Network Working Group                                          M. Riegel
Request for Comments: 4197                                    Siemens AG
Category: Informational                                     October 2005


             Requirements for Edge-to-Edge Emulation of
            Time Division Multiplexed (TDM) Circuits over
                      Packet Switching Networks

Status of This Memo

  This memo provides information for the Internet community.  It does
  not specify an Internet standard of any kind.  Distribution of this
  memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (2005).

Abstract

  This document defines the specific requirements for edge-to-edge
  emulation of circuits carrying Time Division Multiplexed (TDM)
  digital signals of the Plesiochronous Digital Hierarchy as well as
  the Synchronous Optical NETwork/Synchronous Digital Hierarchy over
  packet-switched networks.  It is aligned to the common architecture
  for Pseudo Wire Emulation Edge-to-Edge (PWE3).  It makes references
  to the generic requirements for PWE3 where applicable and complements
  them by defining requirements originating from specifics of TDM
  circuits.





















Riegel                       Informational                      [Page 1]

RFC 4197                 PWE3 TDM Requirements              October 2005


Table of Contents

  1. Introduction ....................................................3
     1.1. TDM Circuits Belonging to the PDH Hierarchy ................3
          1.1.1. TDM Structure and Transport Modes ...................4
     1.2. SONET/SDH Circuits .........................................4
  2. Motivation ......................................................5
  3. Terminology .....................................................6
  4. Reference Models ................................................7
     4.1. Generic PWE3 Models ........................................7
     4.2. Clock Recovery .............................................7
     4.3. Network Synchronization Reference Model ....................8
          4.3.1. Synchronous Network Scenarios ......................10
          4.3.2. Relative Network Scenario ..........................12
          4.3.3. Adaptive Network Scenario ..........................12
  5. Emulated Services ..............................................13
     5.1. Structure-Agnostic Transport of Signals out of the
          PDH Hierarchy .............................................13
     5.2. Structure-Aware Transport of Signals out of the
          PDH Hierarchy .............................................14
     5.3. Structure-Aware Transport of SONET/SDH Circuits ...........14
  6. Generic Requirements ...........................................14
     6.1. Relevant Common PW Requirements ...........................14
     6.2. Common Circuit Payload Requirements .......................15
     6.3. General Design Issues .....................................16
  7. Service-Specific Requirements ..................................16
     7.1. Connectivity ..............................................16
     7.2. Network Synchronization ...................................16
     7.3. Robustness ................................................16
          7.3.1. Packet loss ........................................17
          7.3.2. Out-of-order delivery ..............................17
     7.4. CE Signaling ..............................................17
     7.5. PSN Bandwidth Utilization .................................18
     7.6. Packet Delay Variation ....................................19
     7.7. Compatibility with the Existing PSN Infrastructure ........19
     7.8. Congestion Control ........................................19
     7.9. Fault Detection and Handling ..............................20
     7.10. Performance Monitoring ...................................20
  8. Security Considerations ........................................20
  9. References .....................................................20
     9.1. Normative References ......................................20
     9.2. Informative References ....................................21
  10. Contributors Section ..........................................22








Riegel                       Informational                      [Page 2]

RFC 4197                 PWE3 TDM Requirements              October 2005


1.  Introduction

  This document defines the specific requirements for edge-to-edge
  emulation of circuits carrying Time Division Multiplexed (TDM)
  digital signals of the Plesiochronous Digital Hierarchy (PDH) as well
  as the Synchronous Optical NETwork (SONET)/Synchronous Digital
  Hierarchy (SDH) over Packet-Switched Networks (PSN).  It is aligned
  to the common architecture for Pseudo Wire Emulation Edge-to-Edge
  (PWE3) as defined in [RFC3985].  It makes references to requirements
  in [RFC3916] where applicable and complements [RFC3916] by defining
  requirements originating from specifics of TDM circuits.

  The term "TDM" will be used in this documents as a general descriptor
  for the synchronous bit streams belonging to either the PDH or the
  SONET/SDH hierarchies.

1.1.  TDM Circuits Belonging to the PDH Hierarchy

  The bit rates traditionally used in various regions of the world are
  detailed in the normative reference [G.702].  For example, in North
  America, the T1 bit stream of 1.544 Mbps and the T3 bit stream of
  44.736 Mbps are mandated, while in Europe, the E1 bit stream of 2.048
  Mbps and the E3 bit stream of 34.368 Mbps are utilized.

  Although TDM can be used to carry unstructured bit streams at the
  rates defined in [G.702], there is a standardized method of carrying
  bit streams in larger units called frames, each frame contains the
  same number of bits.

  Related to the sampling frequency of voice traffic the bitrate is
  always a multiple of 8000, hence the T1 frame consists of 193 bits
  and the E1 frame of 256 bits.  The number of bits in a frame is
  called the frame size.

  The framing is imposed by introducing a periodic pattern into the bit
  stream to identify the boundaries of the frames (e.g., 1 framing bit
  per T1 frame, a sequence of 8 framing bits per E1 frame).  The
  details of how these framing bits are generated and used are
  elucidated in [G.704], [G.706], and [G.751].  Unframed TDM has all
  bits available for payload.

  Framed TDM is often used to multiplex multiple channels (e.g., voice
  channels each consisting of 8000 8-bit-samples per second) in a
  sequence of "timeslots" recurring in the same position in each frame.
  This multiplexing is called "channelized TDM" and introduces
  additional structure.





Riegel                       Informational                      [Page 3]

RFC 4197                 PWE3 TDM Requirements              October 2005


  In some cases, framing also defines groups of consecutive frames
  called multiframes.  Such grouping imposes an additional level of
  structure on the TDM bit-stream.

1.1.1.  TDM Structure and Transport Modes

  Unstructured TDM:
  TDM that consists of a raw bit-stream of rate defined in [G.702],
  with all bits available for payload.

  Structured TDM:
  TDM with one or more levels of structure delineation, including
  frames, channelization, and multiframes (e.g., as defined in [G.704],
  [G.751], and [T1.107]).

  Structure-Agnostic Transport:
  Transport of unstructured TDM, or of structured TDM when the
  structure is deemed inconsequential from the transport point of view.
  In structure-agnostic transport, any structural overhead that may be
  present is transparently transported along with the payload data, and
  the encapsulation provides no mechanisms for its location or
  utilization.

  Structure-Aware Transport:
  Transport of structured TDM taking at least some level of the
  structure into account.  In structure-aware transport, there is no
  guarantee that all bits of the TDM bit-stream will be transported
  over the PSN network (specifically, the synchronization bits and
  related overhead may be stripped at ingress and usually will be
  regenerated at egress) or that transported bits will be situated in
  the packet in their original order (but in this case, bit order is
  usually recovered at egress; one known exception is loss of
  multiframe synchronization between the TDM data and CAS bits
  introduced by a digital cross-connect acting as a Native Service
  Processing (NSP) block, see [TR-NWT-170]).

1.2.  SONET/SDH Circuits

  The term SONET refers to the North American Synchronous Optical
  NETwork as specified by [T1.105].  It is based on the concept of a
  Nx783 byte payload container repeated every 125us.  This payload is
  referred to as an STS-1 SPE and may be concatenated into higher
  bandwidth circuits (e.g., STS-Nc) or sub-divided into lower bandwidth
  circuits (Virtual Tributaries).  The higher bandwidth concatenated
  circuits can be used to carry anything from IP Packets to ATM cells
  to Digital Video Signals.  Individual STS-1 SPEs are frequently used





Riegel                       Informational                      [Page 4]

RFC 4197                 PWE3 TDM Requirements              October 2005


  to carry individual DS3 or E3 TDM circuits.  When the 783 byte
  containers are sub-divided for lower rate payloads, they are
  frequently used to carry individual T1 or E1 TDM circuits.

  The Synchronous Digital Hierarchy (SDH) is the international
  equivalent and enhancement of SONET and is specified by [G.707].

  Both SONET and SDH include a substantial amount of transport overhead
  that is used for performance monitoring, fault isolation, and other
  maintenance functions along different types of optical or electrical
  spans.  This also includes a pointer-based mechanism for carrying
  payloads asynchronously.  In addition, the payload area includes
  dedicated overhead for end-to-end performance monitoring, fault
  isolation, and maintenance for the service being carried.  If the
  main payload area is sub-divided into lower rate circuits (such as
  T1/E1), additional overhead is included for end-to-end monitoring of
  the individual T1/E1 circuits.

  This document discusses the requirements for emulation of SONET/SDH
  services.  These services include end-to-end emulation of the SONET
  payload (STS-1 SPE), emulation of concatenated payloads (STS-Nc SPE),
  as well as emulation of a variety of sub-STS-1 rate circuits jointly
  referred to as Virtual Tributaries (VT) and their SDH analogs.

2.  Motivation

  [RFC3916] specifies common requirements for edge-to-edge emulation of
  circuits of various types.  However, these requirements, as well as
  references in [RFC3985], do not cover specifics of PWs carrying TDM
  circuits.

  The need for a specific document to complement [RFC3916] addressing
  of edge-to-edge emulation of TDM circuits arises from the following:

  o  Specifics of the TDM circuits.  For example,

     *  the need for balance between the clock of ingress and egress
        attachment circuits in each direction of the Pseudo Wire (PW),

     *  the need to maintain jitter and wander of the clock of the
        egress end service, within the limits imposed by the
        appropriate normative documents, in the presence of the packet
        delay variation produced by the PSN.

  o  Specifics of applications using TDM circuits.  For example, voice
     applications,

     *  put special emphasis on minimization of one-way delay, and



Riegel                       Informational                      [Page 5]

RFC 4197                 PWE3 TDM Requirements              October 2005


     *  are relatively tolerant to errors in data.

  o  Other applications might have different specifics.  For example,
     transport of signaling information

     *  is relatively tolerant to one-way delay, and

     *  is sensitive to errors in transmitted data.

  o  Specifics of the customers' expectations regarding end-to-end
     behavior of services that contain emulated TDM circuits.  For
     example, experience with carrying such services over SONET/SDH
     networks increases the need for

     *  isolation of problems introduced by the PSN from those
        occurring beyond the PSN bounds,

     *  sensitivity to misconnection,

     *  sensitivity to unexpected connection termination, etc.

3.  Terminology

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in [RFC2119].

  The terms defined in [RFC3985], Section 1.4 are used consistently.
  However some terms and acronyms are used in conjunction with the TDM
  services.  In particular:

  TDM networks employ Channel-Associated Signaling (CAS) or Common
  Channel Signaling (CCS) to supervise and advertise status of
  telephony applications, provide alerts to these applications (as to
  requests to connect or disconnect), and to transfer routing and
  addressing information.  These signals must be reliably transported
  over the PSNs for the telephony end-systems to function properly.

  CAS (Channel-Associated Signaling)
     CAS is carried in the same T1 or E1 frame as the voice signals,
     but not in the speech band.  Since CAS signaling may be
     transferred at a rate slower than the TDM traffic in a timeslot,
     one need not update all the CAS bits in every TDM frame.  Hence,
     CAS systems cycle through all the signaling bits only after some
     number of TDM frames, which defines a new structure known as a
     multiframe or superframe.  Common multiframes are 12, 16, or 24
     frames in length, corresponding to 1.5, 2, and 3 milliseconds in
     duration.



Riegel                       Informational                      [Page 6]

RFC 4197                 PWE3 TDM Requirements              October 2005


  CCS (Common Channel Signaling)
     CCS signaling uses a separate digital channel to carry
     asynchronous messages pertaining to the state of telephony
     applications over related TDM timeslots of a TDM trunk.  This
     channel may be physically situated in one or more adjacent
     timeslots of the same TDM trunk (trunk associated CCS) or may be
     transported over an entirely separate network.

     CCS is typically HDLC-based, with idle codes or keep-alive
     messages being sent until a signaling event (e.g., on-hook or
     off-hook) occurs.  Examples of HDLC-based CCS systems are SS7
     [Q.700] and ISDN PRI signaling [Q.931].

  Note: For the TDM network, we use the terms "jitter" and "wander" as
  defined in [G.810] to describe short- and long-term variance of the
  significant instants of the digital signal, while for the PSN we use
  the term packet delay variation (PDV) (see [RFC3393]).

4.  Reference Models

4.1.  Generic PWE3 Models

  Generic models that have been defined in [RFC3985] in sections

  - 4.1 (Network Reference Model),
  - 4.2 (PWE3 Pre-processing),
  - 4.3 (Maintenance Reference Model),
  - 4.4 (Protocol Stack Reference Model) and
  - 4.5 (Pre-processing Extension to Protocol Stack Reference Model).

  They are fully applicable for the purposes of this document without
  modification.

  All the services considered in this document represent special cases
  of the Bit-stream and Structured bit-stream payload type defined in
  Section 3.3 of [RFC3985].

4.2.  Clock Recovery

  Clock recovery is extraction of the transmission bit timing
  information from the delivered packet stream.  Extraction of this
  information from a highly jittered source, such as a packet stream,
  may be a complex task.








Riegel                       Informational                      [Page 7]

RFC 4197                 PWE3 TDM Requirements              October 2005


4.3.  Network Synchronization Reference Model

  Figure 1 shows a generic network synchronization reference model.

         +---------------+               +---------------+
         |      PE1      |               |      PE2      |
      K  |   +--+        |               |        +--+   |  G
      |  |   | J|        |               |        | H|   |  |
      v  |   v  |        |               |        v  |   |  v
  +---+  | +-+  +-+  +-+ |  +--+   +--+  | +-+  +-+  +-+ |  +---+
  |   |  | |P|  |D|  |P| |  |  |   |  |  | |P|  |E|  |P| |  |   |
  |   |<===|h|<:|e|<:|h|<:::|  |<::|  |<:::|h|<:|n|<=|h|<===|   |
  |   |  | |y|  |c|  |y| |  |  |   |  |  | |y|  |c|  |y| |  |   |
  | C |  | +-+  +-+  +-+ |  |  |   |  |  | +-+  +-+  +-+ |  | C |
  | E |  |               |  |S1|   |S2|  |               |  | E |
  | 1 |  | +-+  +-+  +-+ |  |  |   |  |  | +-+  +-+  +-+ |  | 2 |
  |   |  | |P|  |E|  |P| |  |  |   |  |  | |P|  |D|  |P| |  |   |
  |   |===>|h|=>|n|:>|h|:::>|  |::>|  |:::>|h|:>|e|=>|h|===>|   |
  |   |  | |y|  |c|  |y| |  |  |   |  |  | |y|  |c|  |y| |  |   |
  +---+  | +-+  +-+  +-+ |  +--+   +--+  | +-+  +-+  +-+ |  +---+
   ^  ^  |   |  ^        |               |        |  ^   |  ^  ^
   |  |  |   |B |        |<------+------>|        |  |   |  |  |
   |  A  |   +--+        |       |       |        +--+-E |  F  |
   |     +---------------+      +-+      +---------------+     |
   |             ^              |I|               ^            |
   |             |              +-+               |            |
   |             C                                D            |
   +-----------------------------L-----------------------------+

      Figure 1: The Network Synchronization Reference Model

  The following notation is used in Figure 1:

  CE1, CE2
     Customer edge devices terminating TDM circuits to be emulated.

  PE1, PE2
     Provider edge devices adapting these end services to PW.

  S1, S2
     Provider core routers.

  Phy
     Physical interface terminating the TDM circuit.

  Enc
     PSN-bound interface of the PW, where the encapsulation takes
     place.



Riegel                       Informational                      [Page 8]

RFC 4197                 PWE3 TDM Requirements              October 2005


  Dec
     CE-bound interface of the PW, where the decapsulation takes place.
     It contains a compensation buffer (also known as the "jitter
     buffer") of limited size.

  "==>"
     TDM attachment circuits.

  "::>"
     PW providing edge-to-edge emulation for the TDM circuit.

  The characters "A" - "L" denote various clocks:

  "A"
     The clock used by CE1 for transmission of the TDM attachment
     circuit towards CE1.

  "B"
     The clock recovered by PE1 from the incoming TDM attachment
     circuit.  "A" and "B" always have the same frequency.

  "G"
     The clock used by CE2 for transmission of the TDM attachment
     circuit towards CE2.

  "H"
     The clock recovered by PE2 from the incoming TDM attachment
     circuit.  "G" and "H" always have the same frequency.

  "C", "D"
     Local oscillators available to PE1 and PE2, respectively.

  "E"
     Clock used by PE2 to transmit the TDM attachment service circuit
     to CE2 (the recovered clock).

  "F"
     Clock recovered by CE2 from the incoming TDM attachment service
     ("E and "F" have the same frequency).

  "I"
     If the clock exists, it is the common network reference clock
     available to PE1 and PE2.

  "J"
     Clock used by PE1 to transmit the TDM attachment service circuit
     to CE1 (the recovered clock).




Riegel                       Informational                      [Page 9]

RFC 4197                 PWE3 TDM Requirements              October 2005


  "K"
     Clock recovered by CE1 from the incoming TDM attachment service
     ("J" and "K" have the same frequency).

  "L"
     If it exists, it is the common reference clock of CE1 and CE2.
     Note that different pairs of CE devices may use different common
     reference clocks.

  A requirement of edge-to-edge emulation of a TDM circuit is that
  clock "B" and "E", as well as clock "H" and "J", are of the same
  frequency.  The most appropriate method will depend on the network
  synchronization scheme.

  The following groups of synchronization scenarios can be considered:

4.3.1.  Synchronous Network Scenarios

  Depending on which part of the network is synchronized by a common
  clock, there are two scenarios:

  o  PE Synchronized Network:

     Figure 2 is an adapted version of the generic network reference
     model, and presents the PE synchronized network scenario.

     The common network reference clock "I" is available to all the PE
     devices, and local oscillators "C" and "D" are locked to "I":

     *  Clocks "E" and "J" are the same as "D" and "C", respectively.

     *  Clocks "A" and "G" are the same as "K" and "F", respectively
        (i.e., CE1 and CE2 use loop timing).


















Riegel                       Informational                     [Page 10]

RFC 4197                 PWE3 TDM Requirements              October 2005


                      +-----+                 +-----+
     +-----+    |     |- - -|=================|- - -|     |    +-----+
     | /-- |<---------|............PW1..............|<---------| <-\ |
     || CE |    |     | PE1 |                 | PE2 |     |    |CE2 ||
     | \-> |--------->|............PW2..............|--------->| --/ |
     +-----+    |     |- - -|=================|- - -|     |    +-----+
                      +-----+                 +-----+
                         ^                       ^
                         |C                      |D
                         +-----------+-----------+
                                     |
                                    +-+
                                    |I|
                                    +-+

                    Figure 2: PE Synchronized Scenario

  o  CE Synchronized Network:

     Figure 3 is an adapted version of the generic network reference
     model, and presents the CE synchronized network scenario.

     The common network reference clock "L" is available to all the CE
     devices, and local oscillators "A" and "G" are locked to "L":

     *  Clocks "E" and "J" are the same as "G" and "A", respectively
        (i.e., PE1 and PE2 use loop timing).

                      +-----+                 +-----+
     +-----+    |     |- - -|=================|- - -|     |    +-----+
     |     |<---------|............PW1..............|<---------|     |
     | CE1 |    |     | PE1 |                 | PE2 |     |    | CE2 |
     |     |--------->|............PW2..............|--------->|     |
     +-----+    |     |- - -|=================|- - -|     |    +-----+
       ^              +-----+                 +-----+              ^
       |A                                                         G|
       +----------------------------+------------------------------+
                                    |
                                   +-+
                                   |L|
                                   +-+

                    Figure 3: CE Synchronized Scenario

  No timing information has to be transferred in these cases.






Riegel                       Informational                     [Page 11]

RFC 4197                 PWE3 TDM Requirements              October 2005


4.3.2.  Relative Network Scenario

  In this case, each CE uses its own transmission clock source that
  must be carried across the PSN and recovered by the remote PE,
  respectively.  The common PE clock "I" can be used as reference for
  this purpose.

  Figure 4 shows the relative network scenario.

  The common network reference clock "I" is available to all the PE
  devices, and local oscillators "C" and "D" are locked to "I":

  o  Clocks "A" and "G" are generated locally without reference to a
     common clock.

  o  Clocks "E" and "J" are generated in reference to a common clock
     available at all PE devices.

  In a slight modification of this scenario, one (but not both!) of the
  CE devices may use its receive clock as its transmission clock (i.e.,
  use loop timing).

                                                             |G
                   +-----+                 +-----+           v
  +-----+    |     |- - -|=================|- - -|     |    +-----+
  |     |<---------|............PW1..............|<---------|     |
  | CE1 |    |     | PE1 |                 | PE2 |     |    | CE2 |
  |     |--------->|............PW2..............|--------->|     |
  +-----+    |     |- - -|=================|- - -|     |    +-----+
       ^           +-----+<-------+------->+-----+
       |A                         |
                                 +-+
                                 |I|
                                 +-+

            Figure 4: Relative Network Scenario Timing

  In this case, timing information (the difference between the common
  reference clock "I" and the incoming clock "A") MUST be explicitly
  transferred from the ingress PE to the egress PE.

4.3.3.  Adaptive Network Scenario

  The adaptive scenario is characterized by:

  o  No common network reference clock "I" is available to PE1 and PE2.

  o  No common reference clock "L" is available to CE1 and CE2.



Riegel                       Informational                     [Page 12]

RFC 4197                 PWE3 TDM Requirements              October 2005


  Figure 5 presents the adaptive network scenario.

                    |J                                       |G
                    v                                        |
                   +-----+                 +-----+           v
  +-----+    |     |- - -|=================|- - -|     |    +-----+
  |     |<---------|............PW1..............|<---------|     |
  | CE1 |    |     | PE1 |                 | PE2 |     |    | CE2 |
  |     |--------->|............PW2..............|--------->|     |
  +-----+    |     |- - -|=================|- - -|     |    +-----+
       ^           +-----+                 +-----+
       |                                        ^
      A|                                       E|

                    Figure 5: Adaptive Scenario

  Synchronizing clocks "A" and "E" in this scenario is more difficult
  than it is in the other scenarios.

  Note that the tolerance between clocks "A" and "E" must be small
  enough to ensure that the jitter buffer does not overflow or
  underflow.

  In this case, timing information MAY be explicitly transferred from
  the ingress PE to the egress PE, e.g., by RTP.

5.  Emulated Services

  This section defines requirements for the payload and encapsulation
  layers for edge-to-edge emulation of TDM services with bit-stream
  payload as well as structured bit-stream payload.

  Wherever possible, the requirements specified in this document SHOULD
  be satisfied by appropriate arrangements of the encapsulation layer
  only.  The (rare) cases when the requirements apply to both the
  encapsulation and payload layers (or even to the payload layer only)
  will be explicitly noted.

  The service-specific encapsulation layer for edge-to-edge emulation
  comprises the following services over a PSN.

5.1.  Structure-Agnostic Transport of Signals out of the PDH Hierarchy

  Structure-agnostic transport is considered for the following signals:

  o  E1 as described in [G.704].

  o  T1 (DS1) as described in [G.704].



Riegel                       Informational                     [Page 13]

RFC 4197                 PWE3 TDM Requirements              October 2005


  o  E3 as defined in [G.751].

  o  T3 (DS3) as described in [T1.107].

5.2.  Structure-Aware Transport of Signals out of the PDH Hierarchy

  Structure-aware transport is considered for the following signals:

  o  E1/T1 with one of the structures imposed by framing as described
     in [G.704].

  o  NxDS0 with or without CAS.

5.3.  Structure-Aware Transport of SONET/SDH Circuits

  Structure-aware transport is considered for the following SONET/SDH
  circuits:

  o  SONET STS-1 synchronous payload envelope (SPE)/SDH VC-3.

  o  SONET STS-Nc SPE (N = 3, 12, 48, 192) / SDH VC-4, VC-4-4c,
     VC-4-16c, VC-4-64c.

  o  SONET VT-N (N = 1.5, 2, 3, 6) / SDH VC-11, VC-12, VC-2.

  o  SONET Nx VT-N / SDH Nx VC-11/VC-12/VC-2/VC-3.

  Note: There is no requirement for the structure-agnostic transport of
  SONET/SDH.  For this case, it would seem that structure must be taken
  into account.

6.  Generic Requirements

6.1.  Relevant Common PW Requirements

  The encapsulation and payload layers MUST conform to the common PW
  requirements defined in [RFC3916]:

  1.  Conveyance of Necessary Header Information:

      A.  For structure-agnostic transport, this functionality MAY be
          provided by the payload layer.

      B.  For structure-aware transport, the necessary information MUST
          be provided by the encapsulation layer.






Riegel                       Informational                     [Page 14]

RFC 4197                 PWE3 TDM Requirements              October 2005


      C.  Structure-aware transport of SONET/SDH circuits MUST preserve
          path overhead information as part of the payload.  Relevant
          components of the transport overhead MAY be carried in the
          encapsulation layer.

  2.  Support of Multiplexing and Demultiplexing if supported by the
      native services.  This is relevant for Nx DS0 circuits (with or
      without signaling) and Nx VT-x in a single STS-1 SPE or VC-4.:

      A.  For these circuits, the combination of encapsulation and
          payload layers MUST provide for separate treatment of every
          sub-circuit.

      B.  Enough information SHOULD be provided by the pseudo wire to
          allow multiplexing and demultiplexing by the NSP.  Reduction
          of the complexity of the PW emulation by using NSP circuitry
          for multiplexing and demultiplexing MAY be the preferred
          solution.

  3.  Intervention or transparent transfer of Maintenance Messages of
      the Native Services, depending on the particular scenario.

  4.  Consideration of Per-PSN Packet Overhead (see also Section 7.5
      below).

  5.  Detection and handling of PW faults.  The list of faults is given
      in Section 7.9 below.

  Fragmentation indications MAY be used for structure-aware transport
  when the structures in question either exceed desired packetization
  delay or exceed Path MTU between the pair of PEs.

  The following requirement listed in [RFC3916] is not applicable to
  emulation of TDM services:

  o  Support of variable length PDUs.

6.2.  Common Circuit Payload Requirements

  Structure-agnostic transport treats TDM circuits as belonging to the
  'Bit-stream' payload type defined in [RFC3985].

  Structure-aware transport treats these circuits as belonging to the
  "Structured bit-stream" payload type defined in [RFC3985].

  Accordingly, the encapsulation layer MUST provide the common
  Sequencing service and SHOULD provide Timing information
  (Synchronization services) when required (see Section 4.3 above).



Riegel                       Informational                     [Page 15]

RFC 4197                 PWE3 TDM Requirements              October 2005


  Note: Length service MAY be provided by the encapsulation layer, but
  is not required.

6.3.  General Design Issues

  The combination of payload and encapsulation layers SHOULD comply
  with the general design principles of the Internet protocols as
  presented in Section 3 of [RFC1958] and [RFC3985].

  If necessary, the payload layer MAY use some forms of adaptation of
  the native TDM payload in order to achieve specific, well-documented
  design objectives.  In these cases, standard adaptation techniques
  SHOULD be used.

7.  Service-Specific Requirements

7.1.  Connectivity

  1.  The emulation MUST support the transport of signals between
      Attachment Circuits (ACs) of the same type (see Section 5) and,
      wherever appropriate, bit-rate.

  2.  The encapsulation layer SHOULD remain unaffected by specific
      characteristics of connection between the ACs and PE devices at
      the two ends of the PW.

7.2.  Network Synchronization

  1.  The encapsulation layer MUST provide synchronization services
      that are sufficient to:

      A.  match the ingress and egress end service clocks regardless of
          the specific network synchronization scenario, and

      B.  keep the jitter and wander of the egress service clock within
          the service-specific limits defined by the appropriate
          normative references.

  2.  If the same high-quality synchronization source is available to
      all the PE devices in the given domain, the encapsulation layer
      SHOULD be able to make use of it (e.g., for better reconstruction
      of the native service clock).

7.3.  Robustness

  The robustness of the emulated service depends not only upon the
  edge-to-edge emulation protocol, but also upon proper implementation
  of the following procedures.



Riegel                       Informational                     [Page 16]

RFC 4197                 PWE3 TDM Requirements              October 2005


7.3.1.  Packet loss

  Edge-to-edge emulation of TDM circuits MAY assume very low
  probability of packet loss between ingress and egress PE.  In
  particular, no retransmission mechanisms are required.

  In order to minimize the effect of lost packets on the egress
  service, the encapsulation layer SHOULD:

  1.  Enable independent interpretation of TDM data in each packet by
      the egress PE (see [RFC2736]).  This requirement MAY be
      disregarded if the egress PE needs to interpret structures that
      exceed the path MTU between the ingress and egress PEs.

  2.  Allow reliable detection of lost packets (see next section).  In
      particular, it SHOULD allow estimation of the arrival time of the
      next packet and detection of lost packets based on this estimate.

  3.  Minimize possible effect of lost packets on recovery of the
      circuit clock by the egress PE.

  4.  Increase the resilience of the CE TDM interface to packet loss by
      allowing the egress PE to substitute appropriate data.

7.3.2.  Out-of-order delivery

  The encapsulation layer MUST provide the necessary mechanisms to
  guarantee ordered delivery of packets carrying the TDM data over the
  PSN.  Packets that have arrived out-of-order:

  1.  MUST be detected, and

  2.  SHOULD be reordered if not judged to be too late or too early for
      playout.

  Out-of-order packets that cannot be reordered MUST be treated as
  lost.

7.4.  CE Signaling

  Unstructured TDM circuits would not usually require any special
  mechanism for carrying CE signaling as this would be carried as part
  of the emulated service.

  Some CE applications using structured TDM circuits (e.g., telephony)
  require specific signaling that conveys the changes of state of these
  applications relative to the TDM data.




Riegel                       Informational                     [Page 17]

RFC 4197                 PWE3 TDM Requirements              October 2005


  The encapsulation layer SHOULD support signaling of state of CE
  applications for the relevant circuits providing for:

  1.  Ability to support different signaling schemes with minimal
      impact on encapsulation of TDM data,

  2.  Multiplexing of application-specific CE signals and data of the
      emulated service in the same PW,

  3.  Synchronization (within the application-specific tolerance
      limits) between CE signals and data at the PW egress,

  4.  Probabilistic recovery against possible, occasional loss of
      packets in the PSN, and

  5.  Deterministic recovery of the CE application state after PW setup
      and network outages.

  CE signaling that is used for maintenance purposes (loopback
  commands, performance monitoring data retrieval, etc.) SHOULD use the
  generic PWE3 maintenance protocol.

7.5.  PSN Bandwidth Utilization

  1.  The encapsulation layer SHOULD allow for an effective trade-off
      between the following requirements:

      A.  Effective PSN bandwidth utilization.  Assuming that the size
          of the encapsulation layer header does not depend on the size
          of its payload, an increase in the packet payload size
          results in increased efficiency.

      B.  Low edge-to-edge latency.  Low end-to-end latency is the
          common requirement for Voice applications over TDM services.
          Packetization latency is one of the components comprising
          edge-to-edge latency, and it decreases with the packet
          payload size.

      The compensation buffer used by the CE-bound IWF increases
      latency to the emulated circuit.  Additional delays introduced by
      this buffer SHOULD NOT exceed the packet delay variation observed
      in the PSN.

  2.  The encapsulation layer MAY provide for saving PSN bandwidth by
      not sending corrupted TDM data across the PSN.






Riegel                       Informational                     [Page 18]

RFC 4197                 PWE3 TDM Requirements              October 2005


  3.  The encapsulation layer MAY provide the ability to save the PSN
      bandwidth for the structure-aware case by not sending channels
      that are permanently inactive.

  4.  The encapsulation layer MAY enable the dynamic suppression of
      temporarily unused channels from transmission for the structure-
      aware case.

      If used, dynamic suppression of temporarily unused channels
      MUST NOT violate the integrity of the structures delivered over
      the PW.

  5.  For NxDS0, the encapsulation layer MUST provide the ability to
      keep the edge-to-edge delay independent of the service rate.

7.6.  Packet Delay Variation

  The encapsulation layer SHOULD provide for the ability to compensate
  for packet delay variation, while maintaining jitter and wander of
  the egress end service clock with tolerances specified in the
  normative references.

  The encapsulation layer MAY provide for run-time adaptation of delay
  introduced by the jitter buffer if the packet delay variation varies
  with time.  Such an adaptation MAY introduce a low level of errors
  (within the limits tolerated by the application) but SHOULD NOT
  introduce additional wander of the egress end service clock.

7.7.  Compatibility with the Existing PSN Infrastructure

  The combination of encapsulation and PSN tunnel layers used for edge-
  to-edge emulation of TDM circuits SHOULD be compatible with existing
  PSN infrastructures.  In particular, compatibility with the
  mechanisms of header compression over links where capacity is at a
  premium SHOULD be provided.

7.8.  Congestion Control

  TDM circuits run at a constant rate, and hence offer constant traffic
  loads to the PSN.  The rate varying mechanism that TCP uses to match
  the demand to the network congestion state is, therefore, not
  applicable.

  The ability to shut down a TDM PW when congestion has been detected
  MUST be provided.






Riegel                       Informational                     [Page 19]

RFC 4197                 PWE3 TDM Requirements              October 2005


  Precautions should be taken to avoid situations wherein multiple TDM
  PWs are simultaneously shut down or re-established, because this
  leads to PSN instability.

  Further congestion considerations are discussed in chapter 6.5 of
  [RFC3985].

7.9.  Fault Detection and Handling

  The encapsulation layer for edge-to-edge emulation of TDM services
  SHOULD, separately or in conjunction with the lower layers of the
  PWE3 stack, provide for detection, handling, and reporting of the
  following defects:

  1.  Misconnection, or Stray Packets.  The importance of this
      requirement stems from customer expectation due to reliable
      misconnection detection in SONET/SDH networks.

  2.  Packet Loss.  Packet loss detection is required to maintain clock
      integrity, as discussed in Section 7.3.1 above.  In addition,
      packet loss detection mechanisms SHOULD provide for localization
      of the outage in the end-to-end emulated service.

  3.  Malformed packets.

7.10.  Performance Monitoring

  The encapsulation layer for edge-to-edge emulation of TDM services
  SHOULD provide for collection of performance monitoring (PM) data
  that is compatible with the parameters defined for 'classic',
  TDM-based carriers of these services.  The applicability of [G.826]
  is left for further study.

8.  Security Considerations

  The security considerations in [RFC3916] are fully applicable to the
  emulation of TDM services.  In addition, TDM services are sensitive
  to packet delay variation [Section 7.6], and need to be protected
  from this method of attack.

9.  References

9.1.  Normative References

  [RFC2119]    Bradner, S., "Key words for use in RFCs to Indicate
               Requirement Levels", BCP 14, RFC 2119, March 1997.





Riegel                       Informational                     [Page 20]

RFC 4197                 PWE3 TDM Requirements              October 2005


9.2.  Informative References

  [RFC3916]    Xiao, X., McPherson, D., and P. Pate, "Requirements for
               Pseudo-Wire Emulation Edge-to-Edge (PWE3)", RFC 3916,
               September 2004.

  [RFC3985]    Bryant, S. and P. Pate, "Pseudo Wire Emulation Edge-to-
               Edge (PWE3) Architecture", RFC 3985, March 2005.

  [G.702]      ITU-T Recommendation G.702 (11/88) - Digital hierarchy
               bit rates

  [G.704]      ITU-T Recommendation G.704 (10/98) - Synchronous frame
               structures used at 1544, 6312, 2048, 8448 and 44 736
               Kbit/s hierarchical levels

  [G.706]      ITU-T Recommendation G.706 (04/91) - Frame alignment and
               cyclic redundancy check (CRC) procedures relating to
               basic frame structures defined in Recommendation G.704

  [G.707]      ITU-T Recommendation G.707 (10/00) - Network node
               interface for the synchronous digital hierarchy (SDH)

  [G.751]      ITU-T Recommendation G.751 (11/88) - Digital multiplex
               equipments operating at the third order bit rate of 34
               368 Kbit/s and the fourth order bit rate of 139 264
               Kbit/s and using positive justification

  [G.810]      ITU-T Recommendation G.810 (08/96) - Definitions and
               terminology for synchronization networks

  [G.826]      ITU-T Recommendation G.826 (02/99) - Error performance
               parameters and objectives for international, constant
               bit rate digital paths at or above the primary rate

  [Q.700]      ITU-T Recommendation Q.700 (03/93) - Introduction to
               CCITT Signalling System No. 7

  [Q.931]      ITU-T Recommendation Q.931 (05/98) - ISDN user-network
               interface layer 3 specification for basic call control

  [RFC1958]    Carpenter, B., "Architectural Principles of the
               Internet", RFC 1958, June 1996.

  [RFC2736]    Handley, M. and C. Perkins, "Guidelines for Writers of
               RTP Payload Format Specifications", BCP 36, RFC 2736,
               December 1999.




Riegel                       Informational                     [Page 21]

RFC 4197                 PWE3 TDM Requirements              October 2005


  [RFC3393]    Demichelis, C. and P. Chimento, "IP Packet Delay
               Variation Metric for IP Performance Metrics (IPPM)", RFC
               3393, November 2002.

  [T1.105]     ANSI T1.105 - 2001 Synchronous Optical Network (SONET) -
               Basic Description including Multiplex Structure, Rates,
               and Formats, May 2001

  [T1.107]     ANSI T1.107 - 1995.  Digital Hierarchy - Format
               Specification

  [TR-NWT-170] Digital Cross Connect Systems - Generic Requirements and
               Objectives, Bellcore, TR-NWT-170, January 1993

10.  Contributors Section

  The following have contributed to this document:

  Sasha Vainshtein
  Axerra Networks

  EMail: [email protected]


  Yaakov Stein
  RAD Data Communication

  EMail: [email protected]


  Prayson Pate
  Overture Networks, Inc.

  EMail: [email protected]


  Ron Cohen
  Lycium Networks

  EMail: [email protected]


  Tim Frost
  Zarlink Semiconductor

  EMail: [email protected]





Riegel                       Informational                     [Page 22]

RFC 4197                 PWE3 TDM Requirements              October 2005


Author's Address

  Maximilian Riegel
  Siemens AG
  St-Martin-Str 76
  Munich  81541
  Germany

  Phone: +49-89-636-75194
  EMail: [email protected]









































Riegel                       Informational                     [Page 23]

RFC 4197                 PWE3 TDM Requirements              October 2005


Full Copyright Statement

  Copyright (C) The Internet Society (2005).

  This document is subject to the rights, licenses and restrictions
  contained in BCP 78, and except as set forth therein, the authors
  retain all their rights.

  This document and the information contained herein are provided on an
  "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
  OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
  ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
  INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
  INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
  WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

  The IETF takes no position regarding the validity or scope of any
  Intellectual Property Rights or other rights that might be claimed to
  pertain to the implementation or use of the technology described in
  this document or the extent to which any license under such rights
  might or might not be available; nor does it represent that it has
  made any independent effort to identify any such rights.  Information
  on the procedures with respect to rights in RFC documents can be
  found in BCP 78 and BCP 79.

  Copies of IPR disclosures made to the IETF Secretariat and any
  assurances of licenses to be made available, or the result of an
  attempt made to obtain a general license or permission for the use of
  such proprietary rights by implementers or users of this
  specification can be obtained from the IETF on-line IPR repository at
  http://www.ietf.org/ipr.

  The IETF invites any interested party to bring to its attention any
  copyrights, patents or patent applications, or other proprietary
  rights that may cover technology that may be required to implement
  this standard.  Please address the information to the IETF at ietf-
  [email protected].

Acknowledgement

  Funding for the RFC Editor function is currently provided by the
  Internet Society.







Riegel                       Informational                     [Page 24]