Network Working Group                                    L. Martini, Ed.
Request for Comments: 4448                                      E. Rosen
Category: Standards Track                            Cisco Systems, Inc.
                                                            N. El-Aawar
                                            Level 3 Communications, LLC
                                                               G. Heron
                                                                Tellabs
                                                             April 2006


  Encapsulation Methods for Transport of Ethernet over MPLS Networks

Status of This Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (2006).

Abstract

  An Ethernet pseudowire (PW) is used to carry Ethernet/802.3 Protocol
  Data Units (PDUs) over an MPLS network.  This enables service
  providers to offer "emulated" Ethernet services over existing MPLS
  networks.  This document specifies the encapsulation of
  Ethernet/802.3 PDUs within a pseudowire.  It also specifies the
  procedures for using a PW to provide a "point-to-point Ethernet"
  service.


















Martini, et al.             Standards Track                     [Page 1]

RFC 4448          Encapsulation of Ethernet over MPLS         April 2006


Table of Contents

  1. Introduction ....................................................3
  2. Specification of Requirements ...................................6
  3. Applicability Statement .........................................6
  4. Details Specific to Particular Emulated Services ................7
     4.1. Ethernet Tagged Mode .......................................7
     4.2. Ethernet Raw Mode ..........................................8
     4.3. Ethernet-Specific Interface Parameter LDP Sub-TLV ..........8
     4.4. Generic Procedures .........................................9
          4.4.1. Raw Mode vs. Tagged Mode ............................9
          4.4.2. MTU Management on the PE/CE Links ..................11
          4.4.3. Frame Ordering .....................................11
          4.4.4. Frame Error Processing .............................11
          4.4.5. IEEE 802.3x Flow Control Interworking ..............11
     4.5. Management ................................................12
     4.6. The Control Word ..........................................12
     4.7. QoS Considerations ........................................13
  5. Security Considerations ........................................14
  6. PSN MTU Requirements ...........................................14
  7. Normative References ...........................................15
  8. Informative References .........................................15
  9. Significant Contributors .......................................17
  Appendix A. Interoperability Guidelines ...........................20
     A.1. Configuration Options .....................................20
     A.2. IEEE 802.3x Flow Control Considerations ...................21
  Appendix B. QoS Details ...........................................21
     B.1. Adaptation of 802.1Q CoS to PSN CoS .......................22
     B.2. Drop Precedence ...........................................23






















Martini, et al.             Standards Track                     [Page 2]

RFC 4448          Encapsulation of Ethernet over MPLS         April 2006


1.  Introduction

  An Ethernet pseudowire (PW) allows Ethernet/802.3 [802.3] Protocol
  Data Units (PDUs) to be carried over a Multi-Protocol Label Switched
  [MPLS-ARCH] network.  In addressing the issues associated with
  carrying an Ethernet PDU over a packet switched network (PSN), this
  document assumes that a pseudowire (PW) has been set up by using a
  control protocol such as the one as described in [PWE3-CTRL].  The
  design of Ethernet pseudowire described in this document conforms to
  the pseudowire architecture described in [RFC3985].  It is also
  assumed in the remainder of this document that the reader is familiar
  with RFC 3985.

  The Pseudowire Emulation Edge-to-Edge (PWE3) Ethernet PDU consists of
  the Destination Address, Source Address, Length/Type, MAC Client
  Data, and padding extracted from a MAC frame as a concatenated octet
  sequence in their original order [PDU].

  In addition to the Ethernet PDU format used within the pseudowire,
  this document discusses:

     - Procedures for using a PW in order to provide a pair of Customer
       Edge (CE) routers with an emulated (point-to-point) Ethernet
       service, including the procedures for the processing of Provider
       Edge (PE)-bound and CE-bound Ethernet PDUs [RFC3985]

     - Ethernet-specific quality of service (QoS) and security
       considerations

     - Inter-domain transport considerations for Ethernet PW

  The following two figures describe the reference models that are
  derived from [RFC3985] to support the Ethernet PW emulated services.


















Martini, et al.             Standards Track                     [Page 3]

RFC 4448          Encapsulation of Ethernet over MPLS         April 2006


           |<-------------- Emulated Service ---------------->|
           |                                                  |
           |          |<------- Pseudowire ------->|          |
           |          |                            |          |
           |          |    |<-- PSN Tunnel -->|    |          |
           | PW End   V    V                  V    V  PW End  |
           V Service  +----+                  +----+  Service V
     +-----+    |     | PE1|==================| PE2|     |    +-----+
     |     |----------|............PW1.............|----------|     |
     | CE1 |    |     |    |                  |    |     |    | CE2 |
     |     |----------|............PW2.............|----------|     |
     +-----+  ^ |     |    |==================|    |     | ^  +-----+
           ^  |       +----+                  +----+     | |  ^
           |  |   Provider Edge 1         Provider Edge 2  |  |
           |  |                                            |  |
     Customer |                                            | Customer
     Edge 1   |                                            | Edge 2
              |                                            |
              |                                            |
     Attachment Circuit (AC)                    Attachment Circuit (AC)
     native Ethernet service                    native Ethernet service

        Figure 1: PWE3 Ethernet/VLAN Interface Reference Configuration

  The "emulated service" shown in Figure 1 is, strictly speaking, a
  bridged LAN; the PEs have MAC interfaces, consume MAC control frames,
  etc.  However, the procedures specified herein only support the case
  in which there are two CEs on the "emulated LAN".  Hence we refer to
  this service as "emulated point-to-point Ethernet".  Specification of
  the procedures for using pseudowires to emulate LANs with more than
  two CEs are out of the scope of the current document.

  +-------------+                                +-------------+
  |  Emulated   |                                |  Emulated   |
  |  Ethernet   |                                |  Ethernet   |
  | (including  |         Emulated Service       | (including  |
  |  VLAN)      |<==============================>|  VLAN)      |
  |  Services   |                                |  Services   |
  +-------------+           Pseudowire           +-------------+
  |Demultiplexer|<==============================>|Demultiplexer|
  +-------------+                                +-------------+
  |    PSN      |            PSN Tunnel          |    PSN      |
  |   MPLS      |<==============================>|   MPLS      |
  +-------------+                                +-------------+
  |  Physical   |                                |  Physical   |
  +-----+-------+                                +-----+-------+

        Figure 2: Ethernet PWE3 Protocol Stack Reference Model



Martini, et al.             Standards Track                     [Page 4]

RFC 4448          Encapsulation of Ethernet over MPLS         April 2006


  For the purpose of this document, PE1 will be defined as the ingress
  router, and PE2 as the egress router.  A layer 2 PDU will be received
  at PE1, encapsulated at PE1, transported, decapsulated at PE2, and
  transmitted out on the attachment circuit of PE2.

  An Ethernet PW emulates a single Ethernet link between exactly two
  endpoints.  The mechanisms described in this document are agnostic to
  that which is beneath the "Pseudowire" level in Figure 2, concerning
  itself only with the "Emulated Service" portion of the stack.

  The following reference model describes the termination point of each
  end of the PW within the PE:

          +-----------------------------------+
          |                PE                 |
  +---+   +-+  +-----+  +------+  +------+  +-+
  |   |   |P|  |     |  |PW ter|  | PSN  |  |P|
  |   |<==|h|<=| NSP |<=|minati|<=|Tunnel|<=|h|<== From PSN
  |   |   |y|  |     |  |on    |  |      |  |y|
  | C |   +-+  +-----+  +------+  +------+  +-+
  | E |   |                                   |
  |   |   +-+  +-----+  +------+  +------+  +-+
  |   |   |P|  |     |  |PW ter|  | PSN  |  |P|
  |   |==>|h|=>| NSP |=>|minati|=>|Tunnel|=>|h|==> To PSN
  |   |   |y|  |     |  |on    |  |      |  |y|
  +---+   +-+  +-----+  +------+  +------+  +-+
          |                                   |
          +-----------------------------------+
                      ^         ^         ^
                      |         |         |
                      A         B         C

          Figure 3: PW Reference Diagram

  The PW terminates at a logical port within the PE, defined at point B
  in the above diagram.  This port provides an Ethernet MAC service
  that will deliver each Ethernet frame that is received at point A,
  unaltered, to the point A in the corresponding PE at the other end of
  the PW.

  The Native Service Processing (NSP) function includes frame
  processing that is required for the Ethernet frames that are
  forwarded to the PW termination point.  Such functions may include
  stripping, overwriting or adding VLAN tags, physical port
  multiplexing and demultiplexing, PW-PW bridging, L2 encapsulation,
  shaping, policing, etc.  These functions are specific to the Ethernet
  technology, and may not be required for the PW emulation service.




Martini, et al.             Standards Track                     [Page 5]

RFC 4448          Encapsulation of Ethernet over MPLS         April 2006


  The points to the left of A, including the physical layer between the
  CE and PE, and any adaptation (NSP) functions between it and the PW
  terminations, are outside of the scope of PWE3 and are not defined
  here.

  "PW Termination", between A and B, represents the operations for
  setting up and maintaining the PW, and for encapsulating and
  decapsulating the Ethernet frames as necessary to transmit them
  across the MPLS network.

  An Ethernet PW operates in one of two modes: "raw mode" or "tagged
  mode".  In tagged mode, each frame MUST contain at least one 802.1Q
  [802.1Q] VLAN tag, and the tag value is meaningful to the NSPs at the
  two PW termination points.  That is, the two PW termination points
  must have some agreement (signaled or manually configured) on how to
  process the tag.  On a raw mode PW, a frame MAY contain an 802.1Q
  VLAN tag, but if it does, the tag is not meaningful to the NSPs, and
  passes transparently through them.

  Additional terminology relevant to pseudowires and Layer 2 Virtual
  Private Networking may be found in [RFC4026].

2.  Specification of Requirements

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in RFC 2119 [RFC2119].

3.  Applicability Statement

  The Ethernet PW emulation allows a service provider to offer a "port
  to port" Ethernet-based service across an MPLS packet switched
  network (PSN) while the Ethernet VLAN PW emulation allows an
  "Ethernet VLAN to VLAN" based service across an MPLS packet switched
  network (PSN).

  The Ethernet or Ethernet VLAN PW has the following characteristics in
  relationship to the respective native service:

     - An Ethernet PW connects two Ethernet ACs while an Ethernet VLAN
       PW connects two Ethernet VLAN ACs, supporting bidirectional
       transport of variable length Ethernet frames.  The ingress
       Native Service Processing (NSP) function strips the preamble and
       frame check sequence (FCS) from the Ethernet frame and
       transports the frame in its entirety across the PW.  This is
       done regardless of the presence of the 802.1Q tag in the frame.
       The egress NSP function receives the Ethernet frame from the PW
       and regenerates the preamble or FCS before forwarding the frame



Martini, et al.             Standards Track                     [Page 6]

RFC 4448          Encapsulation of Ethernet over MPLS         April 2006


       to the attachment circuit.  Since the FCS is not transported
       across either Ethernet or Ethernet VLAN PWs, payload integrity
       transparency may be lost.  The OPTIONAL method described in
       [FCS] can be used to achieve payload integrity transparency on
       Ethernet or Ethernet VLAN PWs.

     - For an Ethernet VLAN PW, VLAN tag rewrite can be achieved by NSP
       at the egress PE, which is outside the scope of this document.

     - The Ethernet or Ethernet VLAN PW only supports homogeneous
       Ethernet frame type across the PW; both ends of the PW must be
       either tagged or untagged.  Heterogeneous frame type support
       achieved with NSP functionality is outside the scope of this
       document.

     - Ethernet port or Ethernet VLAN status notification is provided
       using the PW Status TLV in the Label Distribution Protocol (LDP)
       status notification message.  Loss of connectivity between PEs
       can be detected by the LDP session closing, or by using [VCCV]
       mechanisms.  The PE can convey these indications back to its
       attached Remote System.

     - The maximum frame size that can be supported is limited by the
       PSN MTU minus the MPLS header size, unless fragmentation and
       reassembly are used [FRAG].

     - The packet switched network may reorder, duplicate, or silently
       drop packets.  Sequencing MAY be enabled in the Ethernet or
       Ethernet VLAN PW to detect lost, duplicate, or out-of-order
       packets on a per-PW basis.

     - The faithfulness of an Ethernet or Ethernet VLAN PW may be
       increased by leveraging Quality of Service features of the PEs
       and the underlying PSN.  (See Section 4.7, "QoS
       Considerations".)

4.  Details Specific to Particular Emulated Services

4.1.  Ethernet Tagged Mode

  The Ethernet frame will be encapsulated according to the procedures
  defined later in this document for tagged mode.  It should be noted
  that if the VLAN identifier is modified by the egress PE, the
  Ethernet spanning tree protocol might fail to work properly.  If this
  issue is of significance, the VLAN identifier MUST be selected in
  such a way that it matches on the attachment circuits at both ends of
  the PW.




Martini, et al.             Standards Track                     [Page 7]

RFC 4448          Encapsulation of Ethernet over MPLS         April 2006


  If the PE detects a failure on the Ethernet physical port, or the
  port is administratively disabled, it MUST send a PW status
  notification message for all PWs associated with the port.

  This mode uses service-delimiting tags to map input Ethernet frames
  to respective PWs and corresponds to PW type 0x0004 "Ethernet Tagged
  Mode" [IANA].

4.2.  Ethernet Raw Mode

  The Ethernet frame will be encapsulated according to the procedures
  defined later in this document for raw mode.  If the PE detects a
  failure on the Ethernet input port, or the port is administratively
  disabled, the PE MUST send an appropriate PW status notification
  message to the corresponding remote PE.

  In this mode, all Ethernet frames received on the attachment circuit
  of PE1 will be transmitted to PE2 on a single PW.  This service
  corresponds to PW type 0x0005 "Ethernet" [IANA].

4.3.  Ethernet-Specific Interface Parameter LDP Sub-TLV

  This LDP sub-Type Length Value [LDP] specifies interface-specific
  parameters.  When applicable, it MUST be used to validate that the
  PEs, and the ingress and egress ports at the edges of the circuit,
  have the necessary capabilities to interoperate with each other.  The
  Interface parameter TLV is defined in [PWE3-CTRL], the IANA registry
  with initial values for interface parameter sub-TLV types is defined
  in [IANA], but the Ethernet-specific interface parameters are
  specified as follows:

     - 0x06 Requested VLAN ID Sub-TLV

       An Optional 16-bit value indicating the requested VLAN ID.  This
       parameter MUST be used by a PE that is incapable of rewriting
       the 802.1Q Ethernet VLAN tag on output.  If the ingress PE
       receives this request, it MUST rewrite the VLAN ID contained
       inside the VLAN Tag at the input to match the requested VLAN ID.
       If this is not possible, and the VLAN ID does not already match
       the configured ingress VLAN ID, the PW MUST not be enabled.
       This parameter is applicable only to PW type 0x0004.










Martini, et al.             Standards Track                     [Page 8]

RFC 4448          Encapsulation of Ethernet over MPLS         April 2006


4.4.  Generic Procedures

  When the NSP/Forwarder hands a frame to the PW termination function:

     - The preamble (if any) and FCS are stripped off.

     - The control word as defined in Section 4.6, "The Control Word",
       is, if necessary, prepended to the resulting frame.  The
       conditions under which the control word is or is not used are
       specified below.

     - The proper pseudowire demultiplexer (PW Label) is prepended to
       the resulting packet.

     - The proper tunnel encapsulation is prepended to the resulting
       packet.

     - The packet is transmitted.

  The way in which the proper tunnel encapsulation and pseudowire
  demultiplexer is chosen depends on the procedures that were used to
  set up the pseudowire.

  The tunnel encapsulation depends on how the MPLS PSN is set up.  This
  can include no label, one label, or multiple labels.  The proper
  pseudowire demultiplexer is an MPLS label whose value is determined
  by the PW setup and maintenance protocols.

  When a packet arrives over a PW, the tunnel encapsulation and PW
  demultiplexer are stripped off.  If the control word is present, it
  is processed and stripped off.  The resulting frame is then handed to
  the Forwarder/NSP.  Regeneration of the FCS is considered to be an
  NSP responsibility.

4.4.1.  Raw Mode vs. Tagged Mode

  When the PE receives an Ethernet frame, and the frame has a VLAN tag,
  we can distinguish two cases:

     1. The tag is service-delimiting.  This means that the tag was
        placed on the frame by some piece of service provider-operated
        equipment, and the tag is used by the service provider to
        distinguish the traffic.  For example, LANs from different
        customers might be attached to the same service provider
        switch, which applies VLAN tags to distinguish one customer's
        traffic from another's, and then forwards the frames to the PE.





Martini, et al.             Standards Track                     [Page 9]

RFC 4448          Encapsulation of Ethernet over MPLS         April 2006


     2. The tag is not service-delimiting.  This means that the tag was
        placed in the frame by a piece of customer equipment, and is
        not meaningful to the PE.

  Whether or not the tag is service-delimiting is determined by local
  configuration on the PE.

  If an Ethernet PW is operating in raw mode, service-delimiting tags
  are NEVER sent over the PW.  If a service-delimiting tag is present
  when the frame is received from the attachment circuit by the PE, it
  MUST be stripped (by the NSP) from the frame before the frame is sent
  to the PW.

  If an Ethernet PW is operating in tagged mode, every frame sent on
  the PW MUST have a service-delimiting VLAN tag.  If the frame as
  received by the PE from the attachment circuit does not have a
  service-delimiting VLAN tag, the PE must prepend the frame with a
  dummy VLAN tag before sending the frame on the PW.  This is the
  default operating mode.  This is the only REQUIRED mode.

  In both modes, non-service-delimiting tags are passed transparently
  across the PW as part of the payload.  It should be noted that a
  single Ethernet packet may contain more than one tag.  At most, one
  of these tags may be service-delimiting.  In any case, the NSP
  function may only inspect the outermost tag for the purpose of
  adapting the Ethernet frame to the pseudowire.

  In both modes, the service-delimiting tag values have only local
  significance, i.e., are meaningful only at a particular PE-CE
  interface.  When tagged mode is used, the PE that receives a frame
  from the PW may rewrite the tag value, or may strip the tag entirely,
  or may leave the tag unchanged, depending on its configuration.  When
  raw mode is used, the PE that receives a frame may or may not need to
  add a service-delimiting tag before transmitting the frame on the
  attachment circuit; however, it MUST not rewrite or remove any tags
  that are already present.

  The following table illustrates the operations that might be
  performed at input from the attachment circuit:

  +-----------------------------------------------------------+
  |       Tag-> |  service delimiting | non service delimiting|
  |-------------+---------------------+-----------------------|
  |   Raw Mode  | 1st VLAN Tag Removed| no operation performed|
  |-------------+---------------------+-----------------------|
  | Tagged Mode | NO OP or Tag Added  |     Tag Added         |
  +-----------------------------------------------------------+




Martini, et al.             Standards Track                    [Page 10]

RFC 4448          Encapsulation of Ethernet over MPLS         April 2006


4.4.2.  MTU Management on the PE/CE Links

  The Ethernet PW MUST NOT be enabled unless it is known that the MTUs
  of the CE-PE links are the same at both ends of the PW.  If an egress
  router receives an encapsulated layer 2 PDU whose payload length
  (i.e., the length of the PDU itself without any of the encapsulation
  headers) exceeds the MTU of the destination layer 2 interface, the
  PDU MUST be dropped.

4.4.3.  Frame Ordering

  In general, applications running over Ethernet do not require strict
  frame ordering.  However, the IEEE definition of 802.3 [802.3]
  requires that frames from the same conversation in the context of
  link aggregation (clause 43) are delivered in sequence.  Moreover,
  the PSN cannot (in the general case) be assumed to provide or to
  guarantee frame ordering.  An Ethernet PW can, through use of the
  control word, provide strict frame ordering.  If this option is
  enabled, any frames that get misordered by the PSN will be dropped or
  reordered by the receiving PW endpoint.  If strict frame ordering is
  a requirement for a particular PW, this option MUST be enabled.

4.4.4.  Frame Error Processing

  An encapsulated Ethernet frame traversing a pseudowire may be
  dropped, corrupted, or delivered out-of-order.  As described in
  [PWE3-REQ], frame loss, corruption, and out-of-order delivery are
  considered to be a "generalized bit error" of the pseudowire.  PW
  frames that are corrupted will be detected at the PSN layer and
  dropped.

  At the ingress of the PW, the native Ethernet frame error processing
  mechanisms MUST be enabled.  Therefore, if a PE device receives an
  Ethernet frame containing hardware-level Cyclic Redundancy Check
  (CRC) errors, framing errors, or a runt condition, the frame MUST be
  discarded on input.  Note that defining this processing is part of
  the NSP function and is outside the scope of this document.

4.4.5.  IEEE 802.3x Flow Control Interworking

  In a standard Ethernet network, the flow control mechanism is
  optional and typically configured between the two nodes on a point-
  to-point link (e.g., between the CE and the PE).  IEEE 802.3x PAUSE
  frames MUST NOT be carried across the PW.  See Appendix A for notes
  on CE-PE flow control.






Martini, et al.             Standards Track                    [Page 11]

RFC 4448          Encapsulation of Ethernet over MPLS         April 2006


4.5.  Management

  The Ethernet PW management model follows the general PW management
  model defined in [RFC3985] and [PWE3-MIB].  Many common PW management
  facilities are provided here, with no additional Ethernet specifics
  necessary.  Ethernet-specific parameters are defined in an additional
  MIB module, [PW-MIB].

4.6.  The Control Word

  The control word defined in this section is based on the Generic PW
  MPLS Control Word as defined in [PWE3-CW].  It provides the ability
  to sequence individual frames on the PW, avoidance of equal-cost
  multiple-path load-balancing (ECMP) [RFC2992], and Operations and
  Management (OAM) mechanisms including VCCV [VCCV].

  [PWE3-CW] states, "If a PW is sensitive to packet misordering and is
  being carried over an MPLS PSN that uses the contents of the MPLS
  payload to select the ECMP path, it MUST employ a mechanism which
  prevents packet misordering." This is necessary because ECMP
  implementations may examine the first nibble after the MPLS label
  stack to determine whether the labelled packet is IP or not.  Thus,
  if the source MAC address of an Ethernet frame carried over the PW
  without a control word present begins with 0x4 or 0x6, it could be
  mistaken for an IPv4 or IPv6 packet.  This could, depending on the
  configuration and topology of the MPLS network, lead to a situation
  where all packets for a given PW do not follow the same path.  This
  may increase out-of-order frames on a given PW, or cause OAM packets
  to follow a different path than actual traffic (see Section 4.4.3,
  "Frame Ordering").

  The features that the control word provides may not be needed for a
  given Ethernet PW.  For example, ECMP may not be present or active on
  a given MPLS network, strict frame sequencing may not be required,
  etc.  If this is the case, the control word provides little value and
  is therefore optional.  Early Ethernet PW implementations have been
  deployed that do not include a control word or the ability to process
  one if present.  To aid in backwards compatibility, future
  implementations MUST be able to send and receive frames without the
  control word present.

  In all cases, the egress PE MUST be aware of whether the ingress PE
  will send a control word over a specific PW.  This may be achieved by
  configuration of the PEs, or by signaling, as defined in [PWE3-CTRL].







Martini, et al.             Standards Track                    [Page 12]

RFC 4448          Encapsulation of Ethernet over MPLS         April 2006


  The control word is defined as follows:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |0 0 0 0|   Reserved            |       Sequence Number         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  In the above diagram, the first 4 bits MUST be set to 0 to indicate
  PW data.  The rest of the first 16 bits are reserved for future use.
  They MUST be set to 0 when transmitting, and MUST be ignored upon
  receipt.

  The next 16 bits provide a sequence number that can be used to
  guarantee ordered frame delivery.  The processing of the sequence
  number field is OPTIONAL.

  The sequence number space is a 16-bit, unsigned circular space.  The
  sequence number value 0 is used to indicate that the sequence number
  check algorithm is not used.  The sequence number processing
  algorithm is found in [PWE3-CW].

4.7.  QoS Considerations

  The ingress PE MAY consider the user priority (PRI) field [802.1Q] of
  the VLAN tag header when determining the value to be placed in a QoS
  field of the encapsulating protocol (e.g., the EXP fields of the MPLS
  label stack).  In a similar way, the egress PE MAY consider the QoS
  field of the encapsulating protocol (e.g., the EXP fields of the MPLS
  label stack) when queuing the frame for transmission towards the CE.

  A PE MUST support the ability to carry the Ethernet PW as a best-
  effort service over the MPLS PSN.  PRI bits are kept transparent
  between PE devices, regardless of the QoS support of the PSN.

  If an 802.1Q VLAN field is added at the PE, a default PRI setting of
  zero MUST be supported, a configured default value is recommended, or
  the value may be mapped from the QoS field of the PSN, as referred to
  above.

  A PE may support additional QoS support by means of one or more of
  the following methods:

       i.  One class of service (CoS) per PW End Service (PWES), mapped
           to a single CoS PW at the PSN.
      ii.  Multiple CoS per PWES mapped to a single PW with multiple
           CoS at the PSN.
     iii.  Multiple CoS per PWES mapped to multiple PWs at the PSN.



Martini, et al.             Standards Track                    [Page 13]

RFC 4448          Encapsulation of Ethernet over MPLS         April 2006


  Examples of the cases above and details of the service mapping
  considerations are described in Appendix B.

  The PW guaranteed rate at the MPLS PSN level is PW service provider
  policy based on agreement with the customer, and may be different
  from the Ethernet physical port rate.

5.  Security Considerations

  The Ethernet pseudowire type is subject to all of the general
  security considerations discussed in [RFC3985] and [PWE3-CTRL].

  The Ethernet pseudowire is transported on an MPLS PSN; therefore, the
  security of the pseudowire itself will only be as good as the
  security of the MPLS PSN.  The MPLS PSN can be secured by various
  methods, as described in [MPLS-ARCH].

  Security achieved by access control of MAC addresses is out of the
  scope of this document.  Additional security requirements related to
  the use of PW in a switching (virtual bridging) environment are not
  discussed here as they are not within the scope of this document.

6.  PSN MTU Requirements

  The MPLS PSN MUST be configured with an MTU that is large enough to
  transport a maximum-sized Ethernet frame that has been encapsulated
  with a control word, a pseudowire demultiplexer, and a tunnel
  encapsulation.  With MPLS used as the tunneling protocol, for
  example, this is likely to be 8 or more bytes greater than the
  largest frame size.  The methodology described in [FRAG] MAY be used
  to fragment encapsulated frames that exceed the PSN MTU.  However, if
  [FRAG] is not used and if the ingress router determines that an
  encapsulated layer 2 PDU exceeds the MTU of the PSN tunnel through
  which it must be sent, the PDU MUST be dropped.

















Martini, et al.             Standards Track                    [Page 14]

RFC 4448          Encapsulation of Ethernet over MPLS         April 2006


7.  Normative References

  [PWE3-CW]    Bryant, S., Swallow, G., and D. McPherson, "Pseudowire
               Emulation Edge-to-Edge (PWE3) Control Word for Use over
               an MPLS PSN", RFC 4385, February 2006.

  [IANA]       Martini, L., "IANA Allocations for Pseudowire Edge to
               Edge Emulation (PWE3)", BCP 116, RFC 4446, April 2006.

  [PWE3-CTRL]  Martini, L., El-Aawar, N., Heron, G., Rosen, E., Tappan,
               D., and T. Smith, "Pseudowire Setup and Maintenance
               using the Label Distribution Protocol (LDP)", RFC 4447,
               April 2006.

  [MPLS-ARCH]  Rosen, E., Viswanathan, A., and R. Callon,
               "Multiprotocol Label Switching Architecture", RFC 3031,
               January 2001.

  [802.3]      IEEE802.3-2005, ISO/IEC 8802-3: 2000 (E), "IEEE Standard
               for Information technology -- Telecommunications and
               information exchange between systems -- Local and
               metropolitan
                area networks -- Specific requirements -- Part 3:
               Carrier Sense Multiple Access with Collision Detection
               (CSMA/CD) Access Method and Physical Layer
               Specifications", 2005.

  [802.1Q]     ANSI/IEEE Standard 802.1Q-2005, "IEEE Standards for
               Local and Metropolitan Area Networks: Virtual Bridged
               Local Area Networks", 2005.

  [PDU]        IEEE Std 802.3, 1998 Edition, "Part 3: Carrier sense
               multiple access with collision detection (CSMA/CD)
               access method and physical layer specifications" figure
               3.1, 1998

  [RFC2119]    Bradner, S., "Key words for use in RFCs to Indicate
               Requirement Levels", BCP 14, RFC 2119, March 1997.

8.  Informative References

  [RFC3985]    Bryant, S. and P. Pate, "Pseudo Wire Emulation Edge-to-
               Edge (PWE3) Architecture", RFC 3985, March 2005.

  [PW-MIB]     Zelig, D. and T. Nadeau, "Ethernet Pseudo Wire (PW)
               Management Information Base", Work in Progress, February
               2006.




Martini, et al.             Standards Track                    [Page 15]

RFC 4448          Encapsulation of Ethernet over MPLS         April 2006


  [PWE3-REQ]   Xiao, X., McPherson, D., and P. Pate, "Requirements for
               Pseudo-Wire Emulation Edge-to-Edge (PWE3)", RFC 3916,
               September 2004.

  [PWE3-MIB]   Zelig, D., Ed. and T. Nadeau, Ed., "Pseudo Wire (PW)
               Management Information Base", Work in Progress, February
               2006.

  [LDP]        Andersson, L., Doolan, P., Feldman, N., Fredette, A.,
               and B. Thomas, "LDP Specification", RFC 3036, January
               2001.

  [FRAG]       Malis, A. and W. Townsley, "PWE3 Fragmentation and
               Reassembly", Work in Progress, February 2005.

  [FCS]        Malis, A., Allan, D., and N. Del Regno, "PWE3 Frame
               Check Sequence Retention", Work in Progress, September
               2005.

  [VCCV]       Nadeau, T., Ed. and R. Aggarwal, Ed., "Pseudo Wire
               Virtual Circuit Connectivity Verification (VCCV)", Work
               in Progress, August 2005.

  [RFC2992]    Hopps, C., "Analysis of an Equal-Cost Multi-Path
               Algorithm", RFC 2992, November 2000.

  [RFC4026]    Andersson, L. and T. Madsen, "Provider Provisioned
               Virtual Private Network (VPN) Terminology", RFC 4026,
               March 2005.

  [L2TPv3]     Lau, J., Townsley, M., and I. Goyret, "Layer Two
               Tunneling Protocol - Version 3 (L2TPv3)", RFC 3931,
               March 2005.


















Martini, et al.             Standards Track                    [Page 16]

RFC 4448          Encapsulation of Ethernet over MPLS         April 2006


9.  Significant Contributors

  Andrew G. Malis
  Tellabs
  90 Rio Robles Dr.
  San Jose, CA 95134

  EMail: [email protected]


  Dan Tappan
  Cisco Systems, Inc.
  1414 Massachusetts Avenue
  Boxborough, MA 01719

  EMail: [email protected]


  Steve Vogelsang
  ECI Telecom
  Omega Corporate Center
  1300 Omega Drive
  Pittsburgh, PA 15205

  EMail: [email protected]


  Vinai Sirkay
  Reliance Infocomm
  Dhirubai Ambani Knowledge City
  Navi Mumbai 400 709
  India

  EMail: [email protected]


  Vasile Radoaca
  Nortel Networks
  600  Technology Park
  Billerica MA 01821

  EMail: [email protected]









Martini, et al.             Standards Track                    [Page 17]

RFC 4448          Encapsulation of Ethernet over MPLS         April 2006


  Chris Liljenstolpe
  Alcatel
  11600 Sallie Mae Dr.
  9th Floor
  Reston, VA 20193

  EMail: [email protected]


  Kireeti Kompella
  Juniper Networks
  1194 N. Mathilda Ave
  Sunnyvale, CA 94089

  EMail: [email protected]


  Tricci So
  Nortel Networks 3500 Carling Ave.,
  Nepean, Ontario,
  Canada, K2H 8E9.

  EMail: [email protected]


  XiPeng Xiao
  Riverstone Networks
  5200 Great America Parkway
  Santa Clara, CA 95054

  EMail: [email protected]


  Christopher O.  Flores
  T-Systems
  10700 Parkridge Boulevard
  Reston, VA 20191
  USA

  EMail: [email protected]


  David Zelig
  Corrigent Systems
  126, Yigal Alon St.
  Tel Aviv, ISRAEL

  EMail: [email protected]



Martini, et al.             Standards Track                    [Page 18]

RFC 4448          Encapsulation of Ethernet over MPLS         April 2006


  Raj Sharma
  Luminous Networks, Inc.
  10460 Bubb Road
  Cupertino, CA 95014

  EMail: [email protected]


  Nick Tingle
  TiMetra Networks
  274 Ferguson Drive
  Mountain View, CA 94043

  EMail: [email protected]


  Sunil Khandekar
  TiMetra Networks
  274 Ferguson Drive
  Mountain View, CA 94043

  EMail: [email protected]


  Loa Andersson
  TLA-group

  EMail: [email protected]























Martini, et al.             Standards Track                    [Page 19]

RFC 4448          Encapsulation of Ethernet over MPLS         April 2006


Appendix A.  Interoperability Guidelines

A.1.  Configuration Options

  The following is a list of the configuration options for a point-to-
  point Ethernet PW based on the reference points of Figure 3:

  --------------|---------------|---------------|------------------
  Service and   |  Encap on C   |Operation at B | Remarks
  Encap on A    |               |ingress/egress |
  --------------|---------------|---------------|------------------
  1) Raw        | Raw - Same as |               |
                | A             |               |
                |               |               |
  --------------|---------------|---------------|------------------
  2) Tag1       | Tag2          |Optional change| VLAN can be
                |               |of VLAN value  | 0-4095
                |               |               | Change allowed in
                |               |               | both directions
  --------------|---------------|---------------|------------------
  3) No Tag     | Tag           |Add/remove Tag | Tag can be
                |               |field          | 0-4095
                |               |               | (note i)
                |               |               |
  --------------|---------------|---------------|------------------
  4) Tag        | No Tag        |Remove/add Tag | (note ii)
                |               |field          |
                |               |               |
                |               |               |
  --------------|---------------|---------------|------------------

                     Figure 4: Configuration Options

  Allowed combinations:

  Raw and other services are not allowed on the same NSP virtual port
  (A).  All other combinations are allowed, except that conflicting
  VLANs on (A) are not allowed.  Note that in most point-to-point PW
  applications the NSP virtual port is the same entity as the physical
  port.

  Notes:

       i.  Mode #3 MAY be limited to adding VLAN NULL only, since
           change of VLAN or association to specific VLAN can be done
           at the PW CE-bound side.





Martini, et al.             Standards Track                    [Page 20]

RFC 4448          Encapsulation of Ethernet over MPLS         April 2006


      ii.  Mode #4 exists in layer 2 switches, but is not recommended
           when operating with PW since it may not preserve the user's
           PRI bits.  If there is a need to remove the VLAN tag (for
           TLS at the other end of the PW), it is recommended to use
           mode #2 with tag2=0 (NULL VLAN) on the PW and use mode #3 at
           the other end of the PW.

A.2.  IEEE 802.3x Flow Control Considerations

  If the receiving node becomes congested, it can send a special frame,
  called the PAUSE frame, to the source node at the opposite end of the
  connection.  The implementation MUST provide a mechanism for
  terminating PAUSE frames locally (i.e., at the local PE).  It MUST
  operate as follows: PAUSE frames received on a local Ethernet port
  SHOULD cause the PE device to buffer, or to discard, further Ethernet
  frames for that port until the PAUSE condition is cleared.
  Optionally, the PE MAY simply discard PAUSE frames.

  If the PE device wishes to pause data received on a local Ethernet
  port (perhaps because its own buffers are filling up or because it
  has received notification of congestion within the PSN), then it MAY
  issue a PAUSE frame on the local Ethernet port, but MUST clear this
  condition when willing to receive more data.

Appendix B.  QoS Details

  Section 4.7, "QoS Considerations", describes various modes for
  supporting PW QOS over the PSN.  Examples of the above for a point-
  to-point VLAN service are:

     - The classification to the PW is based on VLAN field, but the
       user PRI bits are mapped to different CoS markings (and network
       behavior) at the PW level.  An example of this is a PW mapped to
       an E-LSP in an MPLS network.

     - The classification to the PW is based on VLAN field and the PRI
       bits, and frames with different PRI bits are mapped to different
       PWs.  An example is to map a PWES to different L-LSPs in MPLS
       PSN in order to support multiple CoS over an L-LSP-capable
       network, or to map a PWES to multiple L2TPv3 sessions [L2TPv3].

       The specific value to be assigned at the PSN for various CoS is
       out of the scope of this document.








Martini, et al.             Standards Track                    [Page 21]

RFC 4448          Encapsulation of Ethernet over MPLS         April 2006


B.1.  Adaptation of 802.1Q CoS to PSN CoS

  It is not required that the PSN will have the same CoS definition of
  CoS as defined in [802.1Q], and the mapping of 802.1Q CoS to PSN CoS
  is application specific and depends on the agreement between the
  customer and the PW provider.  However, the following principles
  adopted from 802.1Q, Table 8-2, MUST be met when applying the set of
  PSN CoS based on user's PRI bits.

               ----------------------------------
               |#of available classes of service|
  -------------||---+---+---+---+---+---+---+---|
  User         || 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
  Priority     ||   |   |   |   |   |   |   |   |
  ===============================================
  0 Best Effort|| 0 | 0 | 0 | 1 | 1 | 1 | 1 | 2 |
  (Default)    ||   |   |   |   |   |   |   |   |
  ------------ ||---+---+---+---+---+---+---+---|
  1 Background || 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
               ||   |   |   |   |   |   |   |   |
  ------------ ||---+---+---+---+---+---+---+---|
  2 Spare      || 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
               ||   |   |   |   |   |   |   |   |
  ------------ ||---+---+---+---+---+---+---+---|
  3 Excellent  || 0 | 0 | 0 | 1 | 1 | 2 | 2 | 3 |
  Effort       ||   |   |   |   |   |   |   |   |
  ------------ ||---+---+---+---+---+---+---+---|
  4 Controlled || 0 | 1 | 1 | 2 | 2 | 3 | 3 | 4 |
  Load         ||   |   |   |   |   |   |   |   |
  ------------ ||---+---+---+---+---+---+---+---|
  5 Interactive|| 0 | 1 | 1 | 2 | 3 | 4 | 4 | 5 |
  Multimedia   ||   |   |   |   |   |   |   |   |
  ------------ ||---+---+---+---+---+---+---+---|
  6 Interactive|| 0 | 1 | 2 | 3 | 4 | 5 | 5 | 6 |
  Voice        ||   |   |   |   |   |   |   |   |
  ------------ ||---+---+---+---+---+---+---+---|
  7 Network    || 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
  Control      ||   |   |   |   |   |   |   |   |
  ------------ ||---+---+---+---+---+---+---+---|

                    Figure 5: IEEE 802.1Q CoS Mapping










Martini, et al.             Standards Track                    [Page 22]

RFC 4448          Encapsulation of Ethernet over MPLS         April 2006


B.2.  Drop Precedence

  The 802.1P standard does not support drop precedence; therefore, from
  the PW PE-bound point of view there is no mapping required.  It is,
  however, possible to mark different drop precedence for different PW
  frames based on the operator policy and required network behavior.
  This functionality is not discussed further here.

  PSN QoS support and signaling of QoS are out of the scope of this
  document.

Authors' Addresses

  Luca Martini, Editor
  Cisco Systems, Inc.
  9155 East Nichols Avenue, Suite 400
  Englewood, CO, 80112

  EMail: [email protected]


  Nasser El-Aawar
  Level 3 Communications, LLC.
  1025 Eldorado Blvd.
  Broomfield, CO, 80021

  EMail: [email protected]


  Giles Heron
  Tellabs
  Abbey Place
  24-28 Easton Street
  High Wycombe
  Bucks
  HP11 1NT
  UK

  EMail: [email protected]


  Eric C. Rosen
  Cisco Systems, Inc.
  1414 Massachusetts Avenue
  Boxborough, MA 01719

  EMail: [email protected]




Martini, et al.             Standards Track                    [Page 23]

RFC 4448          Encapsulation of Ethernet over MPLS         April 2006


Full Copyright Statement

  Copyright (C) The Internet Society (2006).

  This document is subject to the rights, licenses and restrictions
  contained in BCP 78, and except as set forth therein, the authors
  retain all their rights.

  This document and the information contained herein are provided on an
  "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
  OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
  ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
  INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
  INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
  WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

  The IETF takes no position regarding the validity or scope of any
  Intellectual Property Rights or other rights that might be claimed to
  pertain to the implementation or use of the technology described in
  this document or the extent to which any license under such rights
  might or might not be available; nor does it represent that it has
  made any independent effort to identify any such rights.  Information
  on the procedures with respect to rights in RFC documents can be
  found in BCP 78 and BCP 79.

  Copies of IPR disclosures made to the IETF Secretariat and any
  assurances of licenses to be made available, or the result of an
  attempt made to obtain a general license or permission for the use of
  such proprietary rights by implementers or users of this
  specification can be obtained from the IETF on-line IPR repository at
  http://www.ietf.org/ipr.

  The IETF invites any interested party to bring to its attention any
  copyrights, patents or patent applications, or other proprietary
  rights that may cover technology that may be required to implement
  this standard.  Please address the information to the IETF at
  [email protected].

Acknowledgement

  Funding for the RFC Editor function is provided by the IETF
  Administrative Support Activity (IASA).







Martini, et al.             Standards Track                    [Page 24]