Network Working Group                                           JH. Song
Request for Comments: 4494                                 R. Poovendran
Category: Standards Track                       University of Washington
                                                                 J. Lee
                                                    Samsung Electronics
                                                              June 2006


           The AES-CMAC-96 Algorithm and Its Use with IPsec

Status of This Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (2006).

Abstract

  The National Institute of Standards and Technology (NIST) has
  recently specified the Cipher-based Message Authentication Code
  (CMAC), which is equivalent to the One-Key CBC-MAC1 (OMAC1) algorithm
  submitted by Iwata and Kurosawa.  OMAC1 efficiently reduces the key
  size of Extended Cipher Block Chaining mode (XCBC).  This memo
  specifies the use of CMAC mode on the authentication mechanism of the
  IPsec Encapsulating Security Payload (ESP) and the Authentication
  Header (AH) protocols.  This new algorithm is named AES-CMAC-96.



















Song, et al.                Standards Track                     [Page 1]

RFC 4494            The AES-CMAC Algorithm and IPsec           June 2006


1.  Introduction

  The National Institute of Standards and Technology (NIST) has
  recently specified the Cipher-based Message Authentication Code
  (CMAC).  CMAC [NIST-CMAC] is a message authentication code that is
  based on a symmetric key block cipher such as the Advanced Encryption
  Standard [NIST-AES].  CMAC is equivalent to the One-Key CBC MAC1
  (OMAC1) submitted by Iwata and Kurosawa [OMAC1a, OMAC1b].  OMAC1 is
  an improvement of the eXtended Cipher Block Chaining mode (XCBC)
  submitted by Black and Rogaway [XCBCa, XCBCb], which itself is an
  improvement of the basic CBC-MAC.  XCBC efficiently addresses the
  security deficiencies of CBC-MAC, and OMAC1 efficiently reduces the
  key size of XCBC.

  This memo specifies the usage of CMAC on the authentication mechanism
  of the IPsec Encapsulating Security Payload [ESP] and Authentication
  Header [AH] protocols.  This new algorithm is named AES-CMAC-96.  For
  further information on AH and ESP, refer to [AH] and [ROADMAP].

2.  Basic Definitions

  CBC             Cipher Block Chaining mode of operation for message
                  authentication code.

  MAC             Message Authentication Code.
                  A bit string of a fixed length, computed by the MAC
                  generation algorithm, that is used to establish the
                  authority and, hence, the integrity of a message.

  CMAC            Cipher-based MAC based on an approved symmetric key
                  block cipher, such as the Advanced Encryption
                  Standard.

  Key (K)         128-bit (16-octet) key for AES-128 cipher block.
                  Denoted by K.

  Message (M)     Message to be authenticated.
                  Denoted by M.

  Length (len)    The length of message M in octets.
                  Denoted by len.
                  The minimum value is 0.  The maximum value is not
                  specified in this document.

  truncate(T,l)   Truncate T (MAC) in most-significant-bit-first
                  (MSB-first) order to a length of l octets.

  T               The output of AES-CMAC.



Song, et al.                Standards Track                     [Page 2]

RFC 4494            The AES-CMAC Algorithm and IPsec           June 2006


  Truncated T     The truncated output of AES-CMAC-128 in MSB-first
                  order.

  AES-CMAC        CMAC generation function based on AES block cipher
                  with 128-bit key.

  AES-CMAC-96     IPsec AH and ESP MAC generation function based on
                  AES-CMAC, which truncates the 96 most significant
                  bits of the 128-bit output.

3.  AES-CMAC

  The core of AES-CMAC-96 is the AES-CMAC [AES-CMAC].  The underlying
  algorithms for AES-CMAC are the Advanced Encryption Standard cipher
  block [NIST-AES] and the recently defined CMAC mode of operation
  [NIST-CMAC].  AES-CMAC provides stronger assurance of data integrity
  than a checksum or an error detecting code.  The verification of a
  checksum or an error detecting code detects only accidental
  modifications of the data, while CMAC is designed to detect
  intentional, unauthorized modifications of the data, as well as
  accidental modifications.  The output of AES-CMAC can validate the
  input message.  Validating the message provides assurance of the
  integrity and authenticity over the message from the source.
  According to [NIST-CMAC], at least 64 bits should be used against
  guessing attacks.  AES-CMAC achieves the similar security goal of
  HMAC [RFC-HMAC].  Since AES-CMAC is based on a symmetric key block
  cipher (AES), while HMAC is based on a hash function (such as SHA-1),
  AES-CMAC is appropriate for information systems in which AES is more
  readily available than a hash function.  Detailed information about
  AES-CMAC is available in [AES-CMAC] and [NIST-CMAC].





















Song, et al.                Standards Track                     [Page 3]

RFC 4494            The AES-CMAC Algorithm and IPsec           June 2006


4.  AES-CMAC-96

  For IPsec message authentication on AH and ESP, AES-CMAC-96 should be
  used.  AES-CMAC-96 is a AES-CMAC with 96-bit truncated output in
  MSB-first order.  The output is a 96-bit MAC that will meet the
  default authenticator length as specified in [AH].  The result of
  truncation is taken in MSB-first order.  For further information on
  AES-CMAC, refer to [AES-CMAC] and [NIST-CMAC].

  Figure 1 describes AES-CMAC-96 algorithm:

  In step 1, AES-CMAC is applied to the message M in length len with
  key K.

  In step 2, the output block T is truncated to 12 octets in MSB-first
  order, and Truncated T (TT) is returned.

  +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
  +                    Algorithm AES-CMAC-96                          +
  +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
  +                                                                   +
  +   Input    : K (128-bit Key described in Section 4.1)             +
  +            : M    (message to be authenticated)                   +
  +            : len  (length of message in octets)                   +
  +   Output   : Truncated T  (truncated output to length 12 octets)  +
  +                                                                   +
  +-------------------------------------------------------------------+
  +                                                                   +
  +   Step 1.  T  := AES-CMAC (K,M,len);                              +
  +   Step 2.  TT := truncate (T, 12);                                +
  +            return TT;                                             +
  +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

                  Figure 1: Algorithm AES-CMAC-96

















Song, et al.                Standards Track                     [Page 4]

RFC 4494            The AES-CMAC Algorithm and IPsec           June 2006


5.  Test Vectors

  These test cases are the same as those defined in [NIST-CMAC], with
  the exception of 96-bit truncation.

  --------------------------------------------------
  K              2b7e1516 28aed2a6 abf71588 09cf4f3c
  Subkey Generation
  AES_128(key,0) 7df76b0c 1ab899b3 3e42f047 b91b546f
  K1             fbeed618 35713366 7c85e08f 7236a8de
  K2             f7ddac30 6ae266cc f90bc11e e46d513b

  Test Case 1: len = 0
  M              <empty string>
  AES_CMAC_96    bb1d6929 e9593728 7fa37d12

  Test Case 2: len = 16
  M              6bc1bee2 2e409f96 e93d7e11 7393172a
  AES_CMAC_96    070a16b4 6b4d4144 f79bdd9d

  Test Case 3: len = 40
  M              6bc1bee2 2e409f96 e93d7e11 7393172a
                 ae2d8a57 1e03ac9c 9eb76fac 45af8e51
                 30c81c46 a35ce411
  AES_CMAC_96    dfa66747 de9ae630 30ca3261

  Test Case 4: len = 64
  M              6bc1bee2 2e409f96 e93d7e11 7393172a
                 ae2d8a57 1e03ac9c 9eb76fac 45af8e51
                 30c81c46 a35ce411 e5fbc119 1a0a52ef
                 f69f2445 df4f9b17 ad2b417b e66c3710
  AES_CMAC_96    51f0bebf 7e3b9d92 fc497417
  --------------------------------------------------

6.  Interaction with the ESP Cipher Mechanism

  As of this writing, there are no known issues that preclude the use
  of AES-CMAC-96 with any specific cipher algorithm.

7.  Security Considerations

  See the security considerations section of [AES-CMAC].

8.  IANA Considerations

  The IANA has allocated value 8 for IKEv2 Transform Type 3 (Integrity
  Algorithm) to the AUTH_AES_CMAC_96 algorithm.




Song, et al.                Standards Track                     [Page 5]

RFC 4494            The AES-CMAC Algorithm and IPsec           June 2006


9.  Acknowledgements

  Portions of this text were borrowed from [NIST-CMAC] and [XCBCa].  We
  would like to thank to Russ Housley for his useful comments.

  We acknowledge the support from the the following grants:
  Collaborative Technology Alliance (CTA) from US Army Research
  Laboratory, DAAD19-01-2-0011; Presidential Award from Army Research
  Office, W911NF-05-1-0491;  NSF CAREER, ANI-0093187.  Results do not
  reflect any position of the funding agencies.

10.  References

10.1.  Normative References

  [AES-CMAC]  Song, JH., Poovendran, R., Lee, J., and T. Iwata, "The
              AES-CMAC Algorithm", RFC 4493, June 2006.

  [AH]        Kent, S., "IP Authentication Header", RFC 4302, December
              2005.

  [ESP]       Kent, S., "IP Encapsulating Security Payload (ESP)", RFC
              4303, December 2005.

  [NIST-AES]  NIST, FIPS 197, "Advanced Encryption Standard (AES)",
              November 2001, http://csrc.nist.gov/publications/fips/
              fips197/fips-197.pdf.

  [NIST-CMAC] NIST, Special Publication 800-38B Draft, "Recommendation
              for Block Cipher Modes of Operation: The CMAC Method for
              Authentication", March 9, 2005.

10.2.  Informative References

  [OMAC1a]    Tetsu Iwata and Kaoru Kurosawa, "OMAC: One-Key CBC MAC",
              Fast Software Encryption, FSE 2003, LNCS 2887, pp. 129-
              153, Springer-Verlag, 2003.

  [OMAC1b]    Tetsu Iwata and Kaoru Kurosawa, "OMAC: One-Key CBC MAC",
              Submission to NIST, December 2002.  Available from
              http://csrc.nist.gov/CryptoToolkit/modes/proposedmodes/
              omac/omac-spec.pdf.

  [RFC-HMAC]  Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
              Hashing for Message Authentication", RFC 2104, February
              1997.





Song, et al.                Standards Track                     [Page 6]

RFC 4494            The AES-CMAC Algorithm and IPsec           June 2006


  [ROADMAP]   Thayer, R., Doraswamy, N., and R. Glenn, "IP Security
              Document Roadmap", RFC 2411, November 1998.

  [XCBCa]     John Black and Phillip Rogaway, "A Suggestion for
              Handling Arbitrary-Length Messages with the CBC MAC",
              NIST Second Modes of Operation Workshop, August 2001.
              Available from http://csrc.nist.gov/CryptoToolkit/modes/
              proposedmodes/xcbc-mac/xcbc-mac-spec.pdf.

  [XCBCb]     John Black and Phillip Rogaway, "CBC MACs for Arbitrary-
              Length Messages: The Three-Key Constructions", Journal of
              Cryptology, Vol. 18, No. 2, pp. 111-132, Springer-Verlag,
              Spring 2005.

Authors' Addresses

  Junhyuk Song
  University of Washington
  Samsung Electronics

  Phone: (206) 853-5843
  EMail: [email protected], [email protected]


  Jicheol Lee
  Samsung Electronics

  Phone: +82-31-279-3605
  EMail: [email protected]


  Radha Poovendran
  Network Security Lab (NSL)
  Dept. of Electrical Engineering
  University of Washington

  Phone: (206) 221-6512
  EMail: [email protected]













Song, et al.                Standards Track                     [Page 7]

RFC 4494            The AES-CMAC Algorithm and IPsec           June 2006


Full Copyright Statement

  Copyright (C) The Internet Society (2006).

  This document is subject to the rights, licenses and restrictions
  contained in BCP 78, and except as set forth therein, the authors
  retain all their rights.

  This document and the information contained herein are provided on an
  "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
  OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
  ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
  INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
  INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
  WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

  The IETF takes no position regarding the validity or scope of any
  Intellectual Property Rights or other rights that might be claimed to
  pertain to the implementation or use of the technology described in
  this document or the extent to which any license under such rights
  might or might not be available; nor does it represent that it has
  made any independent effort to identify any such rights.  Information
  on the procedures with respect to rights in RFC documents can be
  found in BCP 78 and BCP 79.

  Copies of IPR disclosures made to the IETF Secretariat and any
  assurances of licenses to be made available, or the result of an
  attempt made to obtain a general license or permission for the use of
  such proprietary rights by implementers or users of this
  specification can be obtained from the IETF on-line IPR repository at
  http://www.ietf.org/ipr.

  The IETF invites any interested party to bring to its attention any
  copyrights, patents or patent applications, or other proprietary
  rights that may cover technology that may be required to implement
  this standard.  Please address the information to the IETF at
  [email protected].

Acknowledgement

  Funding for the RFC Editor function is provided by the IETF
  Administrative Support Activity (IASA).







Song, et al.                Standards Track                     [Page 8]