Network Working Group                                        E. Rescorla
Request for Comments: 4347                                    RTFM, Inc.
Category: Standards Track                                    N. Modadugu
                                                    Stanford University
                                                             April 2006


                  Datagram Transport Layer Security


Status of This Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (2006).

Abstract

  This document specifies Version 1.0 of the Datagram Transport Layer
  Security (DTLS) protocol.  The DTLS protocol provides communications
  privacy for datagram protocols.  The protocol allows client/server
  applications to communicate in a way that is designed to prevent
  eavesdropping, tampering, or message forgery.  The DTLS protocol is
  based on the Transport Layer Security (TLS) protocol and provides
  equivalent security guarantees.  Datagram semantics of the underlying
  transport are preserved by the DTLS protocol.

Table of Contents

  1. Introduction ....................................................2
     1.1. Requirements Terminology ...................................3
  2. Usage Model .....................................................3
  3. Overview of DTLS ................................................4
     3.1. Loss-Insensitive Messaging .................................4
     3.2. Providing Reliability for Handshake ........................4
          3.2.1. Packet Loss .........................................5
          3.2.2. Reordering ..........................................5
          3.2.3. Message Size ........................................5
     3.3. Replay Detection ...........................................6
  4. Differences from TLS ............................................6
     4.1. Record Layer ...............................................6
          4.1.1. Transport Layer Mapping .............................7



Rescorla & Modadugu         Standards Track                     [Page 1]

RFC 4347           Datagram Transport Layer Security          April 2006


                 4.1.1.1. PMTU Discovery .............................8
          4.1.2. Record Payload Protection ...........................9
                 4.1.2.1. MAC ........................................9
                 4.1.2.2. Null or Standard Stream Cipher .............9
                 4.1.2.3. Block Cipher ..............................10
                 4.1.2.4. New Cipher Suites .........................10
                 4.1.2.5. Anti-replay ...............................10
     4.2. The DTLS Handshake Protocol ...............................11
          4.2.1. Denial of Service Countermeasures ..................11
          4.2.2. Handshake Message Format ...........................13
          4.2.3. Message Fragmentation and Reassembly ...............15
          4.2.4. Timeout and Retransmission .........................15
                 4.2.4.1. Timer Values ..............................18
          4.2.5. ChangeCipherSpec ...................................19
          4.2.6. Finished Messages ..................................19
          4.2.7. Alert Messages .....................................19
     4.3. Summary of new syntax .....................................19
          4.3.1. Record Layer .......................................20
          4.3.2. Handshake Protocol .................................20
  5. Security Considerations ........................................21
  6. Acknowledgements ...............................................22
  7. IANA Considerations ............................................22
  8. References .....................................................22
     8.1. Normative References ......................................22
     8.2. Informative References ....................................23

1. Introduction

  TLS [TLS] is the most widely deployed protocol for securing network
  traffic.  It is widely used for protecting Web traffic and for e-mail
  protocols such as IMAP [IMAP] and POP [POP].  The primary advantage
  of TLS is that it provides a transparent connection-oriented channel.
  Thus, it is easy to secure an application protocol by inserting TLS
  between the application layer and the transport layer.  However, TLS
  must run over a reliable transport channel -- typically TCP [TCP].
  It therefore cannot be used to secure unreliable datagram traffic.

  However, over the past few years an increasing number of application
  layer protocols have been designed that use UDP transport.  In
  particular protocols such as the Session Initiation Protocol (SIP)
  [SIP] and electronic gaming protocols are increasingly popular.
  (Note that SIP can run over both TCP and UDP, but that there are
  situations in which UDP is preferable).  Currently, designers of
  these applications are faced with a number of unsatisfactory choices.
  First, they can use IPsec [RFC2401].  However, for a number of
  reasons detailed in [WHYIPSEC], this is only suitable for some
  applications.  Second, they can design a custom application layer
  security protocol.  SIP, for instance, uses a subset of S/MIME to



Rescorla & Modadugu         Standards Track                     [Page 2]

RFC 4347           Datagram Transport Layer Security          April 2006


  secure its traffic.  Unfortunately, although application layer
  security protocols generally provide superior security properties
  (e.g., end-to-end security in the case of S/MIME), they typically
  requires a large amount of effort to design -- in contrast to the
  relatively small amount of effort required to run the protocol over
  TLS.

  In many cases, the most desirable way to secure client/server
  applications would be to use TLS; however, the requirement for
  datagram semantics automatically prohibits use of TLS.  Thus, a
  datagram-compatible variant of TLS would be very desirable.  This
  memo describes such a protocol: Datagram Transport Layer Security
  (DTLS).  DTLS is deliberately designed to be as similar to TLS as
  possible, both to minimize new security invention and to maximize the
  amount of code and infrastructure reuse.

1.1. Requirements Terminology

  In this document, the keywords "MUST", "MUST NOT", "REQUIRED",
  "SHOULD", "SHOULD NOT", and "MAY" are to be interpreted as described
  in RFC 2119 [REQ].

2. Usage Model

  The DTLS protocol is designed to secure data between communicating
  applications.  It is designed to run in application space, without
  requiring any kernel modifications.

  Datagram transport does not require or provide reliable or in-order
  delivery of data.  The DTLS protocol preserves this property for
  payload data.  Applications such as media streaming, Internet
  telephony, and online gaming use datagram transport for communication
  due to the delay-sensitive nature of transported data.  The behavior
  of such applications is unchanged when the DTLS protocol is used to
  secure communication, since the DTLS protocol does not compensate for
  lost or re-ordered data traffic.















Rescorla & Modadugu         Standards Track                     [Page 3]

RFC 4347           Datagram Transport Layer Security          April 2006


3. Overview of DTLS

  The basic design philosophy of DTLS is to construct "TLS over
  datagram".  The reason that TLS cannot be used directly in datagram
  environments is simply that packets may be lost or reordered.  TLS
  has no internal facilities to handle this kind of unreliability, and
  therefore TLS implementations break when rehosted on datagram
  transport.  The purpose of DTLS is to make only the minimal changes
  to TLS required to fix this problem.  To the greatest extent
  possible, DTLS is identical to TLS.  Whenever we need to invent new
  mechanisms, we attempt to do so in such a way that preserves the
  style of TLS.

  Unreliability creates problems for TLS at two levels:

     1. TLS's traffic encryption layer does not allow independent
     decryption of individual records.  If record N is not received,
     then record N+1 cannot be decrypted.

     2. The TLS handshake layer assumes that handshake messages are
     delivered reliably and breaks if those messages are lost.

  The rest of this section describes the approach that DTLS uses to
  solve these problems.

3.1. Loss-Insensitive Messaging

  In TLS's traffic encryption layer (called the TLS Record Layer),
  records are not independent.  There are two kinds of inter-record
  dependency:

     1. Cryptographic context (CBC state, stream cipher key stream) is
     chained between records.

     2. Anti-replay and message reordering protection are provided by a
     MAC that includes a sequence number, but the sequence numbers are
     implicit in the records.

  The fix for both of these problems is straightforward and well known
  from IPsec ESP [ESP]: add explicit state to the records.  TLS 1.1
  [TLS11] is already adding explicit CBC state to TLS records.  DTLS
  borrows that mechanism and adds explicit sequence numbers.

3.2. Providing Reliability for Handshake

  The TLS handshake is a lockstep cryptographic handshake.  Messages
  must be transmitted and received in a defined order, and any other
  order is an error.  Clearly, this is incompatible with reordering and



Rescorla & Modadugu         Standards Track                     [Page 4]

RFC 4347           Datagram Transport Layer Security          April 2006


  message loss.  In addition, TLS handshake messages are potentially
  larger than any given datagram, thus creating the problem of
  fragmentation.  DTLS must provide fixes for both of these problems.

3.2.1. Packet Loss

  DTLS uses a simple retransmission timer to handle packet loss.  The
  following figure demonstrates the basic concept, using the first
  phase of the DTLS handshake:

     Client                                   Server
     ------                                   ------
     ClientHello           ------>

                             X<-- HelloVerifyRequest
                                              (lost)

     [Timer Expires]

     ClientHello           ------>
     (retransmit)

  Once the client has transmitted the ClientHello message, it expects
  to see a HelloVerifyRequest from the server.  However, if the
  server's message is lost the client knows that either the ClientHello
  or the HelloVerifyRequest has been lost and retransmits.  When the
  server receives the retransmission, it knows to retransmit.  The
  server also maintains a retransmission timer and retransmits when
  that timer expires.

  Note: timeout and retransmission do not apply to the
  HelloVerifyRequest, because this requires creating state on the
  server.

3.2.2. Reordering

  In DTLS, each handshake message is assigned a specific sequence
  number within that handshake.  When a peer receives a handshake
  message, it can quickly determine whether that message is the next
  message it expects.  If it is, then it processes it.  If not, it
  queues it up for future handling once all previous messages have been
  received.

3.2.3. Message Size

  TLS and DTLS handshake messages can be quite large (in theory up to
  2^24-1 bytes, in practice many kilobytes).  By contrast, UDP
  datagrams are often limited to <1500 bytes if fragmentation is not



Rescorla & Modadugu         Standards Track                     [Page 5]

RFC 4347           Datagram Transport Layer Security          April 2006


  desired.  In order to compensate for this limitation, each DTLS
  handshake message may be fragmented over several DTLS records.  Each
  DTLS handshake message contains both a fragment offset and a fragment
  length.  Thus, a recipient in possession of all bytes of a handshake
  message can reassemble the original unfragmented message.

3.3. Replay Detection

  DTLS optionally supports record replay detection.  The technique used
  is the same as in IPsec AH/ESP, by maintaining a bitmap window of
  received records.  Records that are too old to fit in the window and
  records that have previously been received are silently discarded.
  The replay detection feature is optional, since packet duplication is
  not always malicious, but can also occur due to routing errors.
  Applications may conceivably detect duplicate packets and accordingly
  modify their data transmission strategy.

4. Differences from TLS

  As mentioned in Section 3, DTLS is intentionally very similar to TLS.
  Therefore, instead of presenting DTLS as a new protocol, we present
  it as a series of deltas from TLS 1.1 [TLS11].  Where we do not
  explicitly call out differences, DTLS is the same as in [TLS11].

4.1. Record Layer

  The DTLS record layer is extremely similar to that of TLS 1.1.  The
  only change is the inclusion of an explicit sequence number in the
  record.  This sequence number allows the recipient to correctly
  verify the TLS MAC.  The DTLS record format is shown below:

      struct {
        ContentType type;
        ProtocolVersion version;
        uint16 epoch;                                    // New field
        uint48 sequence_number;                          // New field
        uint16 length;
        opaque fragment[DTLSPlaintext.length];
      } DTLSPlaintext;

     type
      Equivalent to the type field in a TLS 1.1 record.

     version
      The version of the protocol being employed.  This document
      describes DTLS Version 1.0, which uses the version { 254, 255
      }.  The version value of 254.255 is the 1's complement of DTLS
      Version 1.0. This maximal spacing between TLS and DTLS version



Rescorla & Modadugu         Standards Track                     [Page 6]

RFC 4347           Datagram Transport Layer Security          April 2006


      numbers ensures that records from the two protocols can be
      easily distinguished.  It should be noted that future on-the-wire
      version numbers of DTLS are decreasing in value (while the true
      version number is increasing in value.)

     epoch
      A counter value that is incremented on every cipher state
      change.

     sequence_number
      The sequence number for this record.

     length
      Identical to the length field in a TLS 1.1 record.  As in TLS
      1.1, the length should not exceed 2^14.

     fragment
      Identical to the fragment field of a TLS 1.1 record.

  DTLS uses an explicit sequence number, rather than an implicit one,
  carried in the sequence_number field of the record.  As with TLS, the
  sequence number is set to zero after each ChangeCipherSpec message is
  sent.

  If several handshakes are performed in close succession, there might
  be multiple records on the wire with the same sequence number but
  from different cipher states.  The epoch field allows recipients to
  distinguish such packets.  The epoch number is initially zero and is
  incremented each time the ChangeCipherSpec messages is sent.  In
  order to ensure that any given sequence/epoch pair is unique,
  implementations MUST NOT allow the same epoch value to be reused
  within two times the TCP maximum segment lifetime.  In practice, TLS
  implementations rarely rehandshake and we therefore do not expect
  this to be a problem.

4.1.1. Transport Layer Mapping

  Each DTLS record MUST fit within a single datagram.  In order to
  avoid IP fragmentation [MOGUL], DTLS implementations SHOULD determine
  the MTU and send records smaller than the MTU.  DTLS implementations
  SHOULD provide a way for applications to determine the value of the
  PMTU (or, alternately, the maximum application datagram size, which
  is the PMTU minus the DTLS per-record overhead).  If the application
  attempts to send a record larger than the MTU, the DTLS
  implementation SHOULD generate an error, thus avoiding sending a
  packet which will be fragmented.





Rescorla & Modadugu         Standards Track                     [Page 7]

RFC 4347           Datagram Transport Layer Security          April 2006


  Note that unlike IPsec, DTLS records do not contain any association
  identifiers.  Applications must arrange to multiplex between
  associations.  With UDP, this is presumably done with host/port
  number.

  Multiple DTLS records may be placed in a single datagram.  They are
  simply encoded consecutively.  The DTLS record framing is sufficient
  to determine the boundaries.  Note, however, that the first byte of
  the datagram payload must be the beginning of a record.  Records may
  not span datagrams.

  Some transports, such as DCCP [DCCP] provide their own sequence
  numbers.  When carried over those transports, both the DTLS and the
  transport sequence numbers will be present.  Although this introduces
  a small amount of inefficiency, the transport layer and DTLS sequence
  numbers serve different purposes, and therefore for conceptual
  simplicity it is superior to use both sequence numbers.  In the
  future, extensions to DTLS may be specified that allow the use of
  only one set of sequence numbers for deployment in constrained
  environments.

  Some transports, such as DCCP, provide congestion control for traffic
  carried over them.  If the congestion window is sufficiently narrow,
  DTLS handshake retransmissions may be held rather than transmitted
  immediately, potentially leading to timeouts and spurious
  retransmission.  When DTLS is used over such transports, care should
  be taken not to overrun the likely congestion window.  In the future,
  a DTLS-DCCP mapping may be specified to provide optimal behavior for
  this interaction.

4.1.1.1. PMTU Discovery

  In general, DTLS's philosophy is to avoid dealing with PMTU issues.
  The general strategy is to start with a conservative MTU and then
  update it if events during the handshake or actual application data
  transport phase require it.

  The PMTU SHOULD be initialized from the interface MTU that will be
  used to send packets.  If the DTLS implementation receives an RFC
  1191 [RFC1191] ICMP Destination Unreachable message with the
  "fragmentation needed and DF set" Code (otherwise known as Datagram
  Too Big), it should decrease its PMTU estimate to that given in the
  ICMP message.  A DTLS implementation SHOULD allow the application to
  occasionally reset its PMTU estimate.  The DTLS implementation SHOULD
  also allow applications to control the status of the DF bit.  These
  controls allow the application to perform PMTU discovery.  RFC 1981
  [RFC1981] procedures SHOULD be followed for IPv6.




Rescorla & Modadugu         Standards Track                     [Page 8]

RFC 4347           Datagram Transport Layer Security          April 2006


  One special case is the DTLS handshake system.  Handshake messages
  should be set with DF set.  Because some firewalls and routers screen
  out ICMP messages, it is difficult for the handshake layer to
  distinguish packet loss from an overlarge PMTU estimate.  In order to
  allow connections under these circumstances, DTLS implementations
  SHOULD back off handshake packet size during the retransmit backoff
  described in Section 4.2.4. For instance, if a large packet is being
  sent, after 3 retransmits the handshake layer might choose to
  fragment the handshake message on retransmission.  In general, choice
  of a conservative initial MTU will avoid this problem.

4.1.2. Record Payload Protection

  Like TLS, DTLS transmits data as a series of protected records.  The
  rest of this section describes the details of that format.

4.1.2.1. MAC

  The DTLS MAC is the same as that of TLS 1.1. However, rather than
  using TLS's implicit sequence number, the sequence number used to
  compute the MAC is the 64-bit value formed by concatenating the epoch
  and the sequence number in the order they appear on the wire.  Note
  that the DTLS epoch + sequence number is the same length as the TLS
  sequence number.

  TLS MAC calculation is parameterized on the protocol version number,
  which, in the case of DTLS, is the on-the-wire version, i.e., {254,
  255 } for DTLS 1.0.

  Note that one important difference between DTLS and TLS MAC handling
  is that in TLS MAC errors must result in connection termination.  In
  DTLS, the receiving implementation MAY simply discard the offending
  record and continue with the connection.  This change is possible
  because DTLS records are not dependent on each other in the way that
  TLS records are.

  In general, DTLS implementations SHOULD silently discard data with
  bad MACs.  If a DTLS implementation chooses to generate an alert when
  it receives a message with an invalid MAC, it MUST generate
  bad_record_mac alert with level fatal and terminate its connection
  state.

4.1.2.2. Null or Standard Stream Cipher

  The DTLS NULL cipher is performed exactly as the TLS 1.1 NULL cipher.

  The only stream cipher described in TLS 1.1 is RC4, which cannot be
  randomly accessed.  RC4 MUST NOT be used with DTLS.



Rescorla & Modadugu         Standards Track                     [Page 9]

RFC 4347           Datagram Transport Layer Security          April 2006


4.1.2.3. Block Cipher

  DTLS block cipher encryption and decryption are performed exactly as
  with TLS 1.1.

4.1.2.4. New Cipher Suites

  Upon registration, new TLS cipher suites MUST indicate whether they
  are suitable for DTLS usage and what, if any, adaptations must be
  made.

4.1.2.5. Anti-replay

  DTLS records contain a sequence number to provide replay protection.
  Sequence number verification SHOULD be performed using the following
  sliding window procedure, borrowed from Section 3.4.3 of [RFC 2402].

  The receiver packet counter for this session MUST be initialized to
  zero when the session is established.  For each received record, the
  receiver MUST verify that the record contains a Sequence Number that
  does not duplicate the Sequence Number of any other record received
  during the life of this session.  This SHOULD be the first check
  applied to a packet after it has been matched to a session, to speed
  rejection of duplicate records.

  Duplicates are rejected through the use of a sliding receive window.
  (How the window is implemented is a local matter, but the following
  text describes the functionality that the implementation must
  exhibit.)  A minimum window size of 32 MUST be supported, but a
  window size of 64 is preferred and SHOULD be employed as the default.
  Another window size (larger than the minimum) MAY be chosen by the
  receiver.  (The receiver does not notify the sender of the window
  size.)

  The "right" edge of the window represents the highest validated
  Sequence Number value received on this session.  Records that contain
  Sequence Numbers lower than the "left" edge of the window are
  rejected.  Packets falling within the window are checked against a
  list of received packets within the window.  An efficient means for
  performing this check, based on the use of a bit mask, is described
  in Appendix C of [RFC 2401].

  If the received record falls within the window and is new, or if the
  packet is to the right of the window, then the receiver proceeds to
  MAC verification.  If the MAC validation fails, the receiver MUST
  discard the received record as invalid.  The receive window is
  updated only if the MAC verification succeeds.




Rescorla & Modadugu         Standards Track                    [Page 10]

RFC 4347           Datagram Transport Layer Security          April 2006


4.2. The DTLS Handshake Protocol

  DTLS uses all of the same handshake messages and flows as TLS, with
  three principal changes:

     1. A stateless cookie exchange has been added to prevent denial of
     service attacks.

     2. Modifications to the handshake header to handle message loss,
     reordering, and fragmentation.

     3. Retransmission timers to handle message loss.

  With these exceptions, the DTLS message formats, flows, and logic are
  the same as those of TLS 1.1.

4.2.1. Denial of Service Countermeasures

  Datagram security protocols are extremely susceptible to a variety of
  denial of service (DoS) attacks.  Two attacks are of particular
  concern:

     1. An attacker can consume excessive resources on the server by
     transmitting a series of handshake initiation requests, causing
     the server to allocate state and potentially to perform expensive
     cryptographic operations.

     2. An attacker can use the server as an amplifier by sending
     connection initiation messages with a forged source of the victim.
     The server then sends its next message (in DTLS, a Certificate
     message, which can be quite large) to the victim machine, thus
     flooding it.

  In order to counter both of these attacks, DTLS borrows the stateless
  cookie technique used by Photuris [PHOTURIS] and IKE [IKE].  When the
  client sends its ClientHello message to the server, the server MAY
  respond with a HelloVerifyRequest message.  This message contains a
  stateless cookie generated using the technique of [PHOTURIS].  The
  client MUST retransmit the ClientHello with the cookie added.  The
  server then verifies the cookie and proceeds with the handshake only
  if it is valid.  This mechanism forces the attacker/client to be able
  to receive the cookie, which makes DoS attacks with spoofed IP
  addresses difficult.  This mechanism does not provide any defense
  against DoS attacks mounted from valid IP addresses.







Rescorla & Modadugu         Standards Track                    [Page 11]

RFC 4347           Datagram Transport Layer Security          April 2006


  The exchange is shown below:

        Client                                   Server
        ------                                   ------
        ClientHello           ------>

                              <----- HelloVerifyRequest
                                     (contains cookie)

        ClientHello           ------>
        (with cookie)

        [Rest of handshake]

  DTLS therefore modifies the ClientHello message to add the cookie
  value.

     struct {
       ProtocolVersion client_version;
       Random random;
       SessionID session_id;
       opaque cookie<0..32>;                             // New field
       CipherSuite cipher_suites<2..2^16-1>;
       CompressionMethod compression_methods<1..2^8-1>;
     } ClientHello;

  When sending the first ClientHello, the client does not have a cookie
  yet; in this case, the Cookie field is left empty (zero length).

  The definition of HelloVerifyRequest is as follows:

     struct {
       ProtocolVersion server_version;
       opaque cookie<0..32>;
     } HelloVerifyRequest;

  The HelloVerifyRequest message type is hello_verify_request(3).

  The server_version field is defined as in TLS.

  When responding to a HelloVerifyRequest the client MUST use the same
  parameter values (version, random, session_id, cipher_suites,
  compression_method) as it did in the original ClientHello.  The
  server SHOULD use those values to generate its cookie and verify that
  they are correct upon cookie receipt.  The server MUST use the same
  version number in the HelloVerifyRequest that it would use when
  sending a ServerHello.  Upon receipt of the ServerHello, the client
  MUST verify that the server version values match.



Rescorla & Modadugu         Standards Track                    [Page 12]

RFC 4347           Datagram Transport Layer Security          April 2006


  The DTLS server SHOULD generate cookies in such a way that they can
  be verified without retaining any per-client state on the server.
  One technique is to have a randomly generated secret and generate
  cookies as:  Cookie = HMAC(Secret, Client-IP, Client-Parameters)

  When the second ClientHello is received, the server can verify that
  the Cookie is valid and that the client can receive packets at the
  given IP address.

  One potential attack on this scheme is for the attacker to collect a
  number of cookies from different addresses and then reuse them to
  attack the server.  The server can defend against this attack by
  changing the Secret value frequently, thus invalidating those
  cookies.  If the server wishes that legitimate clients be able to
  handshake through the transition (e.g., they received a cookie with
  Secret 1 and then sent the second ClientHello after the server has
  changed to Secret 2), the server can have a limited window during
  which it accepts both secrets. [IKEv2] suggests adding a version
  number to cookies to detect this case.  An alternative approach is
  simply to try verifying with both secrets.

  DTLS servers SHOULD perform a cookie exchange whenever a new
  handshake is being performed.  If the server is being operated in an
  environment where amplification is not a problem, the server MAY be
  configured not to perform a cookie exchange.  The default SHOULD be
  that the exchange is performed, however.  In addition, the server MAY
  choose not to do a cookie exchange when a session is resumed.
  Clients MUST be prepared to do a cookie exchange with every
  handshake.

  If HelloVerifyRequest is used, the initial ClientHello and
  HelloVerifyRequest are not included in the calculation of the
  verify_data for the Finished message.

4.2.2. Handshake Message Format

  In order to support message loss, reordering, and fragmentation, DTLS
  modifies the TLS 1.1 handshake header:

     struct {
       HandshakeType msg_type;
       uint24 length;
       uint16 message_seq;                               // New field
       uint24 fragment_offset;                           // New field
       uint24 fragment_length;                           // New field
       select (HandshakeType) {
         case hello_request: HelloRequest;
         case client_hello:  ClientHello;



Rescorla & Modadugu         Standards Track                    [Page 13]

RFC 4347           Datagram Transport Layer Security          April 2006


         case hello_verify_request: HelloVerifyRequest;  // New type
         case server_hello:  ServerHello;
         case certificate:Certificate;
         case server_key_exchange: ServerKeyExchange;
         case certificate_request: CertificateRequest;
         case server_hello_done:ServerHelloDone;
         case certificate_verify:  CertificateVerify;
         case client_key_exchange: ClientKeyExchange;
         case finished:Finished;
       } body;
     } Handshake;

  The first message each side transmits in each handshake always has
  message_seq = 0.  Whenever each new message is generated, the
  message_seq value is incremented by one.  When a message is
  retransmitted, the same message_seq value is used.  For example:

     Client                             Server
     ------                             ------
     ClientHello (seq=0)  ------>

                             X<-- HelloVerifyRequest (seq=0)
                                             (lost)

     [Timer Expires]

     ClientHello (seq=0)  ------>
     (retransmit)

                          <------ HelloVerifyRequest (seq=0)

     ClientHello (seq=1)  ------>
     (with cookie)

                          <------        ServerHello (seq=1)
                          <------        Certificate (seq=2)
                          <------    ServerHelloDone (seq=3)

     [Rest of handshake]

  Note, however, that from the perspective of the DTLS record layer,
  the retransmission is a new record.  This record will have a new
  DTLSPlaintext.sequence_number value.

  DTLS implementations maintain (at least notionally) a
  next_receive_seq counter.  This counter is initially set to zero.
  When a message is received, if its sequence number matches
  next_receive_seq, next_receive_seq is incremented and the message is



Rescorla & Modadugu         Standards Track                    [Page 14]

RFC 4347           Datagram Transport Layer Security          April 2006


  processed.  If the sequence number is less than next_receive_seq, the
  message MUST be discarded.  If the sequence number is greater than
  next_receive_seq, the implementation SHOULD queue the message but MAY
  discard it.  (This is a simple space/bandwidth tradeoff).

4.2.3. Message Fragmentation and Reassembly

  As noted in Section 4.1.1, each DTLS message MUST fit within a single
  transport layer datagram.  However, handshake messages are
  potentially bigger than the maximum record size.  Therefore, DTLS
  provides a mechanism for fragmenting a handshake message over a
  number of records.

  When transmitting the handshake message, the sender divides the
  message into a series of N contiguous data ranges.  These ranges MUST
  NOT be larger than the maximum handshake fragment size and MUST
  jointly contain the entire handshake message.  The ranges SHOULD NOT
  overlap.  The sender then creates N handshake messages, all with the
  same message_seq value as the original handshake message.  Each new
  message is labelled with the fragment_offset (the number of bytes
  contained in previous fragments) and the fragment_length (the length
  of this fragment).  The length field in all messages is the same as
  the length field of the original message.  An unfragmented message is
  a degenerate case with fragment_offset=0 and fragment_length=length.

  When a DTLS implementation receives a handshake message fragment, it
  MUST buffer it until it has the entire handshake message.  DTLS
  implementations MUST be able to handle overlapping fragment ranges.
  This allows senders to retransmit handshake messages with smaller
  fragment sizes during path MTU discovery.

  Note that as with TLS, multiple handshake messages may be placed in
  the same DTLS record, provided that there is room and that they are
  part of the same flight.  Thus, there are two acceptable ways to pack
  two DTLS messages into the same datagram: in the same record or in
  separate records.

4.2.4. Timeout and Retransmission

  DTLS messages are grouped into a series of message flights, according
  to the diagrams below.  Although each flight of messages may consist
  of a number of messages, they should be viewed as monolithic for the
  purpose of timeout and retransmission.








Rescorla & Modadugu         Standards Track                    [Page 15]

RFC 4347           Datagram Transport Layer Security          April 2006


   Client                                          Server
   ------                                          ------

   ClientHello             -------->                           Flight 1

                           <-------    HelloVerifyRequest      Flight 2

  ClientHello              -------->                           Flight 3

                                              ServerHello    \
                                             Certificate*     \
                                       ServerKeyExchange*      Flight 4
                                      CertificateRequest*     /
                           <--------      ServerHelloDone    /

   Certificate*                                              \
   ClientKeyExchange                                          \
   CertificateVerify*                                          Flight 5
   [ChangeCipherSpec]                                         /
   Finished                -------->                         /

                                       [ChangeCipherSpec]    \ Flight 6
                           <--------             Finished    /

         Figure 1. Message flights for full handshake


   Client                                           Server
   ------                                           ------

   ClientHello             -------->                          Flight 1

                                              ServerHello    \
                                       [ChangeCipherSpec]     Flight 2
                            <--------             Finished    /

   [ChangeCipherSpec]                                         \Flight 3
   Finished                 -------->                         /

  Figure 2. Message flights for session-resuming handshake
                          (no cookie exchange)

  DTLS uses a simple timeout and retransmission scheme with the
  following state machine.  Because DTLS clients send the first message
  (ClientHello), they start in the PREPARING state.  DTLS servers start
  in the WAITING state, but with empty buffers and no retransmit timer.





Rescorla & Modadugu         Standards Track                    [Page 16]

RFC 4347           Datagram Transport Layer Security          April 2006


                  +-----------+
                  | PREPARING |
            +---> |           | <--------------------+
            |     |           |                      |
            |     +-----------+                      |
            |           |                            |
            |           |                            |
            |           | Buffer next flight         |
            |           |                            |
            |          \|/                           |
            |     +-----------+                      |
            |     |           |                      |
            |     |  SENDING  |<------------------+  |
            |     |           |                   |  | Send
            |     +-----------+                   |  | HelloRequest
    Receive |           |                         |  |
       next |           | Send flight             |  | or
     flight |  +--------+                         |  |
            |  |        | Set retransmit timer    |  | Receive
            |  |       \|/                        |  | HelloRequest
            |  |  +-----------+                   |  | Send
            |  |  |           |                   |  | ClientHello
            +--)--|  WAITING  |-------------------+  |
            |  |  |           |   Timer expires   |  |
            |  |  +-----------+                   |  |
            |  |         |                        |  |
            |  |         |                        |  |
            |  |         +------------------------+  |
            |  |                Read retransmit      |
    Receive |  |                                     |
       last |  |                                     |
     flight |  |                                     |
            |  |                                     |
           \|/\|/                                    |
                                                     |
        +-----------+                                |
        |           |                                |
        | FINISHED  | -------------------------------+
        |           |
        +-----------+

       Figure 3. DTLS timeout and retransmission state machine

  The state machine has three basic states.







Rescorla & Modadugu         Standards Track                    [Page 17]

RFC 4347           Datagram Transport Layer Security          April 2006


  In the PREPARING state the implementation does whatever computations
  are necessary to prepare the next flight of messages.  It then
  buffers them up for transmission (emptying the buffer first) and
  enters the SENDING state.

  In the SENDING state, the implementation transmits the buffered
  flight of messages.  Once the messages have been sent, the
  implementation then enters the FINISHED state if this is the last
  flight in the handshake.  Or, if the implementation expects to
  receive more messages, it sets a retransmit timer and then enters the
  WAITING state.

  There are three ways to exit the WAITING state:

     1. The retransmit timer expires: the implementation transitions to
     the SENDING state, where it retransmits the flight, resets the
     retransmit timer, and returns to the WAITING state.

     2. The implementation reads a retransmitted flight from the peer:
     the implementation transitions to the SENDING state, where it
     retransmits the flight, resets the retransmit timer, and returns
     to the WAITING state.  The rationale here is that the receipt of a
     duplicate message is the likely result of timer expiry on the peer
     and therefore suggests that part of one's previous flight was
     lost.

     3. The implementation receives the next flight of messages:  if
     this is the final flight of messages, the implementation
     transitions to FINISHED.  If the implementation needs to send a
     new flight, it transitions to the PREPARING state.  Partial reads
     (whether partial messages or only some of the messages in the
     flight) do not cause state transitions or timer resets.

  Because DTLS clients send the first message (ClientHello), they start
  in the PREPARING state.  DTLS servers start in the WAITING state, but
  with empty buffers and no retransmit timer.

  When the server desires a rehandshake, it transitions from the
  FINISHED state to the PREPARING state to transmit the HelloRequest.
  When the client receives a HelloRequest it transitions from FINISHED
  to PREPARING to transmit the ClientHello.

4.2.4.1. Timer Values

  Though timer values are the choice of the implementation, mishandling
  of the timer can lead to serious congestion problems; for example, if
  many instances of a DTLS time out early and retransmit too quickly on
  a congested link.  Implementations SHOULD use an initial timer value



Rescorla & Modadugu         Standards Track                    [Page 18]

RFC 4347           Datagram Transport Layer Security          April 2006


  of 1 second (the minimum defined in RFC 2988 [RFC2988]) and double
  the value at each retransmission, up to no less than the RFC 2988
  maximum of 60 seconds.  Note that we recommend a 1-second timer
  rather than the 3-second RFC 2988 default in order to improve latency
  for time-sensitive applications.  Because DTLS only uses
  retransmission for handshake and not dataflow, the effect on
  congestion should be minimal.

  Implementations SHOULD retain the current timer value until a
  transmission without loss occurs, at which time the value may be
  reset to the initial value.  After a long period of idleness, no less
  than 10 times the current timer value, implementations may reset the
  timer to the initial value.  One situation where this might occur is
  when a rehandshake is used after substantial data transfer.

4.2.5. ChangeCipherSpec

  As with TLS, the ChangeCipherSpec message is not technically a
  handshake message but MUST be treated as part of the same flight as
  the associated Finished message for the purposes of timeout and
  retransmission.

4.2.6. Finished Messages

  Finished messages have the same format as in TLS.  However, in order
  to remove sensitivity to fragmentation, the Finished MAC MUST be
  computed as if each handshake message had been sent as a single
  fragment.  Note that in cases where the cookie exchange is used, the
  initial ClientHello and HelloVerifyRequest MUST NOT be included in
  the Finished MAC.

4.2.7. Alert Messages

  Note that Alert messages are not retransmitted at all, even when they
  occur in the context of a handshake.  However, a DTLS implementation
  SHOULD generate a new alert message if the offending record is
  received again (e.g., as a retransmitted handshake message).
  Implementations SHOULD detect when a peer is persistently sending bad
  messages and terminate the local connection state after such
  misbehavior is detected.

4.3. Summary of new syntax

  This section includes specifications for the data structures that
  have changed between TLS 1.1 and DTLS.






Rescorla & Modadugu         Standards Track                    [Page 19]

RFC 4347           Datagram Transport Layer Security          April 2006


4.3.1. Record Layer

     struct {
       ContentType type;
       ProtocolVersion version;
       uint16 epoch;                                     // New field
       uint48 sequence_number;                           // New field
       uint16 length;
       opaque fragment[DTLSPlaintext.length];
     } DTLSPlaintext;

     struct {
       ContentType type;
       ProtocolVersion version;
       uint16 epoch;                                     // New field
       uint48 sequence_number;                           // New field
       uint16 length;
       opaque fragment[DTLSCompressed.length];
     } DTLSCompressed;

     struct {
       ContentType type;
       ProtocolVersion version;
       uint16 epoch;                                     // New field
       uint48 sequence_number;                           // New field
       uint16 length;
       select (CipherSpec.cipher_type) {
         case block:  GenericBlockCipher;
       } fragment;
     } DTLSCiphertext;

4.3.2. Handshake Protocol

     enum {
       hello_request(0), client_hello(1), server_hello(2),
       hello_verify_request(3),                          // New field
       certificate(11), server_key_exchange (12),
       certificate_request(13), server_hello_done(14),
       certificate_verify(15), client_key_exchange(16),
       finished(20), (255)
     } HandshakeType;

     struct {
       HandshakeType msg_type;
       uint24 length;
       uint16 message_seq;                               // New field
       uint24 fragment_offset;                           // New field
       uint24 fragment_length;                           // New field



Rescorla & Modadugu         Standards Track                    [Page 20]

RFC 4347           Datagram Transport Layer Security          April 2006


       select (HandshakeType) {
         case hello_request: HelloRequest;
         case client_hello:  ClientHello;
         case server_hello:  ServerHello;
         case hello_verify_request: HelloVerifyRequest;  // New field
         case certificate:Certificate;
         case server_key_exchange: ServerKeyExchange;
         case certificate_request: CertificateRequest;
         case server_hello_done:ServerHelloDone;
         case certificate_verify:  CertificateVerify;
         case client_key_exchange: ClientKeyExchange;
         case finished:Finished;
       } body;
     } Handshake;

     struct {
       ProtocolVersion client_version;
       Random random;
       SessionID session_id;
       opaque cookie<0..32>;                             // New field
       CipherSuite cipher_suites<2..2^16-1>;
       CompressionMethod compression_methods<1..2^8-1>;
     } ClientHello;

     struct {
       ProtocolVersion server_version;
       opaque cookie<0..32>;
     } HelloVerifyRequest;

5. Security Considerations

  This document describes a variant of TLS 1.1 and therefore most of
  the security considerations are the same as those of TLS 1.1 [TLS11],
  described in Appendices D, E, and F.

  The primary additional security consideration raised by DTLS is that
  of denial of service.  DTLS includes a cookie exchange designed to
  protect against denial of service.  However, implementations which do
  not use this cookie exchange are still vulnerable to DoS.  In
  particular, DTLS servers which do not use the cookie exchange may be
  used as attack amplifiers even if they themselves are not
  experiencing DoS.  Therefore, DTLS servers SHOULD use the cookie
  exchange unless there is good reason to believe that amplification is
  not a threat in their environment.  Clients MUST be prepared to do a
  cookie exchange with every handshake.






Rescorla & Modadugu         Standards Track                    [Page 21]

RFC 4347           Datagram Transport Layer Security          April 2006


6. Acknowledgements

  The authors would like to thank Dan Boneh, Eu-Jin Goh, Russ Housley,
  Constantine Sapuntzakis, and Hovav Shacham for discussions and
  comments on the design of DTLS.  Thanks to the anonymous NDSS
  reviewers of our original NDSS paper on DTLS [DTLS] for their
  comments.  Also, thanks to Steve Kent for feedback that helped
  clarify many points.  The section on PMTU was cribbed from the DCCP
  specification [DCCP].  Pasi Eronen provided a detailed review of this
  specification.  Helpful comments on the document were also received
  from Mark Allman, Jari Arkko, Joel Halpern, Ted Hardie, and Allison
  Mankin.

7. IANA Considerations

  This document uses the same identifier space as TLS [TLS11], so no
  new IANA registries are required.  When new identifiers are assigned
  for TLS, authors MUST specify whether they are suitable for DTLS.

  This document defines a new handshake message, hello_verify_request,
  whose value has been allocated from the TLS HandshakeType registry
  defined in [TLS11].  The value "3" has been assigned by the IANA.

8. References

8.1. Normative References

  [RFC1191]  Mogul, J. and S. Deering, "Path MTU discovery", RFC 1191,
             November 1990.

  [RFC1981]  McCann, J., Deering, S., and J. Mogul, "Path MTU Discovery
             for IP version 6", RFC 1981, August 1996.

  [RFC2401]  Kent, S. and R. Atkinson, "Security Architecture for the
             Internet Protocol", RFC 2401, November 1998.

  [RFC2988]  Paxson, V. and M. Allman, "Computing TCP's Retransmission
             Timer", RFC 2988, November 2000.

  [TCP]      Postel, J., "Transmission Control Protocol", STD 7, RFC
             793, September 1981.

  [TLS11]    Dierks, T. and E. Rescorla, "The Transport Layer Security
             (TLS) Protocol Version 1.1", RFC 4346, April 2006.







Rescorla & Modadugu         Standards Track                    [Page 22]

RFC 4347           Datagram Transport Layer Security          April 2006


8.2. Informative References

  [AESCACHE] Bernstein, D.J., "Cache-timing attacks on AES"
             http://cr.yp.to/antiforgery/cachetiming-20050414.pdf.

  [AH]       Kent, S. and R. Atkinson, "IP Authentication Header", RFC
             2402, November 1998.

  [DCCP]     Kohler, E., Handley, M., Floyd, S., Padhye, J., "Datagram
             Congestion Control Protocol", Work in Progress, 10 March
             2005.

  [DNS]      Mockapetris, P., "Domain names - implementation and
             specification", STD 13, RFC 1035, November 1987.

  [DTLS]     Modadugu, N., Rescorla, E., "The Design and Implementation
             of Datagram TLS", Proceedings of ISOC NDSS 2004, February
             2004.

  [ESP]      Kent, S. and R. Atkinson, "IP Encapsulating Security
             Payload (ESP)", RFC 2406, November 1998.

  [IKE]      Harkins, D. and D. Carrel, "The Internet Key Exchange
             (IKE)", RFC 2409, November 1998.

  Kaufman, C., "Internet Key Exchange (IKEv2) Protocol", RFC 4306,
             December 2005.

  [IMAP]     Crispin, M., "INTERNET MESSAGE ACCESS PROTOCOL - VERSION
             4rev1", RFC 3501, March 2003.

  [PHOTURIS] Karn, P. and W. Simpson, "ICMP Security Failures
             Messages", RFC 2521, March 1999.

  [POP]      Myers, J. and M. Rose, "Post Office Protocol - Version 3",
             STD 53, RFC 1939, May 1996.

  [REQ]      Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119, March 1997.

  [SCTP]     Stewart, R., Xie, Q., Morneault, K., Sharp, C.,
             Schwarzbauer, H., Taylor, T., Rytina, I., Kalla, M.,
             Zhang, L., and V. Paxson, "Stream Control Transmission
             Protocol", RFC 2960, October 2000.







Rescorla & Modadugu         Standards Track                    [Page 23]

RFC 4347           Datagram Transport Layer Security          April 2006


  [SIP]      Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
             A., Peterson, J., Sparks, R., Handley, M., and E.
             Schooler, "SIP:  Session Initiation Protocol", RFC 3261,
             June 2002.

  [TLS]      Dierks, T. and C. Allen, "The TLS Protocol Version 1.0",
             RFC 2246, January 1999.

  [WHYIPSEC] Bellovin, S., "Guidelines for Mandating the Use of IPsec",
             Work in Progress, October 2003.

Authors' Addresses

  Eric Rescorla
  RTFM, Inc.
  2064 Edgewood Drive
  Palo Alto, CA 94303

  EMail: [email protected]


  Nagendra Modadugu
  Computer Science Department
  Stanford University
  353 Serra Mall
  Stanford, CA 94305

  EMail: [email protected]























Rescorla & Modadugu         Standards Track                    [Page 24]

RFC 4347           Datagram Transport Layer Security          April 2006


Full Copyright Statement

  Copyright (C) The Internet Society (2006).

  This document is subject to the rights, licenses and restrictions
  contained in BCP 78, and except as set forth therein, the authors
  retain all their rights.

  This document and the information contained herein are provided on an
  "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
  OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
  ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
  INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
  INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
  WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

  The IETF takes no position regarding the validity or scope of any
  Intellectual Property Rights or other rights that might be claimed to
  pertain to the implementation or use of the technology described in
  this document or the extent to which any license under such rights
  might or might not be available; nor does it represent that it has
  made any independent effort to identify any such rights.  Information
  on the procedures with respect to rights in RFC documents can be
  found in BCP 78 and BCP 79.

  Copies of IPR disclosures made to the IETF Secretariat and any
  assurances of licenses to be made available, or the result of an
  attempt made to obtain a general license or permission for the use of
  such proprietary rights by implementers or users of this
  specification can be obtained from the IETF on-line IPR repository at
  http://www.ietf.org/ipr.

  The IETF invites any interested party to bring to its attention any
  copyrights, patents or patent applications, or other proprietary
  rights that may cover technology that may be required to implement
  this standard.  Please address the information to the IETF at
  [email protected].

Acknowledgement

  Funding for the RFC Editor function is provided by the IETF
  Administrative Support Activity (IASA).







Rescorla & Modadugu         Standards Track                    [Page 25]