Network Working Group                                       M. Boesgaard
Request for Comments: 4503                                 M. Vesterager
Category: Informational                                        E. Zenner
                                                           Cryptico A/S
                                                               May 2006


         A Description of the Rabbit Stream Cipher Algorithm

Status of This Memo

  This memo provides information for the Internet community.  It does
  not specify an Internet standard of any kind.  Distribution of this
  memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (2006).

Abstract

  This document describes the encryption algorithm Rabbit.  It is a
  stream cipher algorithm with a 128-bit key and 64-bit initialization
  vector (IV).  The method was published in 2003 and has been subject
  to public security and performance revision.  Its high performance
  makes it particularly suited for the use with Internet protocols
  where large amounts of data have to be processed.

Table of Contents

  1. Introduction ....................................................2
  2. Algorithm Description ...........................................2
     2.1. Notation ...................................................2
     2.2. Inner State ................................................3
     2.3. Key Setup Scheme ...........................................3
     2.4. IV Setup Scheme ............................................3
     2.5. Counter System .............................................4
     2.6. Next-State Function ........................................4
     2.7. Extraction Scheme ..........................................5
     2.8. Encryption/Decryption Scheme ...............................5
  3. Security Considerations .........................................6
     3.1. Message Length .............................................6
     3.2. Initialization Vector ......................................6
  4. Informative References ..........................................7
  Appendix A: Test Vectors ...........................................8
     A.1. Testing without IV Setup ...................................8
     A.2. Testing with IV Setup ......................................8
  Appendix B: Debugging Vectors ......................................9



Boesgaard, et al.            Informational                      [Page 1]

RFC 4503                   Rabbit Encryption                    May 2006


     B.1. Testing Round Function and Key Setup .......................9
     B.2. Testing the IV setup ......................................10

1.  Introduction

  Rabbit is a stream cipher algorithm that has been designed for high
  performance in software implementations.  Both key setup and
  encryption are very fast, making the algorithm particularly suited
  for all applications where large amounts of data or large numbers of
  data packages have to be encrypted.  Examples include, but are not
  limited to, server-side encryption, multimedia encryption, hard-disk
  encryption, and encryption on limited-resource devices.

  The cipher is based on ideas derived from the behavior of certain
  chaotic maps.  These maps have been carefully discretized, resulting
  in a compact stream cipher.  Rabbit has been openly published in 2003
  [1] and has not displayed any weaknesses as of the time of this
  writing.  To ensure ongoing security evaluation, it was also
  submitted to the ECRYPT eSTREAM project[2].

  Technically, Rabbit consists of a pseudorandom bitstream generator
  that takes a 128-bit key and a 64-bit initialization vector (IV) as
  input and generates a stream of 128-bit blocks.  Encryption is
  performed by combining this output with the message, using the
  exclusive-OR operation.  Decryption is performed in exactly the same
  way as encryption.

  Further information about Rabbit, including reference implementation,
  test vectors, performance figures, and security white papers, is
  available from http://www.cryptico.com/.

2.  Algorithm Description

2.1.  Notation

  This document uses the following elementary operators:

   +     integer addition.
   *     integer multiplication.
  div    integer division.
  mod    integer modulus.
   ^     bitwise exclusive-OR operation.
  <<<    left rotation operator.
   ||    concatenation operator.

  When labeling bits of a variable, A, the least significant bit is
  denoted by A[0].  The notation A[h..g] represents bits h through g of
  variable A, where h is more significant than g.  Similar variables



Boesgaard, et al.            Informational                      [Page 2]

RFC 4503                   Rabbit Encryption                    May 2006


  are labeled by A0,A1,... with the notation A(0),A(1),... being used
  to denote those same variables if this improves readability.

  Given a 64-bit word, the function MSW extracts the most significant
  32 bits, whereas the function LSW extracts the least significant 32
  bits.

  Constants prefixed with 0x are in hexadecimal notation.  In
  particular, the constant WORDSIZE is defined to be 0x100000000.

2.2.  Inner State

  The internal state of the stream cipher consists of 513 bits.  512
  bits are divided between eight 32-bit state variables, X0,...,X7 and
  eight 32-bit counter variables, C0,...,C7.  In addition, there is one
  counter carry bit, b.

2.3.  Key Setup Scheme

  The counter carry bit b is initialized to zero.  The state and
  counter words are derived from the key K[127..0].

  The key is divided into subkeys K0 = K[15..0], K1 = K[31..16], ... K7
  = K[127..112].  The initial state is initialized as follows:

    for j=0 to 7:
      if j is even:
        Xj = K(j+1 mod 8) || Kj
        Cj = K(j+4 mod 8) || K(j+5 mod 8)
      else:
        Xj = K(j+5 mod 8) || K(j+4 mod 8)
        Cj = Kj || K(j+1 mod 8)

  The system is then iterated four times, each iteration consisting of
  counter update (Section 2.5) and next-state function (Section 2.6).
  After that, the counter variables are reinitialized to

    for j=0 to 7:
      Cj = Cj ^ X(j+4 mod 8)

2.4.  IV Setup Scheme

  If an IV is used for encryption, the counter variables are modified
  after the key setup.  Denoting the IV bits by IV[63..0], the setup
  proceeds as follows:

    C0 = C0 ^ IV[31..0]        C1 = C1 ^ (IV[63..48] || IV[31..16])
    C2 = C2 ^ IV[63..32]       C3 = C3 ^ (IV[47..32] || IV[15..0])



Boesgaard, et al.            Informational                      [Page 3]

RFC 4503                   Rabbit Encryption                    May 2006


    C4 = C4 ^ IV[31..0]        C5 = C5 ^ (IV[63..48] || IV[31..16])
    C6 = C6 ^ IV[63..32]       C7 = C7 ^ (IV[47..32] || IV[15..0])

  The system is then iterated another 4 times, each iteration
  consisting of counter update (Section 2.5) and next-state function
  (Section 2.6).

  The relationship between key and IV setup is as follows:

  - After the key setup, the resulting inner state is saved as a master
    state.  Then the IV setup is run to obtain the first encryption
    starting state.

  - Whenever re-initialization under a new IV is necessary, the IV
    setup is run on the master state again to derive the next
    encryption starting state.

2.5.  Counter System

  Before each execution of the next-state function (Section 2.6), the
  counter system has to be updated.  This system uses constants
  A1,...,A7, as follows:

    A0 = 0x4D34D34D         A1 = 0xD34D34D3
    A2 = 0x34D34D34         A3 = 0x4D34D34D
    A4 = 0xD34D34D3         A5 = 0x34D34D34
    A6 = 0x4D34D34D         A7 = 0xD34D34D3

  It also uses the counter carry bit b to update the counter system, as
  follows:

    for j=0 to 7:
      temp = Cj + Aj + b
      b    = temp div WORDSIZE
      Cj   = temp mod WORDSIZE

  Note that on exiting this loop, the variable b has to be preserved
  for the next iteration of the system.

2.6.  Next-State Function

  The core of the Rabbit algorithm is the next-state function.  It is
  based on the function g, which transforms two 32-bit inputs into one
  32-bit output, as follows:

    g(u,v) = LSW(square(u+v)) ^ MSW(square(u+v))

  where square(u+v) = ((u+v mod WORDSIZE) * (u+v mod WORDSIZE)).



Boesgaard, et al.            Informational                      [Page 4]

RFC 4503                   Rabbit Encryption                    May 2006


  Using this function, the algorithm updates the inner state as
  follows:

    for j=0 to 7:
      Gj = g(Xj,Cj)

    X0 = G0 + (G7 <<< 16) + (G6 <<< 16) mod WORDSIZE
    X1 = G1 + (G0 <<<  8) +  G7         mod WORDSIZE
    X2 = G2 + (G1 <<< 16) + (G0 <<< 16) mod WORDSIZE
    X3 = G3 + (G2 <<<  8) +  G1         mod WORDSIZE
    X4 = G4 + (G3 <<< 16) + (G2 <<< 16) mod WORDSIZE
    X5 = G5 + (G4 <<<  8) +  G3         mod WORDSIZE
    X6 = G6 + (G5 <<< 16) + (G4 <<< 16) mod WORDSIZE
    X7 = G7 + (G6 <<<  8) +  G5         mod WORDSIZE

2.7.  Extraction Scheme

  After the key and IV setup are concluded, the algorithm is iterated
  in order to produce one 128-bit output block, S, per round.  Each
  round consists of executing steps 2.5 and 2.6 and then extracting an
  output S[127..0] as follows:

    S[15..0]    = X0[15..0]  ^ X5[31..16]
    S[31..16]   = X0[31..16] ^ X3[15..0]
    S[47..32]   = X2[15..0]  ^ X7[31..16]
    S[63..48]   = X2[31..16] ^ X5[15..0]
    S[79..64]   = X4[15..0]  ^ X1[31..16]
    S[95..80]   = X4[31..16] ^ X7[15..0]
    S[111..96]  = X6[15..0]  ^ X3[31..16]
    S[127..112] = X6[31..16] ^ X1[15..0]

2.8.  Encryption/Decryption Scheme

  Given a 128-bit message block, M, encryption E and decryption M' are
  computed via

    E  = M ^ S    and
    M' = E ^ S.

  If S is the same in both operations (as it should be if the same key
  and IV are used), then M = M'.

  The encryption/decryption scheme is repeated until all blocks in the
  message have been encrypted/decrypted.  If the message size is not a
  multiple of 128 bits, only the needed amount of least significant
  bits from the last output block S is used for the last message block
  M.




Boesgaard, et al.            Informational                      [Page 5]

RFC 4503                   Rabbit Encryption                    May 2006


  If the application requires the encryption of smaller blocks (or even
  individual bits), a 128-bit buffer is used.  The buffer is
  initialized by generating a new value, S, and copying it into the
  buffer.  After that, all data blocks are encrypted using the least
  significant bits in this buffer.  Whenever the buffer is empty, a new
  value S is generated and copied into the buffer.

3.  Security Considerations

  For an encryption algorithm, the security provided is, of course, the
  most important issue.  No security weaknesses have been found to
  date, neither by the designers nor by independent cryptographers
  scrutinizing the algorithms after its publication in [1].  Note that
  a full discussion of Rabbit's security against known cryptanalytic
  techniques is provided in [3].

  In the following, we restrict ourselves to some rules on how to use
  the Rabbit algorithm properly.

3.1.  Message Length

  Rabbit was designed to encrypt up to 2 to the power of 64 128-bit
  message blocks under the same the key.  Should this amount of data
  ever be exceeded, the key has to be replaced.  It is recommended to
  follow this rule even when the IV is changed on a regular basis.

3.2.  Initialization Vector

  It is possible to run Rabbit without the IV setup.  However, in this
  case, the generator must never be reset under the same key, since
  this would destroy its security (for a recent example, see [4]).
  However, in order to guarantee synchronization between sender and
  receiver, ciphers are frequently reset in practice.  This means that
  both sender and receiver set the inner state of the cipher back to a
  known value and then derive the new encryption state using an IV.  If
  this is done, it is important to make sure that no IV is ever reused
  under the same key.














Boesgaard, et al.            Informational                      [Page 6]

RFC 4503                   Rabbit Encryption                    May 2006


4.  Informative References

  [1]   M. Boesgaard, M. Vesterager, T. Pedersen, J. Christiansen, O.
        Scavenius. "Rabbit: A New High-Performance Stream Cipher".
        Proc. Fast Software Encryption 2003, Lecture Notes in Computer
        Science 2887, p. 307-329. Springer, 2003.

  [2]   ECRYPT eSTREAM project, available from
        http://www.ecrypt.eu.org/stream/

  [3]   M. Boesgaard, T. Pedersen, M. Vesterager, E. Zenner. "The
        Rabbit Stream Cipher - Design and Security Analysis". Proc.
        SASC Workshop 2004, available from
        http://www.isg.rhul.ac.uk/research/
        projects/ecrypt/stvl/sasc.html.

  [4]   H. Wu. "The Misuse of RC4 in Microsoft Word and Excel". IACR
        eprint archive 2005/007, available from
        http://eprint.iacr.org/2005/007.pdf.

  [5]   Jonsson, J. and B. Kaliski, "Public-Key Cryptography Standards
        (PKCS) #1: RSA Cryptography Specifications Version 2.1", RFC
        3447, February 2003.




























Boesgaard, et al.            Informational                      [Page 7]

RFC 4503                   Rabbit Encryption                    May 2006


Appendix A: Test Vectors

  This is a set of test vectors for conformance testing, given in octet
  form.  For use with Rabbit, they have to be transformed into integers
  by the conversion primitives OS2IP and I2OSP, as described in [5].

A.1.  Testing without IV Setup

    key  = [00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00]
    S[0] = [B1 57 54 F0 36 A5 D6 EC F5 6B 45 26 1C 4A F7 02]
    S[1] = [88 E8 D8 15 C5 9C 0C 39 7B 69 6C 47 89 C6 8A A7]
    S[2] = [F4 16 A1 C3 70 0C D4 51 DA 68 D1 88 16 73 D6 96]

    key  = [91 28 13 29 2E 3D 36 FE 3B FC 62 F1 DC 51 C3 AC]
    S[0] = [3D 2D F3 C8 3E F6 27 A1 E9 7F C3 84 87 E2 51 9C]
    S[1] = [F5 76 CD 61 F4 40 5B 88 96 BF 53 AA 85 54 FC 19]
    S[2] = [E5 54 74 73 FB DB 43 50 8A E5 3B 20 20 4D 4C 5E]

    key  = [83 95 74 15 87 E0 C7 33 E9 E9 AB 01 C0 9B 00 43]
    S[0] = [0C B1 0D CD A0 41 CD AC 32 EB 5C FD 02 D0 60 9B]
    S[1] = [95 FC 9F CA 0F 17 01 5A 7B 70 92 11 4C FF 3E AD]
    S[2] = [96 49 E5 DE 8B FC 7F 3F 92 41 47 AD 3A 94 74 28]

A.2.  Testing with IV Setup

    mkey = [00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00]
    iv   = [00 00 00 00 00 00 00 00]
    S[0] = [C6 A7 27 5E F8 54 95 D8 7C CD 5D 37 67 05 B7 ED]
    S[1] = [5F 29 A6 AC 04 F5 EF D4 7B 8F 29 32 70 DC 4A 8D]
    S[2] = [2A DE 82 2B 29 DE 6C 1E E5 2B DB 8A 47 BF 8F 66]

    iv   = [C3 73 F5 75 C1 26 7E 59]
    S[0] = [1F CD 4E B9 58 00 12 E2 E0 DC CC 92 22 01 7D 6D]
    S[1] = [A7 5F 4E 10 D1 21 25 01 7B 24 99 FF ED 93 6F 2E]
    S[2] = [EB C1 12 C3 93 E7 38 39 23 56 BD D0 12 02 9B A7]

    iv   = [A6 EB 56 1A D2 F4 17 27]
    S[0] = [44 5A D8 C8 05 85 8D BF 70 B6 AF 23 A1 51 10 4D]
    S[1] = [96 C8 F2 79 47 F4 2C 5B AE AE 67 C6 AC C3 5B 03]
    S[2] = [9F CB FC 89 5F A7 1C 17 31 3D F0 34 F0 15 51 CB]











Boesgaard, et al.            Informational                      [Page 8]

RFC 4503                   Rabbit Encryption                    May 2006


Appendix B: Debugging Vectors

  The following set of vectors describes the inner state of Rabbit
  during key and iv setup.  It is meant mainly for debugging purposes.
  Octet strings are written according to I2OSP conventions.

B.1.  Testing Round Function and Key Setup

    key  = [91 28 13 29 2E ED 36 FE 3B FC 62 F1 DC 51 C3 AC]

    Inner state after key expansion:
    b  = 0
    X0 = 0xDC51C3AC, X1 = 0x13292E3D, X2 = 0x3BFC62F1, X3 = 0xC3AC9128,
    X4 = 0x2E3D36FE, X5 = 0x62F1DC51, X6 = 0x91281329, X7 = 0x36FE3BFC,
    C0 = 0x36FE2E3D, C1 = 0xDC5162F1, C2 = 0x13299128, C3 = 0x3BFC36FE,
    C4 = 0xC3ACDC51, C5 = 0x2E3D1329, C6 = 0x62F13BFC, C7 = 0x9128C3AC

    Inner state after first key setup iteration:
    b  = 1
    X0 = 0xF2E8C8B1, X1 = 0x38E06FA7, X2 = 0x9A0D72C0, X3 = 0xF21F5334,
    X4 = 0xCACDCCC3, X5 = 0x4B239CBE, X6 = 0x0565DCCC, X7 = 0xB1587C8D,
    C0 = 0x8433018A, C1 = 0xAF9E97C4, C2 = 0x47FCDE5D, C3 = 0x89310A4B,
    C4 = 0x96FA1124, C5 = 0x6310605E, C6 = 0xB0260F49, C7 = 0x6475F87F

    Inner state after fourth key setup iteration:
    b  = 0
    X0 = 0x1D059312, X1 = 0xBDDC3E45, X2 = 0xF440927D, X3 = 0x50CBB553,
    X4 = 0x36709423, X5 = 0x0B6F0711, X6 = 0x3ADA3A7B, X7 = 0xEB9800C8,
    C0 = 0x6BD17B74, C1 = 0x2986363E, C2 = 0xE676C5FC, C3 = 0x70CF8432,
    C4 = 0x10E1AF9E, C5 = 0x018A47FD, C6 = 0x97C48931, C7 = 0xDE5D96F9

    Inner state after final key setup xor:
    b  = 0
    X0 = 0x1D059312, X1 = 0xBDDC3E45, X2 = 0xF440927D, X3 = 0x50CBB553,
    X4 = 0x36709423, X5 = 0x0B6F0711, X6 = 0x3ADA3A7B, X7 = 0xEB9800C8,
    C0 = 0x5DA1EF57, C1 = 0x22E9312F, C2 = 0xDCACFF87, C3 = 0x9B5784FA,
    C4 = 0x0DE43C8C, C5 = 0xBC5679B8, C6 = 0x63841B4C, C7 = 0x8E9623AA

    Inner state after generation of 48 bytes of output:
    b  = 1
    X0 = 0xB5428566, X1 = 0xA2593617, X2 = 0xFF5578DE, X3 = 0x7293950F,
    X4 = 0x145CE109, X5 = 0xC93875B0, X6 = 0xD34306E0, X7 = 0x43FEEF87,
    C0 = 0x45406940, C1 = 0x9CD0CFA9, C2 = 0x7B26E725, C3 = 0x82F5FEE2,
    C4 = 0x87CBDB06, C5 = 0x5AD06156, C6 = 0x4B229534, C7 = 0x087DC224







Boesgaard, et al.            Informational                      [Page 9]

RFC 4503                   Rabbit Encryption                    May 2006


    The 48 output bytes:
    S[0] = [3D 2D F3 C8 3E F6 27 A1 E9 7F C3 84 87 E2 51 9C]
    S[1] = [F5 76 CD 61 F4 40 5B 88 96 BF 53 AA 85 54 FC 19]
    S[2] = [E5 54 74 73 FB DB 43 50 8A E5 3B 20 20 4D 4C 5E]

B.2.  Testing the IV Setup

    key  = [91 28 13 29 2E ED 36 FE 3B FC 62 F1 DC 51 C3 AC]
    iv   = [C3 73 F5 75 C1 26 7E 59]

    Inner state during key setup:
    as above

    Inner state after IV expansion:
    b  = 0
    X0 = 0x1D059312, X1 = 0xBDDC3E45, X2 = 0xF440927D, X3 = 0x50CBB553,
    X4 = 0x36709423, X5 = 0x0B6F0711, X6 = 0x3ADA3A7B, X7 = 0xEB9800C8,
    C0 = 0x9C87910E, C1 = 0xE19AF009, C2 = 0x1FDF0AF2, C3 = 0x6E22FAA3,
    C4 = 0xCCC242D5, C5 = 0x7F25B89E, C6 = 0xA0F7EE39, C7 = 0x7BE35DF3

    Inner state after first IV setup iteration:
    b  = 1
    X0 = 0xC4FF831A, X1 = 0xEF5CD094, X2 = 0xC5933855, X3 = 0xC05A5C03,
    X4 = 0x4A50522F, X5 = 0xDF487BE4, X6 = 0xA45FA013, X7 = 0x05531179,
    C0 = 0xE9BC645B, C1 = 0xB4E824DC, C2 = 0x54B25827, C3 = 0xBB57CDF0,
    C4 = 0xA00F77A8, C5 = 0xB3F905D3, C6 = 0xEE2CC186, C7 = 0x4F3092C6

    Inner state after fourth IV setup iteration:
    b  = 1
    X0 = 0x6274E424, X1 = 0xE14CE120, X2 = 0xDA8739D9, X3 = 0x65E0402D,
    X4 = 0xD1281D10, X5 = 0xBD435BAA, X6 = 0x4E9E7A02, X7 = 0x9B467ABD,
    C0 = 0xD15ADE44, C1 = 0x2ECFC356, C2 = 0xF32C3FC6, C3 = 0xA2F647D7,
    C4 = 0x19F71622, C5 = 0x5272ED72, C6 = 0xD5CB3B6E, C7 = 0xC9183140


















Boesgaard, et al.            Informational                     [Page 10]

RFC 4503                   Rabbit Encryption                    May 2006


Authors' Addresses

  Martin Boesgaard
  Cryptico A/S
  Fruebjergvej 3
  2100 Copenhagen
  Denmark

  Phone: +45 39 17 96 06
  EMail: [email protected]
  URL:   http://www.cryptico.com


  Mette Vesterager
  Cryptico A/S
  Fruebjergvej 3
  2100 Copenhagen
  Denmark

  Phone: +45 39 17 96 06
  EMail: [email protected]
  URL:   http://www.cryptico.com


  Erik Zenner
  Cryptico A/S
  Fruebjergvej 3
  2100 Copenhagen
  Denmark

  Phone: +45 39 17 96 06
  EMail: [email protected]
  URL:   http://www.cryptico.com


















Boesgaard, et al.            Informational                     [Page 11]

RFC 4503                   Rabbit Encryption                    May 2006


Full Copyright Statement

  Copyright (C) The Internet Society (2006).

  This document is subject to the rights, licenses and restrictions
  contained in BCP 78, and except as set forth therein, the authors
  retain all their rights.

  This document and the information contained herein are provided on an
  "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
  OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
  ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
  INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
  INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
  WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

  The IETF takes no position regarding the validity or scope of any
  Intellectual Property Rights or other rights that might be claimed to
  pertain to the implementation or use of the technology described in
  this document or the extent to which any license under such rights
  might or might not be available; nor does it represent that it has
  made any independent effort to identify any such rights.  Information
  on the procedures with respect to rights in RFC documents can be
  found in BCP 78 and BCP 79.

  Copies of IPR disclosures made to the IETF Secretariat and any
  assurances of licenses to be made available, or the result of an
  attempt made to obtain a general license or permission for the use of
  such proprietary rights by implementers or users of this
  specification can be obtained from the IETF on-line IPR repository at
  http://www.ietf.org/ipr.

  The IETF invites any interested party to bring to its attention any
  copyrights, patents or patent applications, or other proprietary
  rights that may cover technology that may be required to implement
  this standard.  Please address the information to the IETF at
  [email protected].

Acknowledgement

  Funding for the RFC Editor function is provided by the IETF
  Administrative Support Activity (IASA).







Boesgaard, et al.            Informational                     [Page 12]