Network Working Group                                     P. Eronen, Ed.
Request for Comments: 4279                                         Nokia
Category: Standards Track                             H. Tschofenig, Ed.
                                                                Siemens
                                                          December 2005


    Pre-Shared Key Ciphersuites for Transport Layer Security (TLS)

Status of This Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (2005).

Abstract

  This document specifies three sets of new ciphersuites for the
  Transport Layer Security (TLS) protocol to support authentication
  based on pre-shared keys (PSKs).  These pre-shared keys are symmetric
  keys, shared in advance among the communicating parties.  The first
  set of ciphersuites uses only symmetric key operations for
  authentication.  The second set uses a Diffie-Hellman exchange
  authenticated with a pre-shared key, and the third set combines
  public key authentication of the server with pre-shared key
  authentication of the client.



















Eronen & Tschofenig         Standards Track                     [Page 1]

RFC 4279                PSK Ciphersuites for TLS           December 2005


Table of Contents

  1. Introduction ....................................................2
     1.1. Applicability Statement ....................................3
     1.2. Conventions Used in This Document ..........................4
  2. PSK Key Exchange Algorithm ......................................4
  3. DHE_PSK Key Exchange Algorithm ..................................6
  4. RSA_PSK Key Exchange Algorithm ..................................7
  5. Conformance Requirements ........................................8
     5.1. PSK Identity Encoding ......................................8
     5.2. Identity Hint ..............................................9
     5.3. Requirements for TLS Implementations .......................9
     5.4. Requirements for Management Interfaces .....................9
  6. IANA Considerations ............................................10
  7. Security Considerations ........................................10
     7.1. Perfect Forward Secrecy (PFS) .............................10
     7.2. Brute-Force and Dictionary Attacks ........................10
     7.3. Identity Privacy ..........................................11
     7.4. Implementation Notes ......................................11
  8. Acknowledgements ...............................................11
  9. References .....................................................12
     9.1. Normative References ......................................12
     9.2. Informative References ....................................12

1.  Introduction

  Usually, TLS uses public key certificates [TLS] or Kerberos [KERB]
  for authentication.  This document describes how to use symmetric
  keys (later called pre-shared keys or PSKs), shared in advance among
  the communicating parties, to establish a TLS connection.

  There are basically two reasons why one might want to do this:

  o  First, using pre-shared keys can, depending on the ciphersuite,
     avoid the need for public key operations.  This is useful if TLS
     is used in performance-constrained environments with limited CPU
     power.

  o  Second, pre-shared keys may be more convenient from a key
     management point of view.  For instance, in closed environments
     where the connections are mostly configured manually in advance,
     it may be easier to configure a PSK than to use certificates.
     Another case is when the parties already have a mechanism for
     setting up a shared secret key, and that mechanism could be used
     to "bootstrap" a key for authenticating a TLS connection.






Eronen & Tschofenig         Standards Track                     [Page 2]

RFC 4279                PSK Ciphersuites for TLS           December 2005


  This document specifies three sets of new ciphersuites for TLS.
  These ciphersuites use new key exchange algorithms, and reuse
  existing cipher and MAC algorithms from [TLS] and [AES].  A summary
  of these ciphersuites is shown below.

     CipherSuite                        Key Exchange  Cipher       Hash

     TLS_PSK_WITH_RC4_128_SHA           PSK           RC4_128       SHA
     TLS_PSK_WITH_3DES_EDE_CBC_SHA      PSK           3DES_EDE_CBC  SHA
     TLS_PSK_WITH_AES_128_CBC_SHA       PSK           AES_128_CBC   SHA
     TLS_PSK_WITH_AES_256_CBC_SHA       PSK           AES_256_CBC   SHA
     TLS_DHE_PSK_WITH_RC4_128_SHA       DHE_PSK       RC4_128       SHA
     TLS_DHE_PSK_WITH_3DES_EDE_CBC_SHA  DHE_PSK       3DES_EDE_CBC  SHA
     TLS_DHE_PSK_WITH_AES_128_CBC_SHA   DHE_PSK       AES_128_CBC   SHA
     TLS_DHE_PSK_WITH_AES_256_CBC_SHA   DHE_PSK       AES_256_CBC   SHA
     TLS_RSA_PSK_WITH_RC4_128_SHA       RSA_PSK       RC4_128       SHA
     TLS_RSA_PSK_WITH_3DES_EDE_CBC_SHA  RSA_PSK       3DES_EDE_CBC  SHA
     TLS_RSA_PSK_WITH_AES_128_CBC_SHA   RSA_PSK       AES_128_CBC   SHA
     TLS_RSA_PSK_WITH_AES_256_CBC_SHA   RSA_PSK       AES_256_CBC   SHA

  The ciphersuites in Section 2 (with PSK key exchange algorithm) use
  only symmetric key algorithms and are thus especially suitable for
  performance-constrained environments.

  The ciphersuites in Section 3 (with DHE_PSK key exchange algorithm)
  use a PSK to authenticate a Diffie-Hellman exchange.  These
  ciphersuites protect against dictionary attacks by passive
  eavesdroppers (but not active attackers) and also provide Perfect
  Forward Secrecy (PFS).

  The ciphersuites in Section 4 (with RSA_PSK key exchange algorithm)
  combine public-key-based authentication of the server (using RSA and
  certificates) with mutual authentication using a PSK.

1.1.  Applicability Statement

  The ciphersuites defined in this document are intended for a rather
  limited set of applications, usually involving only a very small
  number of clients and servers.  Even in such environments, other
  alternatives may be more appropriate.

  If the main goal is to avoid Public-Key Infrastructures (PKIs),
  another possibility worth considering is using self-signed
  certificates with public key fingerprints.  Instead of manually
  configuring a shared secret in, for instance, some configuration
  file, a fingerprint (hash) of the other party's public key (or
  certificate) could be placed there instead.




Eronen & Tschofenig         Standards Track                     [Page 3]

RFC 4279                PSK Ciphersuites for TLS           December 2005


  It is also possible to use the SRP (Secure Remote Password)
  ciphersuites for shared secret authentication [SRP].  SRP was
  designed to be used with passwords, and it incorporates protection
  against dictionary attacks.  However, it is computationally more
  expensive than the PSK ciphersuites in Section 2.

1.2.  Conventions Used in This Document

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in [KEYWORDS].

2.  PSK Key Exchange Algorithm

  This section defines the PSK key exchange algorithm and associated
  ciphersuites.  These ciphersuites use only symmetric key algorithms.

  It is assumed that the reader is familiar with the ordinary TLS
  handshake, shown below.  The elements in parenthesis are not included
  when the PSK key exchange algorithm is used, and "*" indicates a
  situation-dependent message that is not always sent.

     Client                                               Server
     ------                                               ------

     ClientHello                  -------->
                                                     ServerHello
                                                   (Certificate)
                                              ServerKeyExchange*
                                            (CertificateRequest)
                                  <--------      ServerHelloDone
     (Certificate)
     ClientKeyExchange
     (CertificateVerify)
     ChangeCipherSpec
     Finished                     -------->
                                                ChangeCipherSpec
                                  <--------             Finished
     Application Data             <------->     Application Data

  The client indicates its willingness to use pre-shared key
  authentication by including one or more PSK ciphersuites in the
  ClientHello message.  If the TLS server also wants to use pre-shared
  keys, it selects one of the PSK ciphersuites, places the selected
  ciphersuite in the ServerHello message, and includes an appropriate
  ServerKeyExchange message (see below).  The Certificate and
  CertificateRequest payloads are omitted from the response.




Eronen & Tschofenig         Standards Track                     [Page 4]

RFC 4279                PSK Ciphersuites for TLS           December 2005


  Both clients and servers may have pre-shared keys with several
  different parties.  The client indicates which key to use by
  including a "PSK identity" in the ClientKeyExchange message (note
  that unlike in [SHAREDKEYS], the session_id field in ClientHello
  message keeps its usual meaning).  To help the client in selecting
  which identity to use, the server can provide a "PSK identity hint"
  in the ServerKeyExchange message.  If no hint is provided, the
  ServerKeyExchange message is omitted.  See Section 5 for a more
  detailed description of these fields.

  The format of the ServerKeyExchange and ClientKeyExchange messages is
  shown below.

     struct {
         select (KeyExchangeAlgorithm) {
             /* other cases for rsa, diffie_hellman, etc. */
             case psk:  /* NEW */
                 opaque psk_identity_hint<0..2^16-1>;
         };
     } ServerKeyExchange;

     struct {
         select (KeyExchangeAlgorithm) {
             /* other cases for rsa, diffie_hellman, etc. */
             case psk:   /* NEW */
                 opaque psk_identity<0..2^16-1>;
         } exchange_keys;
     } ClientKeyExchange;

  The premaster secret is formed as follows: if the PSK is N octets
  long, concatenate a uint16 with the value N, N zero octets, a second
  uint16 with the value N, and the PSK itself.

     Note 1: All the ciphersuites in this document share the same
     general structure for the premaster secret, namely,

        struct {
            opaque other_secret<0..2^16-1>;
            opaque psk<0..2^16-1>;
        };

     Here "other_secret" either is zeroes (plain PSK case) or comes
     from the Diffie-Hellman or RSA exchange (DHE_PSK and RSA_PSK,
     respectively).  See Sections 3 and 4 for a more detailed
     description.

     Note 2: Using zeroes for "other_secret" effectively means that
     only the HMAC-SHA1 part (but not the HMAC-MD5 part) of the TLS PRF



Eronen & Tschofenig         Standards Track                     [Page 5]

RFC 4279                PSK Ciphersuites for TLS           December 2005


     is used when constructing the master secret.  This was considered
     more elegant from an analytical viewpoint than, for instance,
     using the same key for both the HMAC-MD5 and HMAC-SHA1 parts.  See
     [KRAWCZYK] for a more detailed rationale.

  The TLS handshake is authenticated using the Finished messages as
  usual.

  If the server does not recognize the PSK identity, it MAY respond
  with an "unknown_psk_identity" alert message.  Alternatively, if the
  server wishes to hide the fact that the PSK identity was not known,
  it MAY continue the protocol as if the PSK identity existed but the
  key was incorrect: that is, respond with a "decrypt_error" alert.

3.  DHE_PSK Key Exchange Algorithm

  This section defines additional ciphersuites that use a PSK to
  authenticate a Diffie-Hellman exchange.  These ciphersuites give some
  additional protection against dictionary attacks and also provide
  Perfect Forward Secrecy (PFS).  See Section 7 for discussion of
  related security considerations.

  When these ciphersuites are used, the ServerKeyExchange and
  ClientKeyExchange messages also include the Diffie-Hellman
  parameters.  The PSK identity and identity hint fields have the same
  meaning as in the previous section (note that the ServerKeyExchange
  message is always sent, even if no PSK identity hint is provided).

  The format of the ServerKeyExchange and ClientKeyExchange messages is
  shown below.

     struct {
         select (KeyExchangeAlgorithm) {
             /* other cases for rsa, diffie_hellman, etc. */
             case diffie_hellman_psk:  /* NEW */
                 opaque psk_identity_hint<0..2^16-1>;
                 ServerDHParams params;
         };
     } ServerKeyExchange;

     struct {
         select (KeyExchangeAlgorithm) {
             /* other cases for rsa, diffie_hellman, etc. */
             case diffie_hellman_psk:   /* NEW */
                 opaque psk_identity<0..2^16-1>;
                 ClientDiffieHellmanPublic public;
         } exchange_keys;
     } ClientKeyExchange;



Eronen & Tschofenig         Standards Track                     [Page 6]

RFC 4279                PSK Ciphersuites for TLS           December 2005


  The premaster secret is formed as follows.  First, perform the
  Diffie-Hellman computation in the same way as for other
  Diffie-Hellman-based ciphersuites in [TLS].  Let Z be the value
  produced by this computation (with leading zero bytes stripped as in
  other Diffie-Hellman-based ciphersuites).  Concatenate a uint16
  containing the length of Z (in octets), Z itself, a uint16 containing
  the length of the PSK (in octets), and the PSK itself.

  This corresponds to the general structure for the premaster secrets
  (see Note 1 in Section 2) in this document, with "other_secret"
  containing Z.

4.  RSA_PSK Key Exchange Algorithm

  The ciphersuites in this section use RSA and certificates to
  authenticate the server, in addition to using a PSK.

  As in normal RSA ciphersuites, the server must send a Certificate
  message.  The format of the ServerKeyExchange and ClientKeyExchange
  messages is shown below.  If no PSK identity hint is provided, the
  ServerKeyExchange message is omitted.

     struct {
         select (KeyExchangeAlgorithm) {
             /* other cases for rsa, diffie_hellman, etc. */
             case rsa_psk:  /* NEW */
                 opaque psk_identity_hint<0..2^16-1>;
         };
     } ServerKeyExchange;

     struct {
         select (KeyExchangeAlgorithm) {
             /* other cases for rsa, diffie_hellman, etc. */
             case rsa_psk:   /* NEW */
                 opaque psk_identity<0..2^16-1>;
                 EncryptedPreMasterSecret;
         } exchange_keys;
     } ClientKeyExchange;

  The EncryptedPreMasterSecret field sent from the client to the server
  contains a 2-byte version number and a 46-byte random value,
  encrypted using the server's RSA public key as described in Section
  7.4.7.1 of [TLS].  The actual premaster secret is formed by both
  parties as follows: concatenate a uint16 with the value 48, the
  2-byte version number and the 46-byte random value, a uint16
  containing the length of the PSK (in octets), and the PSK itself.
  (The premaster secret is thus 52 octets longer than the PSK.)




Eronen & Tschofenig         Standards Track                     [Page 7]

RFC 4279                PSK Ciphersuites for TLS           December 2005


  This corresponds to the general structure for the premaster secrets
  (see Note 1 in Section 2) in this document, with "other_secret"
  containing both the 2-byte version number and the 46-byte random
  value.

  Neither the normal RSA ciphersuites nor these RSA_PSK ciphersuites
  themselves specify what the certificates contain (in addition to the
  RSA public key), or how the certificates are to be validated.  In
  particular, it is possible to use the RSA_PSK ciphersuites with
  unvalidated self-signed certificates to provide somewhat similar
  protection against dictionary attacks, as the DHE_PSK ciphersuites
  define in Section 3.

5.  Conformance Requirements

  It is expected that different types of identities are useful for
  different applications running over TLS.  This document does not
  therefore mandate the use of any particular type of identity (such as
  IPv4 address or Fully Qualified Domain Name (FQDN)).

  However, the TLS client and server clearly have to agree on the
  identities and keys to be used.  To improve interoperability, this
  document places requirements on how the identity is encoded in the
  protocol, and what kinds of identities and keys implementations have
  to support.

  The requirements for implementations are divided into two categories,
  requirements for TLS implementations and management interfaces.  In
  this context, "TLS implementation" refers to a TLS library or module
  that is intended to be used for several different purposes, while
  "management interface" would typically be implemented by a particular
  application that uses TLS.

  This document does not specify how the server stores the keys and
  identities, or how exactly it finds the key corresponding to the
  identity it receives.  For instance, if the identity is a domain
  name, it might be appropriate to do a case-insensitive lookup.  It is
  RECOMMENDED that before looking up the key, the server processes the
  PSK identity with a stringprep profile [STRINGPREP] appropriate for
  the identity in question (such as Nameprep [NAMEPREP] for components
  of domain names or SASLprep for usernames [SASLPREP]).

5.1.  PSK Identity Encoding

  The PSK identity MUST be first converted to a character string, and
  then encoded to octets using UTF-8 [UTF8].  For instance,





Eronen & Tschofenig         Standards Track                     [Page 8]

RFC 4279                PSK Ciphersuites for TLS           December 2005


  o  IPv4 addresses are sent as dotted-decimal strings (e.g.,
     "192.0.2.1"), not as 32-bit integers in network byte order.

  o  Domain names are sent in their usual text form [DNS] (e.g.,
     "www.example.com" or "embedded\.dot.example.net"), not in DNS
     protocol format.

  o  X.500 Distinguished Names are sent in their string representation
     [LDAPDN], not as BER-encoded ASN.1.

  This encoding is clearly not optimal for many types of identities.
  It was chosen to avoid identity-type-specific parsing and encoding
  code in implementations where the identity is configured by a person
  using some kind of management interface.  Requiring such identity-
  type-specific code would also increase the chances for
  interoperability problems resulting from different implementations
  supporting different identity types.

5.2.  Identity Hint

  In the absence of an application profile specification specifying
  otherwise, servers SHOULD NOT provide an identity hint and clients
  MUST ignore the identity hint field.  Applications that do use this
  field MUST specify its contents, how the value is chosen by the TLS
  server, and what the TLS client is expected to do with the value.

5.3.  Requirements for TLS Implementations

  TLS implementations supporting these ciphersuites MUST support
  arbitrary PSK identities up to 128 octets in length, and arbitrary
  PSKs up to 64 octets in length.  Supporting longer identities and
  keys is RECOMMENDED.

5.4.  Requirements for Management Interfaces

  In the absence of an application profile specification specifying
  otherwise, a management interface for entering the PSK and/or PSK
  identity MUST support the following:

  o  Entering PSK identities consisting of up to 128 printable Unicode
     characters.  Supporting as wide a character repertoire and as long
     identities as feasible is RECOMMENDED.

  o  Entering PSKs up to 64 octets in length as ASCII strings and in
     hexadecimal encoding.






Eronen & Tschofenig         Standards Track                     [Page 9]

RFC 4279                PSK Ciphersuites for TLS           December 2005


6.  IANA Considerations

  IANA does not currently have a registry for TLS ciphersuite or alert
  numbers, so there are no IANA actions associated with this document.

  For easier reference in the future, the ciphersuite numbers defined
  in this document are summarized below.

     CipherSuite TLS_PSK_WITH_RC4_128_SHA          = { 0x00, 0x8A };
     CipherSuite TLS_PSK_WITH_3DES_EDE_CBC_SHA     = { 0x00, 0x8B };
     CipherSuite TLS_PSK_WITH_AES_128_CBC_SHA      = { 0x00, 0x8C };
     CipherSuite TLS_PSK_WITH_AES_256_CBC_SHA      = { 0x00, 0x8D };
     CipherSuite TLS_DHE_PSK_WITH_RC4_128_SHA      = { 0x00, 0x8E };
     CipherSuite TLS_DHE_PSK_WITH_3DES_EDE_CBC_SHA = { 0x00, 0x8F };
     CipherSuite TLS_DHE_PSK_WITH_AES_128_CBC_SHA  = { 0x00, 0x90 };
     CipherSuite TLS_DHE_PSK_WITH_AES_256_CBC_SHA  = { 0x00, 0x91 };
     CipherSuite TLS_RSA_PSK_WITH_RC4_128_SHA      = { 0x00, 0x92 };
     CipherSuite TLS_RSA_PSK_WITH_3DES_EDE_CBC_SHA = { 0x00, 0x93 };
     CipherSuite TLS_RSA_PSK_WITH_AES_128_CBC_SHA  = { 0x00, 0x94 };
     CipherSuite TLS_RSA_PSK_WITH_AES_256_CBC_SHA  = { 0x00, 0x95 };

  This document also defines a new TLS alert message,
  unknown_psk_identity(115).

7.  Security Considerations

  As with all schemes involving shared keys, special care should be
  taken to protect the shared values and to limit their exposure over
  time.

7.1.  Perfect Forward Secrecy (PFS)

  The PSK and RSA_PSK ciphersuites defined in this document do not
  provide Perfect Forward Secrecy (PFS).  That is, if the shared secret
  key (in PSK ciphersuites), or both the shared secret key and the RSA
  private key (in RSA_PSK ciphersuites), is somehow compromised, an
  attacker can decrypt old conversations.

  The DHE_PSK ciphersuites provide Perfect Forward Secrecy if a fresh
  Diffie-Hellman private key is generated for each handshake.

7.2.  Brute-Force and Dictionary Attacks

  Use of a fixed shared secret of limited entropy (for example, a PSK
  that is relatively short, or was chosen by a human and thus may
  contain less entropy than its length would imply) may allow an
  attacker to perform a brute-force or dictionary attack to recover the
  secret.  This may be either an off-line attack (against a captured



Eronen & Tschofenig         Standards Track                    [Page 10]

RFC 4279                PSK Ciphersuites for TLS           December 2005


  TLS handshake messages) or an on-line attack where the attacker
  attempts to connect to the server and tries different keys.

  For the PSK ciphersuites, an attacker can get the information
  required for an off-line attack by eavesdropping on a TLS handshake,
  or by getting a valid client to attempt connection with the attacker
  (by tricking the client to connect to the wrong address, or by
  intercepting a connection attempt to the correct address, for
  instance).

  For the DHE_PSK ciphersuites, an attacker can obtain the information
  by getting a valid client to attempt connection with the attacker.
  Passive eavesdropping alone is not sufficient.

  For the RSA_PSK ciphersuites, only the server (authenticated using
  RSA and certificates) can obtain sufficient information for an
  off-line attack.

  It is RECOMMENDED that implementations that allow the administrator
  to manually configure the PSK also provide a functionality for
  generating a new random PSK, taking [RANDOMNESS] into account.

7.3.  Identity Privacy

  The PSK identity is sent in cleartext.  Although using a user name or
  other similar string as the PSK identity is the most straightforward
  option, it may lead to problems in some environments since an
  eavesdropper is able to identify the communicating parties.  Even
  when the identity does not reveal any information itself, reusing the
  same identity over time may eventually allow an attacker to perform
  traffic analysis to identify the parties.  It should be noted that
  this is no worse than client certificates, since they are also sent
  in cleartext.

7.4.  Implementation Notes

  The implementation notes in [TLS11] about correct implementation and
  use of RSA (including Section 7.4.7.1) and Diffie-Hellman (including
  Appendix F.1.1.3) apply to the DHE_PSK and RSA_PSK ciphersuites as
  well.

8.  Acknowledgements

  The protocol defined in this document is heavily based on work by Tim
  Dierks and Peter Gutmann, and borrows some text from [SHAREDKEYS] and
  [AES].  The DHE_PSK and RSA_PSK ciphersuites are based on earlier
  work in [KEYEX].




Eronen & Tschofenig         Standards Track                    [Page 11]

RFC 4279                PSK Ciphersuites for TLS           December 2005


  Valuable feedback was also provided by Bernard Aboba, Lakshminath
  Dondeti, Philip Ginzboorg, Peter Gutmann, Sam Hartman, Russ Housley,
  David Jablon, Nikos Mavroyanopoulos, Bodo Moeller, Eric Rescorla, and
  Mika Tervonen.

  When the first version of this document was almost ready, the authors
  learned that something similar had been proposed already in 1996
  [PASSAUTH].  However, this document is not intended for web password
  authentication, but rather for other uses of TLS.

9.  References

9.1.  Normative References

  [AES]        Chown, P., "Advanced Encryption Standard (AES)
               Ciphersuites for Transport Layer Security (TLS)", RFC
               3268, June 2002.

  [KEYWORDS]   Bradner, S., "Key words for use in RFCs to Indicate
               Requirement Levels", BCP 14, RFC 2119, March 1997.

  [RANDOMNESS] Eastlake, D., 3rd, Schiller, J., and S. Crocker,
               "Randomness Requirements for Security", BCP 106, RFC
               4086, June 2005.

  [TLS]        Dierks, T. and C. Allen, "The TLS Protocol Version 1.0",
               RFC 2246, January 1999.

  [UTF8]       Yergeau, F., "UTF-8, a transformation format of ISO
               10646", STD 63, RFC 3629, November 2003.

9.2.  Informative References

  [DNS]        Mockapetris, P., "Domain names - implementation and
               specification", STD 13, RFC 1035, November 1987.

  [KERB]       Medvinsky, A. and M. Hur, "Addition of Kerberos Cipher
               Suites to Transport Layer Security (TLS)", RFC 2712,
               October 1999.

  [KEYEX]      Badra, M., Cherkaoui, O., Hajjeh, I. and A. Serhrouchni,
               "Pre-Shared-Key key Exchange methods for TLS", Work in
               Progress, August 2004.

  [KRAWCZYK]   Krawczyk, H., "Re: TLS shared keys PRF", message on
               [email protected] mailing list 2004-01-13,
               http://www.imc.org/ietf-tls/mail-archive/msg04098.html.




Eronen & Tschofenig         Standards Track                    [Page 12]

RFC 4279                PSK Ciphersuites for TLS           December 2005


  [LDAPDN]     Zeilenga, K., "LDAP: String Representation of
               Distinguished Names", Work in Progress, February 2005.

  [NAMEPREP]   Hoffman, P. and M. Blanchet, "Nameprep: A Stringprep
               Profile for Internationalized Domain Names (IDN)", RFC
               3491, March 2003.

  [PASSAUTH]   Simon, D., "Addition of Shared Key Authentication to
               Transport Layer Security (TLS)", Work in Progress,
               November 1996.

  [SASLPREP]   Zeilenga, K., "SASLprep: Stringprep Profile for User
               Names and Passwords", RFC 4013, February 2005.

  [SHAREDKEYS] Gutmann, P., "Use of Shared Keys in the TLS Protocol",
               Work in Progress, October 2003.

  [SRP]        Taylor, D., Wu, T., Mavroyanopoulos, N. and T. Perrin,
               "Using SRP for TLS Authentication", Work in Progress,
               March 2005.

  [STRINGPREP] Hoffman, P. and M. Blanchet, "Preparation of
               Internationalized Strings ("stringprep")", RFC 3454,
               December 2002.

  [TLS11]      Dierks, T. and E. Rescorla, "The TLS Protocol Version
               1.1", Work in Progress, June 2005.

Authors' and Contributors' Addresses

  Pasi Eronen
  Nokia Research Center
  P.O. Box 407
  FIN-00045 Nokia Group
  Finland

  EMail: [email protected]


  Hannes Tschofenig
  Siemens
  Otto-Hahn-Ring 6
  Munich, Bayern  81739
  Germany

  EMail: [email protected]





Eronen & Tschofenig         Standards Track                    [Page 13]

RFC 4279                PSK Ciphersuites for TLS           December 2005


  Mohamad Badra
  ENST Paris
  46 rue Barrault
  75634 Paris
  France

  EMail: [email protected]


  Omar Cherkaoui
  UQAM University
  Montreal (Quebec)
  Canada

  EMail: [email protected]


  Ibrahim Hajjeh
  ESRGroups
  17 passage Barrault
  75013 Paris
  France

  EMail: [email protected]


  Ahmed Serhrouchni
  ENST Paris
  46 rue Barrault
  75634 Paris
  France

  EMail: [email protected]


















Eronen & Tschofenig         Standards Track                    [Page 14]

RFC 4279                PSK Ciphersuites for TLS           December 2005


Full Copyright Statement

  Copyright (C) The Internet Society (2005).

  This document is subject to the rights, licenses and restrictions
  contained in BCP 78, and except as set forth therein, the authors
  retain all their rights.

  This document and the information contained herein are provided on an
  "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
  OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
  ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
  INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
  INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
  WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

  The IETF takes no position regarding the validity or scope of any
  Intellectual Property Rights or other rights that might be claimed to
  pertain to the implementation or use of the technology described in
  this document or the extent to which any license under such rights
  might or might not be available; nor does it represent that it has
  made any independent effort to identify any such rights.  Information
  on the procedures with respect to rights in RFC documents can be
  found in BCP 78 and BCP 79.

  Copies of IPR disclosures made to the IETF Secretariat and any
  assurances of licenses to be made available, or the result of an
  attempt made to obtain a general license or permission for the use of
  such proprietary rights by implementers or users of this
  specification can be obtained from the IETF on-line IPR repository at
  http://www.ietf.org/ipr.

  The IETF invites any interested party to bring to its attention any
  copyrights, patents or patent applications, or other proprietary
  rights that may cover technology that may be required to implement
  this standard.  Please address the information to the IETF at ietf-
  [email protected].

Acknowledgement

  Funding for the RFC Editor function is currently provided by the
  Internet Society.







Eronen & Tschofenig         Standards Track                    [Page 15]