Network Working Group                                           S. Singh
Request for Comments: 4454                                   M. Townsley
Category: Standards Track                                   C. Pignataro
                                                          Cisco Systems
                                                               May 2006


                Asynchronous Transfer Mode (ATM) over
            Layer 2 Tunneling Protocol Version 3 (L2TPv3)


Status of This Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (2006).

Abstract

  The Layer 2 Tunneling Protocol, Version 3 (L2TPv3) defines an
  extensible tunneling protocol to transport layer 2 services over IP
  networks.  This document describes the specifics of how to use the
  L2TP control plane for Asynchronous Transfer Mode (ATM) Pseudowires
  and provides guidelines for transporting various ATM services over an
  IP network.

Table of Contents

  1. Introduction ....................................................2
     1.1. Abbreviations ..............................................3
     1.2. Specification of Requirements ..............................3
  2. Control Connection Establishment ................................3
  3. Session Establishment and ATM Circuit Status Notification .......4
     3.1. L2TPv3 Session Establishment ...............................4
     3.2. L2TPv3 Session Teardown ....................................6
     3.3. L2TPv3 Session Maintenance .................................6
  4. Encapsulation ...................................................6
     4.1. ATM-Specific Sublayer ......................................7
     4.2. Sequencing .................................................9
  5. ATM Transport ...................................................9
     5.1. ATM AAL5-SDU Mode .........................................10
     5.2. ATM Cell Mode .............................................10



Singh, et al.               Standards Track                     [Page 1]

RFC 4454                    ATM over L2TPv3                     May 2006


          5.2.1. ATM VCC Cell Relay Service .........................11
          5.2.2. ATM VPC Cell Relay Service .........................12
          5.2.3. ATM Port Cell Relay Service ........................12
     5.3. OAM Cell Support ..........................................12
          5.3.1. VCC Switching ......................................12
          5.3.2. VPC Switching ......................................13
  6. ATM Maximum Concatenated Cells AVP .............................13
  7. OAM Emulation Required AVP .....................................14
  8. ATM Defects Mapping and Status Notification ....................14
     8.1. ATM Alarm Status AVP ......................................14
  9. Applicability Statement ........................................15
     9.1. ATM AAL5-SDU Mode .........................................16
     9.2. ATM Cell Relay Mode .......................................18
  10. Congestion Control ............................................20
  11. Security Considerations .......................................21
  12. IANA Considerations ...........................................21
     12.1. L2-Specific Sublayer Type ................................21
     12.2. Control Message Attribute Value Pairs (AVPs) .............21
     12.3. Result Code AVP Values ...................................22
     12.4. ATM Alarm Status AVP Values ..............................22
     12.5. ATM-Specific Sublayer Bits ...............................23
  13. Acknowledgements ..............................................23
  14. References ....................................................23
     14.1. Normative References .....................................23
     14.2. Informative References ...................................24

1.  Introduction

  This document describes the specifics of how to use the Layer 2
  Tunneling Protocol (L2TP) for Asynchronous Transfer Mode (ATM)
  Pseudowires, including encapsulation, carrying various ATM services,
  such as AAL5 SDU, ATM VCC/VPC/Port cell relay over L2TP, and mapping
  ATM defects to L2TP Set-Link-Info (SLI) messages to notify the peer
  L2TP Control Connection Endpoint (LCCE).

  Any ATM-specific AVPs or other L2TP constructs for ATM Pseudowire
  (ATMPW) support are defined here as well.  Support for ATM Switched
  Virtual Path/Connection (SVP/SVC) and Soft Permanent Virtual
  Path/Connection (SPVP/SPVC) are outside the scope of this document.

  The reader is expected to be very familiar with the terminology and
  protocol constructs defined in [RFC3931].









Singh, et al.               Standards Track                     [Page 2]

RFC 4454                    ATM over L2TPv3                     May 2006


1.1.  Abbreviations

  AIS     Alarm Indication Signal
  ATMPW   ATM Pseudowire
  AVP     Attribute Value Pair
  CC      Continuity Check OAM Cell
  CE      Customer Edge
  HEC     Header Error Checksum
  LAC     L2TP Access Concentrator (see [RFC3931])
  LCCE    L2TP Control Connection Endpoint (see [RFC3931])
  MSB     Most Significant Byte
  OAM     Operation, Administration, and Maintenance
  PE      Provider Edge
  PSN     Packet Switched Network
  PWE3    Pseudowire Emulation Edge to Edge
  RDI     Remote Defect Indicator
  SAR     Segmentation and Reassembly
  SDU     Service Data Unit
  SLI     Set-Link-Info, an L2TP control message
  SVC     Switched Virtual Connection
  SVP     Switched Virtual Path
  SPVC    Soft Permanent Virtual Connection
  SPVP    Soft Permanent Virtual Path
  VC      Virtual Circuit
  VCC     Virtual Channel Connection
  VCI     Virtual Channel Identifier
  VPC     Virtual Path Connection
  VPI     Virtual Path Identifier

1.2.  Specification of Requirements

  In this document, several words are used to signify the requirements
  of the specification.  These words are often capitalized.  The key
  words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
  "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document
  are to be interpreted as described in [RFC2119].

2.  Control Connection Establishment

  To emulate ATM Pseudowires using L2TP, an L2TP Control Connection as
  described in Section 3.3 of [RFC3931] MUST be established.

  The Start-Control-Connection-Request (SCCRQ) and corresponding
  Start-Control-Connection-Reply (SCCRP) MUST include the supported ATM
  Pseudowire types (see Section 3.1), in the Pseudowire Capabilities
  List as defined in Section 5.4.3 of [RFC3931].  This identifies the
  Control Connection as able to establish L2TP sessions in support of
  the ATM Pseudowires.



Singh, et al.               Standards Track                     [Page 3]

RFC 4454                    ATM over L2TPv3                     May 2006


  An LCCE MUST be able to uniquely identify itself in the SCCRQ and
  SCCRP messages via a globally unique value.  By default, this is
  advertised via the structured Router ID AVP [RFC3931], though the
  unstructured Hostname AVP [RFC3931] MAY be used to identify LCCEs as
  well.

3.  Session Establishment and ATM Circuit Status Notification

  This section describes how L2TP ATMPWs or sessions are established
  between two LCCEs.  This includes what will happen when an ATM
  circuit (e.g., AAL5 PVC) is created, deleted, or changes state when
  circuit state is in alarm.

3.1.  L2TPv3 Session Establishment

  ATM circuit (e.g., an AAL5 PVC) creation triggers establishment of an
  L2TP session using three-way handshake described in Section 3.4.1 of
  [RFC3931].  An LCCE MAY initiate the session immediately upon ATM
  circuit creation, or wait until the circuit state transitions to
  ACTIVE before attempting to establish a session for the ATM circuit.
  It MAY be preferred to wait until circuit status transitions to
  ACTIVE in order to delay the allocation of resources until absolutely
  necessary.

  The Circuit Status AVP (see Section 8) MUST be present in the
  Incoming-Call-Request (ICRQ) and Incoming-Call-Reply (ICRP) messages,
  and MAY be present in the SLI message for ATMPWs.

  The following figure shows how L2TP messages are exchanged to set up
  an ATMPW after the ATM circuit (e.g., an AAL5 PVC) becomes ACTIVE.

         LCCE (LAC) A                                  LCCE (LAC) B
     ------------------                            --------------------

      ATM Ckt Provisioned
                                                   ATM Ckt Provisioned
      ATM Ckt ACTIVE
                      ICRQ (status = 0x03) ---->
                                                   ATM Ckt ACTIVE
                      <----- ICRP (status = 0x03)
      L2TP session established
      OK to send data into PW

                      ICCN ----->
                                              L2TP session established
                                              OK to send data into PW





Singh, et al.               Standards Track                     [Page 4]

RFC 4454                    ATM over L2TPv3                     May 2006


  The following signaling elements are required for the ATMPW
  establishment.

  a. Pseudowire Type: One of the supported ATM-related PW types should
     be present in the Pseudowire Type AVP of [RFC3931].

     0x0002  ATM AAL5 SDU VCC transport
     0x0003  ATM Cell transport Port Mode
     0x0009  ATM Cell transport VCC Mode
     0x000A  ATM Cell transport VPC Mode

  The above cell relay modes can also signal the ATM Maximum
  Concatenated Cells AVP as described in Section 6.

  b. Remote End ID: Each PW is associated with a Remote End ID akin to
     the VC-ID in [PWE3ATM].  Two LCCEs of a PW would have the same
     Remote End ID, and its format is described in Section 5.4.4 of
     [RFC3931].

     This Remote End ID AVP MUST be present in the ICRQ in order for
     the remote LCCE to associate the session to the ATM circuit.  The
     Remote End Identifier AVP defined in [RFC3931] is of opaque form,
     though ATMPW implementations MAY simply use a 4-octet value
     that is known to both LCCEs (either by direct configuration or
     some other means).  The exact method of how this value is
     configured, retrieved, discovered, or otherwise determined at
     each LCCE is outside the scope of this document.

  As with the ICRQ, the ICRP is sent only after the ATM circuit
  transitions to ACTIVE.  If LCCE B had not been provisioned yet for
  the ATM circuit identified in the ICRQ, a Call-Disconnect-Notify
  (CDN) would have been immediately returned indicating that the
  circuit either was not provisioned or was not available at this LCCE.
  LCCE A SHOULD then exhibit a periodic retry mechanism.  If so, the
  period and maximum number of retries MUST be configurable.

  An implementation MAY send an ICRQ or ICRP before a PVC is ACTIVE, as
  long as the Circuit Status AVP reflects that the ATM circuit is
  INACTIVE and an SLI is sent when the ATM circuit becomes ACTIVE (see
  Section 8).

  The ICCN is the final stage in the session establishment.  It
  confirms the receipt of the ICRP with acceptable parameters to allow
  bidirectional traffic.







Singh, et al.               Standards Track                     [Page 5]

RFC 4454                    ATM over L2TPv3                     May 2006


3.2.  L2TPv3 Session Teardown

  When an ATM circuit is unprovisioned (deleted) at either LCCE, the
  associated L2TP session MUST be torn down via the CDN message defined
  in Section 3.4.3 of [RFC3931].

3.3.  L2TPv3 Session Maintenance

  All sessions established by a given Control Connection utilize the
  L2TP Hello facility defined in Section 4.4 of [RFC3931] for session
  keepalive.  This gives all sessions basic dead peer and path
  detection between LCCEs.

  If the control channel utilizing the Hello message is not in-band
  with data traffic over the PSN, then other method MAY be used to
  detect the session failure, and it is left for further study.

  ATMPWs over L2TP use the Set-Link-Info (SLI) control message as
  defined in [RFC3931] to signal ATM circuit status between LCCEs after
  initial session establishment.  This includes ACTIVE or INACTIVE
  notifications of the ATM circuit, or any other parameters that may
  need to be shared between the LCCEs in order to provide proper PW
  emulation.

  The SLI message MUST be sent whenever there is a status change that
  may be reported by any values identified in the Circuit Status AVP.
  The only exceptions to this are the initial ICRQ, ICRP, and CDN
  messages, which establish and tear down the L2TP session itself when
  the ATM circuit is created or deleted.  The SLI message may be sent
  from either LCCE at any time after the first ICRQ is sent (and
  perhaps before an ICRP is received, requiring the peer to perform a
  reverse Session ID lookup).

  The other application of the SLI message is to map the ATM OAM or
  physical layer alarms into Circuit Status AVP as described in Section
  8.

4.  Encapsulation

  This section describes the general encapsulation format for ATM
  services over L2TP.










Singh, et al.               Standards Track                     [Page 6]

RFC 4454                    ATM over L2TPv3                     May 2006


   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                     PSN Transport Header                      |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                       Session Header                          |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                    ATM-Specific Sublayer                      |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  |                      ATM Service Payload                      |
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Figure 1: General Format for ATM Encapsulation over L2TPv3 over IP

  The PSN Transport header is specific to IP and its underlying
  transport header.  This header is used to transport the encapsulated
  ATM payload through the IP network.

  The Session Header is a non-zero 32-bit Session ID with an optional
  Cookie up to 64-bits.  This Session ID is exchanged during session
  setup.

  The ATM-Specific Sublayer is REQUIRED for AAL5 SDU Mode and OPTIONAL
  for ATM Cell Mode.  Please refer to Section 4.1 for more details.

4.1.  ATM-Specific Sublayer

  This section defines a new ATM-Specific Sublayer, an alternative to
  the Default L2-Specific Sublayer as mentioned in Section 4.6 of
  [RFC3931].  Four new flag bits (T, G, C, and U) are defined that
  concur with Section 8.2 of [PWE3ATM].

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |x|S|B|E|T|G|C|U|          Sequence Number                      |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                 Figure 2: ATM-Specific Sublayer Format

  The meaning of the fields of the ATM-Specific Sublayer is as follows:

     * S bit

     Definition of this bit is as per Section 4.6 of [RFC3931].




Singh, et al.               Standards Track                     [Page 7]

RFC 4454                    ATM over L2TPv3                     May 2006


     * B and E bits

     Definitions of these bits are as per Section 5.5 of [L2TPFRAG].

     If these bits are not used as per [L2TPFRAG], they MUST be set to
     0 upon transmission and ignored upon reception.

     * T (Transport type) bit

     Bit (T) of the ATM-Specific Sublayer indicates whether the packet
     contains an ATM admin cell or an AAL5 payload.  If T = 1, the
     packet contains an ATM admin cell, encapsulated according to the
     VCC cell relay encapsulation of Section 5.2.

     If not set, the PDU contains an AAL5 payload.  The ability to
     transport an ATM cell in the AAL5 SDU Mode is intended to provide
     a means of enabling administrative functionality over the AAL5 VCC
     (though it does not endeavor to preserve user-cell and admin-cell
     arrival/transport ordering, as described in Section 9.1).

     * G (EFCI) Bit

     The ingress LCCE device SHOULD set this bit to 1 if the Explicit
     Forward Congestion Indication (EFCI) bit of the final cell of the
     incoming AAL5 payload is set to 1, or if the EFCI bit of the
     single ATM cell to be transported in the packet is set to 1.
     Otherwise, this bit SHOULD be set to 0.  The egress LCCE device
     SHOULD set the EFCI bit of all the outgoing cells that transport
     the AAL5 payload to the value contained in this field.

     * C (CLP) Bit

     The ingress LCCE device SHOULD set this bit to 1 if the Cell Loss
     Priority (CLP) bit of any of the incoming ATM cells of the AAL5
     payload is set to 1, or if the CLP bit of the single ATM cell that
     is to be transported in the packet is set to 1.  Otherwise this
     bit SHOULD be set to 0.  The egress LCCE device SHOULD set the CLP
     bit of all outgoing cells that transport the AAL5 CPCS-PDU to the
     value contained in this field.












Singh, et al.               Standards Track                     [Page 8]

RFC 4454                    ATM over L2TPv3                     May 2006


     * U (Command/Response) Bit

     When FRF.8.1 Frame Relay / ATM PVC Service Interworking (see
     [FRF8.1]) traffic is being transported, the CPCS-UU Least
     Significant Bit (LSB) of the AAL5 CPCS-PDU may contain the Frame
     Relay C/R bit.  The ingress LCCE device SHOULD copy this bit to
     the U bit of the ATM-Specific Sublayer.  The egress LCCE device
     SHOULD copy the U bit to the CPCS-UU Least Significant Bit (LSB)
     of the AAL5 payload.

     The Sequence Number field is used in sequencing, as described in
     Section 4.2.

  In case of a reassembly timeout, the encapsulating LCCE should
  discard all component cells of the AAL5 frame.

  An additional enumeration is added to the L2-Specific Sublayer AVP to
  identify the ATM-Specific Sublayer:

        0 - There is no L2-Specific Sublayer present.
        1 - The Default L2-Specific Sublayer (defined in Section 4.6
            of [RFC3931]) is used.
        2 - The ATM-Specific Sublayer is used.

  The first two values are already defined in the L2TPv3 base
  specification [RFC3931].

4.2.  Sequencing

  Data Packet Sequencing MAY be enabled for ATMPWs.  The sequencing
  mechanisms described in [RFC3931] MUST be used to signal sequencing
  support.  ATMPWs over L2TPv3 MUST request the presence of the ATM-
  Specific Sublayer when sequencing is enabled, and MAY request its
  presence at all times.

5.  ATM Transport

  There are two encapsulations supported for ATM transport as described
  below.

  The ATM-Specific Sublayer is prepended to the AAL5-SDU.  The other
  cell mode encapsulation consists of the OPTIONAL ATM-Specific
  Sublayer, followed by a 4-byte ATM cell header and a 48-byte ATM
  cell-payload.







Singh, et al.               Standards Track                     [Page 9]

RFC 4454                    ATM over L2TPv3                     May 2006


5.1.  ATM AAL5-SDU Mode

  In this mode, each AAL5 VC is mapped to an L2TP session.  The Ingress
  LCCE reassembles the AAL5 CPCS-SDU without the AAL5 trailer and any
  padding bytes.  Incoming EFCI, CLP, and C/R (if present) are carried
  in an ATM-Specific Sublayer across ATMPWs to the egress LCCE.  The
  processing of these bits on ingress and egress LCCEs is defined in
  Section 4.1.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |x|S|x|x|T|G|C|U|             Sequence Number                   |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  |                                                               |
  |                         AAL5 CPCS-SDU                         |
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                Figure 3: ATM AAL5-SDU Mode Encapsulation

  If the ingress LCCE determines that an encapsulated AAL5 SDU exceeds
  the MTU size of the L2TPv3 session, then AAL5 SDU may be fragmented
  as per [L2TPFRAG] or underneath the transport layer (IP, etc.).  F5
  OAM cells that arrive during the reassembly of an AAL5 SDU are sent
  immediately on the PW followed by the AAL5 SDU payload.  In this
  case, OAM cells' relative order with respect to user data cells is
  not maintained.

  Performance Monitoring OAM, as specified in ITU-T 610 [I610-1],
  [I610-2], [I610-3] and security OAM cells as specified in [ATMSEC],
  should not be used in combination with AAL5 SDU Mode.  These cells
  MAY be dropped at the ingress LCCE because cell sequence integrity is
  not maintained.

  The Pseudowire Type AVP defined in Section 5.4.4 of [RFC3931],
  Attribute Type 68, MUST be present in the ICRQ messages and MUST
  include the ATM AAL5 SDU VCC transport PW Type of 0x0002.

5.2.  ATM Cell Mode

  In this mode, ATM cells skip the reassembly process at the ingress
  LCCE.  These cells are transported over an L2TP session, either as a
  single cell or as concatenated cells, into a single packet.  Each ATM
  cell consists of a 4-byte ATM cell header and a 48-byte ATM cell-
  payload; the HEC is not included.




Singh, et al.               Standards Track                    [Page 10]

RFC 4454                    ATM over L2TPv3                     May 2006


  In ATM Cell Mode encapsulation, the ATM-Specific Sublayer is
  OPTIONAL.  It can be included, if sequencing support is required.  It
  is left to the implementation to choose to signal the Default L2-
  Specific Sublayer or the ATM-Specific Sublayer.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |x|S|x|x|x|x|x|x|          Sequence Number (Optional)           |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |        VPI            |           VCI                 |PTI  |C|
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  |                    ATM Cell Payload (48-bytes)                |
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                              "
                              "
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |        VPI            |           VCI                 |PTI  |C|
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  |                    ATM Cell Payload (48-bytes)                |
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                  Figure 4: ATM Cell Mode Encapsulation

  In the simplest case, this encapsulation can be used to transmit a
  single ATM cell per Pseudowire PDU.  However, in order to provide
  better Pseudowire bandwidth efficiency, several ATM cells may be
  optionally encapsulated into a single Pseudowire PDU.

  The maximum number of concatenated cells in a packet is limited by
  the MTU size of the session and also by the ability of the egress
  LCCE to process them.  For more details about ATM Maximum
  Concatenated Cells, please refer to Section 6.

5.2.1.  ATM VCC Cell Relay Service

  A VCC cell relay service may be provided by mapping an ATM Virtual
  Channel Connection to a single Pseudowire using cell mode
  encapsulation as defined in Section 5.2.

  An LCCE may map one or more VCCs to a single PW.  However, a service
  provider may wish to provision a single VCC to a PW in order to
  satisfy QOS or restoration requirements.




Singh, et al.               Standards Track                    [Page 11]

RFC 4454                    ATM over L2TPv3                     May 2006


  The Pseudowire Type AVP defined in Section 5.4.4 of [RFC3931],
  Attribute Type 68, MUST be present in the ICRQ messages and MUST
  include the ATM cell transport VCC Mode PW Type of 0x0009.

5.2.2.  ATM VPC Cell Relay Service

  A Virtual Path Connection cell relay service may be provided by
  mapping an ATM Virtual Path Connection to a single Pseudowire using
  cell mode encapsulation as defined in Section 5.2.

  An LCCE may map one or more VPCs to a single Pseudowire.

  The Pseudowire Type AVP defined in Section 5.4.4 of [RFC3931],
  Attribute Type 68, MUST be present in the ICRQ messages and MUST
  include the ATM cell transport VPC Mode PW Type of 0x000A.

5.2.3.  ATM Port Cell Relay Service

  ATM port cell relay service allows an ATM port to be connected to
  another ATM port.  All ATM cells that are received at the ingress ATM
  port on the LCCE are encapsulated as per Section 5.2, into Pseudowire
  PDU and sent to peer LCCE.

  Each LCCE MUST discard any idle/unassigned cells received on an ATM
  port associated with ATMPWs.

  The Pseudowire Type AVP defined in Section 5.4.4 of [RFC3931],
  Attribute Type 68, MUST be present in the ICRQ messages and MUST
  include the ATM Cell transport Port Mode PW Type of 0x0003.

5.3.  OAM Cell Support

  The OAM cells are defined in [I610-1], [I610-2], [I610-3] and
  [ATMSEC] can be categorized as follows:

     a.  Fault Management
     b.  Performance monitoring and reporting
     c.  Activation/deactivation
     d.  System Management (e.g., security OAM cells)

  OAM Cells are always encapsulated using cell mode encapsulation,
  regardless of the encapsulation format used for user data.

5.3.1.  VCC Switching

  The LCCEs SHOULD be able to pass the F5 segment and end-to-end Fault
  Management, Resource Management (RM cells), Performance Management,
  Activation/deactivation, and System Management OAM cells.



Singh, et al.               Standards Track                    [Page 12]

RFC 4454                    ATM over L2TPv3                     May 2006


  F4 OAM cells are inserted or extracted at the VP link termination.
  These OAM cells are not seen at the VC link termination and are
  therefore not sent across the PW.

5.3.2.  VPC Switching

  The LCCEs MUST be able to pass the F4 segment and end-to-end Fault
  Management, Resource Management (RM cells), Performance Management,
  Activation/deactivation, and System Management OAM cells
  transparently according to [I610-1].

  F5 OAM cells are not inserted or extracted at the VP cross-connect.
  The LCCEs MUST be able to pass the F5 OAM cells transparently across
  the PW.

6.  ATM Maximum Concatenated Cells AVP

  The "ATM Maximum Concatenated Cells AVP", Attribute Type 86,
  indicates that the egress LCCE node can process a single PDU with
  concatenated cells up to a specified number of cells.  An LCCE node
  transmitting concatenated cells on this PW MUST NOT exceed the
  maximum number of cells as specified in this AVP.  This AVP is
  applicable only to ATM Cell Relay PW Types (VCC, VPC, Port Cell
  Relay).  This Attribute value may not be same in both directions of
  the specific PW.

  The Attribute Value field for this AVP has the following format:

   0                   1
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | ATM Maximum Concatenated Cells|
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  This AVP MAY be hidden (the H bit MAY be 0 or 1).  The M bit for this
  AVP MAY be set to 0, but MAY vary (see Section 5.2 of [RFC3931]).
  The length (before hiding) of this AVP is 8.

  This AVP is sent in an ICRQ, ICRP during session negotiation or via
  SLI control messages when LCCE changes the maximum number of
  concatenated cells configuration for a given ATM cell relay circuit.

  This AVP is OPTIONAL.  If the egress LCCE is configured with a
  maximum number of cells to be concatenated by the ingress LCCE, it
  SHOULD signal this value to the ingress LCCE.






Singh, et al.               Standards Track                    [Page 13]

RFC 4454                    ATM over L2TPv3                     May 2006


7.  OAM Emulation Required AVP

  An "OAM Emulation Required AVP", Attribute Type 87, MAY be needed to
  signal OAM emulation in AAL5 SDU Mode, if an LCCE cannot support the
  transport of OAM cells across L2TP sessions.  If OAM cell emulation
  is configured or detected via some other means on one side, the other
  LCCE MUST support OAM cell emulation as well.

  This AVP is exchanged during session negotiation (in ICRQ and ICRP)
  or during the life of the session via SLI control messages.  If the
  other LCCE cannot support the OAM cell emulation, the associated L2TP
  session MUST be torn down via CDN message with result code 22.

  OAM Emulation AVP is a boolean AVP, having no Attribute Value.  Its
  absence is FALSE and its presence is TRUE.  This AVP MAY be hidden
  (the H bit MAY be 0 or 1).  The M bit for this AVP SHOULD be set to
  0, but MAY vary (see Section 5.2 of [RFC3931]).  The Length (before
  hiding) of this AVP is 6.

8.  ATM Defects Mapping and Status Notification

  ATM OAM alarms or circuit status is indicated via the Circuit Status
  AVP as defined in Section 5.4.5 of [RFC3931].  For reference, usage
  of this AVP is shown below.

   0                   1
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |           Reserved        |N|A|
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  The Value is a 16-bit mask with the two least significant bits
  defined, and the remaining bits are reserved for future use.
  Reserved bits MUST be set to 0 when sending and ignored upon receipt.

  The A (Active) bit indicates whether the ATM circuit is ACTIVE (1) or
  INACTIVE (0).

  The N (New) bit indicates whether the ATM circuit status indication
  is for a new ATM circuit (1) or an existing ATM circuit (0).

8.1.  ATM Alarm Status AVP

  An "ATM Alarm Status AVP", Attribute Type 88, indicates the reason
  for the ATM circuit status and specific alarm type, if any, to its
  peer LCCE node.  This OPTIONAL AVP MAY be present in the SLI message
  with the Circuit Status AVP.




Singh, et al.               Standards Track                    [Page 14]

RFC 4454                    ATM over L2TPv3                     May 2006


  The Attribute Value field for this AVP has the following format:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Circuit Status Reason     |            Alarm              |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  The Circuit Status Reason is a 2-octet unsigned integer, and the
  Alarm Type is also a 2-octet unsigned integer.

  This AVP MAY be hidden (the H bit MAY be 0 or 1).  The M bit for this
  AVP SHOULD be set to 0, but MAY vary (see Section 5.2 of [RFC3931]).
  The Length (before hiding) of this AVP is 10 octets.

  This AVP is sent in the SLI message to indicate additional
  information about the ATM circuit status.

  Circuit Status Reason values for the SLI message are as follows:

          0 - Reserved
          1 - No alarm or alarm cleared (default for Active Status)
          2 - Unspecified or unknown Alarm Received (default for
              Inactive Status)
          3 - ATM Circuit received F1 Alarm on ingress LCCE
          4 - ATM Circuit received F2 Alarm on ingress LCCE
          5 - ATM Circuit received F3 Alarm on ingress LCCE
          6 - ATM Circuit received F4 Alarm on ingress LCCE
          7 - ATM Circuit received F5 Alarm on ingress LCCE
          8 - ATM Circuit down due to ATM Port shutdown on Peer LCCE
          9 - ATM Circuit down due to loop-back timeout on ingress LCCE

  The general ATM Alarm failures are encoded as below:

          0 - Reserved
          1 - No Alarm type specified (default)
          2 - Alarm Indication Signal (AIS)
          3 - Remote Defect Indicator (RDI)
          4 - Loss of Signal (LOS)
          5 - Loss of Pointer (LOP)
          6 - Loss of Framer (LOF)
          7 - Loopback cells (LB)
          8 - Continuity Check (CC)

9.  Applicability Statement

  The ATM Pseudowire emulation described in this document allows for
  carrying various ATM services across an IP packet switched network



Singh, et al.               Standards Track                    [Page 15]

RFC 4454                    ATM over L2TPv3                     May 2006


  (PSN).  These ATM services can be PVC-based, PVP-based, or port-
  based.  In all cases, ATMPWs operate in a point-to-point deployment
  model.

  ATMPWs support two modes of encapsulation: ATM AAL5-SDU Mode and ATM
  Cell Relay Mode.  The following sections list their respective
  characteristics in relationship to the native service.

9.1.  ATM AAL5-SDU Mode

  ATMPWs operating in AAL5-SDU Mode only support the transport of PVC-
  based services.  In this mode, the AAL5 CPCS-PDU from a single VCC is
  reassembled at the ingress LCCE, and the AAL5 CPCS-SDU (i.e., the
  AAL5 CPCS-PDU without CPCS-PDU Trailer or PAD octets, also referred
  to as AAL5 CPCS-PDU Payload) is transported over the Pseudowire.
  Therefore, Segmentation and Reassembly (SAR) functions are required
  at the LCCEs.  There is a one-to-one mapping between an ATM PVC and
  an ATMPW operating in AAL5-SDU Mode, supporting bidirectional
  transport of variable length frames.  With the exception of
  optionally transporting OAM cells, only ATM Adaptation Layer (AAL)
  Type 5 frames are carried in this mode, including multiprotocol over
  AAL5 packets [RFC2684].

  The following considerations stem from ATM AAL5-SDU Mode Pseudowires
  not transporting the ATM cell headers and AAL5 CPCS-PDU Trailer (see
  Section 5.1):

     o An ATMPW operating in AAL5-SDU Mode conveys EFCI and CLP
       information using the G and C bits in the ATM-Specific Sublayer.
       In consequence, the EFCI and CLP values of individual ATM cells
       that constitute the AAL5 frame may be lost across the ATMPW, and
       CLP and EFCI transparency may not be maintained.  The AAL5-SDU
       Mode does not preserve EFCI and CLP values for every ATM cell
       within the AAL5 PDU.  The processing of these bits on ingress
       and egress is defined in Section 4.1.

     o Only the least significant bit (LSB) from the CPCS-UU (User-to-
       User indication) field in the CPCS-PDU Trailer is transported
       using the ATM-Specific Sublayer (see Section 4.1).  This bit
       contains the Frame Relay C/R bit when FRF.8.1 Frame Relay / ATM
       PVC Service Interworking [FRF8.1] is used.  The CPCS-UU field is
       not used in multiprotocol over AAL5 [RFC2684].  However,
       applications that transfer user to user information using the
       CPCS-UU octet would fail to operate.







Singh, et al.               Standards Track                    [Page 16]

RFC 4454                    ATM over L2TPv3                     May 2006


     o The CPI (Common Part Indicator) field in the CPCS-PDU Trailer is
       also not transported across the ATMPW.  This does not affect
       multiprotocol over AAL5 applications since the field is used for
       alignment and MUST be coded as 0x00 [RFC2684].

     o The trailing CRC field in the CPCS-PDU is stripped at the
       ingress LCCE and not transported over the ATMPW operating in
       AAL5-SDU Mode.  It is in turn regenerated at the egress LCCE.
       Since the CRC has end-to-end significance, this means that
       errors introduced in the ATMPW payload during encapsulation or
       transit across the packet switched network may not be detected.
       To allow for payload integrity checking transparency on ATMPWs
       operating in AAL5-SDU Mode using L2TP over IP or L2TP over
       UDP/IP, the L2TPv3 session can utilize IPsec as specified in
       Section 4.1.3 of [RFC3931].

  Some additional characteristics of the AAL5-SDU Mode are the
  following:

     o The status of the ATM PVC is signaled between LCCEs using the
       Circuit Status AVP.  More granular cause values for the ATM
       circuit status and specific ATM alarm types are signaled using
       the ATM Alarm Status AVP (see Section 8.1).  Additionally, loss
       of connectivity between LCCEs can be detected by the L2TPv3
       keepalive mechanism (see Section 4.4 in [RFC3931]).

     o F5 OAM cells' relative order with respect to user data cells may
       not be maintained.  F5 OAM cells that arrive during the
       reassembly of an AAL5 SDU are sent immediately over the PW and
       before the AAL5 SDU payload.  At egress, these OAM cells are
       sent before the cells that comprise the AAL5-SDU.  Therefore,
       applications that rely on cell sequence integrity between OAM
       and user data cells may not work.  This includes Performance
       Monitoring and Security OAM cells (see Section 5.1).  In
       addition, the AAL5-SDU service allows for OAM emulation in which
       OAM cells are not transported over the ATMPW (see Section 7).
       This is advantageous for AAL5-SDU Mode ATMPW implementations
       that do not support cell transport using the T-bit.

     o Fragmentation and Reassembly procedures MAY be used for managing
       mismatched MTUs, as specified in Section 5 of [L2TPFRAG] or in
       the underlying PSN (IP, etc.) between tunnel endpoints as
       discussed in Section 4.1.4 of [RFC3931].  Only one of these
       methods SHOULD be used for a given AAL5-SDU Mode ATMPW.  The
       procedures described in [L2TPFRAG] can be used to support the
       maximum size of an AAL5 SDU, 2 ^ 16 - 1 (65535) octets.
       However, relying on fragmentation on the L2TP/IPv4 packet
       between tunnel endpoints limits the maximum size of the AAL5 SDU



Singh, et al.               Standards Track                    [Page 17]

RFC 4454                    ATM over L2TPv3                     May 2006


       that can be transported, because the maximum total length of an
       IPv4 datagram is already 65535 octets.  In this case, the
       maximum AAL5 SDU that can be transported is limited to 65535
       minus the encapsulating headers, 24-36 octets for L2TP-over-IPv4
       or 36-48 octets for L2TP-over-UDP/IPv4.  When the AAL5 payload
       is IPv4, an additional option is to fragment IP packets before
       tunnel encapsulation with L2TP/IP (see Section 4.1.4 of
       [RFC3931]).

     o Sequencing may be enabled on the ATMPW using the ATM-Specific
       Sublayer Sequence Number field, to detect lost, duplicate, or
       out-of-order frames on a per-session basis (see Section 4.2).

     o Quality of Service characteristics such as throughput (cell
       rates), burst sizes and delay variation can be provided by
       leveraging Quality of Service features of the LCCEs and the
       underlying PSN, increasing the faithfulness of ATMPWs.  This
       includes mapping ATM service categories to a compatible PSN
       class of service.

9.2.  ATM Cell Relay Mode

  In this mode, no reassembly takes place at the ingress LCCE.  There
  are no SAR requirements for LCCEs.  Instead, ATM-layer cells are
  transported over the ATMPW.  Consequently, all AAL types can be
  transported over ATMPWs operating in Cell Relay Mode.  ATM Cell Relay
  Pseudowires can operate in three different modes (see Section 5.2):
  ATM VCC, ATM VPC, and ATM Port Cell Relay Services.  The following
  are some of their characteristics:

     o The ATM cells transported over Cell Relay Mode ATMPWs consist of
       a 4-byte ATM cell header and a 48-byte ATM cell-payload (see
       Section 5.2).  The ATM Service Payload of a Cell Relay Mode
       ATMPW is a multiple of 52 bytes.  The Header Error Checksum
       (HEC) in the ATM cell header containing a Cyclic Redundancy
       Check (CRC) calculated over the first 4 bytes of the ATM cell
       header is not transported.  Accordingly, the HEC field may not
       accurately reflect errors on an end-to-end basis; errors or
       corruption in the 4-byte ATM cell header introduced in the ATMPW
       payload during encapsulation or transit across the PSN may not
       be detected.  To allow for payload integrity checking
       transparency on ATMPWs operating in Cell Relay Mode using L2TP
       over IP or L2TP over UDP/IP, the L2TPv3 session can utilize
       IPsec as specified in Section 4.1.3 of [RFC3931].







Singh, et al.               Standards Track                    [Page 18]

RFC 4454                    ATM over L2TPv3                     May 2006


     o ATM PWs operating in Cell Relay Mode can transport a single ATM
       cell or multiple concatenated cells (see Section 6).  Cell
       concatenation improves the bandwidth efficiency of the ATMPW (by
       decreasing the overhead) but introduces latency and delay
       variation.

     o The status of the ATM PVC is signaled between LCCEs using the
       Circuit Status AVP.  More granular cause values for the ATM
       circuit status and specific ATM alarm types are signaled using
       the ATM Alarm Status AVP (see Section 8.1).  Additionally, loss
       of connectivity between LCCEs can be detected by the L2TPv3
       keepalive mechanism (see Section 4.4 in [RFC3931]).

     o ATM OAM cells are transported in the same fashion as user cells,
       and in the same order as they are received.  Therefore,
       applications that rely on cell sequence integrity between OAM
       and user data cells are not adversely affected.  This includes
       performance management and security applications that utilize
       OAM cells (see Section 5.3).

     o The maximum number of concatenated cells is limited by the MTU
       size of the session (see Section 5.2 and Section 6).  Therefore,
       Fragmentation and Reassembly procedures are not used for Cell
       Relay ATMPWs.  Concatenating cells to then fragment the
       resulting packet defeats the purpose of cell concatenation.
       Concatenation of cells and fragmentation act as inverse
       functions, with additional processing but null net effect, and
       should not be used together.

     o Sequencing may be enabled on the ATMPW to detect lost,
       duplicate, or out-of-order packets on a per-session basis (see
       Section 4.2).

     o Quality of Service characteristics such as throughput (cell
       rates), burst sizes, and delay variation can be provided by
       leveraging Quality of Service features of the LCCEs and the
       underlying PSN, increasing the faithfulness of ATMPWs.  This
       includes mapping ATM service categories to a compatible PSN
       class of service, and mapping CLP and EFCI bits to PSN classes
       of service.  For example, mapping a Constant Bit Rate (CBR) PVC
       to a class of service with tight loss and delay characteristics,
       such as an Expedited Forwarding (EF) Per-Hop Behavior (PHB) if
       the PSN is an IP DiffServ-enabled domain.  The following
       characteristics of ATMPWs operating in Cell Relay Mode include
       additional QoS considerations:

          - ATM Cell transport VCC Pseudowires allow for mapping
            multiple ATM VCCs to a single ATMPW.  However, a user may



Singh, et al.               Standards Track                    [Page 19]

RFC 4454                    ATM over L2TPv3                     May 2006


            wish to map a single ATM VCC per ATMPW to satisfy QoS
            requirements (see Section 5.2.1).

          - Cell Relay ATMPWs allow for concatenating multiple cells in
            a single Pseudowire PDU to improve bandwidth efficiency,
            but may introduce latency and delay variation.

10.  Congestion Control

  As explained in [RFC3985], the PSN carrying the PW may be subject to
  congestion, with congestion characteristics depending on PSN type,
  network architecture, configuration, and loading.  During congestion
  the PSN may exhibit packet loss and packet delay variation (PDV) that
  will impact the timing and data integrity of the ATMPW.  During
  intervals of acute congestion, some Cell Relay ATMPWs may not be able
  to maintain service.  The inelastic nature of some ATM services
  reduces the risk of congestion because the rates will not expand to
  consume all available bandwidth, but on the other hand, those ATM
  services cannot arbitrarily reduce their load on the network to
  eliminate congestion when it occurs.

  Whenever possible, Cell Relay ATMPWs should be run over traffic-
  engineered PSNs providing bandwidth allocation and admission control
  mechanisms.  IntServ-enabled domains providing the Guaranteed Service
  (GS) or DiffServ-enabled domains using Expedited Forwarding (EF) are
  examples of traffic-engineered PSNs.  Such PSNs will minimize loss
  and delay while providing some degree of isolation of the Cell Relay
  ATMPW's effects from neighboring streams.

  If the PSN is providing a best-effort service, then the following
  best-effort service congestion avoidance considerations apply: Those
  ATMPWs that carry constant bit rate (CBR) and variable bit rate-real
  time (VBR-rt) services across the PSN will most probably not behave
  in a TCP-friendly manner prescribed by [RFC2914].  In the presence of
  services that reduce transmission rate, ATMPWs carrying CBR and VBR-
  rt traffic SHOULD be halted when acute congestion is detected, in
  order to allow for other traffic or the network infrastructure itself
  to continue.  ATMPWs carrying unspecified bit rate (UBR) traffic,
  which are equivalent to best-effort IP service, need not be halted
  during acute congestion and MAY have cells delayed or dropped by the
  ingress PE if necessary.  ATMPWs carrying variable bit rate-non real
  time (VBR-nrt) services may or may not behave in a TCP-friendly
  manner, depending on the end user application, but are most likely
  safe to continue operating, since the end-user application is
  expected to be delay-insensitive and may also be somewhat loss-
  insensitive.





Singh, et al.               Standards Track                    [Page 20]

RFC 4454                    ATM over L2TPv3                     May 2006


  LCCEs SHOULD monitor for congestion (for example, by measuring packet
  loss or as specified in Section 6.5 of [RFC3985]) in order to ensure
  that the ATM service may be maintained.  When severe congestion is
  detected (for example, when enabling sequencing and detecting that
  the packet loss is higher than a threshold), the ATM service SHOULD
  be terminated by tearing down the L2TP session via a CDN message.
  The PW may be restarted by manual intervention, or by automatic means
  after an appropriate waiting time.

11.  Security Considerations

  ATM over L2TPv3 is subject to the security considerations defined in
  [RFC3931].  There are no additional considerations specific to
  carrying ATM that are not present carrying other data link types.

12.  IANA Considerations

  The signaling mechanisms defined in this document rely upon the
  allocation of the following ATM Pseudowire Types (see Pseudowire
  Capabilities List as defined in 5.4.3 of [RFC3931] and L2TPv3
  Pseudowire Types in 10.6 of [RFC3931]) by the IANA (number space
  created as part of publication of [RFC3931]):

     Pseudowire Types
     ----------------

     0x0002  ATM AAL5 SDU VCC transport
     0x0003  ATM Cell transparent Port Mode
     0x0009  ATM Cell transport VCC Mode
     0x000A  ATM Cell transport VPC Mode

12.1.  L2-Specific Sublayer Type

  This number space is created and maintained per [RFC3931].

     L2-Specific Sublayer Type
     -------------------------

     2 - ATM L2-Specific Sublayer present

12.2.  Control Message Attribute Value Pairs (AVPs)

  This number space is managed by IANA as per [BCP0068].

  A summary of the three new AVPs follows:

  Control Message Attribute Value Pairs




Singh, et al.               Standards Track                    [Page 21]

RFC 4454                    ATM over L2TPv3                     May 2006


     Attribute
     Type        Description
     ---------   ----------------------------------
     86          ATM Maximum Concatenated Cells AVP
     87          OAM Emulation Required AVP
     88          ATM Alarm Status AVP

12.3.  Result Code AVP Values

  This number space is managed by IANA as per [BCP0068].

  A new Result Code value for the CDN message is defined in Section 7.
  Following is a summary:

  Result Code AVP (Attribute Type 1) Values
  -----------------------------------------

  General Error Codes

        22 - Session not established due to other LCCE
             cannot support the OAM Cell Emulation

12.4.  ATM Alarm Status AVP Values

  This is a new registry for IANA to maintain.

  New Attribute values for the ATM Alarm Status AVP in the SLI message
  are defined in Section 8.1.  Additional values may be assigned by
  Expert Review [RFC2434].  Following is a summary:

  ATM Alarm Status AVP (Attribute Type 88) Values
  -----------------------------------------------

  Circuit Status Reason values for the SLI message are as follows:

          0 - Reserved
          1 - No alarm or alarm cleared (default for Active Status)
          2 - Unspecified or unknown Alarm Received (default for
              Inactive Status)
          3 - ATM Circuit received F1 Alarm on ingress LCCE
          4 - ATM Circuit received F2 Alarm on ingress LCCE
          5 - ATM Circuit received F3 Alarm on ingress LCCE
          6 - ATM Circuit received F4 Alarm on ingress LCCE
          7 - ATM Circuit received F5 Alarm on ingress LCCE
          8 - ATM Circuit down due to ATM Port shutdown on Peer LCCE
          9 - ATM Circuit down due to loop-back timeout on ingress LCCE





Singh, et al.               Standards Track                    [Page 22]

RFC 4454                    ATM over L2TPv3                     May 2006


  The general ATM Alarm failures are encoded as below:

          0 - Reserved
          1 - No Alarm type specified (default)
          2 - Alarm Indication Signal (AIS)
          3 - Remote Defect Indicator (RDI)
          4 - Loss of Signal (LOS)
          5 - Loss of Pointer (LOP)
          6 - Loss of Framer (LOF)
          7 - Loopback cells (LB)
          8 - Continuity Check (CC)

12.5.  ATM-Specific Sublayer Bits

  This is a new registry for IANA to maintain.

  The ATM-Specific Sublayer contains 8 bits in the low-order portion of
  the header.  Reserved bits may be assigned by IETF Consensus
  [RFC2434].

     Bit 0 - Reserved
     Bit 1 - S (Sequence) bit
     Bit 2 - B (Fragmentation) bit
     Bit 3 - E (Fragmentation) bit
     Bit 4 - T (Transport type) bit
     Bit 5 - G (EFCI) bit
     Bit 6 - C (CLP) bit
     Bit 7 - U (Command/Response) bit

13.  Acknowledgements

  Thanks for the contributions from Jed Lau, Pony Zhu, Prasad Yaditi,
  Durai, and Jaya Kumar.

  Many thanks to Srinivas Kotamraju for editorial review.

  Thanks to Shoou Yiu and Fred Shu for giving their valuable time to
  review this document.

14.  References

14.1.  Normative References

  [RFC3931]  Lau, J., Townsley, M., and I. Goyret, "Layer Two Tunneling
             Protocol - Version 3 (L2TPv3)", RFC 3931, March 2005.

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119, March 1997.



Singh, et al.               Standards Track                    [Page 23]

RFC 4454                    ATM over L2TPv3                     May 2006


14.2.  Informative References

  [PWE3ATM]  Martini, L., "Encapsulation Methods for Transport of ATM
             Over MPLS Networks", Work in Progress, September 2005.

  [L2TPFRAG] Malis, A. and M. Townsley, "PWE3 Fragmentation and
             Reassembly", Work in Progress, November 2005.

  [FRF8.1]   "Frame Relay / ATM PVC Service Interworking Implementation
             Agreement (FRF 8.1)", Frame Relay Forum 2000.

  [BCP0068]  Townsley, W., "Layer Two Tunneling Protocol (L2TP)
             Internet Assigned Numbers Authority (IANA) Considerations
             Update", BCP 68, RFC 3438, December 2002.

  [RFC2434]  Narten, T. and H. Alvestrand, "Guidelines for Writing an
             IANA Considerations Section in RFCs", BCP 26, RFC 2434,
             October 1998.

  [I610-1]   ITU-T Recommendation I.610 (1999): B-ISDN operation and
             maintenance principles and functions

  [I610-2]   ITU-T Recommendation I.610, Corrigendum 1 (2000): B-ISDN
             operation and maintenance principles and functions
             (corrigendum 1)

  [I610-3]   ITU-T Recommendation I.610, Amendment 1 (2000): B-ISDN
             operation and maintenance principles and functions
             (Amendment 1)

  [ATMSEC]   ATM Forum Specification, af-sec-0100.002 (2001): ATM
             Security Specification version 1.1

  [RFC2684]  Grossman, D. and J. Heinanen, "Multiprotocol Encapsulation
             over ATM Adaptation Layer 5", RFC 2684, September 1999.

  [RFC3985]  Bryant, S. and P. Pate, "Pseudo Wire Emulation Edge-to-
             Edge (PWE3) Architecture", RFC 3985, March 2005.

  [RFC2914]  Floyd, S., "Congestion Control Principles", BCP 41, RFC
             2914, September 2000.










Singh, et al.               Standards Track                    [Page 24]

RFC 4454                    ATM over L2TPv3                     May 2006


Authors' Addresses

  Sanjeev Singh
  Cisco Systems
  170 W. Tasman Drive
  San Jose, CA  95134

  EMail: [email protected]


  W. Mark Townsley
  Cisco Systems
  7025 Kit Creek Road
  PO Box 14987
  Research Triangle Park, NC 27709

  EMail: [email protected]


  Carlos Pignataro
  Cisco Systems
  7025 Kit Creek Road
  PO Box 14987
  Research Triangle Park, NC 27709

  EMail: [email protected]

























Singh, et al.               Standards Track                    [Page 25]

RFC 4454                    ATM over L2TPv3                     May 2006


Full Copyright Statement

  Copyright (C) The Internet Society (2006).

  This document is subject to the rights, licenses and restrictions
  contained in BCP 78, and except as set forth therein, the authors
  retain all their rights.

  This document and the information contained herein are provided on an
  "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
  OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
  ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
  INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
  INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
  WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

  The IETF takes no position regarding the validity or scope of any
  Intellectual Property Rights or other rights that might be claimed to
  pertain to the implementation or use of the technology described in
  this document or the extent to which any license under such rights
  might or might not be available; nor does it represent that it has
  made any independent effort to identify any such rights.  Information
  on the procedures with respect to rights in RFC documents can be
  found in BCP 78 and BCP 79.

  Copies of IPR disclosures made to the IETF Secretariat and any
  assurances of licenses to be made available, or the result of an
  attempt made to obtain a general license or permission for the use of
  such proprietary rights by implementers or users of this
  specification can be obtained from the IETF on-line IPR repository at
  http://www.ietf.org/ipr.

  The IETF invites any interested party to bring to its attention any
  copyrights, patents or patent applications, or other proprietary
  rights that may cover technology that may be required to implement
  this standard.  Please address the information to the IETF at
  [email protected].

Acknowledgement

  Funding for the RFC Editor function is provided by the IETF
  Administrative Support Activity (IASA).







Singh, et al.               Standards Track                    [Page 26]