Network Working Group                                          Y. Nomura
Request for Comments: 4435                                 Fujitsu Labs.
Category: Informational                                         R. Walsh
                                                             J-P. Luoma
                                                                  Nokia
                                                              H. Asaeda
                                                        Keio University
                                                         H. Schulzrinne
                                                    Columbia University
                                                             April 2006


      A Framework for the Usage of Internet Media Guides (IMGs)

Status of This Memo

  This memo provides information for the Internet community.  It does
  not specify an Internet standard of any kind.  Distribution of this
  memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (2006).

Abstract

  This document defines a framework for the delivery of Internet Media
  Guides (IMGs).  An IMG is a structured collection of multimedia
  session descriptions expressed using the Session Description Protocol
  (SDP), SDPng, or some similar session description format.  This
  document describes a generalized model for IMG delivery mechanisms,
  the use of existing protocols, and the need for additional work to
  create an IMG delivery infrastructure.


















Nomura, et al.               Informational                      [Page 1]

RFC 4435                     IMG Framework                    April 2006


Table of Contents

  1. Introduction ....................................................3
  2. Terminology .....................................................3
     2.1. New Terms ..................................................4
  3. IMG Common Framework Model ......................................5
     3.1. IMG Data Types .............................................5
          3.1.1. Complete IMG Description ............................5
          3.1.2. Delta IMG Description ...............................6
          3.1.3. IMG Pointer .........................................6
     3.2. IMG Entities ...............................................6
     3.3. Operation Set for IMG Delivery .............................7
          3.3.1. IMG ANNOUNCE ........................................7
          3.3.2. IMG QUERY ...........................................8
          3.3.3. IMG RESOLVE .........................................8
          3.3.4. IMG SUBSCRIBE .......................................8
          3.3.5. IMG NOTIFY ..........................................9
          3.3.6. Binding between IMG Operations and Data Types .......9
     3.4. Overview of Protocol Operations ...........................10
  4. Deployment Scenarios for IMG Entities ..........................10
     4.1. Intermediary Cases ........................................10
     4.2. One-to-Many Unidirectional Multicast ......................12
     4.3. One-to-One Bidirectional Unicast ..........................12
     4.4. Combined Operations with Common Metadata ..................13
  5. Applicability of Existing Protocols to the Proposed
     Framework Model ................................................14
     5.1. Existing Standard Fitting the IMG Framework Model .........14
     5.2. IMG Mechanism Needs Which Are Not Met by Existing
          Standards .................................................15
          5.2.1. A Multicast Transport Protocol .....................16
          5.2.2. Usage of Unicast Transport Protocols ...............16
          5.2.3. IMG Envelope .......................................17
          5.2.4. Metadata Data Model ................................18
  6. Security Considerations ........................................18
  7. Normative References ...........................................19
  8. Informative References .........................................19
  9. Acknowledgements ...............................................20














Nomura, et al.               Informational                      [Page 2]

RFC 4435                     IMG Framework                    April 2006


1.  Introduction

  Internet Media Guides (IMGs) provide and deliver structured
  collections of multimedia descriptions expressed using SDP [2], SDPng
  [3], or other description formats.  They are used to describe sets of
  multimedia services (e.g., television program schedules, content
  delivery schedules) and refer to other networked resources including
  web pages.  IMGs provide an envelope for metadata formats and session
  descriptions defined elsewhere with the aim of facilitating
  structuring, versioning, referencing, distributing, and maintaining
  (caching, updating) such information.

  IMG metadata may be delivered to a potentially large audience, which
  uses it to join a subset of the sessions described and which may need
  to be notified of changes to the IMG metadata.  Hence, a framework
  for distributing IMG metadata in various different ways is needed to
  accommodate the needs of different audiences: For traditional
  broadcast-style scenarios, multicast-based (push) distribution of IMG
  metadata needs to be supported.  Where no multicast is available,
  unicast-based push is required.

  This document defines a common framework model for IMG delivery
  mechanisms and their deployment in network entities.  There are three
  fundamental components in the IMG framework model: data types,
  operation sets, and entities.  These components specify a set of
  framework guidelines for efficient delivery and description of IMG
  metadata.  The data types give generalized means to deliver and
  manage the consistency of application-specific IMG metadata.  IMG
  operations cover broadcast, multicast distribution, event
  notification upon change, unicast-based push, and interactive
  retrievals similar to web pages.

  Since we envision that any Internet host can be a sender and receiver
  of IMG metadata, a host involved in IMG operations performs one or
  more of the roles defined as the entities in the IMG framework model.
  The requirements for IMG delivery mechanisms and descriptions can be
  found in the IMG requirements document [4].

  This document outlines the use of existing protocols to create an IMG
  delivery infrastructure.  It aims to organize existing protocols into
  a common model and show their capabilities and limitations from the
  viewpoint of IMG delivery functions.

2.  Terminology

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in RFC 2119 [1].



Nomura, et al.               Informational                      [Page 3]

RFC 4435                     IMG Framework                    April 2006


2.1.  New Terms

  Internet Media Guide (IMG): IMG is a generic term to describe the
     formation, delivery, and use of IMG metadata.  The definition of
     the IMG is intentionally left imprecise [4].

  IMG Element: The smallest atomic element of metadata that can be
     transmitted separately by IMG operations and referenced
     individually from other IMG elements [4].

  IMG Metadata: A set of metadata consisting of one or more IMG
     elements.  IMG metadata describes the features of multimedia
     content used to enable selection of and access to media sessions
     containing content.  For example, metadata may consist of a media
     object's URI, title, airtime, bandwidth needed, file size, text
     summary, genre, and access restrictions [4].

  IMG Description:  A collection of IMG metadata with a data type
     indicating a self-contained set or a subset of IMG metadata, or a
     reference to IMG metadata.

  IMG Delivery: The process of exchanging IMG metadata both in terms of
     large-scale and atomic data transfers [4].

  IMG Sender: An IMG sender is a logical entity that sends IMG metadata
     to one or more IMG receivers [4].

  IMG Receiver: An IMG receiver is a logical entity that receives IMG
     metadata from an IMG sender [4].

  IMG Transceiver: An IMG transceiver combines an IMG receiver and
     sender.  It may modify received IMG metadata or merge IMG metadata
     received from a several different IMG senders [4].

  IMG Operation: An atomic operation of an IMG transport protocol, used
     between IMG sender(s) and IMG receiver(s) for the delivery of IMG
     metadata and for the control of IMG sender(s)/receiver(s) [4].

  IMG Transport Protocol: A protocol that transports IMG metadata from
     an IMG sender to IMG receiver(s) [4].

  IMG Transport Session: An association between an IMG sender and one
     or more IMG receivers within the scope of an IMG transport
     protocol.  An IMG transport session involves a time-bound series
     of IMG transport protocol interactions that provide delivery of
     IMG metadata from the IMG sender to the IMG receiver(s) [4].





Nomura, et al.               Informational                      [Page 4]

RFC 4435                     IMG Framework                    April 2006


  IMG Transfer: A transfer of IMG metadata from an IMG sender to IMG
     receiver(s).

3.  IMG Common Framework Model

  Two common elements are found in all existing IMG candidate cases:
  the need to describe the services and the need to deliver the
  descriptions.  In some cases, the descriptions provide multicast
  addresses and thus are part of the transport configuration.  In other
  cases, descriptions are specific to the media application and may be
  meant for either human or machine consumption.  Thus, the
  technologies can be roughly divided into three areas:

     o Application-specific Metadata: data describing the content of
       services and media which are both specific to certain
       applications and generally human readable.

     o Delivery Descriptions: the descriptions (metadata) that are
       essential to enable (e.g., multicast) delivery.  These include
       framing (headers) for application-specific metadata, the
       metadata element identification and structure, and fundamental
       session data.

     o Delivery Protocols: the methods and protocols to exchange
       descriptions between the senders and the receivers.  An IMG
       transport protocol consists of two functions: carrying IMG
       metadata from an IMG sender to an IMG receiver and controlling
       an IMG transport protocol.  These functions are not always
       exclusive; therefore, some messages may combine control messages
       and metadata carriage functions to reduce the amount of the
       messaging.

3.1.  IMG Data Types

  A data model is needed to precisely define the terminology and
  relationships between sets, supersets, and subsets of metadata.  A
  precise data model is essential for the implementation of IMGs,
  although it is not within the scope of this framework and requires a
  separate specification.  However, there are three IMG data types in
  general: Complete IMG Descriptions, Delta IMG Descriptions, and IMG
  Pointers.

3.1.1.  Complete IMG Description

  A Complete IMG Description provides a self-contained set of metadata
  for one media object or service, i.e., it does not need additional
  information from any other IMG element.  This is not to be confused
  with "complete IMG metadata", which, although vaguely defined here,



Nomura, et al.               Informational                      [Page 5]

RFC 4435                     IMG Framework                    April 2006


  represents the complete IMG metadata database of an IMG sender (or
  related group of IMG senders -- potentially the complete Internet IMG
  knowledge).  An IMG sender will generally deliver only subsets of
  metadata from its complete database in a particular IMG transport
  session.

3.1.2.  Delta IMG Description

  A Delta IMG Description provides only part of a Complete IMG
  Description, defining the difference from a previous version of the
  Complete IMG Description.  Delta IMG Descriptions may be used to
  reduce network resource usage, for instance, when data consistency is
  essential and small and frequent changes occur to IMG elements.
  Thus, this description does not represent a complete set of metadata
  until it is combined with other metadata that may already exist or
  arrive in the future.

3.1.3.  IMG Pointer

  An IMG Pointer identifies or locates metadata.  This may be used to
  separately obtain metadata (Complete or Delta IMG Descriptions) or
  perform another IMG management function such as data expiry (and
  erasure).  The IMG Pointer may be used to reference IMG metadata
  elements within the IMG transport session and across IMG transport
  sessions.  This pointer type does not include IMG metadata per se
  (although it may also appear as a data field in Complete or Delta IMG
  Descriptions).

3.2.  IMG Entities

  There are several fundamental IMG entities that indicate the
  capability to perform certain roles.  An Internet host involved in
  IMG operations may adopt one or more of these roles, which are
  defined in more detail in Section 3.3.

  IMG Announcer:  sends IMG ANNOUNCE

  IMG Listener:   receives IMG ANNOUNCE

  IMG Querier:    sends IMG QUERY and receives IMG RESOLVE

  IMG Resolver:   receives IMG QUERY then sends IMG RESOLVE

  IMG Subscriber: sends IMG SUBSCRIBE then receives IMG NOTIFY

  IMG Notifier:   receives IMG SUBSCRIBE then sends IMG NOTIFY





Nomura, et al.               Informational                      [Page 6]

RFC 4435                     IMG Framework                    April 2006


  Figure 1 shows the relationship between IMG entities and the IMG
  sender and receiver.

       +--------------------------------------------------------+
       |                      IMG Sender                        |
       +------------------+------------------+------------------+
       |  IMG Announcer   |   IMG Notifier   |    IMG Resolver  |
       +------------------+------------------+------------------+
               |                    ^                  ^
  message      |                    |                  |
  direction    v                    v                  v
       +------------------+------------------+------------------+
       |   IMG Listener   |  IMG Subscriber  |    IMG Querier   |
       +------------------+------------------+------------------+
       |                      IMG Receiver                      |
       +------------------+------------------+------------------+

   Figure 1: Relationship between IMG Entities, Senders, and Receivers

3.3.  Operation Set for IMG Delivery

  A finite set of operations both meets the IMG requirements [4] and
  fits the roles of existing protocols.  These are crystallized in the
  next few sections.

3.3.1.  IMG ANNOUNCE

  When an IMG receiver participates in unidirectional communications
  (e.g., over satellite, terrestrial radio, and wired multicast
  networks), an IMG receiver may not need to send any IMG message to an
  IMG sender prior to IMG metadata delivery.  In this case, an IMG
  sender can initiate unsolicited distribution for IMG metadata and an
  IMG sender is the only entity that can maintain the distribution
  (this includes scenarios with multiple and cooperative IMG senders).
  This operation is useful when there are large numbers of IMG
  receivers or the IMG receivers do not have a guaranteed uplink
  connection to the IMG sender.  The IMG sender may also include
  authentication data in the ANNOUNCE operation so that IMG receivers
  may check the authenticity of the metadata.  This operation can carry
  any of the IMG data types.

  There is no restriction to prevent IMG ANNOUNCE from being used in an
  asynchronous solicited manner, where a separate operation (possibly
  out of band) enables IMG receivers to subscribe/register to the IMG
  ANNOUNCE operation.






Nomura, et al.               Informational                      [Page 7]

RFC 4435                     IMG Framework                    April 2006


3.3.2.  IMG QUERY

  If an IMG receiver needs to obtain IMG metadata, an IMG receiver can
  use an IMG QUERY operation and initiate a receiver-driven IMG
  transport session.  The IMG receiver expects a synchronous response
  to the subsequent request from the IMG sender.  This operation can be
  used where a bidirectional transport network is available between the
  IMG sender and receiver.  Some IMG receivers may want to obtain IMG
  metadata when network connectivity is available or just to avoid
  caching unsolicited IMG metadata.  The IMG receiver must indicate the
  extent and data type of metadata wanted in some message in the
  operation.  The extent indicates the number and grouping of metadata
  descriptions.  In some cases, it may be feasible to request an IMG
  sender's complete metadata collection.

3.3.3.  IMG RESOLVE

  An IMG sender synchronously responds, and sends IMG metadata, to an
  IMG QUERY that has been sent by an IMG receiver.  This operation can
  be used where a bidirectional transport network is available between
  the IMG sender and receiver.  If the IMG QUERY specifies a subset of
  IMG metadata (extent and data type) that is available to the IMG
  sender, the IMG sender can resolve the query; otherwise, it should
  indicate that it is not able to resolve the query.  The IMG sender
  may authenticate the IMG receiver during the QUERY operation to
  determine if the IMG receiver is authorized to receive that metadata.
  The sender may also include authentication data in the RESOLVE
  operation so that IMG receivers may check the authenticity of the
  metadata.  This operation may carry any of the IMG data types.

3.3.4.  IMG SUBSCRIBE

  If an IMG receiver wants to be notified when the IMG metadata it
  holds becomes stale, the IMG receiver can use the IMG SUBSCRIBE
  operation in advance in order to solicit IMG NOTIFY messages from an
  IMG sender.

  This operation may provide the IMG sender with specific details of
  which metadata or notification services it is interested in the case
  where the IMG sender offers more than the simplest "all data"
  service.  This operation implicitly provides the functionality of
  unsubscribing to inform an IMG sender that an IMG receiver wishes to
  stop getting certain (or all) notifications.  It should be noted that
  unsubscription may be provided implicitly by the expiry (timeout) of
  a subscription before it is renewed.






Nomura, et al.               Informational                      [Page 8]

RFC 4435                     IMG Framework                    April 2006


  Since the IMG receiver does not know when metadata will be updated
  and the notify message will arrive, this operation does not
  synchronize with the notify messages.  The IMG receiver may wait for
  notify messages for a long time.  The IMG sender may authenticate the
  IMG receiver to check whether an IMG SUBSCRIBE operation is from an
  authorized IMG receiver.

3.3.5.  IMG NOTIFY

  An IMG NOTIFY is used asynchronously in response to an earlier IMG
  SUBSCRIBE.  An IMG NOTIFY operation indicates that updated IMG
  metadata is available or part of the existing IMG metadata is stale.
  An IMG NOTIFY may be delivered more than once during the time an IMG
  SUBSCRIBE is active.  This operation may carry any of the IMG data
  types.  The IMG sender may also include authentication data in the
  IMG NOTIFY operation so that IMG receivers may check the authenticity
  of the messages.

3.3.6.  Binding between IMG Operations and Data Types

  There is a need to provide a binding between the various IMG
  operations and IMG data types to allow management of each discrete
  set of IMG metadata transferred using an IMG operation.  This binding
  must be independent of any particular metadata syntax used to
  represent a set of IMG metadata, as well as be compatible with any
  IMG transport protocol.  The binding must uniquely identify the set
  of IMG metadata delivered within an IMG transfer, regardless of the
  metadata syntax used.  The uniqueness may only be needed within the
  domains the metadata is used, but this must enable globally unique
  identification to support Internet usage.  Care should be taken that
  scope- and domain-specific identifiers do not leak outside the scope;
  using globally unique identifiers such as URLs avoids these problems.

  The binding must provide versioning to the transferred IMG metadata
  so that changes can be easily handled and stale data identified, and
  give temporal validity of the transferred IMG metadata.  It must
  invalidate the IMG metadata by indicating an expiry time, and may
  optionally provide a time (presumably in the future) from when the
  IMG metadata becomes valid.  The temporal validity of a metadata
  object may need to be updated later.  Furthermore, the binding must
  be independent of any specific metadata syntax used for the IMG
  metadata, in the sense that no useful syntax should be excluded.









Nomura, et al.               Informational                      [Page 9]

RFC 4435                     IMG Framework                    April 2006


3.4.  Overview of Protocol Operations

  Figure 2 gives an overview of the relationship between transport
  cases, IMG operations, and IMG data types.  It is not a protocol
  stack.  Generalized multicast point-to-multipoint (P-to-M) and
  unicast point-to-point (P-to-P) transports are shown.

              +--------------------------------------------------+
   IMG        |                                                  |
   Data Types |       Complete Desc., Delta Desc., Pointer       |
              |                                                  |
              +-------------------+----------------+-------------+
   IMG        |    IMG ANNOUNCE   |  IMG SUBSCRIBE | IMG QUERY   |
   Operations |                   |  IMG NOTIFY    | IMG RESOLVE |
              +--------------+----+----------------+-------------+
   IMG        |              |                                   |
   Transport  |   P-to-M     |              P-to-P               |
              |              |                                   |
              +--------------+-----------------------------------+

       Figure 2: IMG Transport, IMG Operations, and IMG Data Types

4.  Deployment Scenarios for IMG Entities

  This section provides some basic deployment scenarios for IMG
  entities that illustrate common threads from protocols to use cases.
  For the purposes of clarity, this document presents the simple
  dataflow from an IMG sender to an IMG receiver, as shown in Figure 3.

           +-------------+                +---------------+
           | IMG Sender  |                | IMG Receiver  |
           |             |--------------->|               |
           +-------------+                +---------------+

       Figure 3: A Simple IMG Sender to IMG Receiver Relationship

4.1.  Intermediary Cases

  Some IMG metadata may be distributed to a large number of IMG
  receivers, for example, when public metadata is distributed to all
  IMG receivers of a certain group.  This kind of IMG metadata may be
  distributed from one IMG sender to multiple IMG receivers (Figure 4)
  or may be relayed across a set of IMG transceivers that receive the
  IMG metadata, possibly filter or modify its content, and then forward
  it.






Nomura, et al.               Informational                     [Page 10]

RFC 4435                     IMG Framework                    April 2006


   +----------+                                    +----------+
   | IMG      |                                    | IMG      |
   | Sender   |----                           ---->| Receiver |
   +----------+    \                         /     +----------+
                    \                       /
        .            \   +-----------+     /            .
        .             -->|IMG        |-----             .
        .             -->|Transceiver|     \            .
                     /   +-----------+      \
   +----------+     /                        \     +----------+
   | IMG      |    /                          ---->| IMG      |
   | Sender   |----                                | Receiver |
   +----------+                                    +----------+

            Figure 4: A Relay Network with an IMG Transceiver

  IMG senders and receivers are logical functions, and it is possible
  for some or all hosts in a system to perform both roles, as, for
  instance, in many-to-many communications or where a transceiver is
  used to combine or aggregate IMG metadata for some IMG receivers.  An
  IMG receiver may be allowed to receive IMG metadata from any number
  of IMG senders.

  IMG metadata is used to find, obtain, manage, and play media content.
  IMG metadata may be modified during IMG transfer.  For example, a
  server may use IMGs to retrieve media content via unicast and then
  make it available at scheduled times via multicast, thus requiring a
  change of the corresponding metadata.  IMG transceivers may add or
  delete information or aggregate IMG metadata from different IMG
  senders.  For example, a rating service may add its own content
  ratings or recommendations to existing metadata.  An implication of
  changing (or aggregating) IMG metadata from one or more IMG senders
  is that the original authenticity is lost.  Thus, it may be
  beneficial to sign fragments so that the intermediary can replace a
  fragment without changing the authenticity of the remainder.  For
  example, smaller fragments may be appropriate for more volatile
  parts, and larger ones may be appropriate for stable parts.














Nomura, et al.               Informational                     [Page 11]

RFC 4435                     IMG Framework                    April 2006


4.2.  One-to-Many Unidirectional Multicast

  The one-to-many unidirectional multicast case implies many IMG
  receivers and one or more IMG senders implementing IMG announcer and
  IMG listener operations as shown in Figure 5.

                  Unidirectional            +----------+
                 --------------->           |   IMG    |
                     downlink               | Listener |
                              ------------->|    1     |
                             /              +----------+
       +-----------+        /                    .
       | IMG       |--------                     .
       | Announcer |        \                    .
       +-----------+         \              +----------+
                              ------------->|   IMG    |
                                            | Listener |
                                            |    #     |
                                            +----------+

       Figure 5: IMG Unidirectional Multicast Distribution Example

  Note, as defined in the IMG requirement REL-4 [4], an IMG transport
  protocol MUST support reliable message exchange.  This includes the
  one-to-many unidirectional multicast case; however, the mechanism to
  provide this is beyond the scope of this document.

4.3.  One-to-One Bidirectional Unicast

  In the one-to-one bidirectional unicast case, both query/resolve
  (Figure 6) and subscribe/notify (Figure 7) message exchange
  operations are feasible.

            +----------+                +----------+
            |   IMG    |                |   IMG    |
            | Resolver |                | Querier  |
            +----------+                +----------+
                |                                |
                |<----------IMG QUERY -----------|
                |                                |
                |----------IMG RESOLVE---------->|
                |                                |

            Figure 6: Query/Resolve Sequence Example







Nomura, et al.               Informational                     [Page 12]

RFC 4435                     IMG Framework                    April 2006


           +----------+                   +------------+
           |   IMG    |                   |    IMG     |
           | Notifier |                   | Subscriber |
           +----------+                   +------------+
                |                                |
                |<---------IMG SUBSCRIBE---------|
                :                                :
                           (time passes)
                :                                :
                |-----------IMG NOTIFY---------->|
                :                                :
                           (time passes)
                :                                :
                |-----------IMG NOTIFY---------->|
                |                                |

               Figure 7: Subscribe/Notify Sequence Example

4.4.  Combined Operations with Common Metadata

  As shown in Figure 8, a common data model for multiple protocol
  operations allows a diverse range of IMG senders and receivers to
  provide consistent and interoperable sets of IMG metadata.

   IMG Metadata             IMG Senders             IMG Receivers

                                                    +--------------+
                            +-----------+      ---->| IMG Listener |
                            | IMG       |     /     +--------------+
                           /| Announcer |-----
   +-------------+        / +-----------+     \     +--------------+
   |    IMG      |-+     /                     ---->| IMG Listener |
   | description | |-+  /                           | - - - - - - -|
   | metadata  1 | | | /    +-----------+      /--->| IMG Querier  |
   +-------------+ | | -----| IMG       |<----/     +--------------+
     +-------------+ | \    | Resolver  |
       +-------------+  \   +-----------+<----\     +--------------+
                         \                     \--->| IMG Querier  |
                          \ +-----------+           | - - - - - - -|
                           \| IMG       |<--------->| IMG          |
                            | Notifier  |           | Subscriber   |
                            +-----------+           +--------------+

             Figure 8: Combined System with Common Metadata







Nomura, et al.               Informational                     [Page 13]

RFC 4435                     IMG Framework                    April 2006


5.  Applicability of Existing Protocols to the Proposed Framework Model

5.1.  Existing Standards Fitting the IMG Framework Model

  SDP: The SDP format [2] could be used to describe session-level
  parameters (e.g., scheduling, addressing, and the use of media
  codecs) to be included in Complete IMG Descriptions.  Although there
  are extension points in SDP allowing the format to be extended, there
  are limitations in the flexibility of this extension mechanism.
  However, SDP syntax cannot provide IMG Descriptions and IMG Pointers
  without significant overhead.  It is expected that the information
  conveyed by SDP is just a small subset of IMG metadata; thus, the use
  of SDP for other than session parameters may not be reasonable.

  SDPng [3]: Similar to SDP, this format could also be used for
  representing session-level parameters of IMG metadata.  Compared to
  SDP, the XML-based format of SDPng should be much more flexible and
  allow extensions and integration with other description formats.

  MPEG-7: Descriptions based on the MPEG-7 standard [5] could provide
  application-specific metadata describing the properties of multimedia
  content beyond parameters carried in SDP or SDPng descriptions.
  MPEG-7 provides a machine-readable format of representing content
  categories and attributes, helping end-users or receiving software in
  choosing content for reception.  MPEG-7 is based on XML, so it is
  well suited to be combined with other XML-based formats such as
  SDPng.

  TV-Anytime: The TV-Anytime Forum [6] provides descriptions based on
  XML schema for TV-specific program guides.  TV-Anytime uses the
  MPEG-7 User description profile to a limited extent, only for user
  preferences and usage history, and also a TV-Anytime-specific data
  model for other schema.  These are optimized to describe broadcast
  schedules, on-demand program guides and program events.

  HTTP: The HTTP protocol [7] can be used as a bidirectional unicast
  IMG transport protocol.  Being a request-reply-oriented protocol,
  HTTP is well suited for implementing synchronous operations such as
  QUERY, RESOLVE, and even SUBSCRIBE.  However, HTTP does not provide
  asynchronous operations such as ANNOUNCE and NOTIFY and to implement
  asynchronous operations using HTTP, IMG receivers should poll the IMG
  sender periodically.  Thus, by itself, HTTP is not sufficient to
  fulfill all of the IMG requirements [4] in a unicast deployment.

  Session Announcement Protocol (SAP): The announcement mechanism
  provided by SAP [8] provides unidirectional delivery of session
  discovery information.  Although SDP is the default payload format of
  SAP, the use of a MIME type identifier for the payload allows



Nomura, et al.               Informational                     [Page 14]

RFC 4435                     IMG Framework                    April 2006


  arbitrary payload formats to be used in SAP messages.  Thus, SAP
  could be used to implement the multicast and unicast IMG ANNOUNCE and
  IMG NOTIFY operations.

  However, SAP lacks scalable and efficient reliability, extensibility
  for payload size, and congestion control, and only one description is
  allowed per SAP message due to lack of payload segmentation.

  In principle, SAP could be extended to get around its limitations.
  However, the amount of changes needed in SAP to address all of the
  above limitations would effectively result in a new protocol.  Due to
  these limitations, the use of SAP as an IMG transport protocol is not
  recommended.

  SIP: The SIP-specific event mechanism described in RFC 3265 [9]
  provides a way to implement IMG SUBSCRIBE and IMG NOTIFY operations
  via a bidirectional unicast connection.  However, there are
  scalability problems with this approach, as RFC 3265 currently does
  not consider multicast.

  Real Time Streaming Protocol (RTSP): The RTSP protocol [10] defines a
  retrieval-and-update notification mechanism, named DESCRIBE and
  ANNOUNCE, for the description of a presentation or media object in
  order to initialize a streaming session.  These methods are a subset
  of the entire streaming control operations in RTSP; thus, these could
  not be available for individual mechanisms.  However, the DESCRIBE
  method in RTSP could be used to instantiate IMG QUERY, IMG RESOLVE,
  and IMG SUBSCRIBE, and the RTSP ANNOUNCE could be used to instantiate
  an IMG NOTIFY for a streaming session controlled by RTSP.

5.2.  IMG Mechanism Needs Which Are Not Met by Existing Standards

  Several needs result from the IMG requirements, framework model, and
  existing relevant mechanisms as already shown in this document.  Four
  specific groupings of work are readily apparent: (a) specification of
  an adequate multicast- and unidirectional-capable announcement
  protocol; (b) specification of the use of existing unicast protocols
  to enable unicast subscribe and announcement/notification
  functionality; (c) specification of the metadata envelope that is
  common to, and independent of, the application metadata syntax(es)
  used; and (d) agreement on basic metadata models to enable
  interoperability testing of the above.  The following sections
  describe each of these.








Nomura, et al.               Informational                     [Page 15]

RFC 4435                     IMG Framework                    April 2006


5.2.1.  A Multicast Transport Protocol

  SAP is currently the only open standard protocol suited to the
  unidirectional/multicast delivery of IMG metadata.  As discussed, it
  fails to meet the IMG requirements in many ways and, since it is not
  designed to be extensible, we recognize that a new multicast
  transport protocol for announcements needs to be specified to meet
  IMG needs.  This protocol will be essential to IMG delivery for
  unidirectional and multicast deployments.

  The Asynchronous Layered Coding (ALC) [11] protocol from the IETF
  Reliable Multicast Transport (RMT) working group is very interesting
  as it fulfills many of the requirements, is extensible, and has the
  ability to 'plug-in' both FEC (Forward Error Correction, for
  reliability) and CC (Congestion Control) functional blocks.  It is
  specifically designed for unidirectional multicast object transport.
  ALC is not fully specified, although the RMT working group had a
  fully specified protocol using ALC called FLUTE (File Delivery over
  Unidirectional Transport) [12].  FLUTE seems to be the only fully
  specified transport and open specification on which a new IMG
  announcement protocol could be designed.  Thus, we recommend that ALC
  and FLUTE be the starting points for this protocol's design.

  Developing a new protocol from scratch, or attempting to improve SAP,
  is also feasible, although it would involve repeating many of the
  design processes and decisions already made by the IETF for ALC.  In
  particular, any announcement protocol must feature sufficient
  scalability, flexibility, and reliability to meet IMG needs.  Also,
  the IMG ANNOUNCE operation must be supported and IMG NOTIFY
  capability could be investigated for both hybrid unicast-multicast
  and unidirectional unicast systems.

5.2.2.  Usage of Unicast Transport Protocols

  A thorough description of the use of existing unicast protocols is
  essential for the use of IMGs in a unicast point-to-point
  environment.  Such a specification has not been published, although
  several usable unicast transport protocols and specifications can be
  harnessed for this (SIP [13], SIP events [9], HTTP [7], etc.).  In
  particular, both IMG SUBSCRIBE-NOTIFY and IMG QUERY-RESOLVE operation
  pairs must be enabled.  We anticipate that the IMG QUERY-RESOLVE
  operation can be achieved using HTTP, although other transport
  protocol options may be beneficial to consider too.








Nomura, et al.               Informational                     [Page 16]

RFC 4435                     IMG Framework                    April 2006


5.2.3.  IMG Envelope

  An IMG envelope provides the binding between IMG operations and data
  types.  Such a binding can be realized by defining a common minimal
  set of information needed to manage IMG metadata transfers, and by
  including this information with any set of IMG metadata delivered to
  IMG receivers.

  Four options for IMG metadata transfer envelope delivery are
  feasible:

     1.  Embedding in a transport protocol header.  This can be done
         with either header extensions of existing protocols, or newly
         defined header fields of a new (or new version of a) transport
         protocol.  However, multiple methods for the variety of
         transport protocols would hinder interoperability and
         transport protocol independence.

     2.  A separate envelope object, which points to the IMG metadata
         'object', delivered in-band with the metadata transport
         protocol session.  This might complicate delivery as the
         envelope and 'service' metadata objects would have to be
         bound, e.g., by pairing some kind of transport object numbers
         (analogous to port number pairs sometimes used for RTP and
         RTCP [14]).  This would also enable schemes that deliver
         envelope and metadata 'objects' by different media, also using
         more than a single transport protocol.

     3.  A metadata wrapper that points to and/or embeds the service
         metadata into its 'super-syntax'.  For example, XML would
         enable embedding generic text objects.

     4.  Embedding in the metadata itself.  However, this requires a
         new field in many metadata syntaxes and would not be feasible
         if a useful syntax were not capable of extensibility in this
         way.  It also introduces a larger 'implementation
         interpretation' variety, which would hinder interoperability.
         Thus, this option is not recommended.

  It is likely that more than one of these options will fulfill the
  needs of IMGs, so the selection, and possibly optimization, is left
  for subsequent specification and feedback from implementation
  experience.  Such a specification is essential for IMG delivery.

  When there are superset/subset relations between IMG Descriptions, it
  is assumed that the IMG Descriptions of the subset inherit the
  parameters of the superset.  Thus, an IMG metadata transfer envelope
  carrying the IMG Descriptions of a superset may implicitly define



Nomura, et al.               Informational                     [Page 17]

RFC 4435                     IMG Framework                    April 2006


  parameters of IMG Descriptions belonging to its subset.  The
  relations between IMG Descriptions may span from one envelope to
  another according to a data model definition.

5.2.4.  Metadata Data Model

  A structured data model would allow reuse and extension of the set of
  metadata and may enable use of multiple syntaxes (SDP, MPEG-7, etc.)
  as part of the same body of IMG metadata.

  For the successful deployment of IMGs in various environments,
  further work may be needed to define metadata and data models for
  application-specific requirements.  Existing (and future) work on
  these would need to be mapped to the IMG data types and use of the
  IMG transfer envelope concept as described above.

  This document is a framework for the delivery of IMG metadata and
  thus further discussion on the definition data models for IMGs is
  beyond its scope.

6.  Security Considerations

  The IMG framework is developed from the IMG requirements document
  [4], and so the selection of specific protocols and mechanism for use
  with the IMG framework must also take into account the security
  considerations of the IMG requirements document.  This framework
  document does not mandate the use of specific protocols.  However, an
  IMG specification would inherit the security considerations of
  specific protocols used.

  Protocol instantiations that are used to provide IMG operations will
  have very different security considerations depending on their scope
  and purpose.  However, there are several general issues that are
  valuable to consider and, in some cases, provide technical solutions
  for.  These are described below.

  Individual and group privacy: Customized IMG metadata may reveal
  information about the habits and preferences of a user and may thus
  deserve confidentiality protection, even if the original information
  were public.  Protecting this metadata against snooping requires the
  same actions and measures as for other point-to-point and multicast
  Internet communications.  Naturally, the risk of snooping depends on
  the amount of individual or group personalization the IMG metadata
  contains.

  IMG authenticity: In some cases, the IMG receiver needs to be assured
  of the sender or origin of IMG metadata or its modification history.
  This can prevent denial-of-service or hijacking attempts that give an



Nomura, et al.               Informational                     [Page 18]

RFC 4435                     IMG Framework                    April 2006


  IMG receiver incorrect information in or about the metadata, thus
  preventing successful access of the media or directing the IMG
  receiver to the incorrect media possibly with tasteless material.

  IMG receiver authorization: Some or all of any IMG sender's metadata
  may be private or valuable enough to allow access to only certain IMG
  receivers and thus make it worth authenticating users.  Encrypting
  the data is also a reasonable step, especially where group
  communications methods results in unavoidable snooping opportunities
  for unauthorized nodes.

  Unidirectional specifics: A difficulty that is faced by
  unidirectional delivery operations is that many protocols providing
  application-level security are based on bidirectional communications.
  The application of these security protocols in case of strictly
  unidirectional links is not considered in the present document.

  Malicious code: Currently, IMGs are not envisaged to deliver
  executable code at any stage.  However, as some IMG transport
  protocols may be capable of delivering arbitrary files, it is
  RECOMMENDED that the IMG operations do not have write access to the
  system or any other critical areas.

7.  Normative References

  [1]  Bradner, S., "Key words for use in RFCs to Indicate Requirement
       Levels", BCP 14, RFC 2119, March 1997.

8.  Informative References

  [2]  Handley, M. and V. Jacobson, "SDP: Session Description
       Protocol", RFC 2327, April 1998.

  [3]  Kutscher, D., Ott, J., and C. Bormann, "Session description and
       capability negotiation", Work in Progress, October 2003.

  [4]  Nomura, Y., Walsh, R., Luoma, J-P., Ott, J., and H. Schulzrinne,
       "Requirements for Internet Media Guides", Work in Progress,
       December 2005.

  [5]  "Multimedia content description interface -- Part 1: Systems",
       ISO/IEC 15938-1, July 2002.

  [6]  TV-Anytime Forum, "Broadcast and On-line Services: Search,
       select, and rightful use of content on personal storage systems
       ("TV-Anytime Phase 1"); Part 2: System description," ETSI-TS 102
       822-2: System Description, V1.1.1, October 2003.




Nomura, et al.               Informational                     [Page 19]

RFC 4435                     IMG Framework                    April 2006


  [7]  Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L.,
       Leach, P., and T. Berners-Lee, "Hypertext Transfer Protocol --
       HTTP/1.1", RFC 2616, June 1999.

  [8]  Handley, M., Perkins, C., and E. Whelan, "Session Announcement
       Protocol", RFC 2974, October 2000.

  [9]  Roach, A., "Session Initiation Protocol (SIP)-Specific Event
       Notification", RFC 3265, June 2002.

  [10] Schulzrinne, H., Rao, A., and R. Lanphier, "Real Time Streaming
       Protocol (RTSP)", RFC 2326, April 1998.

  [11] Luby, M., Gemmell, J., Vicisano, L., Rizzo, L., and J.
       Crowcroft, "Asynchronous Layered Coding (ALC) Protocol
       Instantiation", RFC 3450, December 2002.

  [12] Paila, T., Luby, M., Lehtonen, R., Roca, V., and R. Walsh,
       "FLUTE - File Delivery over Unidirectional Transport", RFC 3926,
       October 2004.

  [13] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A.,
       Peterson, J., Sparks, R., Handley, M., and E. Schooler, "SIP:
       Session Initiation Protocol", RFC 3261, June 2002.

  [14] Schulzrinne, H., Casner, S., Frederick, R., and V. Jacobson,
       "RTP: A Transport Protocol for Real-Time Applications", STD 64,
       RFC 3550, July 2003.

9.  Acknowledgements

  The authors would like to thank Spencer Dawkins, Jean-Pierre Evain,
  Ted Hardie, Petri Koskelainen, Joerg Ott, Colin Perkins, Toni Paila,
  and Magnus Westerlund for their excellent ideas and input to this
  document.
















Nomura, et al.               Informational                     [Page 20]

RFC 4435                     IMG Framework                    April 2006


Authors' Addresses

  Yuji Nomura
  Fujitsu Laboratories Ltd.
  4-1-1 Kamikodanaka, Nakahara-ku, Kawasaki 211-8588
  Japan

  EMail: [email protected]


  Rod Walsh
  Nokia Research Center
  P.O. Box 100, FIN-33721 Tampere
  Finland

  EMail: [email protected]


  Juha-Pekka Luoma
  Nokia Research Center
  P.O. Box 100, FIN-33721 Tampere
  Finland

  EMail: [email protected]


  Hitoshi Asaeda
  Keio University
  Graduate School of Media and Governance
  5322 Endo, Fujisawa, 252-8520 Kanagawa,
  Japan

  EMail: [email protected]


  Henning Schulzrinne
  Dept. of Computer Science
  Columbia University
  1214 Amsterdam Avenue
  New York, NY 10027
  USA

  EMail: [email protected]








Nomura, et al.               Informational                     [Page 21]

RFC 4435                     IMG Framework                    April 2006


Full Copyright Statement

  Copyright (C) The Internet Society (2006).

  This document is subject to the rights, licenses and restrictions
  contained in BCP 78, and except as set forth therein, the authors
  retain all their rights.

  This document and the information contained herein are provided on an
  "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
  OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
  ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
  INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
  INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
  WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

  The IETF takes no position regarding the validity or scope of any
  Intellectual Property Rights or other rights that might be claimed to
  pertain to the implementation or use of the technology described in
  this document or the extent to which any license under such rights
  might or might not be available; nor does it represent that it has
  made any independent effort to identify any such rights.  Information
  on the procedures with respect to rights in RFC documents can be
  found in BCP 78 and BCP 79.

  Copies of IPR disclosures made to the IETF Secretariat and any
  assurances of licenses to be made available, or the result of an
  attempt made to obtain a general license or permission for the use of
  such proprietary rights by implementers or users of this
  specification can be obtained from the IETF on-line IPR repository at
  http://www.ietf.org/ipr.

  The IETF invites any interested party to bring to its attention any
  copyrights, patents or patent applications, or other proprietary
  rights that may cover technology that may be required to implement
  this standard.  Please address the information to the IETF at
  [email protected].

Acknowledgement

  Funding for the RFC Editor function is provided by the IETF
  Administrative Support Activity (IASA).







Nomura, et al.               Informational                     [Page 22]