Network Working Group                                         C. DeSanti
Request for Comments: 4338                                 Cisco Systems
Obsoletes: 3831, 2625                                         C. Carlson
Category: Standards Track                             QLogic Corporation
                                                               R. Nixon
                                                                 Emulex
                                                           January 2006


                   Transmission of IPv6, IPv4, and
     Address Resolution Protocol (ARP) Packets over Fibre Channel

Status of This Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (2006).

Abstract

  This document specifies the way of encapsulating IPv6, IPv4, and
  Address Resolution Protocol (ARP) packets over Fibre Channel.  This
  document also specifies the method of forming IPv6 link-local
  addresses and statelessly autoconfigured IPv6 addresses on Fibre
  Channel networks, and a mechanism to perform IPv4 address resolution
  over Fibre Channel networks.

  This document obsoletes RFC 2625 and RFC 3831.

















DeSanti, et al.             Standards Track                     [Page 1]

RFC 4338                 IP over Fibre Channel              January 2006


Table of Contents

  1. Introduction ....................................................3
  2. Summary of Fibre Channel ........................................4
     2.1. Overview ...................................................4
     2.2. Identifiers and Login ......................................5
     2.3. FC Levels and Frame Format .................................5
     2.4. Sequences and Exchanges ....................................6
  3. IP-capable Nx_Ports .............................................7
  4. IPv6, IPv4, and ARP Encapsulation ...............................7
     4.1. FC Sequence Format for IPv6 and IPv4 Packets ...............7
     4.2. FC Sequence Format for ARP Packets .........................9
     4.3. FC Classes of Service .....................................10
     4.4. FC Header Code Points .....................................10
     4.5. FC Network_Header .........................................11
     4.6. LLC/SNAP Header ...........................................12
     4.7. Bit and Byte Ordering .....................................12
     4.8. Maximum Transfer Unit .....................................12
  5. IPv6 Stateless Address Autoconfiguration .......................13
     5.1. IPv6 Interface Identifier and Address Prefix ..............13
     5.2. Generating an Interface ID from a Format 1 N_Port_Name ....14
     5.3. Generating an Interface ID from a Format 2 N_Port_Name ....15
     5.4. Generating an Interface ID from a Format 5 N_Port_Name ....16
     5.5. Generating an Interface ID from an EUI-64 Mapped
          N_Port_Name ...............................................17
  6. Link-local Addresses ...........................................18
  7. ARP Packet Format ..............................................18
  8. Link-layer Address/Hardware Address ............................20
  9. Address Mapping for Unicast ....................................20
     9.1. Overview ..................................................20
     9.2. IPv6 Address Mapping ......................................20
     9.3. IPv4 Address Mapping ......................................21
  10. Address Mapping for Multicast .................................22
  11. Sequence Management ...........................................23
  12. Exchange Management ...........................................23
  13. Interoperability with RFC 2625 ................................24
  14. Security Considerations .......................................25
  15. IANA Considerations ...........................................25
  16. Acknowledgements ..............................................25
  17. Normative References ..........................................26
  18. Informative References ........................................26
  A. Transmission of a Broadcast FC Sequence over FC Topologies
     (Informative) ..................................................28
  B. Validation of the <N_Port_Name, N_Port_ID> Mapping
     (Informative) ..................................................29
  C. Fibre Channel Bit and Byte Numbering Guidance ..................30
  D. Changes from RFC 2625 ..........................................31
  E. Changes from RFC 3831 ..........................................31



DeSanti, et al.             Standards Track                     [Page 2]

RFC 4338                 IP over Fibre Channel              January 2006


1.  Introduction

  Fibre Channel (FC) is a high-speed serial interface technology that
  supports several Upper Layer Protocols including Small Computer
  System Interface (SCSI), IPv6 [IPv6], and IPv4 [IPv4].

  [RFC-2625] defined how to encapsulate IPv4 and Address Resolution
  Protocol (ARP) packets over Fibre Channel for a subset of Fibre
  Channel devices.  This specification enables the support of IPv4 for
  a broader category of Fibre Channel devices.  In addition, this
  specification simplifies [RFC-2625] by removing unused options and
  clarifying current implementations.  This document obsoletes
  [RFC-2625].

  Specific [RFC-2625] limitations that this document aims to resolve
  are the following:

  -  N_Port_Name format restriction.  [RFC-2625] restricts the use of
     IPv4 to Fibre Channel devices having the format 0x1 N_Port_Name,
     but many current implementations use other N_Port_Name formats.

  -  Use of Fibre Channel Address Resolution Protocol (FARP).
     [RFC-2625] requires the support of FARP to map N_Port_Names to
     N_Port_IDs, but many current implementations use other methods,
     such as the Fibre Channel Name Server.

  -  Missing support for IPv4 multicast.  [RFC-2625] does not specify
     how to transmit IPv4 packets with a multicast destination address
     over Fibre Channel.

  [RFC-3831] defines how to encapsulate IPv6 over Fibre Channel and a
  method of forming IPv6 link-local addresses [AARCH] and statelessly
  autoconfigured IPv6 addresses on Fibre Channel networks.  [RFC-3831]
  also describes the content of the Source/Target Link-layer Address
  option used in Neighbor Discovery [DISC] when the messages are
  transmitted on a Fibre Channel network.  This document obsoletes
  [RFC-3831].

  Warning to readers familiar with Fibre Channel: both Fibre Channel
  and IETF standards use the same byte transmission order.  However,
  the bit numbering is different.  See Appendix C for guidance.

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in [KEYWORDS].






DeSanti, et al.             Standards Track                     [Page 3]

RFC 4338                 IP over Fibre Channel              January 2006


2.  Summary of Fibre Channel

2.1.  Overview

  Fibre Channel (FC) is a gigabit-speed network technology primarily
  used for storage networking.  Fibre Channel is standardized in the
  T11 Technical Committee of the InterNational Committee for
  Information Technology Standards (INCITS), an American National
  Standard Institute (ANSI) accredited standards committee.

  Fibre Channel devices are called Nodes.  Each Node has one or more
  Ports that connect to Ports of other devices.  Fibre Channel may be
  implemented using any combination of the following three topologies:

  -  a point-to-point link between two Ports;
  -  a set of Ports interconnected by a switching network called a
     Fabric, as defined in [FC-FS];
  -  a set of Ports interconnected with a loop topology, as defined in
     [FC-AL-2].

  A Node Port that does not operate in a loop topology is called an
  N_Port.  A Node Port that operates in a loop topology using the
  loop-specific protocols is designated as an NL_Port.  The term
  Nx_Port is used to indicate a Node Port that is capable of operating
  in either mode.

  A Fabric Port that does not operate in a loop topology is called an
  F_Port.  A Fabric Port that operates in a loop topology using the
  loop-specific protocols is designated as an FL_Port.  The term
  Fx_Port is used to indicate a Fabric Port that is capable of
  operating in either mode.

  A Fibre Channel network, built with any combination of the FC
  topologies described above, is a multiaccess network with broadcast
  capabilities.

  From an IPv6 point of view, a Fibre Channel network is an IPv6 Link
  [IPv6].  IP-capable Nx_Ports are what [IPv6] calls Interfaces.

  From an IPv4 point of view, a Fibre Channel network is an IPv4 Local
  Network [IPv4].  IP-capable Nx_Ports are what [IPv4] calls Local
  Network Interfaces.









DeSanti, et al.             Standards Track                     [Page 4]

RFC 4338                 IP over Fibre Channel              January 2006


2.2.  Identifiers and Login

  Fibre Channel entities are identified by non-volatile 64-bit
  Name_Identifiers.  [FC-FS] defines several formats of
  Name_Identifiers.  The value of the most significant 4 bits defines
  the format of a Name_Identifier.  These Name_Identifiers are referred
  to in a more concise manner as follows:

  -  an Nx_Port's Name_Identifier is called N_Port_Name;
  -  an Fx_Port's Name_Identifier is called F_Port_Name;
  -  a Node's Name_Identifier is called Node_Name;
  -  a Fabric's Name_Identifier is called Fabric_Name.

  An Nx_Port connected to a Fibre Channel network is associated with
  two identifiers, its non-volatile N_Port_Name and a volatile 24-bit
  address called N_Port_ID.  The N_Port_Name is used to identify the
  Nx_Port, and the N_Port_ID is used for communications among Nx_Ports.

  Each Nx_Port acquires an N_Port_ID from the Fabric by performing a
  process called Fabric Login, or FLOGI.  The FLOGI process is used
  also to negotiate several communications parameters between the
  Nx_Port and the Fabric, such as the receive data field size, which
  determines the maximum size of the Fibre Channel frames that may be
  transferred between the Nx_Port and the Fabric.

  Before effective communication may take place between two Nx_Ports,
  they must complete a process called Port Login, or PLOGI.  The PLOGI
  process provides each Nx_Port with the other Nx_Port's N_Port_Name,
  and negotiates several communication parameters, such as the receive
  data field size, which determines the maximum size of the Fibre
  Channel frames that may be transferred between the two Nx_Ports.

  Both Fabric Login and Port Login may be explicit (i.e., performed
  using specific FC control messages called Extended Link Services, or
  ELSes) or implicit (i.e., in which the parameters are specified by
  configuration or other methods).

2.3.  FC Levels and Frame Format

  [FC-FS] describes the Fibre Channel protocol using 5 different
  levels.  The FC-2 and FC-4 levels are relevant for this
  specification.  The FC-2 level defines the FC frame format, the
  transport services, and the control functions necessary for
  information transfer.  The FC-4 level supports Upper Level Protocols,
  such as IPv6, IPv4, and SCSI.  The Fibre Channel frame format is
  shown in figure 1.





DeSanti, et al.             Standards Track                     [Page 5]

RFC 4338                 IP over Fibre Channel              January 2006


     +-----+-----------+-----------+--------//-------+-----+-----+
     |     |           |         Data Field          |     |     |
     | SOF | FC Header |<--------------------------->| CRC | EOF |
     |     |           | Optional  | Frame           |     |     |
     |     |           | Header(s) | Payload         |     |     |
     +-----+-----------+-----------+--------//-------+-----+-----+

                     Figure 1: Fibre Channel Frame Format

  The Start of Frame (SOF) and End of Frame (EOF) are special FC
  transmission words that act as frame delimiters.  The Cyclic
  Redundancy Check (CRC) is 4 octets long and is used to verify the
  integrity of a frame.

  The FC Header is 24 octets long and contains several fields
  associated with the identification and control of the Data Field.

  The Data Field is of variable size, ranging from 0 to 2112 octets,
  and includes the user data in the Frame Payload field and Optional
  Headers.  The currently defined Optional Headers are the following:

  -  ESP_Header;
  -  Network_Header;
  -  Association_Header;
  -  Device_Header.

  The value of the SOF field determines the FC Class of service
  associated with the frame.  Five Classes of service are specified in
  [FC-FS].  They are distinguished primarily by the method of flow
  control between the communicating Nx_Ports and by the level of data
  integrity provided.  A given Fabric or Nx_Port may support one or
  more of the following Classes of service:

  -  Class 1: Dedicated physical connection with delivery confirmation;
  -  Class 2: Frame multiplexed service with delivery confirmation;
  -  Class 3: Datagram service;
  -  Class 4: Fractional bandwidth;
  -  Class 6: Reliable multicast via dedicated connections.

  Classes 3 and 2 are commonly used for storage networking
  applications; Classes 1 and 6 are typically used for specialized
  applications in avionics.  Class 3 is recommended for IPv6, IPv4, and
  ARP (see section 4.3).

2.4.  Sequences and Exchanges

  An application-level payload such as an IPv6 or IPv4 packet is called
  an Information Unit at the FC-4 level of Fibre Channel.  Each FC-4



DeSanti, et al.             Standards Track                     [Page 6]

RFC 4338                 IP over Fibre Channel              January 2006


  Information Unit is mapped to an FC Sequence by the FC-2 level.  An
  FC Sequence consists of one or more FC frames related by the value of
  the Sequence_ID (SEQ_ID) field of the FC Header.

  The architectural maximum data that may be carried by an FC frame is
  2112 octets.  The maximum usable frame size depends on the Fabric and
  Nx_Port implementations and is negotiated during the Login process.
  Whenever an Information Unit to be transmitted exceeds this value,
  the FC-2 level segments it into multiple FC frames, sent as a single
  Sequence.  The receiving Nx_Port reassembles the Sequence of frames
  and delivers a reassembled Information Unit to the FC-4 level.  The
  Sequence Count (SEQ_CNT) field of the FC Header may be used to ensure
  frame ordering.

  Multiple Sequences may be grouped together as belonging to the same
  FC Exchange.  The Exchange is a mechanism used by two Nx_Ports to
  identify and manage an operation between them.  The Exchange is
  opened when the operation is started between the two Nx_Ports, and
  closed when the operation ends.  FC frames belonging to the same
  Exchange are related by the value of the Exchange_ID fields in the FC
  Header.  An Originator Exchange_ID (OX_ID) and a Responder
  Exchange_ID (RX_ID) uniquely identify the Exchange between a pair of
  Nx_Ports.

3.  IP-capable Nx_Ports

  This specification requires an IP-capable Nx_Port to have the
  following properties:

  -  The format of its N_Port_Name MUST be one of 0x1, 0x2, 0x5, 0xC,
     0xD, 0xE, 0xF (see section 5.1);
  -  It MUST support Class 3;
  -  It MUST support continuously increasing SEQ_CNT [FC-FS];
  -  It MUST be able to transmit and receive an FC-4 Information Unit
     at least 1304 octets long (see section 4.1);
  -  It SHOULD support a receive data field size for Device_Data FC
     frames of at least 1024 octets (see section 10).

4.  IPv6, IPv4, and ARP Encapsulation

4.1.  FC Sequence Format for IPv6 and IPv4 Packets

  An IPv6 or IPv4 packet is mapped to an Information Unit at the FC-4
  level of Fibre Channel, which in turn is mapped to an FC Sequence by
  the FC-2 level [FC-FS].  An FC Information Unit containing an IP
  packet MUST carry the FC Network_Header [FC-FS] and the Logical Link
  Control/SubNetwork Access Protocol (LLC/SNAP) header [IEEE-LLC],
  resulting in the FC Information Unit format shown in figure 2.



DeSanti, et al.             Standards Track                     [Page 7]

RFC 4338                 IP over Fibre Channel              January 2006


     +---------------+---------------+---------------+---------------+
     |                                                               |
     +-                                                             -+
     |                        Network_Header                         |
     +-                         (16 octets)                         -+
     |                                                               |
     +-                                                             -+
     |                                                               |
     +---------------+---------------+---------------+---------------+
     |                        LLC/SNAP header                        |
     +-                          (8 octets)                         -+
     |                                                               |
     +---------------+---------------+---------------+---------------+
     |                                                               |
     +-                                                             -+
     /                      IPv6 or IPv4 Packet                      /
     /                                                               /
     +-                                                             -+
     |                                                               |
     +---------------+---------------+---------------+---------------+

              Figure 2: FC Information Unit Mapping an IP Packet

  In order to support the minimum IPv6 MTU (i.e., 1280 octets), an
  Nx_Port supporting IP MUST be able to transmit and receive an FC-4
  Information Unit at least 1304 octets long (i.e., 1280 + 8 + 16).

  The FC ESP_Header [FC-FS] MAY be used to secure the FC frames
  composing an IP FC Sequence.  Other FC Optional Headers MUST NOT be
  used in an IP FC Sequence.

  An IP FC Sequence often consists of more than one frame, all frames
  having the same TYPE (see section 4.4).  The first frame of the
  Sequence MUST include the FC Network_Header and the LLC/SNAP header.
  The other frames MUST NOT include them, as shown in figure 3.

                      First Frame of an IP FC Sequence
  +-----------+-------------------+-----------------+-------//--------+
  | FC Header | FC Network_Header | LLC/SNAP header | First chunk of  |
  |           |                   |                 | the IP Packet   |
  +-----------+-------------------+-----------------+-------//--------+

        Subsequent Frames of an IP FC Sequence
  +-----------+-----------------//--------------------+
  | FC Header |   Additional chunk of the IP Packet   |
  +-----------+----------------//---------------------+

              Figure 3: Optional Headers in an IP FC Sequence



DeSanti, et al.             Standards Track                     [Page 8]

RFC 4338                 IP over Fibre Channel              January 2006


4.2.  FC Sequence Format for ARP Packets

  An ARP packet is mapped to an Information Unit at the FC-4 level of
  Fibre Channel, which in turn is mapped to an FC Sequence by the FC-2
  level.  An FC Information Unit containing an ARP packet MUST carry
  the FC Network_Header [FC-FS] and the LLC/SNAP header [IEEE-LLC],
  resulting in the FC Information Unit format shown in figure 4.

     +---------------+---------------+---------------+---------------+
     |                                                               |
     +-                                                             -+
     |                        Network_Header                         |
     +-                         (16 octets)                         -+
     |                                                               |
     +-                                                             -+
     |                                                               |
     +---------------+---------------+---------------+---------------+
     |                        LLC/SNAP header                        |
     +-                          (8 octets)                         -+
     |                                                               |
     +---------------+---------------+---------------+---------------+
     |                                                               |
     +-                                                             -+
     /                           ARP Packet                          /
     /                                                               /
     +-                                                             -+
     |                                                               |
     +---------------+---------------+---------------+---------------+

              Figure 4: FC Information Unit Mapping an ARP Packet

  Given the limited size of an ARP packet (see section 7), an FC
  Sequence carrying an ARP packet MUST be mapped to a single FC frame
  that MUST include the FC Network_Header and the LLC/SNAP header.

  The FC ESP_Header [FC-FS] MAY be used to secure an FC frame carrying
  an ARP packet.  Other FC Optional Headers MUST NOT be used in an FC
  frame carrying an ARP packet.













DeSanti, et al.             Standards Track                     [Page 9]

RFC 4338                 IP over Fibre Channel              January 2006


4.3.  FC Classes of Service

  This specification uses FC Class 3.  The following types of packets
  MUST be mapped in Class 3 FC frames:

  -  multicast IPv6 packets;
  -  multicast/broadcast IPv4 packets;
  -  Control Protocol packets (e.g., ARP packets; IPv6 packets carrying
     ICMPv6 [ICMPv6], Neighbor Discovery [DISC], or Multicast Listener
     Discovery [MLDv2] messages; IPv4 packets carrying ICMP [ICMPv4] or
     IGMP [IGMPv3] messages; IPv6 and IPv4 Routing Protocols packets).

  Other IPv6 and IPv4 packets (i.e., unicast IP packets carrying data
  traffic) SHOULD be mapped in Class 3 FC frames as well.  Support for
  reception of IPv4 or IPv6 packets mapped in FC frames of any Class
  other than Class 3 is OPTIONAL; receivers MAY ignore them.

4.4.  FC Header Code Points

  The fields of the Fibre Channel Header are shown in figure 5.  The
  D_ID and S_ID fields contain, respectively, the destination N_Port_ID
  and the source N_Port_ID.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |     R_CTL     |                      D_ID                     |
     +---------------+---------------+---------------+---------------+
     |  CS_CTL/Prio  |                      S_ID                     |
     +---------------+---------------+---------------+---------------+
     |     TYPE      |                     F_CTL                     |
     +---------------+---------------+---------------+---------------+
     |    SEQ_ID     |    DF_CTL     |            SEQ_CNT            |
     +---------------+---------------+---------------+---------------+
     |             OX_ID             |             RX_ID             |
     +---------------+---------------+---------------+---------------+
     |                           Parameter                           |
     +---------------+---------------+---------------+---------------+

                          Figure 5: FC Header Format

  To encapsulate IPv6 and IPv4 over Fibre Channel, the following code
  points apply.  When a single value is listed without further
  qualification, that value MUST be used:

  -  R_CTL: 0x04 (Device_Data frame with Unsolicited Data Information
     Category [FC-FS]);
  -  TYPE: 0x05 (IP over Fibre Channel);



DeSanti, et al.             Standards Track                    [Page 10]

RFC 4338                 IP over Fibre Channel              January 2006


  -  CS_CTL/Prio: 0x00 is the default, see [FC-FS] for other values;
  -  DF_CTL: 0x20 (Network_Header) for the first FC frame of an IPv6 or
     IPv4 Sequence, 0x00 for the following FC frames.  If the FC
     ESP_Header is used, then 0x60 for the first FC frame of an IPv6 or
     IPv4 Sequence, 0x40 for the following FC frames;
  -  F_CTL, SEQ_ID, SEQ_CNT, OX_ID, RX_ID: see section 11, section 12,
     and [FC-FS] for additional requirements;
  -  Parameter: if Relative Offset [FC-FS] is not used, the content of
     this field MUST be ignored by the receiver, and SHOULD be set to
     zero by the sender.  If Relative Offset is used, see [FC-FS].

  To encapsulate ARP over Fibre Channel, the following code points
  apply.  When a single value is listed without further qualification,
  that value MUST be used:

  -  R_CTL: 0x04 (Device_Data frame with Unsolicited Data Information
     Category [FC-FS]);
  -  TYPE: 0x05 (IP over Fibre Channel);
  -  CS_CTL/Prio: 0x00 is the default, see [FC-FS] for other values;
  -  DF_CTL: 0x20 (Network_Header).  If the FC ESP_Header is used, then
     0x60;
  -  F_CTL, SEQ_ID, SEQ_CNT, OX_ID, RX_ID: see section 11, section 12,
     and [FC-FS] for additional requirements;
  -  Parameter: SHOULD be set to zero.

4.5.  FC Network_Header

  The fields of the FC Network_Header are shown in figure 6.  For use
  with IPv6, IPv4, and ARP, the N_Port_Names formats MUST be one of
  0x1, 0x2, 0x5, 0xC, 0xD, 0xE, 0xF [FC-FS].

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                                                               |
     +-                   Destination N_Port_Name                   -+
     |                                                               |
     +---------------------------------------------------------------+
     |                                                               |
     +-                     Source N_Port_Name                      -+
     |                                                               |
     +---------------------------------------------------------------+

                      Figure 6: FC Network_Header Format







DeSanti, et al.             Standards Track                    [Page 11]

RFC 4338                 IP over Fibre Channel              January 2006


4.6.  LLC/SNAP Header

  The fields of the LLC/SNAP header [IEEE-LLC] are shown in figure 7.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |     DSAP      |     SSAP      |     CTRL      |      OUI      |
     +---------------+---------------+---------------+---------------+
     |              OUI              |              PID              |
     +---------------+---------------+---------------+---------------+

                       Figure 7: LLC/SNAP Header Format

  To encapsulate IPv6, IPv4, and ARP over Fibre Channel, the following
  code points MUST be used:

  -  DSAP: 0xAA;
  -  SSAP: 0xAA;
  -  CTRL: 0x03;
  -  OUI:  0x000000;
  -  PID:  0x86DD for IPv6, 0x0800 for IPv4, 0x0806 for ARP.

4.7.  Bit and Byte Ordering

  IPv6, IPv4, and ARP packets are mapped to the FC-4 level using the
  big-endian byte ordering that corresponds to the standard network
  byte order or canonical form.

4.8.  Maximum Transfer Unit

  The default MTU size for IPv6 packets over Fibre Channel is 65280
  octets.  Large IPv6 packets are mapped to a Sequence of FC frames
  (see section 2.4).  This size may be reduced by a Router
  Advertisement [DISC] containing an MTU option that specifies a
  smaller MTU, or by manual configuration of each Nx_Port.  However, as
  required by [IPv6], the MTU MUST NOT be lower than 1280 octets.  If a
  Router Advertisement received on an Nx_Port has an MTU option
  specifying an MTU larger than 65280, or larger than a manually
  configured value, that MTU option MAY be logged to system management
  but MUST be otherwise ignored.

  As the default MTU size far exceeds the message sizes typically used
  in the Internet, an IPv6 over FC implementation SHOULD implement Path
  MTU Discovery [PMTUD6], or at least maintain different MTU values for
  on-link and off-link destinations.





DeSanti, et al.             Standards Track                    [Page 12]

RFC 4338                 IP over Fibre Channel              January 2006


  For correct operation of IPv6 in a routed environment, it is
  critically important to configure an appropriate MTU option in Router
  Advertisements.

  For correct operation of IPv6 when mixed media (e.g., Ethernet and
  Fibre Channel) are bridged together, the smallest MTU of all the
  media must be advertised by routers in an MTU option.  If there are
  no routers present, this MTU must be manually configured in each node
  that is connected to a medium with a default MTU larger than the
  smallest MTU.

  The default MTU size for IPv4 packets over Fibre Channel is 65280
  octets.  Large IPv4 packets are mapped to a Sequence of FC frames
  (see section 2.4).  This size may be reduced by manual configuration
  of each Nx_Port or by the Path MTU Discovery technique [PMTUD4].

5.  IPv6 Stateless Address Autoconfiguration

5.1.  IPv6 Interface Identifier and Address Prefix

  The IPv6 Interface ID [AARCH] for an Nx_Port is based on the EUI-64
  address [EUI64] derived from the Nx_Port's N_Port_Name.  The IPv6
  Interface Identifier is obtained by complementing the Universal/Local
  (U/L) bit of the OUI field of the derived EUI-64 address.  The U/L
  bit has no function in Fibre Channel; however, it has to be properly
  handled when a Name_Identifier is converted to an EUI-64 address.

  [FC-FS] specifies a method to map format 0x1 (IEEE 48-bit address),
  0x2 (IEEE Extended), or 0x5 (IEEE Registered) FC Name_Identifiers in
  EUI-64 addresses.  This allows the usage of these Name_Identifiers to
  support IPv6.  [FC-FS] also defines EUI-64 mapped FC Name_Identifiers
  (formats 0xC, 0xD, 0xE, and 0xF) that are derived from an EUI-64
  address.  It is possible to reverse this address mapping to obtain
  the original EUI-64 address in order to support IPv6.

  IPv6 stateless address autoconfiguration MUST be performed as
  specified in [ACONF].  An IPv6 Address Prefix used for stateless
  address autoconfiguration of an Nx_Port MUST have a length of 64
  bits.












DeSanti, et al.             Standards Track                    [Page 13]

RFC 4338                 IP over Fibre Channel              January 2006


5.2.  Generating an Interface ID from a Format 1 N_Port_Name

  The Name_Identifier format 0x1 is shown in figure 8.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |0 0 0 1|         0x000         |              OUI              |
     +-------+-------+---------------+---------------+---------------+
     |      OUI      |                      VSID                     |
     +---------------+---------------+---------------+---------------+

                     Figure 8: Format 0x1 Name_Identifier

  The EUI-64 address derived from this Name_Identifier has the format
  shown in figure 9 [FC-FS].

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |         OUI with complemented U/L bit         |0 0 0 1|  VSID |
     +---------------+---------------+-------+-------+-------+-------+
     |                   VSID                |         0x000         |
     +---------------+---------------+-------+-------+---------------+

          Figure 9: EUI-64 Address from a Format 0x1 Name_Identifier

  The IPv6 Interface Identifier is obtained from this EUI-64 address by
  complementing the U/L bit in the OUI field.  Therefore, the OUI in
  the IPv6 Interface ID is exactly as in the FC Name_Identifier.  The
  resulting IPv6 Interface Identifier has local scope [AARCH] and the
  format shown in figure 10.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                      OUI                      |0 0 0 1|  VSID |
     +---------------+---------------+-------+-------+-------+-------+
     |                   VSID                |         0x000         |
     +---------------+---------------+-------+-------+---------------+

        Figure 10: IPv6 Interface ID from a Format 0x1 Name_Identifier

  As an example, the FC Name_Identifier 0x10-00-34-63-46-AB-CD-EF
  generates the IPv6 Interface Identifier 3463:461A:BCDE:F000.






DeSanti, et al.             Standards Track                    [Page 14]

RFC 4338                 IP over Fibre Channel              January 2006


5.3.  Generating an Interface ID from a Format 2 N_Port_Name

  The Name_Identifier format 0x2 is shown in figure 11.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |0 0 1 0|    Vendor Specific    |              OUI              |
     +-------+-------+---------------+---------------+---------------+
     |      OUI      |                      VSID                     |
     +---------------+---------------+---------------+---------------+

                     Figure 11: Format 0x2 Name_Identifier

  The EUI-64 address derived from this Name_Identifier has the format
  shown in figure 12 [FC-FS].

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |         OUI with complemented U/L bit         |0 0 1 0|  VSID |
     +---------------+-----------------------+-------+-------+-------+
     |                   VSID                |    Vendor Specific    |
     +---------------+-----------------------+-------+---------------+

          Figure 12: EUI-64 Address from a Format 0x2 Name_Identifier

  The IPv6 Interface Identifier is obtained from this EUI-64 address by
  complementing the U/L bit in the OUI field.  Therefore, the OUI in
  the IPv6 Interface ID is exactly as in the FC Name_Identifier.  The
  resulting IPv6 Interface Identifier has local scope [AARCH] and the
  format shown in figure 13.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                      OUI                      |0 0 1 0|  VSID |
     +---------------+-----------------------+-------+-------+-------+
     |                   VSID                |    Vendor Specific    |
     +---------------+-----------------------+-------+---------------+

        Figure 13: IPv6 Interface ID from a Format 0x2 Name_Identifier

  As an example, the FC Name_Identifier 0x27-89-34-63-46-AB-CD-EF
  generates the IPv6 Interface Identifier 3463:462A:BCDE:F789.






DeSanti, et al.             Standards Track                    [Page 15]

RFC 4338                 IP over Fibre Channel              January 2006


5.4.  Generating an Interface ID from a Format 5 N_Port_Name

  The Name_Identifier format 0x5 is shown in figure 14.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |0 1 0 1|                      OUI                      |  VSID |
     +-------+-------+---------------+---------------+-------+-------+
     |                             VSID                              |
     +---------------+---------------+---------------+---------------+

                     Figure 14: Format 0x5 Name_Identifier

  The EUI-64 address derived from this Name_Identifier has the format
  shown in figure 15 [FC-FS].

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |         OUI with complemented U/L bit         |0 1 0 1|  VSID |
     +---------------+---------------+---------------+-------+-------+
     |                             VSID                              |
     +---------------+---------------+---------------+---------------+

          Figure 15: EUI-64 Address from a Format 0x5 Name_Identifier

  The IPv6 Interface Identifier is obtained from this EUI-64 address
  complementing the U/L bit in the OUI field.  Therefore, the OUI in
  the IPv6 Interface ID is exactly as in the FC Name_Identifier.  The
  resulting IPv6 Interface Identifier has local scope [AARCH] and the
  format shown in figure 16.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                      OUI                      |0 1 0 1|  VSID |
     +---------------+---------------+---------------+-------+-------+
     |                             VSID                              |
     +---------------+---------------+---------------+---------------+

        Figure 16: IPv6 Interface ID from a Format 0x5 Name_Identifier

  As an example, the FC Name_Identifier 0x53-46-34-6A-BC-DE-F7-89
  generates the IPv6 Interface Identifier 3463:465A:BCDE:F789.






DeSanti, et al.             Standards Track                    [Page 16]

RFC 4338                 IP over Fibre Channel              January 2006


5.5.  Generating an Interface ID from an EUI-64 Mapped N_Port_Name

  The EUI-64 mapped Name_Identifiers formats (formats 0xC through 0xF)
  are derived from an EUI-64 address by compressing the OUI field of
  such addresses.  The compression is performed by removing the
  Universal/Local and Individual/Group bits from the OUI, and by
  putting bits 0 to 5 of the OUI in the first octet of the
  Name_Identifier, and bits 8 to 23 of the OUI in the second and third
  octet of the Name_Identifier, as shown in figure 17.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |1 1| OUI[0..5] |           OUI[8..23]          |      VSID     |
     +---+-----------+---------------+---------------+---------------+
     |                             VSID                              |
     +---------------+---------------+---------------+---------------+

               Figure 17: EUI-64 Mapped Name_Identifiers Format

  The EUI-64 address used to generate the Name_Identifier shown in
  figure 17 has the format shown in figure 18.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     | OUI[0..5] |0 0|           OUI[8..23]          |      VSID     |
     +-----------+---+---------------+---------------+---------------+
     |                             VSID                              |
     +---------------+---------------+---------------+---------------+

      Figure 18: EUI-64 Address from an EUI-64 Mapped Name_Identifier

  The IPv6 Interface Identifier is obtained from this EUI-64 address by
  complementing the U/L bit in the OUI field.  The resulting IPv6
  Interface Identifier has global scope [AARCH] and the format shown in
  figure 19.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     | OUI[0..5] |1 0|           OUI[8..23]          |      VSID     |
     +-----------+---+---------------+---------------+---------------+
     |                             VSID                              |
     +---------------+---------------+---------------+---------------+

     Figure 19: IPv6 Interface ID from an EUI-64 Mapped Name_Identifier




DeSanti, et al.             Standards Track                    [Page 17]

RFC 4338                 IP over Fibre Channel              January 2006


  As an example, the FC Name_Identifier 0xCD-63-46-AB-01-25-78-9A
  generates the IPv6 Interface Identifier 3663:46AB:0125:789A.

6.  Link-local Addresses

  The IPv6 link-local address [AARCH] for an Nx_Port is formed by
  appending the Interface Identifier (as defined in section 5) to the
  prefix FE80::/64.  The resulting address is shown in figure 20.

       10 bits            54 bits                  64 bits
     +----------+-----------------------+----------------------------+
     |1111111010|         (zeros)       |    Interface Identifier    |
     +----------+-----------------------+----------------------------+

                   Figure 20: IPv6 Link-local Address Format

7.  ARP Packet Format

  The Address Resolution Protocol defined in [ARP] is designed to be a
  general purpose protocol, to accommodate many network technologies
  and many Upper Layer Protocols.

  [RFC-2625] chose to use for Fibre Channel the same ARP packet format
  used for Ethernet networks.  In order to do that, [RFC-2625]
  restricted the use of IPv4 to Nx_Ports having N_Port_Name format 0x1.
  Although this may have been a reasonable choice at that time, today
  there are Nx_Ports with an N_Port_Name format other than 0x1 in
  widespread use.

  This specification accommodates Nx_Ports with N_Port_Names of a
  format different from 0x1 by defining a Fibre Channel specific
  version of the ARP protocol (FC ARP), carrying both N_Port_Name and
  N_Port_ID as Hardware (HW) Address.

  IANA has registered the number 18 (decimal) to identify Fibre Channel
  as ARP HW type.  The FC ARP packet format is shown in figure 21.  The
  length of the FC ARP packet is 40 octets.














DeSanti, et al.             Standards Track                    [Page 18]

RFC 4338                 IP over Fibre Channel              January 2006


      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |        HW Type = 0x0012       |       Protocol = 0x0800       |
     +---------------+---------------+---------------+---------------+
     |  HW Len = 12  | Proto Len = 4 |            Opcode             |
     +---------------+---------------+---------------+---------------+
     |                                                               |
     +-                                                             -+
     |                      HW Address of Sender                     |
     +-                                                             -+
     |                                                               |
     +---------------+---------------+---------------+---------------+
     |                   Protocol Address of Sender                  |
     +---------------+---------------+---------------+---------------+
     |                                                               |
     +-                                                             -+
     |                      HW Address of Target                     |
     +-                                                             -+
     |                                                               |
     +---------------+---------------+---------------+---------------+
     |                   Protocol Address of Target                  |
     +---------------+---------------+---------------+---------------+

                        Figure 21: FC ARP Packet Format

  The following code points MUST be used with FC ARP:

  -  HW Type:   0x0012 (Fibre Channel);
  -  Protocol:  0x0800 (IPv4);
  -  HW Len:    12 (Length in octets of the HW Address);
  -  Proto Len: 4  (Length in octets of the Protocol Address);
  -  Opcode:    0x0001 for ARP Request, 0x0002 for ARP Reply [ARP];
  -  HW Address of Sender: the HW Address (see section 8) of the
     Requester in an ARP Request, or the HW Address of the Responder in
     an ARP Reply;
  -  Protocol Address of Sender: the IPv4 address of the Requester in
     an ARP Request, or that of the Responder in an ARP Reply;
  -  HW Address of Target: set to zero in an ARP Request, and to the HW
     Address (see section 8) of the Requester in an ARP Reply;
  -  Protocol Address of Target: the IPv4 address of the Responder in
     an ARP Request, or that of the Requester in an ARP Reply.









DeSanti, et al.             Standards Track                    [Page 19]

RFC 4338                 IP over Fibre Channel              January 2006


8.  Link-layer Address/Hardware Address

  The Link-layer Address used in the Source/Target Link-layer Address
  option (see section 9.2) and the Hardware Address used in FC ARP (see
  section 7) have the same format, shown in figure 22.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                                                               |
     +-                         N_Port_Name                         -+
     |                                                               |
     +---------------+---------------+---------------+---------------+
     |   Reserved    |                   N_Port_ID                   |
     +---------------+---------------+---------------+---------------+

                Figure 22: Link-layer Address/HW Address Format

  Reserved fields MUST be set to zero when transmitting, and MUST be
  ignored when receiving.

9.  Address Mapping for Unicast

9.1.  Overview

  An Nx_Port has two kinds of Fibre Channel addresses:

  -  a non-volatile 64-bit address, called N_Port_Name;
  -  a volatile 24-bit address, called N_Port_ID.

  The N_Port_Name is used to uniquely identify the Nx_Port, and the
  N_Port_ID is used to route frames to the Nx_Port.  Both FC addresses
  are required to resolve an IPv6 or IPv4 unicast address.  The fact
  that the N_Port_ID is volatile implies that an Nx_Port MUST validate
  the mapping between its N_Port_Name and N_Port_ID when certain Fibre
  Channel events occur (see Appendix B).

9.2.  IPv6 Address Mapping

  The procedure for mapping IPv6 unicast addresses into Fibre Channel
  link-layer addresses uses the Neighbor Discovery Protocol [DISC].
  The Source/Target Link-layer Address option has the format shown in
  figure 23 when the link layer is Fibre Channel.








DeSanti, et al.             Standards Track                    [Page 20]

RFC 4338                 IP over Fibre Channel              January 2006


      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |     Type      |  Length = 2   |                               |
     +---------------+---------------+                              -+
     |                                                               |
     +-                     Link-layer Address                      -+
     |                                                               |
     +-                              +---------------+---------------+
     |                               |            Padding            |
     +---------------+---------------+---------------+---------------+

   Figure 23: Source/Target Link-layer Address Option for Fibre Channel

     Type:               1 for Source Link-layer address.
                         2 for Target Link-layer address.

     Length:             2 (in units of 8 octets).

     Padding:            MUST be set to zero when transmitting,
                         MUST be ignored when receiving.

     Link-layer Address: the Nx_Port's Link-layer Address (see section
     8).

9.3.  IPv4 Address Mapping

  The procedure for mapping IPv4 unicast addresses into Fibre Channel
  link-layer addresses uses the FC ARP protocol, as specified in
  section 7 and [ARP].  A source Nx_Port that has to send IPv4 packets
  to a destination Nx_Port, known by its IPv4 address, MUST perform the
  following steps:

  1) The source Nx_Port first consults its local mapping tables for a
     mapping <destination IPv4 address, N_Port_Name, N_Port_ID>.

  2) If such a mapping is found, and a valid Port Login is in place
     with the destination Nx_Port, then the source Nx_Port sends the
     IPv4 packets to the destination Nx_Port using the retrieved
     N_Port_ID as D_ID.

  3) If such a mapping is not found, or a valid Port Login is not in
     place with the destination Nx_Port, then the source Nx_Port sends
     a broadcast FC ARP Request (see section 10) to its connected FC
     network.






DeSanti, et al.             Standards Track                    [Page 21]

RFC 4338                 IP over Fibre Channel              January 2006


  4) When a broadcast FC ARP Request is received by the Nx_Port with
     the matching IPv4 address, that Nx_Port caches the information
     carried in the FC ARP Request in its local mapping tables and
     generates a unicast FC ARP Reply.  If a valid Port Login to the
     Nx_Port that sent the broadcast FC ARP Request does not exist, the
     Nx_Port MUST perform such a Port Login, and then use it for the
     unicast reply.  The N_Port_ID to which the Port Login is directed
     is taken from the N_Port_ID field of the Sender HW Address field
     in the received FC ARP packet.

  5) If no Nx_Port has the matching IPv4 address, no unicast FC ARP
     Reply is returned.

10.  Address Mapping for Multicast

  IPv6 multicast packets, IPv4 multicast/broadcast packets, and ARP
  broadcast packets MUST be mapped to FC Sequences addressed to the
  broadcast N_Port_ID 0xFFFFFF, sent in FC Class 3 in a unidirectional
  Exchange (see section 12).  Appendix A specifies how to transmit a
  Class 3 broadcast FC Sequence over various Fibre Channel topologies.
  The Destination N_Port_Name field of the FC Network_Header MUST be
  set to the value:

  -  for broadcast ARP and IPv4 packets: 0x10-00-FF-FF-FF-FF-FF-FF;
  -  for multicast IPv6 packets: 0x10-00-33-33-XX-YY-ZZ-QQ, where
     XX-YY-ZZ-QQ are the 4 least significant octets of the multicast
     destination IPv6 address;
  -  for multicast IPv4 packets: 0x10-00-01-00-5E-XX-YY-ZZ, where the
     23 least significant bits of XX-YY-ZZ are the 23 least significant
     bits of the multicast destination IPv4 address and the most
     significant bit of XX-YY-ZZ is set to zero.

  An Nx_Port supporting IPv6 or IPv4 MUST be able to map a received
  broadcast Class 3 Device_Data FC frame to an implicit Port Login
  context in order to handle IPv6 multicast packets, IPv4 multicast or
  broadcast packets, and ARP broadcast packets.  The receive data field
  size of this implicit Port Login MUST be the same across all the
  Nx_Ports connected to the same Fabric, otherwise FC broadcast
  transmission does not work.  In order to reduce the need for FC
  Sequence segmentation, the receive data field size of this implicit
  Port Login SHOULD be 1024 octets.  This receive data field size
  requirement applies to broadcast Device_Data FC frames, not to ELSes.

  Receiving an FC Sequence carrying an IPv6 multicast packet, an IPv4
  multicast/broadcast packet, or an FC ARP broadcast packet triggers
  some additional processing by the Nx_Port when that IPv6, IPv4, or
  FC ARP packet requires a unicast reply.  In this case, if a valid
  Port Login to the Nx_Port that sent the multicast or broadcast packet



DeSanti, et al.             Standards Track                    [Page 22]

RFC 4338                 IP over Fibre Channel              January 2006


  does not exist, the Nx_Port MUST perform such a Port Login, and then
  use it for the unicast reply.  In the case of Neighbor Discovery
  messages [DISC], the N_Port_ID to which the Port Login is directed is
  taken from the N_Port_ID field of the Source Link-layer Address in
  the received Neighbor Discovery message.  In the case of FC ARP
  messages, the N_Port_ID to which the Port Login is directed is taken
  from the N_Port_ID field of the Sender HW Address field in the
  received FC ARP packet.

  As an example, if a received broadcast FC Sequence carries an IPv6
  multicast unsolicited Router Advertisement [DISC], the receiving
  Nx_Port processes it simply by passing the carried IPv6 packet to the
  IPv6 layer.  Instead, if a received broadcast FC Sequence carries an
  IPv6 multicast solicitation message [DISC] requiring a unicast reply,
  and no valid Port Login exists with the Nx_Port sender of the
  multicast packet, then a Port Login MUST be performed in order to
  send the unicast reply message.  If a received broadcast FC Sequence
  carries an IPv6 multicast solicitation message [DISC] requiring a
  multicast reply, the reply is sent to the broadcast N_Port_ID
  0xFFFFFF.

11.  Sequence Management

  FC Sequences carrying IPv6, IPv4, or ARP packets are REQUIRED to be
  non-streamed [FC-FS].  In order to avoid missing FC frame aliasing by
  Sequence_ID reuse, an Nx_Port supporting IPv6 or IPv4 is REQUIRED to
  use continuously increasing SEQ_CNT [FC-FS].  Each Exchange MUST
  start by setting SEQ_CNT to zero in the first frame; every frame
  transmitted after that MUST increment the previous SEQ_CNT by one.
  The Continue Sequence Condition field in the F_CTL field of the FC
  Header MUST be set to zero [FC-FS].

12.  Exchange Management

  To transmit IPv6, IPv4, or ARP packets to another Nx_Port or to a
  multicast/broadcast address, an Nx_Port MUST use dedicated
  unidirectional Exchanges (i.e., Exchanges dedicated to IPv6, IPv4, or
  ARP packet transmission and that do not transfer Sequence
  Initiative).  As such, the Sequence Initiative bit in the F_CTL field
  of the FC Header MUST be set to zero [FC-FS].  The RX_ID field of the
  FC Header MUST be set to 0xFFFF.

  Unicast FC Sequences carrying unicast Control Protocol packets (e.g.,
  ARP packets; IPv6 packets carrying ICMPv6 [ICMPv6], Neighbor
  Discovery [DISC], or Multicast Listener Discovery [MLDv2] messages;
  IPv4 packets carrying ICMP [ICMPv4] or IGMP [IGMPv3] messages) SHOULD
  be sent in short-lived unidirectional Exchanges (i.e., Exchanges
  containing only one Sequence, in which both the First_Sequence and



DeSanti, et al.             Standards Track                    [Page 23]

RFC 4338                 IP over Fibre Channel              January 2006


  Last_Sequence bits in the F_CTL field of the FC Header are set to one
  [FC-FS]).  Unicast FC Sequences carrying other IPv6 and IPv4 packets
  (i.e., unicast IP packets carrying data traffic) MUST be sent in a
  long-lived unidirectional Exchange (i.e., an Exchange containing one
  or more Sequences).  IP multicast packets MUST NOT be carried in
  unicast FC Sequences (see section 10).

  Broadcast FC Sequences carrying multicast or broadcast Control
  Protocol packets (e.g., ARP packets; IPv6 packets carrying ICMPv6
  [ICMPv6], Neighbor Discovery [DISC], or Multicast Listener Discovery
  [MLDv2] messages; IPv4 packets carrying ICMP [ICMPv4] or IGMP
  [IGMPv3] messages) MUST be sent in short-lived unidirectional
  Exchanges.  Broadcast FC Sequences carrying other IPv6 or IPv4
  multicast traffic (i.e., multicast IP packets carrying data traffic)
  MAY be sent in long-lived unidirectional Exchanges to enable a more
  efficient multicast distribution.

  Reasons to terminate a long-lived Exchange include the termination of
  Port Login and the completion of the IP communication.  A long-lived
  Exchange MAY be terminated by setting the Last_Sequence bit in the
  F_CTL field of the FC Header to one, or via the ABTS (Abort Sequence)
  protocol [FC-FS].  A long-lived Exchange SHOULD NOT be terminated by
  transmitting the LOGO ELS, since this may terminate active Exchanges
  on other FC-4s [FC-FS].

13.  Interoperability with RFC 2625

  The IPv4 encapsulation defined in this document, along with Exchange
  and Sequence management, are as defined in [RFC-2625].
  Implementations following this specification are expected to
  interoperate with implementations compliant to [RFC-2625] for IPv4
  packet transmission and reception.

  The main difference between this document and [RFC-2625] is in the
  address resolution procedure.  [RFC-2625] uses the Ethernet format of
  the ARP protocol and requires all Nx_Ports to have a format 0x1
  N_Port_Name.  This specification defines a Fibre Channel format for
  the ARP protocol that supports all commonly used N_Port_Names.  In
  addition, this specification does not use FARP [RFC-2625].

  An Nx_Port following this specification, and not having a format 0x1
  N_Port_Name, is able to interoperate with an [RFC-2625]
  implementation by manually configuring the mapping <destination IPv4
  address, N_Port_Name, N_Port_ID> on the involved Nx_Ports.  Through
  this manual configuration, the ARP protocol does not need to be
  performed.  However, IPv4 communication is not possible if the
  [RFC-2625] implementation strictly enforces the requirement for
  Nx_Ports to use N_Port_Names of format 0x1.



DeSanti, et al.             Standards Track                    [Page 24]

RFC 4338                 IP over Fibre Channel              January 2006


  An Nx_Port following this specification, and having a format 0x1
  N_Port_Name, is able to interoperate with an [RFC-2625]
  implementation by manually configuring the mapping <destination IPv4
  address, N_Port_Name, N_Port_ID> on the involved Nx_Ports, or by
  performing the IPv4 address resolution in compatibility mode, as
  described below:

  -  When IPv4 address resolution is attempted, the Nx_Port MUST send
     two ARP Requests, the first one according to the FC ARP format and
     the second one according to the Ethernet ARP format.  If only an
     Ethernet ARP Reply is received, it provides the N_Port_Name of the
     Nx_Port having the destination IPv4 address.  The N_Port_ID
     associated with the N_Port_Name received in an Ethernet ARP Reply
     may be retrieved from the S_ID field of the received ARP Reply, or
     by querying the Fibre Channel Name Server;
  -  The Nx_Port MUST respond to a received Ethernet ARP Request with
     an Ethernet ARP Reply;
  -  The Nx_Port MAY respond to FARP Requests [RFC-2625].

  The reception of a particular format of ARP message does not imply
  that the sending Nx_Port will continue to use the same format later.

  Support of compatibility mode is REQUIRED by each implementation.
  The use of compatibility mode MUST be administratively configurable.

14.  Security Considerations

  IPv6, IPv4, and ARP do not introduce any additional security concerns
  beyond those that already exist within the Fibre Channel protocols.
  Zoning techniques based on FC Name Server masking (soft zoning) do
  not work with IPv6 and IPv4, because IPv6 and IPv4 over Fibre Channel
  do not use the FC Name Server.  The FC ESP_Header [FC-FS] may be used
  to secure the FC frames composing FC Sequences carrying IPv6, IPv4,
  and ARP packets.  All the techniques defined to secure IP traffic at
  the IP layer may be used in a Fibre Channel environment.

15.  IANA Considerations

  The directory of ARP parameters has been updated to reference this
  document for hardware type 18.

16.  Acknowledgements

  The authors would like to acknowledge the ANSI INCITS T11.3 Task
  Group members who reviewed this document as well as the authors of
  [RFC-2625] and [RFC-3831].  The authors also thank the IMSS WG and
  Brian Haberman for their review and comments.




DeSanti, et al.             Standards Track                    [Page 25]

RFC 4338                 IP over Fibre Channel              January 2006


17.  Normative References

  [FC-FS]     ANSI INCITS 373-2003, "Fibre Channel - Framing and
              Signaling (FC-FS)".

  [FC-AL-2]   ANSI INCITS 332-1999, "Fibre Channel - Arbitrated Loop-2
              (FC-AL-2)".

  [IPv6]      Deering, S. and R. Hinden, "Internet Protocol, Version 6
              (IPv6) Specification", RFC 2460, December 1998.

  [AARCH]     Hinden, R. and S. Deering, "Internet Protocol Version 6
              (IPv6) Addressing Architecture", RFC 3513, April 2003.

  [ACONF]     Thomson, S. and T. Narten, "IPv6 Stateless Address
              Autoconfiguration", RFC 2462, December 1998.

  [DISC]      Narten, T., Nordmark, E., and W. Simpson, "Neighbor
              Discovery for IP Version 6 (IPv6)", RFC 2461, December
              1998.

  [PMTUD6]    McCann, J., Deering, S., and J. Mogul, "Path MTU
              Discovery for IP version 6", RFC 1981, August 1996.

  [IPv4]      Postel, J., "Internet Protocol", STD 5, RFC 791,
              September 1981.

  [ARP]       Plummer, D., "Ethernet Address Resolution Protocol: Or
              converting network protocol addresses to 48.bit Ethernet
              address for transmission on Ethernet hardware", STD 37,
              RFC 826, November 1982.

  [IEEE-LLC]  IEEE Std 802-2001, "IEEE Standard for Local and
              Metropolitan Area Networks: Overview and Architecture".

  [KEYWORDS]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119, March 1997.

18.  Informative References

  [RFC-3831]  DeSanti, C., "Transmission of IPv6 Packets over Fibre
              Channel", RFC 3831, July 2004.

  [RFC-2625]  Rajagopal, M., Bhagwat, R., and W. Rickard, "IP and ARP
              over Fibre Channel", RFC 2625, June 1999.

  [MLDv2]     Vida, R. and L. Costa, "Multicast Listener Discovery
              Version 2 (MLDv2) for IPv6", RFC 3810, June 2004.



DeSanti, et al.             Standards Track                    [Page 26]

RFC 4338                 IP over Fibre Channel              January 2006


  [IGMPv3]    Cain, B., Deering, S., Kouvelas, I., Fenner, B., and A.
              Thyagarajan, "Internet Group Management Protocol, Version
              3", RFC 3376, October 2002.

  [PMTUD4]    Mogul, J. and S. Deering, "Path MTU discovery", RFC 1191,
              November 1990.

  [ICMPv6]    Conta, A. and S. Deering, "Internet Control Message
              Protocol (ICMPv6) for the Internet Protocol Version 6
              (IPv6) Specification", RFC 2463, December 1998.

  [ICMPv4]    Postel, J., "Internet Control Message Protocol", STD 5,
              RFC 792, September 1981.

  [EUI64]     "Guidelines For 64-bit Global Identifier (EUI-64)
              Registration Authority",
              http://standards.ieee.org/regauth/oui/tutorials/
              EUI64.html

































DeSanti, et al.             Standards Track                    [Page 27]

RFC 4338                 IP over Fibre Channel              January 2006


A.  Transmission of a Broadcast FC Sequence over FC Topologies
   (Informative)

A.1.  Point-to-Point Topology

  No particular mechanisms are required for this case.  The Nx_Port
  connected at the other side of the cable receives the broadcast FC
  Sequence having D_ID 0xFFFFFF.

A.2.  Private Loop Topology

  An NL_Port attached to a private loop must transmit a Class 3
  broadcast FC Sequence by using the OPN(fr) primitive signal
  [FC-AL-2].

  1) The source NL_Port first sends an Open Broadcast Replicate
     (OPN(fr)) primitive signal, forcing all the NL_Ports in the loop
     (except itself) to replicate the frames that they receive while
     examining the FC Header's D_ID field.

  2) The source NL_Port then removes the OPN(fr) signal when it returns
     to it.

  3) The source NL_Port then sends the Class 3 broadcast FC Sequence
     having D_ID 0xFFFFFF.

A.3.  Public Loop Topology

  An NL_Port attached to a public loop must not use the OPN(fr)
  primitive signal.  Rather, it must send the Class 3 broadcast FC
  Sequence having D_ID 0xFFFFFF to the FL_Port at AL_PA = 0x00
  [FC-AL-2].

  The Fabric propagates the broadcast to all other FC_Ports [FC-FS],
  including the FL_Port that the broadcast arrives on.  This includes
  all F_Ports, and other FL_Ports.

  Each FL_Port propagates the broadcast by using the primitive signal
  OPN(fr), in order to prepare the loop to receive the broadcast
  sequence.

A.4.  Fabric Topology

  An N_Port connected to an F_Port must transmit the Class 3 broadcast
  FC Sequence having D_ID 0xFFFFFF to the F_Port.  The Fabric
  propagates the broadcast to all other FC_Ports [FC-FS].





DeSanti, et al.             Standards Track                    [Page 28]

RFC 4338                 IP over Fibre Channel              January 2006


B.  Validation of the <N_Port_Name, N_Port_ID> Mapping
   (Informative)

B.1.  Overview

  At all times, the <N_Port_Name, N_Port_ID> mapping must be valid
  before use.

  After an FC link interruption occurs, the N_Port_ID of an Nx_Port may
  change, as well as the N_Port_IDs of all other Nx_Ports that have
  previously performed Port Login with this Nx_Port.  Because of this,
  address validation is required after a Loop Initialization Primitive
  Sequence (LIP) in a loop topology [FC-AL-2] or after Not_Operational
  Primitive Sequence / Offline Primitive Sequence (NOS/OLS) in a
  point-to-point topology [FC-FS].

  N_Port_IDs do not change as a result of Link Reset (LR) [FC-FS];
  thus, address validation is not required in this case.

B.2.  FC Layer Address Validation in a Point-to-Point Topology

  No validation is required after Link Reset (LR).  In a point-to-point
  topology, NOS/OLS causes implicit Logout of each N_Port and after an
  NOS/OLS each N_Port must again perform a Port Login [FC-FS].

B.3.  FC Layer Address Validation in a Private Loop Topology

  After a LIP [FC-AL-2], an NL_Port must not transmit any data to
  another NL_Port until the address of the other port has been
  validated.  The validation consists of completing the Address
  Discovery procedure with the ADISC ELS [FC-FS].

  If the three FC addresses (N_Port_ID, N_Port_Name, Node_Name) of a
  logged remote NL_Port exactly match the values prior to the LIP, then
  any active Exchange with that NL_Port may continue.

  If any of the three FC addresses has changed, then the remote NL_Port
  must be logged out.

  If an NL_Port's N_Port_ID changes after a LIP, then all active
  logged-in NL_Ports must be logged out.










DeSanti, et al.             Standards Track                    [Page 29]

RFC 4338                 IP over Fibre Channel              January 2006


B.4.  FC Layer Address Validation in a Public Loop Topology

  A Fabric Address Notification (FAN) ELS may be sent by the Fabric to
  all known previously logged-in NL_Ports following an initialization
  event.  Therefore, after a LIP [FC-AL-2], NL_Ports may wait for this
  notification to arrive, or they may perform an FLOGI.

  If the F_Port_Name and Fabric_Name contained in the FAN ELS or FLOGI
  response exactly match the values before the LIP and if the AL_PA
  [FC-AL-2] obtained by the NL_Port is the same as the one before the
  LIP, then the port may resume all Exchanges.  If not, then FLOGI must
  be performed with the Fabric and all logged-in Nx_Ports must be
  logged out.

  A public loop NL_Port must perform the private loop validation as
  specified in section B.3 to any NL_Port on the local loop that has an
  N_Port_ID of the form 0x00-00-XX (i.e., to any private loop NL_Port).

B.5.  FC Layer Address Validation in a Fabric Topology

  No validation is required after Link Reset (LR).

  After NOS/OLS, an N_Port must perform FLOGI.  If, after FLOGI, the
  N_Port's N_Port_ID, the F_Port_Name, and the Fabric_Name are the same
  as before the NOS/OLS, then the N_Port may resume all Exchanges.  If
  not, all logged-in Nx_Ports must be logged out [FC-FS].

C.  Fibre Channel Bit and Byte Numbering Guidance

  Both Fibre Channel and IETF standards use the same byte transmission
  order.  However, the bit numbering is different.

  Fibre Channel bit numbering can be observed if the data structure
  heading shown in figure 24 is cut and pasted at the top of the
  figures present in this document.

        3                   2                   1                   0
      1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                    Figure 24: Fibre Channel Bit Numbering










DeSanti, et al.             Standards Track                    [Page 30]

RFC 4338                 IP over Fibre Channel              January 2006


D.  Changes from RFC 2625

  -  Nx_Ports with N_Port_Name format 0x2, 0x5, 0xC, 0xD, 0xE, and 0xF
     are supported, in addition to format 0x1;
  -  An IP-capable Nx_Port MUST support Class 3;
  -  An IP-capable Nx_Port MUST support continuously increasing
     SEQ_CNT;
  -  An IP-capable Nx_Port SHOULD support a receive data field size for
     Device_Data FC frames of at least 1024 octets;
  -  The FC ESP_Header MAY be used;
  -  FC Classes of services other than 3 are not recommended;
  -  Defined a new FC ARP format;
  -  Removed support for FARP because some FC implementations do not
     tolerate receiving broadcast ELSes;
  -  Added support for IPv4 multicast;
  -  Clarified the usage of the CS_CTL and Parameter fields of the FC
     Header;
  -  Clarified the usage of FC Classes of service;
  -  Clarified the usage of FC Sequences and Exchanges.

E.  Changes from RFC 3831

  -  Clarified the usage of the CS_CTL and Parameter fields of the FC
     Header;
  -  Clarified the usage of FC Classes of service;
  -  Clarified and updated the mapping of IPv6 multicast on Fibre
     Channel;
  -  Clarified the usage of FC Sequences and Exchanges;
  -  Clarified and updated the format of the Neighbor Discovery
     Link-layer option for Fibre Channel.





















DeSanti, et al.             Standards Track                    [Page 31]

RFC 4338                 IP over Fibre Channel              January 2006


Authors' Addresses

  Claudio DeSanti
  Cisco Systems, Inc.
  170 W. Tasman Dr.
  San Jose, CA 95134
  USA

  Phone:  +1 408 853-9172
  EMail:  [email protected]


  Craig W. Carlson
  QLogic Corporation
  6321 Bury Drive
  Eden Prairie, MN 55346
  USA

  Phone:  +1 952 932-4064
  EMail:  [email protected]


  Robert Nixon
  Emulex
  3333 Susan Street
  Costa Mesa, CA 92626
  USA

  Phone:  +1 714 885-3525
  EMail:  [email protected]





















DeSanti, et al.             Standards Track                    [Page 32]

RFC 4338                 IP over Fibre Channel              January 2006


Full Copyright Statement

  Copyright (C) The Internet Society (2006).

  This document is subject to the rights, licenses and restrictions
  contained in BCP 78, and except as set forth therein, the authors
  retain all their rights.

  This document and the information contained herein are provided on an
  "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
  OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
  ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
  INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
  INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
  WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

  The IETF takes no position regarding the validity or scope of any
  Intellectual Property Rights or other rights that might be claimed to
  pertain to the implementation or use of the technology described in
  this document or the extent to which any license under such rights
  might or might not be available; nor does it represent that it has
  made any independent effort to identify any such rights.  Information
  on the procedures with respect to rights in RFC documents can be
  found in BCP 78 and BCP 79.

  Copies of IPR disclosures made to the IETF Secretariat and any
  assurances of licenses to be made available, or the result of an
  attempt made to obtain a general license or permission for the use of
  such proprietary rights by implementers or users of this
  specification can be obtained from the IETF on-line IPR repository at
  http://www.ietf.org/ipr.

  The IETF invites any interested party to bring to its attention any
  copyrights, patents or patent applications, or other proprietary
  rights that may cover technology that may be required to implement
  this standard.  Please address the information to the IETF at
  [email protected].

Acknowledgement

  Funding for the RFC Editor function is provided by the IETF
  Administrative Support Activity (IASA).







DeSanti, et al.             Standards Track                    [Page 33]