Network Working Group                                            V. Cerf
Request for Comments: 442                                24 January 1973
NIC: 13774


              The Current Flow-Control Scheme for IMPSYS

  BB&N quarterly report #13 outlines part of the current flow control
  scheme in the IMP operating system.  A meeting held March 16, 1972,
  at BB&N was devoted to the description of this new scheme for the
  benefit of interested network participants.

  This note represents my understanding of the flow control mechanism.
  The essential goal is to eliminate unnecessary retransmissions when
  the load is heavy, eliminate the retransmission time-out period when
  the load is light, increase bandwidth, prevent re-assembly lock-up,
  control traffic from HOSTS into the net more strictly than the
  earlier link blocking method, and secure the rights of life, liberty,
  and the pursuit of happiness for ourselves and our posterity,...oops.

Source IMP-to-Destination IMP Protocol

  There are two different protocols depending on message length (i.e.
  single or multi-packet).  We illustrate first the single packet case.

         Source Imp                        Destination Imp
         ----------                        ---------------

case 1)   message (1) + implicit req (1)--->
                                       <--- RFNM (arrived ok)
         [discard copy of msg]

case 2)   message (1) + implicit req (1)---> no room, don't respond
                                       <--- All (1)  (room available)
         message (1)                   --->
         [discard copy of msg]         <--- RFNM (arrived ok)

  In the first case, a single packet message is sent to the destination
  IMP.  This message acts as an implicit request for single packet
  buffer space.  If there is room, as in case 1, the destination IMP
  responds with a RFNM.  The source IMP, which has retained a copy of
  the message, deletes its copy and goes on.

  The second case illustrates what happens when the source IMP sends a
  message to a destination IMP at which there is no room for the one-
  packet message.  The arrival of the single packet message constitutes
  a request for single packet buffer space, and is recorded as such by
  the destination IMP in a first-come-first-served buffer reservation



Cerf                                                            [Page 1]

RFC 442        The Current Flow-Control Scheme for IMPSYS   January 1973


  request queue.  When space is available, the destination IMP will
  transmit an ALL (1) to the requesting source IMP which can then send
  the single packet message again, this time knowing that space has
  been reserved at the destination.

  For multi-packet messages, the procedure is somewhat different.  When
  a message enters an IMP from a HOST, and the "last bit" flag is not
  set when the number of bits in a maximum length single packet have
  arrived, the IMP halts the HOST->IMP transmission line while it
  determines whether space has been reserved at the dest. IMP.  If
  space (8 packets worth) has been reserved, the HOST->IMP line is re-
  opened, and the message is sent out normally.  If space has not been
  reserved, the HOST->IMP line is kept closed while the source IMP
  makes a request for multi-packet buffer storage at the destination
  IMP.  When 8 buffers are available, the destination IMP responds with
  an ALL (8).  The source IMP then transmits the message, and waits for
  a combination RFNM and ALL (8) from the destination IMP.  The
  destination IMP will delay its RFNM, if necessary, until it has
  another 8 buffers available for the next multipacket message.

  This sequence is illustrated below:

           Source IMP                   Destination IMP
           ----------                   ---------------

H-> I line
----------> First packet of multipacket
           arrives. Halt H->I line and
           send REQ (8)  -------------->
           start 30 sec. Time-out

           If time-out, resend
           REQ (8) and restart -------->
           time-out.
                               <--------ALL (8) when available. Start
                                        long term (2 min.) time-out.
                                        On time-out, reset all
                                        outstanding reservations.

           Send the message:
                       |   ----------->
           Start 30 sec. time-out
           for INComplete transmission.
           If time-out, send INC?----->







Cerf                                                            [Page 2]

RFC 442        The Current Flow-Control Scheme for IMPSYS   January 1973


                                 <------On recept of message, send
                                        RFNM + implicit ALL (8). On
                                        receipt of INC? send RFNM +
                                        ALL(8) if MSG(8) received,
                                        or send INC! if MSG(8) not
                                        received. Start 2 min. time-out
                                        on ALL(8).

           Queue ALL(8); start 125 ms.
           time-out when it reaches
           head of queue. If time-out
           on ALL(8), send GVB(8)----->
                                 <----- Ack.
           else send next message ----->


  A key point in this protocol is that a source IMP, after receipt of a
  RFNM and implicit ALL(8) from the destination IMP, has 125 msec. in
  which to initiate the transfer of at least the first packet of a
  multi-packet message to the destination IMP.  The source IMP may have
  several allocate responses queued up in which case these time-outs
  occur one after the other (one has to time-out before the next 125
  msec time-out starts).

  Time-outs exist in the source IMP which cause it to send INC?
  messages to the destination IMP if it has received no response from
  some earlier message.

Buffer Allocation

  A total of 40 buffers are available for store/forward and re-assembly
  purposes.  At most 32 can be allocated for re-assembly, and at most
  24-25 can be allocated for store and forward use.  This prevents
  either kind of traffic from completely shutting out the other kind.

Message Ordering (Source IMP-to-Destination IMP).

  As an aid to congestion control, an IMP can have at most 4 messages
  outstanding (un-RFNMed) for each other IMP.  Link numbers in the
  message leader are ignored by the IMPs.  Instead, IMPs mark messages
  leaving for other destinations with an 8-bit message number.  In
  addition, a 2-bit priority number is also used in case a HOST has
  marked a message as a priority message.  The key notion here is that
  the IMPs treat all HOSTs on a given IMP as if they were a single
  HOST.  A single sequence of message and priority numbers is used in
  each direction between each pair of sites.





Cerf                                                            [Page 3]

RFC 442        The Current Flow-Control Scheme for IMPSYS   January 1973


  The receiving IMP remembers the message number of the last message
  delivered, as well as the priority number of the last priority
  message delivered.  It uses this information to correctly sequence
  messages out the IMP-HOST line (s).  Since there is only one sequence
  of numbers for each pair of sites, messages for one HOST at a site
  may get in the way of messages for another HOST at the same site.  In
  fact, if some message, m, is the next in line to go to some HOST, and
  that HOST delays receipt for 30 seconds, any messages for another
  HOST may be delayed that long also.  However, only the first message
  is lost, since the second one could not even start into its
  destination HOST until the first one had been delivered.  There is a
  tighter coupling between HOSTs sharing an IMP than before, but not
  much tighter.

  An example of the use of message and priority numbers is given below.

Order sent by           Order received by       Order received by
Source IMP              Dest. IMP               HOST
----------              ---------               ----

11,12P(1),13P(2),14 --> 13P(2),12P(1),14,11 --> 12P(1),13P(2),11,14

11,12P(1),13P(2),14 --> 13P(2),11,14,12P(1) --> 11,12P(1),13P(2),14


where 13P(2) is interpreted to mean message #13, priority number(2).

  Note that there are only 2 classes of messages, priority and non-
  priority, and that the priority numbers simply allow ordering at the
  destination of multiple outstanding priority transmissions from the
  same site.

  If HOSTs use link numbers to de-multiplex messages to processes, then
  it would be a mistake to arbitrarily assign short messages priority.
  If a file transmission were carried out such that the last short
  message had priority, the file might not enter the receiving HOST in
  the same order it was sent!

ACK Mechanism

  IMPs treat their physical channels (phone lines) as if they were
  pairs of simplex communications paths.  Each IMPSYS has a sender and
  receiver module for each full duplex channel.  Each module has an
  "ODD/EVEN" bit which is used to keep track of the state of the last
  packet on the line.  The object is for the sender module to "block" a
  channel until the corresponding receiver has received a packet
  indicating that the send packet was received on the other end (i.e.
  an acknowledgment).



Cerf                                                            [Page 4]

RFC 442        The Current Flow-Control Scheme for IMPSYS   January 1973


  In the present system, acknowledgments are separate IMP-IMP packets.
  In the new system, they are a single bit in a packet flowing in the
  opposite direction on the reverse path of a full duplex channel.

  Every packet sent between IMPs has an ACK bit and an OE bit, as shown
  below.


                        P                              A
                         O                              C
                          E                              K
              +-------+-----+------------------------+-----+----------+
typical packet |       |     |                        |     |          |
              |       |     |                        |     |          |
              +-------+-----+------------------------+-----+----------+

  We need some terminology: Let POE be the packet OE bit, and SOE, ROE
  be the send module OE bit and Receive module OE bit respectively.
  For two IMPs, A and B, we distinguish SOE/A and SOE/B as the two send
  module OE bits at IMPs A and B respectively.

  The rules of operation are as follow:

  Sender
  ------
  if ACK != SOE then do nothing
  --
  else SOE <- !SOE (i.e. flip SOE bit) and free channel.
  ----

  Receiver
  --------
  if POE = ROE then packet is a duplicate so throw it away.
  --
  else ROE <- !ROE
  ----

  Whenever a packet is sent by the sent module, its two bits, POE and
  ACK are set up by:

                       POE <- SOE
                       ACK <- ROE

  The mechanism is designed to use real traffic to accomplish the
  acknowledgment protocol by piggy-backing the ACK bits in the header
  of real packets.  If there is no real packet waiting for transmission
  in the opposite direction, a fake packet is assembled which carries
  the ACK, but which is not acknowledged by the receiving side.



Cerf                                                            [Page 5]

RFC 442        The Current Flow-Control Scheme for IMPSYS   January 1973


  We give an example of the operation of this mechanism between two
  IMPs.

                    IMP A                           IMP B
                    -----                           -----
                  ROE | SOE                       ROE | SOE
                      |           POE   ACK           |
                      |         +-----------+         |
IMP A blocks send    1 | 0    (1)|  0      1 |->     1 | 0 IMP B NOPS,
channel.               |         +-----------+         |   flips ROE
                      |                               |
                      |           POE   ACK           |
                      |         +-----------+         |
IMP A frees send     0 | 1     <-|  0      0 |(2)    0 | 0 IMP B blocks
channel,               |         +-----------+         |   channel for
Flips SOE              |                               |   new traffic
                      |           POE   ACK           |
IMP A blocks send      |         +-----------+  crashes|
channel                |      (3)|  1      0 |->or gets|
                      |         +-----------+  lost   |
                      |                               |
                      |           POE   ACK           |
IMP A detects packet   |         +-----------+         |
duplicate (POE=ROE)  0 | 1     <-|  0      0 |(2)    0 | 0 IMP B
so does not change     |         +-----------+         |  retransmits no
SOE bit.               |                               |  ACK received
                      |           POE   ACK           |
IMP A retransmits      |         +-----------+         |   IMP B flips
packet 3               |      (3)|  1      0 |->     1 | 1 SOE, unblocks
                      |         +-----------+         |   channel, and
                      |                               |   flips ROE.
                      |           POE   ACK           |
IMP A flips ROE,       |         +-----------+         |
     flips SOE      1 | 0     <-|  1      1 |(4)      |
                      |         +-----------+         |
                      |                               |

  In fact each send/receive module has 8 OE bits, so up to 8 packets
  can be outstanding in either direction.

How things really work

  Actually, a single send module is responsible for trying to transmit
  packets out on the 8 pseudo-channels.  Each channel has a two-bit
  state (in addition to an OE bit).  Each channel is either FREE or IN
  USE and if IN USE, it may be sending OLD or NEW packet.





Cerf                                                            [Page 6]

RFC 442        The Current Flow-Control Scheme for IMPSYS   January 1973


start state                                      F = free
       |                                         I = in use
       V                                         X = don_t care
      +-----+                 +------+           N = new packet
      |  FX | --------------> | I, N |           O = old packet
      +-----+                 +------+
         ^                       |
         |                       |
         |                       |
         |                       |
  ACK    |                       |
received |                       |
         |                       V
         |                   +------+
         +-------------------| I, O |---+
                             +------+   |
                                 ^      | re-transmissions
                                 +------+

  Between IMPs, packets are sent repeatedly, until they are
  acknowledged.  However, the choice of what to send is ordered by
  priority as follows:

     1. Priority Packets (as marked by HOST)

     2. Non-Priority Packet

     3. Unacknowledged packets (on I,O state channels)

     4. Others

  It was pointed out that a heavy load of type (1) and (2) traffic
  might prevent retransmissions from occurring at all, and W. Crowther
  responded that the bug would be fixed by a 125 ms time-out which
  forces retransmission of old packets in class (3).

  Note that each packet must carry a "pseudo-channel" number to
  identify the POE-to-channel association, and 8 ACK bits (which are
  positionally associated with the pseudo-channels).  Thus a single
  packet can ACK up to 8 packets at once.




         [This RFC was put into machine readable form for entry]
    [into the online RFC archives by Helene Morin, Via Genie, 12/99]





Cerf                                                            [Page 7]