when members leave
  groups as well as sources that do not use the shared tree.











Fenner, et al.              Standards Track                   [Page 119]

RFC 4601                  PIM-SM Specification               August 2006


   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |PIM Ver| Type  |   Reserved    |           Checksum            |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |        Upstream Neighbor Address (Encoded-Unicast format)     |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |  Reserved     | Num groups    |          Holdtime             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |         Multicast Group Address 1 (Encoded-Group format)      |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |   Number of Joined Sources    |   Number of Pruned Sources    |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |        Joined Source Address 1 (Encoded-Source format)        |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                             .                                 |
  |                             .                                 |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |        Joined Source Address n (Encoded-Source format)        |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |        Pruned Source Address 1 (Encoded-Source format)        |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                             .                                 |
  |                             .                                 |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |        Pruned Source Address n (Encoded-Source format)        |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                           .                                   |
  |                           .                                   |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |         Multicast Group Address m (Encoded-Group format)      |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |   Number of Joined Sources    |   Number of Pruned Sources    |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |        Joined Source Address 1 (Encoded-Source format)        |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                             .                                 |
  |                             .                                 |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |        Joined Source Address n (Encoded-Source format)        |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |        Pruned Source Address 1 (Encoded-Source format)        |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                             .                                 |
  |                             .                                 |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |        Pruned Source Address n (Encoded-Source format)        |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+



Fenner, et al.              Standards Track                   [Page 120]

RFC 4601                  PIM-SM Specification               August 2006


  PIM Version, Type, Reserved, Checksum
       Described in Section 4.9.

  Unicast Upstream Neighbor Address
       The address of the upstream neighbor that is the target of the
       message.  The format for this address is given in the Encoded-
       Unicast address in Section 4.9.1. For IPv6 the source address
       used for multicast messages is the link-local address of the
       interface on which the message is being sent.  For IPv4, the
       source address is the primary address associated with that
       interface.

  Reserved
       Transmitted as zero, ignored on receipt.

  Holdtime
       The amount of time a receiver must keep the Join/Prune state
       alive, in seconds.  If the Holdtime is set to '0xffff', the
       receiver of this message should hold the state until canceled by
       the appropriate canceling Join/Prune message, or timed out
       according to local policy.  This may be used with dial-on-demand
       links, to avoid keeping the link up with periodic Join/Prune
       messages.

       Note that the HoldTime must be larger than the
       J/P_Override_Interval(I).

  Number of Groups
       The number of multicast group sets contained in the message.

  Multicast group address
       For format description, see Section 4.9.1.

  Number of Joined Sources
       Number of joined source addresses listed for a given group.

  Joined Source Address 1 .. n
       This list contains the sources for a given group that the
       sending router will forward multicast datagrams from if received
       on the interface on which the Join/Prune message is sent.

       See Encoded-Source-Address format in Section 4.9.1.

  Number of Pruned Sources
       Number of pruned source addresses listed for a group.






Fenner, et al.              Standards Track                   [Page 121]

RFC 4601                  PIM-SM Specification               August 2006


  Pruned Source Address 1 .. n
       This list contains the sources for a given group that the
       sending router does not want to forward multicast datagrams from
       when received on the interface on which the Join/Prune message
       is sent.

  Within one PIM Join/Prune message, all the Multicast Group Addresses,
  Joined Source addresses, and Pruned Source addresses MUST be of the
  same address family.  It is NOT PERMITTED to mix IPv4 and IPv6
  addresses within the same message.  In addition, the address family
  of the fields in the message SHOULD be the same as the IP source and
  destination addresses of the packet.  This permits maximum
  implementation flexibility for dual-stack IPv4/IPv6 routers.  If a
  router receives a message with mixed family addresses, it SHOULD only
  process the addresses that are of the same family as the unicast
  upstream neighbor address.

4.9.5.1.  Group Set Source List Rules

  As described above, Join/Prune messages are composed of one or more
  group sets.  Each set contains two source lists, the Joined Sources
  and the Pruned Sources.  This section describes the different types
  of group sets and source list entries that can exist in a Join/Prune
  message.

  There are two valid group set types:

  Wildcard Group Set
       The wildcard group set is represented by the entire multicast
       range:  the beginning of the multicast address range in the
       group address field and the prefix length of the multicast
       address range in the mask length field of the Multicast Group
       Address (i.e., '224.0.0.0/4' for IPv4 or 'ff00::/8' for IPv6).
       Each Join/Prune message SHOULD contain at most one wildcard
       group set.  Each wildcard group set may contain one or more
       (*,*,RP) source list entries in either the Joined or Pruned
       lists.

       A (*,*,RP) source list entry may only exist in a wildcard group
       set.  When added to a Joined source list, this type of source
       entry expresses the router's interest in receiving traffic for
       all groups mapping to the specified RP.  When added to a Pruned
       source list a (*,*,RP) entry expresses the router's interest to
       stop receiving such traffic.  Note that as indicated by the
       Join/Prune state machines, such a Join or Prune will NOT
       override Join/Prune state created using a Group-Specific Set
       (see below).




Fenner, et al.              Standards Track                   [Page 122]

RFC 4601                  PIM-SM Specification               August 2006


       (*,*,RP) source list entries have the Source-Address set to the
       address of the RP, the Source-Address Mask-Len set to the full
       length of the IP address, and both the WC and RPT bits of the
       Source-Address set to 1.

  Group-Specific Set
       A Group-Specific Set is represented by a valid IP multicast
       address in the group address field and the full length of the IP
       address in the mask length field of the Multicast Group Address.
       Each Join/Prune message SHOULD NOT contain more than one group-
       specific set for the same IP multicast address.  Each group-
       specific set may contain (*,G), (S,G,rpt), and (S,G) source list
       entries in the Joined or Pruned lists.

    (*,G)
         The (*,G) source list entry is used in Join/Prune messages
         sent towards the RP for the specified group.  It expresses
         interest (or lack thereof) in receiving traffic sent to the
         group through the Rendezvous-Point shared tree.  There may
         only be one such entry in both the Joined and Pruned lists of
         a group-specific set.

         (*,G) source list entries have the Source-Address set to the
         address of the RP for group G, the Source-Address Mask-Len set
         to the full length of the IP address, and both the WC and RPT
         bits of the Encoded-Source-Address set.

    (S,G,rpt)
         The (S,G,rpt) source list entry is used in Join/Prune messages
         sent towards the RP for the specified group.  It expresses
         interest (or lack thereof) in receiving traffic through the
         shared tree sent by the specified source to this group.  For
         each source address, the entry may exist in only one of the
         Joined and Pruned source lists of a group-specific set, but
         not both.

         (S,G,rpt) source list entries have the Source-Address set to
         the address of the source S, the Source-Address Mask-Len set
         to the full length of the IP address, and the WC bit cleared
         and the RPT bit set in the Encoded-Source-Address.

    (S,G)
         The (S,G) source list entry is used in Join/Prune messages
         sent towards the specified source.  It expresses interest (or
         lack thereof) in receiving traffic through the shortest path
         tree sent by the source to the specified group.  For each
         source address, the entry may exist in only one of the Joined
         and Pruned source lists of a group-specific set, but not both.



Fenner, et al.              Standards Track                   [Page 123]

RFC 4601                  PIM-SM Specification               August 2006


         (S,G) source list entries have the Source-Address set to the
         address of the source S, the Source-Address Mask-Len set to
         the full length of the IP address, and both the WC and RPT
         bits of the Encoded-Source-Address cleared.

  The rules described above are sufficient to prevent invalid
  combinations of source list entries in group-specific sets.  There
  are, however, a number of combinations that have a valid
  interpretation but that are not generated by the protocol as
  described in this specification:

  o Combining a (*,G) Join and a (S,G,rpt) Join entry in the same
    message is redundant as the (*,G) entry covers the information
    provided by the (S,G,rpt) entry.

  o The same applies for a (*,G) Prunes and (S,G,rpt) Prunes.

  o The combination of a (*,G) Prune and a (S,G,rpt) Join is also not
    generated.  (S,G,rpt) Joins are only sent when the router is
    receiving all traffic for a group on the shared tree and it wishes
    to indicate a change for the particular source.  As a (*,G) prune
    indicates that the router no longer wishes to receive shared tree
    traffic, the (S,G,rpt) Join would be meaningless.

  o As Join/Prune messages are targeted to a single PIM neighbor,
    including both a (S,G) Join and a (S,G,rpt) Prune in the same
    message is usually redundant.  The (S,G) Join informs the neighbor
    that the sender wishes to receive the particular source on the
    shortest path tree.  It is therefore unnecessary for the router to
    say that it no longer wishes to receive it on the shared tree.
    However, there is a valid interpretation for this combination of
    entries.  A downstream router may have to instruct its upstream
    only to start forwarding a specific source once it has started
    receiving the source on the shortest-path tree.

  o The combination of a (S,G) Prune and a (S,G,rpt) Join could
    possibly be used by a router to switch from receiving a particular
    source on the shortest-path tree back to receiving it on the shared
    tree (provided that the RPF neighbor for the shortest-path and
    shared trees is common).  However, Sparse-Mode PIM does not provide
    a mechanism for explicitly switching back to the shared tree.










Fenner, et al.              Standards Track                   [Page 124]

RFC 4601                  PIM-SM Specification               August 2006


  The rules are summarized in the tables below.

  +----------++------+-------+-----------+-----------+-------+-------+
  |          ||Join  | Prune | Join      | Prune     | Join  | Prune |
  |          ||(*,G) | (*,G) | (S,G,rpt) | (S,G,rpt) | (S,G) | (S,G) |
  +----------++------+-------+-----------+-----------+-------+-------+
  |Join      ||-     | no    | ?         | yes       | yes   | yes   |
  |(*,G)     ||      |       |           |           |       |       |
  +----------++------+-------+-----------+-----------+-------+-------+
  |Prune     ||no    | -     | ?         | ?         | yes   | yes   |
  |(*,G)     ||      |       |           |           |       |       |
  +----------++------+-------+-----------+-----------+-------+-------+
  |Join      ||?     | ?     | -         | no        | yes   | ?     |
  |(S,G,rpt) ||      |       |           |           |       |       |
  +----------++------+-------+-----------+-----------+-------+-------+
  |Prune     ||yes   | ?     | no        | -         | yes   | ?     |
  |(S,G,rpt) ||      |       |           |           |       |       |
  +----------++------+-------+-----------+-----------+-------+-------+
  |Join      ||yes   | yes   | yes       | yes       | -     | no    |
  |(S,G)     ||      |       |           |           |       |       |
  +----------++------+-------+-----------+-----------+-------+-------+
  |Prune     ||yes   | yes   | ?         | ?         | no    | -     |
  |(S,G)     ||      |       |           |           |       |       |
  +----------++------+-------+-----------+-----------+-------+-------+

  +---------------++--------------+----------------+------------+
  |               ||Join (*,*,RP) | Prune (*,*,RP) | all others |
  +---------------++--------------+----------------+------------+
  |Join (*,*,RP)  ||-             | no             | yes        |
  +---------------++--------------+----------------+------------+
  |Prune (*,*,RP) ||no            | -              | yes        |
  +---------------++--------------+----------------+------------+
  |all others     ||yes           | yes            | see above  |
  +---------------++--------------+----------------+------------+

  yes  Allowed and expected.

  no   Combination is not allowed by the protocol and MUST NOT be
       generated by a router.  A router MAY accept these messages, but
       the result is undefined.  An error message MAY be logged to the
       administrator in a rate-limited manner.

  ?    Combination not expected by the protocol, but well-defined.  A
       router MAY accept it but SHOULD NOT generate it.

  The order of source list entries in a group set source list is not
  important, except where limited by the packet format itself.




Fenner, et al.              Standards Track                   [Page 125]

RFC 4601                  PIM-SM Specification               August 2006


4.9.5.2.  Group Set Fragmentation

  When building a Join/Prune for a particular neighbor, a router should
  try to include in the message as much of the information it needs to
  convey to the neighbor as possible.  This implies adding one group
  set for each multicast group that has information pending
  transmission and within each set including all relevant source list
  entries.

  On a router with a large amount of multicast state, the number of
  entries that must be included may result in packets that are larger
  than the maximum IP packet size.  In most such cases, the information
  may be split into multiple messages.

  There is an exception with group sets that contain a (*,G) Joined
  source list entry.  The group set expresses the router's interest in
  receiving all traffic for the specified group on the shared tree, and
  it MUST include an (S,G,rpt) Pruned source list entry for every
  source that the router does not wish to receive.  This list of
  (S,G,rpt) Pruned source-list entries MUST not be split in multiple
  messages.

  If only N (S,G,rpt) Prune entries fit into a maximum-sized Join/Prune
  message, but the router has more than N (S,G,rpt) Prunes to add, then
  the router MUST choose to include the first N (numerically smallest
  in network byte order) IP addresses.

4.9.6.  Assert Message Format

  The Assert message is used to resolve forwarder conflicts between
  routers on a link.  It is sent when a router receives a multicast
  data packet on an interface on which the router would normally have
  forwarded that packet.  Assert messages may also be sent in response
  to an Assert message from another router.

















Fenner, et al.              Standards Track                   [Page 126]

RFC 4601                  PIM-SM Specification               August 2006


   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |PIM Ver| Type  |   Reserved    |           Checksum            |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |              Group Address (Encoded-Group format)             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |            Source Address (Encoded-Unicast format)            |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |R|                      Metric Preference                      |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                             Metric                            |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  PIM Version, Type, Reserved, Checksum
       Described in Section 4.9.

  Group Address
       The group address for which the router wishes to resolve the
       forwarding conflict.  This is an Encoded-Group address, as
       specified in Section 4.9.1.

  Source Address
       Source address for which the router wishes to resolve the
       forwarding conflict.  The source address MAY be set to zero for
       (*,G) asserts (see below).  The format for this address is given
       in Encoded-Unicast-Address in Section 4.9.1.

  R    RPT-bit is a 1-bit value.  The RPT-bit is set to 1 for
       Assert(*,G) messages and 0 for Assert(S,G) messages.

  Metric Preference
       Preference value assigned to the unicast routing protocol that
       provided the route to the multicast source or Rendezvous-Point.

  Metric
       The unicast routing table metric associated with the route used
       to reach the multicast source or Rendezvous-Point.  The metric
       is in units applicable to the unicast routing protocol used.

  Assert messages can be sent to resolve a forwarding conflict for all
  traffic to a given group or for a specific source and group.









Fenner, et al.              Standards Track                   [Page 127]

RFC 4601                  PIM-SM Specification               August 2006


  Assert(S,G)
       Source-specific asserts are sent by routers forwarding a
       specific source on the shortest-path tree (SPTbit is TRUE).
       (S,G) Asserts have the Group-Address field set to the group G
       and the Source-Address field set to the source S.  The RPT-bit
       is set to 0, the Metric-Preference is set to MRIB.pref(S) and
       the Metric is set to MRIB.metric(S).

  Assert(*,G)
       Group-specific asserts are sent by routers forwarding data for
       the group and source(s) under contention on the shared tree.
       (*,G) asserts have the Group-Address field set to the group G.
       For data-triggered Asserts, the Source-Address field MAY be set
       to the IP source address of the data packet that triggered the
       Assert and is set to zero otherwise.  The RPT-bit is set to 1,
       the Metric-Preference is set to MRIB.pref(RP(G)), and the Metric
       is set to MRIB.metric(RP(G)).

4.10.  PIM Timers

  PIM-SM maintains the following timers, as discussed in Section 4.1.
  All timers are countdown timers; they are set to a value and count
  down to zero, at which point they typically trigger an action.  Of
  course they can just as easily be implemented as count-up timers,
  where the absolute expiry time is stored and compared against a
  real-time clock, but the language in this specification assumes that
  they count downwards to zero.

  Global Timers

  Per interface (I):

       Hello Timer: HT(I)

       Per neighbor (N):

            Neighbor Liveness Timer: NLT(N,I)

       Per active RP (RP):

            (*,*,RP) Join Expiry Timer: ET(*,*,RP,I)

            (*,*,RP) Prune-Pending Timer: PPT(*,*,RP,I)

       Per Group (G):

            (*,G) Join Expiry Timer: ET(*,G,I)




Fenner, et al.              Standards Track                   [Page 128]

RFC 4601                  PIM-SM Specification               August 2006


            (*,G) Prune-Pending Timer: PPT(*,G,I)

            (*,G) Assert Timer: AT(*,G,I)

            Per Source (S):

                 (S,G) Join Expiry Timer: ET(S,G,I)

                 (S,G) Prune-Pending Timer: PPT(S,G,I)

                 (S,G) Assert Timer: AT(S,G,I)

                 (S,G,rpt) Prune Expiry Timer: ET(S,G,rpt,I)

                 (S,G,rpt) Prune-Pending Timer: PPT(S,G,rpt,I)

  Per active RP (RP):

       (*,*,RP) Upstream Join Timer: JT(*,*,RP)

  Per Group (G):

       (*,G) Upstream Join Timer: JT(*,G)

       Per Source (S):

            (S,G) Upstream Join Timer: JT(S,G)

            (S,G) Keepalive Timer: KAT(S,G)

            (S,G,rpt) Upstream Override Timer: OT(S,G,rpt)

  At the DRs or relevant Assert Winners only:

       Per Source,Group pair (S,G):

            Register-Stop Timer: RST(S,G)

4.11.  Timer Values

  When timers are started or restarted, they are set to default values.
  This section summarizes those default values.

  Note that protocol events or configuration may change the default
  value of a timer on a specific interface.  When timers are
  initialized in this document, the value specific to the interface in
  context must be used.




Fenner, et al.              Standards Track                   [Page 129]

RFC 4601                  PIM-SM Specification               August 2006


  Some of the timers listed below (Prune-Pending, Upstream Join,
  Upstream Override) can be set to values that depend on the settings
  of the Propagation_Delay and Override_Interval of the corresponding
  interface.  The default values for these are given below.

  Variable Name: Propagation_Delay(I)

+-------------------------------+--------------+----------------------+
|  Value Name                   |  Value       |  Explanation         |
+-------------------------------+--------------+----------------------+
|  Propagation_delay_default    |  0.5 secs    |  Expected            |
|                               |              |  propagation delay   |
|                               |              |  over the local      |
|                               |              |  link.               |
+-------------------------------+--------------+----------------------+

  The default value of the Propagation_delay_default is chosen to be
  relatively large to provide compatibility with older PIM
  implementations.

  Variable Name: Override_Interval(I)

+--------------------------+-----------------+-------------------------+
|  Value Name              |    Value        |    Explanation          |
+--------------------------+-----------------+-------------------------+
|  t_override_default      |    2.5 secs     |    Default delay        |
|                          |                 |    interval over        |
|                          |                 |    which to randomize   |
|                          |                 |    when scheduling a    |
|                          |                 |    delayed Join         |
|                          |                 |    message.             |
+--------------------------+-----------------+-------------------------+

  Timer Name: Hello Timer (HT(I))

+---------------------+--------+---------------------------------------+
|Value Name           | Value  | Explanation                           |
+---------------------+--------+---------------------------------------+
|Hello_Period         | 30 secs| Periodic interval for Hello messages. |
+---------------------+--------+---------------------------------------+
|Triggered_Hello_Delay| 5 secs | Randomized interval for initial Hello |
|                     |        | message on bootup or triggered Hello  |
|                     |        | message to a rebooting neighbor.      |
+---------------------+--------+---------------------------------------+







Fenner, et al.              Standards Track                   [Page 130]

RFC 4601                  PIM-SM Specification               August 2006


  At system power-up, the timer is initialized to rand(0,
  Triggered_Hello_Delay) to prevent synchronization.  When a new or
  rebooting neighbor is detected, a responding Hello is sent within
  rand(0, Triggered_Hello_Delay).

  Timer Name: Neighbor Liveness Timer (NLT(N,I))

+--------------------------+----------------------+--------------------+
| Value Name               |  Value               |  Explanation       |
+--------------------------+----------------------+--------------------+
| Default_Hello_Holdtime   |  3.5 * Hello_Period  |  Default holdtime  |
|                          |                      |  to keep neighbor  |
|                          |                      |  state alive       |
+--------------------------+----------------------+--------------------+
| Hello_Holdtime           |  from message        |  Holdtime from     |
|                          |                      |  Hello Message     |
|                          |                      |  Holdtime option.  |
+--------------------------+----------------------+--------------------+

  The Holdtime in a Hello Message should be set to (3.5 *
  Hello_Period), giving a default value of 105 seconds.

  Timer Names: Expiry Timer (ET(*,*,RP,I), ET(*,G,I), ET(S,G,I),
  ET(S,G,rpt,I))

+----------------+----------------+------------------------------------+
| Value Name     |  Value         |  Explanation                       |
+----------------+----------------+------------------------------------+
| J/P_HoldTime   |  from message  |  Holdtime from Join/Prune Message  |
+----------------+----------------+------------------------------------+

  See details of JT(*,G) for the Holdtime that is included in
  Join/Prune Messages.


















Fenner, et al.              Standards Track                   [Page 131]

RFC 4601                  PIM-SM Specification               August 2006


  Timer Names: Prune-Pending Timer (PPT(*,*,RP,I), PPT(*,G,I),
  PPT(S,G,I), PPT(S,G,rpt,I))

+--------------------------+---------------------+---------------------+
|Value Name                | Value               | Explanation         |
+--------------------------+---------------------+---------------------+
|J/P_Override_Interval(I)  | Default:            | Short period after  |
|                          | Effective_          | a join or prune to  |
|                          | Propagation_        | allow other         |
|                          | Delay(I) +          | routers on the LAN  |
|                          | EffectiveOverride_  | to override the     |
|                          | Interval(I)         | join or prune       |
+--------------------------+---------------------+---------------------+

  Note that both the Effective_Propagation_Delay(I) and the
  Effective_Override_Interval(I) are interface-specific values that may
  change when Hello messages are received (see Section 4.3.3).

  Timer Names: Assert Timer (AT(*,G,I), AT(S,G,I))

+---------------------------+---------------------+--------------------+
| Value Name                | Value               | Explanation        |
+---------------------------+---------------------+--------------------+
| Assert_Override_Interval  | Default: 3 secs     | Short interval     |
|                           |                     | before an assert   |
|                           |                     | times out where    |
|                           |                     | the assert winner  |
|                           |                     | resends an Assert  |
|                           |                     | message            |
+---------------------------+---------------------+--------------------+
| Assert_Time               | Default: 180 secs   | Period after last  |
|                           |                     | assert before      |
|                           |                     | assert state is    |
|                           |                     | timed out          |
+---------------------------+---------------------+--------------------+

  Note that for historical reasons, the Assert message lacks a Holdtime
  field.  Thus, changing the Assert Time from the default value is not
  recommended.












Fenner, et al.              Standards Track                   [Page 132]

RFC 4601                  PIM-SM Specification               August 2006


  Timer Names: Upstream Join Timer (JT(*,*,RP), JT(*,G), JT(S,G))

+-------------+--------------------+-----------------------------------+
|Value Name   | Value              | Explanation                       |
+-------------+--------------------+-----------------------------------+
|t_periodic   | Default: 60 secs   | Period between Join/Prune Messages|
+-------------+--------------------+-----------------------------------+
|t_suppressed | rand(1.1 *         | Suppression period when someone   |
|             | t_periodic, 1.4 *  | else sends a J/P message so we    |
|             | t_periodic) when   | don't need to do so.              |
|             | Suppression_       |                                   |
|             | Enabled(I) is      |                                   |
|             | true, 0 otherwise  |                                   |
+-------------+--------------------+-----------------------------------+
|t_override   | rand(0, Effective_ | Randomized delay to prevent       |
|             | Override_          | response implosion when sending a |
|             | Interval(I))       | join message to override someone  |
|             |                    | else's Prune message.             |
+-------------+--------------------+-----------------------------------+

  t_periodic may be set to take into account such things as the
  configured bandwidth and expected average number of multicast route
  entries for the attached network or link (e.g., the period would be
  longer for lower-speed links, or for routers in the center of the
  network that expect to have a larger number of entries).  If the
  Join/Prune-Period is modified during operation, these changes should
  be made relatively infrequently, and the router should continue to
  refresh at its previous Join/Prune-Period for at least Join/Prune-
  Holdtime, in order to allow the upstream router to adapt.

  The holdtime specified in a Join/Prune message should be set to (3.5
  * t_periodic).

  t_override depends on the Effective_Override_Interval of the upstream
  interface, which may change when Hello messages are received.

  t_suppressed depends on the Suppression State of the upstream
  interface (Section 4.3.3) and becomes zero when suppression is
  disabled.












Fenner, et al.              Standards Track                   [Page 133]

RFC 4601                  PIM-SM Specification               August 2006


  Timer Name: Upstream Override Timer (OT(S,G,rpt))

+---------------+--------------------------+---------------------------+
| Value Name    | Value                    |  Explanation              |
+---------------+--------------------------+---------------------------+
| t_override    | see Upstream Join Timer  |  see Upstream Join Timer  |
+---------------+--------------------------+---------------------------+

  The upstream Override Timer is only ever set to t_override; this
  value is defined in the section on Upstream Join Timers.

  Timer Name: Keepalive Timer (KAT(S,G))

+-----------------------+-----------------------+----------------------+
| Value Name            |  Value                |  Explanation         |
+-----------------------+-----------------------+----------------------+
| Keepalive_Period      |  Default: 210 secs    |  Period after last   |
|                       |                       |  (S,G) data packet   |
|                       |                       |  during which (S,G)  |
|                       |                       |  Join state will be  |
|                       |                       |  maintained even in  |
|                       |                       |  the absence of      |
|                       |                       |  (S,G) Join          |
|                       |                       |  messages.           |
+-----------------------+-----------------------+----------------------+
| RP_Keepalive_Period   |  ( 3 * Register_      |  As                  |
|                       |  Suppression_Time )   |  Keepalive_Period,   |
|                       |  + Register_          |  but at the RP when  |
|                       |  Probe_Time           |  a Register-Stop is  |
|                       |                       |  sent.               |
+-----------------------+-----------------------+----------------------+

  The normal keepalive period for the KAT(S,G) defaults to 210 seconds.
  However, at the RP, the keepalive period must be at least the
  Register_Suppression_Time, or the RP may time out the (S,G) state
  before the next Null-Register arrives.  Thus, the KAT(S,G) is set to
  max(Keepalive_Period, RP_Keepalive_Period) when a Register-Stop is
  sent.













Fenner, et al.              Standards Track                   [Page 134]

RFC 4601                  PIM-SM Specification               August 2006


  Timer Name: Register-Stop Timer (RST(S,G))

+---------------------------+--------------------+---------------------+
|Value Name                 | Value              | Explanation         |
+---------------------------+--------------------+---------------------+
|Register_Suppression_Time  | Default: 60 secs   | Period during       |
|                           |                    | which a DR stops    |
|                           |                    | sending Register-   |
|                           |                    | encapsulated data   |
|                           |                    | to the RP after     |
|                           |                    | receiving a         |
|                           |                    | Register-Stop       |
|                           |                    | message.            |
+---------------------------+--------------------+---------------------+
|Register_Probe_Time        | Default: 5 secs    | Time before RST     |
|                           |                    | expires when a DR   |
|                           |                    | may send a Null-    |
|                           |                    | Register to the RP  |
|                           |                    | to cause it to      |
|                           |                    | resend a Register-  |
|                           |                    | Stop message.       |
+---------------------------+--------------------+---------------------+

  If the Register_Suppression_Time or the Register_Probe_Time are
  configured to values other than the defaults, it MUST be ensured that
  the value of the Register_Probe_Time is less than half the value of
  the Register_Suppression_Time to prevent a possible negative value in
  the setting of the Register-Stop Timer.

5.  IANA Considerations

5.1.  PIM Address Family

  The PIM Address Family field was chosen to be 8 bits as a tradeoff
  between packet format and use of the IANA assigned numbers.  Because
  when the PIM packet format was designed only 15 values were assigned
  for Address Families, and large numbers of new Address Family values
  were not envisioned, 8 bits seemed large enough.  However, the IANA
  assigns Address Families in a 16-bit field.  Therefore, the PIM
  Address Family is allocated as follows:

    Values 0 through 127 are designated to have the same meaning as
    IANA-assigned Address Family Numbers [7].

    Values 128 through 250 are designated to be assigned for PIM by the
    IANA based upon IESG Approval, as defined in [9].

    Values 251 through 255 are designated for Private Use, as defined



Fenner, et al.              Standards Track                   [Page 135]

RFC 4601                  PIM-SM Specification               August 2006


    in [9].

5.2.  PIM Hello Options

  Values 17 through 65000 are to be assigned by the IANA.  Since the
  space is large, they may be assigned as First Come First Served as
  defined in [9].  Such assignments are valid for one year and may be
  renewed.  Permanent assignments require a specification (see
  "Specification Required" in [9].)

6.  Security Considerations

  This section describes various possible security concerns related to
  the PIM-SM protocol, including a description of how to use IPsec to
  secure the protocol.  The reader is referred to [15] and [16] for
  further discussion of PIM-SM and multicast security.  The IPsec
  authentication header [8] MAY be used to provide data integrity
  protection and groupwise data origin authentication of PIM protocol
  messages.  Authentication of PIM messages can protect against
  unwanted behaviors caused by unauthorized or altered PIM messages.

6.1.  Attacks Based on Forged Messages

  The extent of possible damage depends on the type of counterfeit
  messages accepted.  We next consider the impact of possible
  forgeries, including forged link-local (Join/Prune, Hello, and
  Assert) and forged unicast (Register and Register-Stop) messages.

6.1.1.  Forged Link-Local Messages

  Join/Prune, Hello, and Assert messages are all sent to the link-local
  ALL_PIM_ROUTERS multicast addresses and thus are not forwarded by a
  compliant router.  A forged message of this type can only reach a LAN
  if it was sent by a local host or if it was allowed onto the LAN by a
  compromised or non-compliant router.

  1.  A forged Join/Prune message can cause multicast traffic to be
      delivered to links where there are no legitimate requesters,
      potentially wasting bandwidth on that link.  A forged leave
      message on a multi-access LAN is generally not a significant
      attack in PIM, because any legitimately joined router on the LAN
      would override the leave with a join before the upstream router
      stops forwarding data to the LAN.

  2.  By forging a Hello message, an unauthorized router can cause
      itself to be elected as the designated router on a LAN.  The
      designated router on a LAN is (in the absence of asserts)
      responsible for forwarding traffic to that LAN on behalf of any



Fenner, et al.              Standards Track                   [Page 136]

RFC 4601                  PIM-SM Specification               August 2006


      local members.  The designated router is also responsible for
      register-encapsulating to the RP any packets that are originated
      by hosts on the LAN.  Thus, the ability of local hosts to send
      and receive multicast traffic may be compromised by a forged
      Hello message.

  3.  By forging an Assert message on a multi-access LAN, an attacker
      could cause the legitimate designated forwarder to stop
      forwarding traffic to the LAN.  Such a forgery would prevent any
      hosts downstream of that LAN from receiving traffic.

6.1.2.  Forged Unicast Messages

  Register messages and Register-Stop messages are forwarded by
  intermediate routers to their destination using normal IP forwarding.
  Without data origin authentication, an attacker who is located
  anywhere in the network may be able to forge a Register or Register-
  Stop message.  We consider the effect of a forgery of each of these
  messages next.

  1.  By forging a Register message, an attacker can cause the RP to
      inject forged traffic onto the shared multicast tree.

  2.  By forging a Register-stop message, an attacker can prevent a
      legitimate DR from Registering packets to the RP.  This can
      prevent local hosts on that LAN from sending multicast packets.

  The above two PIM messages are not changed by intermediate routers
  and need only be examined by the intended receiver.  Thus, these
  messages can be authenticated end-to-end, using AH.  Attacks on
  Register and Register-Stop messages do not apply to a PIM-SSM-only
  implementation, as these messages are not required for PIM-SSM.

6.2.  Non-Cryptographic Authentication Mechanisms

  A PIM router SHOULD provide an option to limit the set of neighbors
  from which it will accept Join/Prune, Assert, and Hello messages.
  Either static configuration of IP addresses or an IPsec security
  association may be used.  Furthermore, a PIM router SHOULD NOT accept
  protocol messages from a router from which it has not yet received a
  valid Hello message.

  A Designated Router MUST NOT register-encapsulate a packet and send
  it to the RP unless the source address of the packet is a legal
  address for the subnet on which the packet was received.  Similarly,
  a Designated Router SHOULD NOT accept a Register-Stop packet whose IP
  source address is not a valid RP address for the local domain.




Fenner, et al.              Standards Track                   [Page 137]

RFC 4601                  PIM-SM Specification               August 2006


  An implementation SHOULD provide a mechanism to allow an RP to
  restrict the range of source addresses from which it accepts
  Register-encapsulated packets.

  All options that restrict the range of addresses from which packets
  are accepted MUST default to allowing all packets.

6.3.  Authentication Using IPsec

  The IPsec [8] transport mode using the Authentication Header (AH) is
  the recommended method to prevent the above attacks against PIM.  The
  specific AH authentication algorithm and parameters, including the
  choice of authentication algorithm and the choice of key, are
  configured by the network administrator.  When IPsec authentication
  is used, a PIM router should reject (drop without processing) any
  unauthorized PIM protocol messages.

  To use IPsec, the administrator of a PIM network configures each PIM
  router with one or more security associations (SAs) and associated
  Security Parameter Indexes (SPIs) that are used by senders to
  authenticate PIM protocol messages and are used by receivers to
  authenticate received PIM protocol messages.  This document does not
  describe protocols for establishing SAs.  It assumes that manual
  configuration of SAs is performed, but it does not preclude the use
  of a negotiation protocol such as the Internet Key Exchange [14] to
  establish SAs.

  IPsec [8] provides protection against replayed unicast and multicast
  messages.  The anti-replay option for IPsec SHOULD be enabled on all
  SAs.

  The following sections describe the SAs required to protect PIM
  protocol messages.

6.3.1.  Protecting Link-Local Multicast Messages

  The network administrator defines an SA and SPI that are to be used
  to authenticate all link-local PIM protocol messages (Hello,
  Join/Prune, and Assert) on each link in a PIM domain.

  IPsec [8] allows (but does not require) different Security Policy
  Databases (SPD) for each router interface.  If available, it may be
  desirable to configure the Security Policy Database at a PIM router
  such that all incoming and outgoing Join/Prune, Assert, and Hello
  packets use a different SA for each incoming or outgoing interface.






Fenner, et al.              Standards Track                   [Page 138]

RFC 4601                  PIM-SM Specification               August 2006


6.3.2.  Protecting Unicast Messages

  IPsec can also be used to provide data origin authentication and data
  integrity protection for the Register and Register-Stop unicast
  messages.

6.3.2.1.  Register Messages

  The Security Policy Database at every PIM router is configured to
  select an SA to use when sending PIM Register packets to each
  rendezvous point.

  In the most general mode of operation, the Security Policy Database
  at each DR is configured to select a unique SA and SPI for traffic
  sent to each RP.  This allows each DR to have a different
  authentication algorithm and key to talk to the RP.  However, this
  creates a daunting key management and distribution problem for the
  network administrator.  Therefore, it may be preferable in PIM
  domains where all Designated Routers are under a single
  administrative control that the same authentication algorithm
  parameters (including the key) be used for all Registered packets in
  a domain, regardless of who are the RP and the DR.

  In this "single shared key" mode of operation, the network
  administrator must choose an SPI for each DR that will be used to
  send it PIM protocol packets.  The Security Policy Database at every
  DR is configured to select an SA (including the authentication
  algorithm, authentication parameters, and this SPI) when sending
  Register messages to this RP.

  By using a single authentication algorithm and associated parameters,
  the key distribution problem is simplified.  Note, however, that this
  method has the property that, in order to change the authentication
  method or authentication key used, all routers in the domain must be
  updated.

6.3.2.2.  Register-Stop Messages

  Similarly, the Security Policy Database at each Rendezvous Point
  should be configured to choose an SA to use when sending Register-
  Stop messages.  Because Register-Stop messages are unicast to the
  destination DR, a different SA and a potentially unique SPI are
  required for each DR.

  In order to simplify the management problem, it may be acceptable to
  use the same authentication algorithm and authentication parameters,
  regardless of the sending RP and regardless of the destination DR.
  Although a unique SA is needed for each DR, the same authentication



Fenner, et al.              Standards Track                   [Page 139]

RFC 4601                  PIM-SM Specification               August 2006


  algorithm and authentication algorithm parameters (secret key) can be
  shared by all DRs and by all RPs.

6.4.  Denial-of-Service Attacks

  There are a number of possible denial-of-service attacks against PIM
  that can be caused by generating false PIM protocol messages or even
  by generating data false traffic.  Authenticating PIM protocol
  traffic prevents some, but not all, of these attacks.  Three of the
  possible attacks include:

  -  Sending packets to many different group addresses quickly can be a
     denial-of-service attack in and of itself.  This will cause many
     register-encapsulated packets, loading the DR, the RP, and the
     routers between the DR and the RP.

  -  Forging Join messages can cause a multicast tree to get set up.  A
     large number of forged joins can consume router resources and
     result in denial of service.

  -  Forging a (*,*,RP) join presents a possibility for a denial-of-
     service attack by causing all traffic in the domain to flow to the
     PMBR issuing the join.  (*,*,RP) behavior is included here
     primarily for backwards compatibility with prior revisions of the
     spec.  However, the implementation of (*,*,RP) and PMBR is
     optional.  When using (*,*,RP), the security concerns should be
     carefully considered.

7.  Acknowledgements

  PIM-SM was designed over many years by a large group of people,
  including ideas, comments, and corrections from Deborah Estrin, Dino
  Farinacci, Ahmed Helmy, David Thaler, Steve Deering, Van Jacobson, C.
  Liu, Puneet Sharma, Liming Wei, Tom Pusateri, Tony Ballardie, Scott
  Brim, Jon Crowcroft, Paul Francis, Joel Halpern, Horst Hodel, Polly
  Huang, Stephen Ostrowski, Lixia Zhang, Girish Chandranmenon, Brian
  Haberman, Hal Sandick, Mike Mroz, Garry Kump, Pavlin Radoslavov, Mike
  Davison, James Huang, Christopher Thomas Brown, and James Lingard.

  Thanks are due to the American Licorice Company, for its obscure but
  possibly essential role in the creation of this document.










Fenner, et al.              Standards Track                   [Page 140]

RFC 4601                  PIM-SM Specification               August 2006


8.  Normative References

  [1]  Bradner, S., "Key words for use in RFCs to Indicate Requirement
       Levels", BCP 14, RFC 2119, March 1997.

  [2]  Cain, B., Deering, S., Kouvelas, I., Fenner, B., and A.
       Thyagarajan, "Internet Group Management Protocol, Version 3",
       RFC 3376, October 2002.

  [3]  Deering, S., "Host extensions for IP multicasting", STD 5, RFC
       1112, August 1989.

  [4]  Deering, S., Fenner, W., and B. Haberman, "Multicast Listener
       Discovery (MLD) for IPv6", RFC 2710, October 1999.

  [5]  Deering, S. and R. Hinden, "Internet Protocol, Version 6 (IPv6)
       Specification", RFC 2460, December 1998.

  [6]  Holbrook, H. and B. Cain, "Source-Specific Multicast for IP",
       RFC 4507, August 2006.

  [7]  IANA, "Address Family Numbers",
       <http://www.iana.org/assignments/address-family-numbers>.

  [8]  Kent, S. and K. Seo, "Security Architecture for the Internet
       Protocol", RFC 4301, December 2005.

  [9]  Narten, T. and H. Alvestrand, "Guidelines for Writing an IANA
       Considerations Section in RFCs", BCP 26, RFC 2434, October 1998.

9.  Informative References

  [10] Bates, T., Rekhter, Y., Chandra, R., and D. Katz, "Multiprotocol
       Extensions for BGP-4", RFC 2858, June 2000.

  [11] Bhaskar, N., Gall, A., Lingard, J., and S. Venaas, "Bootstrap
       Router (BSR) Mechanism for PIM Sparse Mode", Work in Progress,
       May 2006.

  [12] Black, D., "Differentiated Services and Tunnels", RFC 2983,
       October 2000.

  [13] Handley, M., Kouvelas, I., Speakman, T., and L. Vicisano, "Bi-
       directional Protocol Independent Multicast", Work in Progress,
       October 2005.

  [14] Kaufman, C., "Internet Key Exchange (IKEv2) Protocol", RFC 4306,
       December 2005.



Fenner, et al.              Standards Track                   [Page 141]

RFC 4601                  PIM-SM Specification               August 2006


  [15] Savola, P., Lehtonen, R., and D. Meyer, "Protocol Independent
       Multicast - Sparse Mode (PIM-SM) Multicast Routing Security
       Issues and Enhancements", RFC 4609, August 2006.

  [16] Savola, P. and J. Lingard, "Last-hop Threats to Protocol
       Independent Multicast (PIM)", Work in Progress, January 2005.

  [17] Savola, P. and B. Haberman, "Embedding the Rendezvous Point (RP)
       Address in an IPv6 Multicast Address", RFC 3956, November 2004.

  [18] Thaler, D., "Interoperability Rules for Multicast Routing
       Protocols", RFC 2715, October 1999.







































Fenner, et al.              Standards Track                   [Page 142]

RFC 4601                  PIM-SM Specification               August 2006


Appendix A.  PIM Multicast Border Router Behavior

  In some cases, PIM-SM domains will interconnect with non-PIM
  multicast domains.  In these cases, the border routers of the PIM
  domain speak PIM-SM on some interfaces and speak other multicast
  routing protocols on other interfaces.  Such routers are termed PIM
  Multicast Border Routers (PMBRs).  In general, RFC 2715 [18] provides
  rules for interoperability between different multicast routing
  protocols.  In this appendix, we specify how PMBRs differ from
  regular PIM-SM routers.

  From the point of view of PIM-SM, a PMBR has two tasks:

  o To ensure that traffic from sources outside the PIM-SM domain
    reaches receivers inside the domain.

  o To ensure that traffic from sources inside the PIM-SM domain
    reaches receivers outside the domain.

  We note that multiple PIM-SM domains are sometimes connected together
  using protocols such as Multicast Source Discovery Protocol (MSDP),
  which provides information about active external sources, but does
  not follow RFC 2715.  In such cases, the domains are not connected
  via PMBRs because Join(S,G) messages traverse the border between
  domains.  A PMBR is required when no PIM messages can traverse the
  border.

A.1.  Sources External to the PIM-SM Domain

  A PMBR needs to ensure that traffic from multicast sources external
  to the PIM-SM domain reaches receivers inside the domain.  The PMBR
  will follow the rules in RFC 2715, such that traffic from external
  sources reaches the PMBR itself.

  According to RFC 2715, the PIM-SM component of the PMBR will receive
  an (S,G) Creation event when data from an (S,G) data packet from an
  external source first reaches the PMBR.  If RPF_interface(S) is an
  interface in the PIM-SM domain, the packet cannot be originated into
  the PIM domain at this router, and the PIM-SM component of the PMBR
  will not process the packet.  Otherwise, the PMBR will then act
  exactly as if it were the DR for this source (see Section 4.4.1),
  with the following modifications:

  o The Border-bit is set in all PIM Register messages sent for these
    sources.

  o DirectlyConnected(S) is treated as being TRUE for these sources.




Fenner, et al.              Standards Track                   [Page 143]

RFC 4601                  PIM-SM Specification               August 2006


  o The PIM-SM forwarding rule "iif == RPF_interface(S)" is relaxed to
    be TRUE if iif is any interface that is not part of the PIM-SM
    component of the PMBR (see Section 4.2).

A.2.  Sources Internal to the PIM-SM Domain

  A PMBR needs to ensure that traffic from sources inside the PIM-SM
  domain reaches receivers outside the domain.  Using terminology from
  RFC 2715, there are two possible scenarios for this:

  o Another component of the PMBR is a wildcard receiver.  In this
    case, the PIM-SM component of the PMBR must ensure that traffic
    from all internal sources reaches the PMBR until it is informed
    otherwise.

    Note that certain profiles of PIM-SM (e.g., PIM-SSM, PIM-SM with
    Embedded RP) cannot interoperate with a neighboring wildcard
    receiver domain.

  o No other component of the PMBR is a wildcard receiver.  In this
    case the PMBR will receive explicit information as to which groups
    or (source,group) pairs the external domains wish to receive.

  In the former case, the PMBR will need to send a Join(*,*,RP) to all
  the active RPs in the PIM-SM domain.  It may also send a Join(*,*,RP)
  to all the candidate RPs in the PIM-SM domain.  This will cause all
  traffic in the domain to reach the PMBR.  The PMBR may then act as if
  it were a DR with directly connected receivers and trigger the
  transition to a shortest path tree (see Section 4.2.1).

  In the latter case, the PMBR will not need to send Join(*,*,RP)
  messages.  However, the PMBR will still need to act as a DR with
  directly connected receivers on behalf of the external receivers in
  terms of being able to switch to the shortest-path tree for
  internally-reached sources.

  According to RFC 2715, the PIM-SM component of the PMBR may receive a
  number of alerts generated by events in the external routing
  components.  To implement the above behavior, one reasonable way to
  map these alerts into PIM-SM state is as follows:

  o When a PIM-SM component receives an (S,G) Prune alert, it sets
    local_receiver_include(S,G,I) to FALSE for the discard interface.

  o When a PIM-SM component receives a (*,G) Prune alert, it sets
    local_receiver_include(*,G,I) to FALSE for the discard interface.





Fenner, et al.              Standards Track                   [Page 144]

RFC 4601                  PIM-SM Specification               August 2006


  o When a PIM-SM component receives an (S,G) Join alert, it sets
    local_receiver_include(S,G,I) to TRUE for the discard interface.

  o When a PIM-SM component receives a (*,G) Join alert, it sets
    local_receiver_include(*,G,I) to TRUE for the discard interface.

  o When a PIM-SM component receives a (*,*) Join alert, it sets
    DownstreamJPState(*,*,RP,I) to Join state on the discard interface
    for all RPs in the PIM-SM domain.

  o When a PIM-SM component receives a (*,*) Prune alert, it sets
    DownstreamJPState(*,*,RP,I) to NoInfo state on the discard
    interface for all RPs in the PIM-SM domain.

  We refer above to the discard interface because the macros and state
  machines are interface specific, but we need to have PIM state that
  is not associated with any actual PIM-SM interface.  Implementers are
  free to implement this in any reasonable manner.

  Note that these state changes will then cause additional PIM-SM state
  machine transitions in the normal way.

  These rules are, however, not sufficient to allow pruning off the
  (*,*,RP) tree.  Some additional rules provide guidance as to one way
  this may be done:

  o If the PMBR has joined on the (*,*,RP) tree, then it should set
    DownstreamJPState(*,G,I) to JOIN on the discard interface for all
    active groups.

  o If the router receives a (S,G) prune alert, it will need to set
    DownstreamJPState(S,G,rpt,I) to PRUNE on the discard interface.

  o If the router receives a (*,G) prune alert, it will need to set
    DownstreamJPState(S,G,rpt,I) to PRUNE on the discard interface for
    all active sources sending to G.

  The rationale for this is that there is no way in PIM-SM to prune
  traffic off the (*,*,RP) tree, except by Joining the (*,G) tree and
  then pruning each source individually.











Fenner, et al.              Standards Track                   [Page 145]

RFC 4601                  PIM-SM Specification               August 2006


Appendix B.  Index

  Address_List. . . . . . . . . . . . . . . . . . . . . . . . . . .  31
  Assert(*,G) . . . . . . . . . . . . . . . . . . . . . . . . . .27,128
  Assert(S,G) . . . . . . . . . . . . . . . . . . . . . . . . . .27,128
  AssertCancel(*,G) . . . . . . . . . . . . . . . . . . . . . . . 97,99
  AssertCancel(S,G) . . . . . . . . . . . . . . . . . . . . . .80,90,99
  AssertTimer(*,G,I). . . . . . . . . . . . . . . . . . . .16,24,91,132
  AssertTimer(S,G,I). . . . . . . . . . . . . . . . . . . .18,24,84,132
  AssertTrackingDesired(*,G,I). . . . . . . . . . . . . . . . .93,94,96
  AssertTrackingDesired(S,G,I). . . . . . . . . . . . . . . 85,86,87,89
  AssertWinner(*,G,I) . . . . . . . . . . . . . . . .16,22,24,93,97,100
  AssertWinner(S,G,I) . . . . . . . . . . . . . .18,22,24,86,90,100,100
  AssertWinnerMetric(*,G,I) . . . . . . . . . . . . . . . . . 16,97,101
  AssertWinnerMetric(S,G,I) . . . . . . . . . . . . . . . . . 18,90,101
  assert_metric . . . . . . . . . . . . . . . . . . . . . . . . . .  98
  Assert_Override_Interval. . . . . . . . . . . . . . . . . . 90,97,132
  Assert_Time . . . . . . . . . . . . . . . . . . . . . . . . 90,97,132
  AT(*,G,I) . . . . . . . . . . . . . . . . . . . . . .16,24,91,129,132
  AT(S,G,I) . . . . . . . . . . . . . . . . . . . . . .18,24,84,129,132
  CheckSwitchToSpt(S,G) . . . . . . . . . . . . . . . . . . . . . 27,28
  CouldAssert(*,G,I). . . . . . . . . . . . . . . . . . .92,93,94,95,98
  CouldAssert(S,G,I). . . . . . . . . . . . . . . . . 84,86,87,88,89,98
  CouldRegister(S,G). . . . . . . . . . . . . . . . . . . . . . . 39,41
  Default_Hello_Holdtime. . . . . . . . . . . . . . . . . . . . . .  33
  DirectlyConnected(S). . . . . . . . . . . . . . . . . 27,27,29,41,143
  DownstreamJPState(*,*,RP,I) . . . . . . . . . . . . . . . . . .23,145
  DownstreamJPState(*,G,I). . . . . . . . . . . . . . . . . . . . .  23
  DownstreamJPState(S,G,I). . . . . . . . . . . . . . . . . . . . 23,40
  DownstreamJPState(S,G,rpt,I). . . . . . . . . . . . . . . . . . .  23
  DR(I) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  33
  dr_is_better(a,b,I) . . . . . . . . . . . . . . . . . . . . . . 33,33
  DR_Priority . . . . . . . . . . . . . . . . . . . . . . . . .31,32,33
  Effective_Override_Interval(I). . . . . . . . . . . . . . .36,114,132
  Effective_Propagation_Delay(I). . . . . . . . . . . . . . . . .35,132
  ET(*,*,RP,I). . . . . . . . . . . . . . . . . . . . . . 15,46,128,131
  ET(*,G,I) . . . . . . . . . . . . . . . . . . . . . . . 16,50,128,131
  ET(S,G,I) . . . . . . . . . . . . . . . . . . . . . . . 18,53,129,131
  ET(S,G,rpt,I) . . . . . . . . . . . . . . . . . . . .20,57,59,129,131
  GenID . . . . . . . . . . . . . . . . . 15,17,19,31,64,68,70,73,85,93
  Hash_Function . . . . . . . . . . . . . . . . . . . . . . . . .12,105
  Hello_Holdtime. . . . . . . . . . . . . . . . . . . . . . . . .33,131
  Hello_Period. . . . . . . . . . . . . . . . . . . . . . . . . .31,130
  HT(I) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31,130
  IGMP. . . . . . . . . . . . . . . . . . . . . . . . 6,8,17,23,101,105
  immediate_olist(*,*,RP) . . . . . . . . . . . . . . . . . . . . 22,64
  immediate_olist(*,G). . . . . . . . . . . . . . . . . . . . . . 22,68
  immediate_olist(S,G). . . . . . . . . . . . . . . . . . . . .22,40,73



Fenner, et al.              Standards Track                   [Page 146]

RFC 4601                  PIM-SM Specification               August 2006


  infinite_assert_metric(). . . . . . . . . . . . . . . . . . . . .  99
  inherited_olist(S,G). . . . . . . . . . . . . . 22,27,40,43,73,86,108
  inherited_olist(S,G,rpt). . . . . . . . . . . . . . 22,27,29,76,79,81
  I_Am_Assert_Loser(*,G,I). . . . . . . . . . . . . . . . . . . . .  24
  I_Am_Assert_Loser(S,G,I). . . . . . . . . . . . . . . . . . . . .  24
  I_am_DR(I). . . . . . . . . . . . . . . . . . . . . . .22,33,41,86,93
  I_am_RP(G). . . . . . . . . . . . . . . . . . . . . . . . . . . 43,44
  J/P_Holdtime. . . . . . . . . . . . .47,51,55,59,65,69,74,121,131,133
  J/P_Override_Interval(I). . . . . . . . . . . . . 48,51,55,59,121,132
  JoinDesired(*,*,RP) . . . . . . . . . . . . . . . . . . . . . . 64,79
  JoinDesired(*,G). . . . . . . . . . . . . . . . . . . .17,68,79,86,97
  JoinDesired(S,G). . . . . . . . . . . . . . . . . . 19,29,73,86,88,90
  joins(*,*,RP(G)). . . . . . . . . . . . . . . . . . . . . . . . .  22
  joins(*,*,RP) . . . . . . . . . . . . . . . . . . . . . . 22,23,86,93
  joins(*,G). . . . . . . . . . . . . . . . . . . . . . . . 22,23,86,93
  joins(S,G). . . . . . . . . . . . . . . . . . . . . . . . . .22,23,86
  JT(*,*,RP). . . . . . . . . . . . . . . . . . . . . . . 15,62,129,133
  JT(*,G) . . . . . . . . . . . . . . . . . . . . . . . . 16,67,129,133
  JT(S,G) . . . . . . . . . . . . . . . . . . . . . . . . 18,71,129,133
  KAT(S,G). . . . . . . . . . . . . . .18,26,27,28,41,43,73,108,129,134
  KeepaliveTimer(S,G) . . . . . . . 18,26,27,27,28,41,43,73,108,129,134
  Keepalive_Period. . . . . . . . . . . . . . . . . . . . . . . .27,134
  lan_delay_enabled(I). . . . . . . . . . . . . . . . . . . . . . 35,36
  LAN_Prune_Delay . . . . . . . . . . . . . . . . . . . . . . . . .  31
  local_receiver_exclude(S,G,I) . . . . . . . . . . . . . . . . . .  23
  local_receiver_include(*,G,I) . . . . . . . . . . . . . . . 23,93,144
  local_receiver_include(S,G,I) . . . . . . . . . . . . . . . . . 23,86
  local_receiver_include(S,G,I).. . . . . . . . . . . . . . . . . . 144
  lost_assert(*,G). . . . . . . . . . . . . . . . . . . . . . .22,24,86
  lost_assert(*,G,I). . . . . . . . . . . . . . . . . . . . . 22,24,100
  lost_assert(S,G). . . . . . . . . . . . . . . . . . . . . . . . 22,24
  lost_assert(S,G,I). . . . . . . . . . . . . . . . . . . . . 22,24,100
  lost_assert(S,G,rpt). . . . . . . . . . . . . . . . . . . . . . .  24
  lost_assert(S,G,rpt,I). . . . . . . . . . . . . . . . . . . . .24,100
  MBGP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6,7
  MFIB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6,13
  MLD . . . . . . . . . . . . . . . . . . . . . . . . 6,8,17,23,101,105
  MRIB. . . . . . . . . . . . . .6,7,11,15,19,25,62,66,66,75,98,103,128
  MRIB.next_hop(host) . . . . . . . . . . . . . . . . . . . 24,25,62,64
  my_assert_metric(*,G,I) . . . . . . . . . . . . . . . . . . . . .  94
  my_assert_metric(S,G,I) . . . . . . . . . . . . . . . . . 85,89,92,98
  NBR(Interface,IP_address) . . . . . . . . . . . . . . .25,37,62,64,66
  NLT(N,I). . . . . . . . . . . . . . . . . . . . . . . . 14,33,128,131
  OT(S,G,rpt) . . . . . . . . . . . . . . . . . . . . . . 20,77,129,134
  Override_Interval(I). . . . . . . . . . . . . 14,31,34,36,114,130,132
  packet_arrives_on_rp_tunnel(pkt). . . . . . . . . . . . . . . . .  43
  pim_exclude(S,G). . . . . . . . . . . . . . . . . . . . . 22,22,28,86
  pim_include(*,G). . . . . . . . . . . . . . . . . . 17,22,22,28,86,93



Fenner, et al.              Standards Track                   [Page 147]

RFC 4601                  PIM-SM Specification               August 2006


  pim_include(S,G). . . . . . . . . . . . . . . . . . . .19,22,22,28,86
  PPT(*,*,RP,I) . . . . . . . . . . . . . . . . . . . . . 15,46,128,132
  PPT(*,G,I). . . . . . . . . . . . . . . . . . . . . . . 16,50,129,132
  PPT(S,G,I). . . . . . . . . . . . . . . . . . . . . . . 18,53,129,132
  PPT(S,G,rpt,I). . . . . . . . . . . . . . . . . . . .20,57,59,129,132
  Propagation_Delay(I). . . . . . . . . . . . . . . . . . 31,35,130,132
  Propagation_delay_default . . . . . . . . . . . . . . . . . . .35,130
  PruneDesired(S,G,rpt) . . . . . . . . . . . . . . . . . . 79,80,88,90
  prunes(S,G,rpt) . . . . . . . . . . . . . . . . . . . . . . .22,23,86
  Register-Stop(*,G). . . . . . . . . . . . . . . . . . . . . . . .  42
  Register-Stop(S,G). . . . . . . . . . . . . . . . . . . . . . . .  43
  Register-StopTimer(S,G) . . . . . . . . . . . . . . . . 38,39,129,135
  Register_Probe_Time . . . . . . . . . . . . . . . . . . . . 39,44,135
  Register_Suppression_Time . . . . . . . . . . . . . . . . . 39,44,135
  RP(G) . . . . . . . . . . . . 5,22,24,40,43,49,68,77,86,93,99,102,128
  RPF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   6
  RPF'(*,G) . . . . . . . . . . . . . . . . 24,29,67,68,70,76,79,97,101
  RPF'(S,G) . . . . . . . . . . . . . . . . . . . 25,29,71,76,79,90,101
  RPF'(S,G,rpt) . . . . . . . . . . . . . . . . . . . . . .24,76,79,102
  RPF_interface . . . . . . . . . . . . . . . . . . . . . . . . . .  93
  RPF_interface(host) . . . . . .24,27,29,41,68,69,74,86,93,100,108,143
  RPTJoinDesired(G) . . . . . . . . . . . . . . . . . . . . . .79,81,93
  rpt_assert_metric(G,I). . . . . . . . . . . . . . . . . . . .96,97,99
  RST(S,G). . . . . . . . . . . . . . . . . . . . . . . . 38,39,129,135
  SPTbit(S,G) . . . . . . . 19,27,29,43,53,74,76,79,86,86,89,90,100,108
  spt_assert_metric(S,I). . . . . . . . . . . . . . . . . . . 90,98,100
  SSM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10,106
  Suppression_Enabled(I). . . . . . . . . . . . . . . . . . . . .36,133
  SwitchToSptDesired(S,G) . . . . . . . . . . . . . . . . . . .28,28,43
  TIB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6,13,26
  Triggered_Hello_Delay . . . . . . . . . . . . . . . . . . . 31,32,130
  t_joinsuppress. . . . . . . . . . . . . . . . . . . . .64,65,68,69,74
  t_override. . . . . . . . . . . . . . . . . . . . 64,68,73,78,133,134
  t_override_default. . . . . . . . . . . . . . . . . . . . . . .36,130
  t_periodic. . . . . . . . . . . . . . . . . . . . . . . .64,68,73,133
  t_suppressed. . . . . . . . . . . . . . . . . . . .36,65,69,73,74,133
  Update_SPTbit(S,G,iif). . . . . . . . . . . . . . . . . . . . . 27,29
  UpstreamJPState(S,G). . . . . . . . . . . . . . . . . . . . . .27,108













Fenner, et al.              Standards Track                   [Page 148]

RFC 4601                  PIM-SM Specification               August 2006


Authors' Addresses

  Bill Fenner
  AT&T Labs - Research
  1 River Oaks Place
  San Jose, CA 95134

  EMail: [email protected]


  Mark Handley
  Department of Computer Science
  University College London
  Gower Street
  London WC1E 6BT
  United Kingdom

  EMail: [email protected]


  Hugh Holbrook
  Arastra, Inc.
  P.O. Box 10905
  Palo Alto, CA 94303

  EMail: [email protected]


  Isidor Kouvelas
  Cisco Systems
  170 W. Tasman Drive
  San Jose, CA 95134

  EMail: [email protected]

















Fenner, et al.              Standards Track                   [Page 149]

RFC 4601                  PIM-SM Specification               August 2006


Full Copyright Statement

  Copyright (C) The Internet Society (2006).

  This document is subject to the rights, licenses and restrictions
  contained in BCP 78, and except as set forth therein, the authors
  retain all their rights.

  This document and the information contained herein are provided on an
  "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
  OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
  ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
  INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
  INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
  WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

  The IETF takes no position regarding the validity or scope of any
  Intellectual Property Rights or other rights that might be claimed to
  pertain to the implementation or use of the technology described in
  this document or the extent to which any license under such rights
  might or might not be available; nor does it represent that it has
  made any independent effort to identify any such rights.  Information
  on the procedures with respect to rights in RFC documents can be
  found in BCP 78 and BCP 79.

  Copies of IPR disclosures made to the IETF Secretariat and any
  assurances of licenses to be made available, or the result of an
  attempt made to obtain a general license or permission for the use of
  such proprietary rights by implementers or users of this
  specification can be obtained from the IETF on-line IPR repository at
  http://www.ietf.org/ipr.

  The IETF invites any interested party to bring to its attention any
  copyrights, patents or patent applications, or other proprietary
  rights that may cover technology that may be required to implement
  this standard.  Please address the information to the IETF at
  [email protected].

Acknowledgement

  Funding for the RFC Editor function is provided by the IETF
  Administrative Support Activity (IASA).







Fenner, et al.              Standards Track                   [Page 150]