Network Working Group                                           H.J. Lee
Request for Comments: 4196                                     J.H. Yoon
Category: Standards Track                                       S.L. Lee
                                                               J.I. Lee
                                                                   KISA
                                                           October 2005


           The SEED Cipher Algorithm and Its Use with IPsec

Status of This Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (2005).

Abstract

  This document describes the use of the SEED block cipher algorithm in
  the Cipher Block Chaining Mode, with an explicit IV, as a
  confidentiality mechanism within the context of the IPsec
  Encapsulating Security Payload (ESP).

1.  Introduction

1.1.  SEED

  SEED is a national industrial association standard [TTASSEED] and is
  widely used in South Korea for electronic commerce and financial
  services that are operated on wired and wireless communications.

  SEED is a 128-bit symmetric key block cipher that has been developed
  by KISA (Korea Information Security Agency) and a group of experts
  since 1998.  The input/output block size of SEED is 128-bit and the
  key length is also 128-bit.  SEED has the 16-round Feistel structure.
  A 128-bit input is divided into two 64-bit blocks, and the right 64-
  bit block is an input to the round function with a 64-bit subkey that
  is generated from the key scheduling.

  SEED is easily implemented in various software and hardware, and it
  can be effectively adopted to a computing environment with restricted
  resources, such as mobile devices and smart cards.



Lee, et al.                 Standards Track                     [Page 1]

RFC 4196               The Use of SEED with IPsec           October 2005


  SEED is robust against known attacks including DC (Differential
  cryptanalysis), LC (Linear cryptanalysis), and related key attacks.
  SEED has gone through wide public scrutinizing procedures.  It has
  been evaluated and is considered cryptographically secure by credible
  organizations such as ISO/IEC JTC 1/SC 27 and Japan CRYPTREC
  (Cryptography Research and Evaluation Committees)[ISOSEED][CRYPTREC].

  The remainder of this document specifies the use of SEED within the
  context of IPsec ESP.  For further information on how the various
  pieces of ESP fit together to provide security services, please refer
  to [ARCH], [ESP], and [ROAD].

1.2.  Terminology

  The key words "MUST", "MUST NOT", "REQUIRED", "SHOULD", "SHOULD NOT",
  "RECOMMENDED", "MAY", and "OPTIONAL" in this document (in uppercase,
  as shown) are to be interpreted as described in RFC 2119 [KEYWORDS].

2.  The SEED Cipher Algorithm

  All symmetric block cipher algorithms share common characteristics
  and variables, including mode, key size, weak keys, block size, and
  rounds.  The following sections contain descriptions of the relevant
  characteristics of SEED.

  The algorithm specification and object identifiers are described in
  [ISOSEED] [SEED].  The SEED homepage,
  http://www.kisa.or.kr/seed/seed_eng.html, contains a wealth of
  information about SEED, including a detailed specification,
  evaluation report, test vectors, and so on.

2.1.  Mode

  NIST has defined 5 modes of operation for the Advanced Encryption
  Standard (AES) [AES] and other FIPS-approved ciphers [MODES]: CBC
  (Cipher Block Chaining), ECB (Electronic Codebook), CFB (Cipher
  FeedBack), OFB (Output FeedBack), and CTR (Counter).  The CBC mode is
  well-defined and well-understood for symmetric ciphers, and is
  currently required for all other ESP ciphers.  This document
  specifies the use of the SEED cipher in the CBC mode within ESP.
  This mode requires an Initialization Vector (IV) that is the same
  size as the block size.  Use of a randomly generated IV prevents
  generation of identical ciphertext from packets that have identical
  data that spans the first block of the cipher algorithm's block size

  The IV is XOR'd with the first plaintext block before it is
  encrypted.  Then for successive blocks, the previous ciphertext block
  is XOR'd with the current plaintext before it is encrypted.



Lee, et al.                 Standards Track                     [Page 2]

RFC 4196               The Use of SEED with IPsec           October 2005


  More information on the CBC mode can be obtained in [MODES]
  [CRYPTO-S].  For use of the CBC mode in ESP with 64-bit ciphers,
  please see [CBC].

2.2.  Key Size and Numbers of Rounds

  SEED supports 128-bit key and has the 16-round Feistel structure.

2.3.  Weak Keys

  At the time this document was written, there were no known weak keys
  for SEED.

2.4.  Block Size and Padding

  SEED uses a block size of 16 octets (128 bits).

  Padding is required by SEED to maintain a 16-octet (128-bit)
  blocksize.  Padding MUST be added, as specified in [ESP], such that
  the data to be encrypted (which includes the ESP Pad Length and Next
  Header fields) has a length that is a multiple of 16 octets.

  Because of the algorithm specific padding requirement, no additional
  padding is required to ensure that the ciphertext terminates on a 4-
  octet boundary (i.e., maintaining a 16-octet blocksize guarantees
  that the ESP Pad Length and Next Header fields will be right aligned
  within a 4-octet word).  Additional padding MAY be included, as
  specified in [ESP], as long as the 16-octet blocksize is maintained.

2.5.  Performance

  Performance figures of SEED are available at
  http://www.kisa.or.kr/seed/seed_eng.html


















Lee, et al.                 Standards Track                     [Page 3]

RFC 4196               The Use of SEED with IPsec           October 2005


3.  ESP Payload

  The ESP Payload is made up of the Initialization Vector(IV) of 16
  octets followed by the encrypted payload.  Thus, the payload field,
  as defined in [ESP], is broken down according to the following
  diagram:

     +---------------+---------------+---------------+---------------+
     |                                                               |
     +               Initialization Vector (16 octets)               +
     |                                                               |
     +---------------+---------------+---------------+---------------+
     |                                                               |
     ~ Encrypted Payload (variable length, a multiple of 16 octets)  ~
     |                                                               |
     +---------------------------------------------------------------+

  The IV field MUST be the same size as the block size of the cipher
  algorithm being used.  The IV MUST be chosen at random and MUST be
  unpredictable.

  Including the IV in each datagram ensures that decryption of each
  received datagram can be performed, even when some datagrams are
  dropped or re-ordered in transit.

  To avoid CBC encryption of very similar plaintext blocks in different
  packets, implementations MUST NOT use a counter or other low-hamming
  distance source for IVs.

4.  Test Vectors

  The first 2 test cases test SEED-CBC encryption.  Each test case
  includes key, the plaintext, and the resulting ciphertext.  All data
  are hexadecimal numbers (not prefixed by "0x").

  The last 4 test cases illustrate sample ESP packets using SEED-CBC
  for encryption.  All data are hexadecimal numbers (not prefixed by
  "0x").

  Case #1    : Encrypting 32 bytes (2 blocks) using SEED-CBC with
               128-bit key
  Key        : ed2401ad  22fa2559  91bafdb0  1fefd697
  IV         : 93eb149f  92c9905b  ae5cd34d  a06c3c8e
  PlainText  : b40d7003  d9b6904b  35622750  c91a2457
               5bb9a632  364aa26e  3ac0cf3a  9c9d0dcb
  CipherText : f072c5b1  a0588c10  5af8301a  dcd91dd0
               67f68221  55304bf3  aad75ceb  44341c25




Lee, et al.                 Standards Track                     [Page 4]

RFC 4196               The Use of SEED with IPsec           October 2005


  Case #2    : Encrypting 64 bytes (4 blocks) using SEED-CBC with
               128-bit key
  Key        : 88e34f8f  081779f1  e9f39437  0ad40589
  IV         : 268d66a7  35a81a81  6fbad9fa  36162501
  PlainText  : d76d0d18  327ec562  b15e6bc3  65ac0c0f
               8d41e0bb  938568ae  ebfd92ed  1affa096
               394d20fc  5277ddfc  4de8b0fc  e1eb2b93
               d4ae40ef  4768c613  b50b8942  f7d4b9b3
  CipherText : a293eae9  d9aebfac  37ba714b  d774e427
               e8b706d7  e7d9a097  228639e0  b62b3b34
               ced11609  cef2abaa  ec2edf97  9308f379
               c31527a8  267783e5  cba35389  82b48d06

  Case #3  : Sample transport-mode ESP packet (ping 192.168.123.100)
  Key                 : 90d382b4 10eeba7a  d938c46c ec1a82bf
  SPI                 : 4321
  Source address      : 192.168.123.3
  Destination address : 192.168.123.100
  Sequence number     : 1
  IV                  : e96e8c08  ab465763  fd098d45  dd3ff893

  Original packet :
  IP header (20 bytes) : 45000054 08f20000 4001f9fe  c0a87b03  c0a87b64
  Data (64 bytes) :
  08000ebd  a70a0000  8e9c083d  b95b0700
  08090a0b  0c0d0e0f  10111213  14151617
  18191a1b  1c1d1e1f  20212223  24252627
  28292a2b  2c2d2e2f  30313233  34353637

  Augment data with :
  Padding     : 01020304  05060708  090a0b0c  0d0e
  Pad length  : 0e
  Next header : 01 (ICMP)

  Pre-encryption Data with padding, pad length and next header(80
  bytes):
  08000ebd  a70a0000  8e9c083d  b95b0700
  08090a0b  0c0d0e0f  10111213  14151617
  18191a1b  1c1d1e1f  20212223  24252627
  28292a2b  2c2d2e2f  30313233  34353637
  01020304  05060708  090a0b0c  0d0e0e01










Lee, et al.                 Standards Track                     [Page 5]

RFC 4196               The Use of SEED with IPsec           October 2005


  Post-encryption packet with SPI, Sequence number, IV :
  IP Header : 45000054 08f20000 4001f9fe  c0a87b03  c0a87b64
  SPI/Seq # : 00004321 00000001
  IV        : e96e8c08  ab465763  fd098d45  dd3ff893
  Encrypted Data (80 bytes) :
  e7ebaa03  cf45ef09  021b3011  b40d3769
  be96ebae  cd4222f6  b6f84ce5  b2d5cdd1
  60eb6b0e  5a47d16a  501a4d10  7b2d7cc8
  ab86ba03  9a000972  66374fa8  f87ee0fb
  ef3805db  faa144a2  334a34db  0b0f81ca

  Case #4 : Sample transport-mode ESP packet
  (ping -p 77 -s 20 192.168.123.100)
  Key : 90d382b4 10eeba7a d938c46c ec1a82bf
  SPI                 : 4321
  Source address      : 192.168.123.3
  Destination address : 192.168.123.100
  Sequence number     : 8
  IV : 69d08df7 d203329d b093fc49 24e5bd80

  Original packet:
  IP header (20 bytes) : 45000030 08fe0000 4001fa16 c0a87b03 c0a87b64
  Data (28 bytes) :
  0800b5e8 a80a0500 a69c083d 0b660e00 77777777 77777777 77777777

  Augment data with :
  Padding     : 0102
  Pad length  : 02
  Next header : 01 (ICMP)

  Pre-encryption Data with padding, pad length and
  next header(32 bytes):
  0800b5e8 a80a0500 a69c083d 0b660e00
  77777777 77777777 77777777 01020201

  Post-encryption packet with SPI, Sequence number, IV  :
  IP header : 4500004c 08fe0000 4032f9c9 c0a87b03 c0a87b64
  SPI/Seq # : 00004321 00000008
  IV        : 69d08df7 d203329d b093fc49 24e5bd80
  Encrypted Data (32 bytes) :
  b9ad6e19  e9a6a2fa  02569160  2c0af541
  db0b0807  e1f660c7  3ae2700b  5bb5efd1









Lee, et al.                 Standards Track                     [Page 6]

RFC 4196               The Use of SEED with IPsec           October 2005


  Case #5 : Sample tunnel-mode ESP packet (ping 192.168.123.200)
  Key     : 01234567  89abcdef  01234567  89abcdef
  SPI     : 8765
  Source address      : 192.168.123.3
  Destination address : 192.168.123.200
  Sequence number     : 2
  IV      : f4e76524  4f6407ad  f13dc138  0f673f37

  Original packet :
  IP header (20 bytes) : 45000054 09040000 4001f988 c0a87b03 c0a87bc8
  Data (64 bytes) :
  08009f76  a90a0100  b49c083d  02a20400
  08090a0b  0c0d0e0f  10111213  14151617
  18191a1b  1c1d1e1f  20212223  24252627
  28292a2b  2c2d2e2f  30313233  34353637

  Augment data with :
  Padding     : 01020304 05060708 090a
  Pad length  : 0a
  Next header : 04 (IP-in-IP)

  Pre-encryption Data with original IP header, padding, pad length and
  next header (96 bytes) :
  45000054  09040000  4001f988  c0a87b03
  c0a87bc8  08009f76  a90a0100  b49c083d
  02a20400  08090a0b  0c0d0e0f  10111213
  14151617  18191a1b  1c1d1e1f  20212223
  24252627  28292a2b  2c2d2e2f  30313233
  34353637  01020304  05060708  090a0a04

  Post-encryption packet with SPI, Sequence number, IV :
  IP header : 4500008c  09050000  4032f91e  c0a87b03  c0a87bc8
  SPI/Seq # : 00008765  00000002
  IV : f4e76524  4f6407ad  f13dc138  0f673f37
  Encrypted Data (96 bytes):
  2638aa7b  05e71b54  9348082b  67b47b26
  c565aed4  737f0bcb  439c0f00  73e7913c
  3c8a3e4f  5f7a5062  003b78ed  7ca54a08
  c7ce047d  5bec14e4  8cba1005  32a12097
  8d7f5503  204ef661  729b4ea1  ae6a9178
  59a5caac  46e810bd  7875bd13  d6f57b3d










Lee, et al.                 Standards Track                     [Page 7]

RFC 4196               The Use of SEED with IPsec           October 2005


  Case #6 : Sample tunnel-mode ESP packet
  (ping -p ff -s 40 192.168.123.200)
  Key : 01234567  89abcdef  01234567  89abcdef
  SPI : 8765
  Source address      : 192.168.123.3
  Destination address : 192.168.123.200
  Sequence number     : 5
  IV : 85d47224  b5f3dd5d  2101d4ea  8dffab22

  Original packet :
  IP header (20 bytes) :
  45000044  090c0000  4001f990  c0a87b03  c0a87bc8
  Data (48 bytes) :
  0800d63c  aa0a0200  c69c083d  a3de0300
  ffffffff  ffffffff  ffffffff  ffffffff
  ffffffff  ffffffff  ffffffff  ffffffff

  Augment data with :
  Padding     : 01020304  05060708  090a
  Pad length  : 0a
  Next header : 04 (IP-in-IP)

  Pre-encryption Data with original IP header, padding, pad length and
  next header (80 bytes):
  45000044  090c0000  4001f990  c0a87b03
  c0a87bc8  0800d63c  aa0a0200  c69c083d
  a3de0300  ffffffff  ffffffff  ffffffff
  ffffffff  ffffffff  ffffffff  ffffffff
  ffffffff  01020304  05060708  090a0a04

  Post-encryption packet with SPI, Sequence number, IV :
  IP header : 4500007c  090d0000  4032f926  c0a87b03  c0a87bc8
  SPI/Seq # : 00008765  00000005
  IV : 85d47224  b5f3dd5d  2101d4ea  8dffab22
  Encrypted Data (80 bytes) :
  311168e0  bc36ac4e  59802bd5  192c5734
  8f3d29c8  90bab276  e9db4702  91f79ac7
  79571929  c170f902  ffb2f08b  d448f782
  31671414  ff29b7e0  168e1c87  09ba2b67
  a56e0fbc  4ff6a936  d859ed57  6c16ef1b











Lee, et al.                 Standards Track                     [Page 8]

RFC 4196               The Use of SEED with IPsec           October 2005


5.  Interaction with IKE

  This section describes the use of IKE [IKE] to establish IPsec ESP
  security associations (SAs) that employ SEED in CBC mode.

5.1.  Phase 1 Identifier

  For Phase 1 negotiations, the object identifier of SEED-CBC is
  defined in [SEED].

  algorithm OBJECT IDENTIFIER ::= { iso(1) member-body(2) korea(410)
  kisa(200004) algorithm(1) }

  id-seedCBC OBJECT IDENTIFIER ::= { algorithm seedCBC(4) }

5.2.  Phase 2 Identifier

  For Phase 2 negotiations, IANA has assigned an ESP Transform
  Identifier of (21) for ESP_SEED_CBC.

5.3.  Key Length Attribute

  Since the SEED supports 128-bit key lengths, the Key Length attribute
  is set with 128 bits.

5.4.  Hash Algorithm Considerations

  HMAC-SHA-1 [HMAC-SHA] and HMAC-MD5 [HMAC-MD5] are currently
  considered of sufficient strength to serve both as IKE generators of
  128-bit SEED keys and as ESP authenticators for SEED encryption using
  128-bit keys.

6.  Security Considerations

  No security problem has been found on SEED.  SEED is secure against
  all known attacks including Differential cryptanalysis, Linear
  cryptanalysis, and related key attacks.  The best known attack is
  only an exhaustive search for the key (by [CRYPTREC]).  For further
  security considerations, the reader is encouraged to read [CRYPTREC],
  [ISOSEED], and [SEED-EVAL].

7.  IANA Considerations

  IANA has assigned ESP Transform Identifier (21) to ESP_SEED_CBC.







Lee, et al.                 Standards Track                     [Page 9]

RFC 4196               The Use of SEED with IPsec           October 2005


8.  Acknowledgments

  The authors want to thank Ph.D Haesuk Kim of Future Systems Inc. and
  Brian Kim of OULLIM Information Technology Inc. for providing expert
  advice on Test Vector examples.

9.  References

9.1.  Normative References

  [CBC]       Pereira, R. and R. Adams, "The ESP CBC-Mode Cipher
              Algorithms", RFC 2451, November 1998.

  [ESP]       Kent, S. and R. Atkinson, "IP Encapsulating Security
              Payload (ESP)", RFC 2406, November 1998.

  [IKE]       Harkins, D. and D. Carrel, "The Internet Key Exchange
              (IKE)", RFC 2409, November 1998.

  [KEYWORDS]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119, March 1997.

  [SEED]      Park, J., Lee, S., Kim, J., and J. Lee, "The SEED
              Encryption Algorithm", RFC 4009, February 2005.

  [TTASSEED]  Telecommunications Technology Association (TTA), South
              Korea, "128-bit Symmetric Block Cipher (SEED)", TTAS.KO-
              12.0004, September, 1998 (In Korean)
              http://www.tta.or.kr/English/new/main/index.htm

9.2.  Informative Reference

  [AES]       NIST, FIPS PUB 197, "Advanced Encryption Standard(AES),
              November 2001.
              http://csrc.nist.gov/publications/fips/fips197/fips-197.
              {ps,pdf}

  [ARCH]      Kent, S. and R. Atkinson, "Security Architecture for the
              Internet Protocol", RFC 2401, November 1998.

  [CRYPTO-S]  Schneier, B., "Applied Cryptography Second Edition", John
              Wiley & Sons, New York, NY, 1995, ISBN 0-471-12845-7.

  [CRYPTREC]  Information-technology Promotion Agency (IPA), Japan,
              CRYPTREC. "SEED Evaluation Report", February, 2002
              http://www.kisa.or.kr/seed/seed_eng.html





Lee, et al.                 Standards Track                    [Page 10]

RFC 4196               The Use of SEED with IPsec           October 2005


  [HMAC-MD5]  Madson, C. and R. Glenn, "The Use of HMAC-MD5-96 within
              ESP and AH", RFC 2403, November 1998.

  [HMAC-SHA]  Madson, C. and R. Glenn, "The Use of HMAC-SHA-1-96 within
              ESP and AH", RFC 2404, November 1998.

  [ISOSEED]   ISO/IEC JTC 1/SC 27 N3979, "IT Security techniques -
              Encryption Algorithms - Part3 : Block ciphers", June
              2004.

  [MODES]     Symmetric Key Block Cipher Modes of Operation,
              http://www.nist.gov/modes/.

  [ROAD]      Thayer, R., N. Doraswamy and R. Glenn, "IP Security
              Document Roadmap", RFC 2411, November 1998.

  [SEED-EVAL] KISA, "Self Evaluation Report",
              http://www.kisa.or.kr/seed/data/Document_pdf/
              SEED_Self_Evaluation.pdf"

Authors' Address

  Hyangjin Lee
  Korea Information Security Agency
  Phone: +82-2-405-5446
  Fax  : +82-2-405-5319
  EMail : [email protected]


  Jaeho Yoon
  Korea Information Security Agency
  Phone: +82-2-405-5434
  Fax  : +82-2-405-5219
  EMail : [email protected]


  Seoklae Lee
  Korea Information Security Agency
  Phone: +82-2-405-5230
  Fax  : +82-2-405-5219
  EMail : [email protected]


  Jaeil Lee
  Korea Information Security Agency
  Phone: +82-2-405-5200
  Fax  : +82-2-405-5219
  EMail: [email protected]



Lee, et al.                 Standards Track                    [Page 11]

RFC 4196               The Use of SEED with IPsec           October 2005


Full Copyright Statement

  Copyright (C) The Internet Society (2005).

  This document is subject to the rights, licenses and restrictions
  contained in BCP 78, and except as set forth therein, the authors
  retain all their rights.

  This document and the information contained herein are provided on an
  "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
  OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
  ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
  INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
  INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
  WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

  The IETF takes no position regarding the validity or scope of any
  Intellectual Property Rights or other rights that might be claimed to
  pertain to the implementation or use of the technology described in
  this document or the extent to which any license under such rights
  might or might not be available; nor does it represent that it has
  made any independent effort to identify any such rights.  Information
  on the procedures with respect to rights in RFC documents can be
  found in BCP 78 and BCP 79.

  Copies of IPR disclosures made to the IETF Secretariat and any
  assurances of licenses to be made available, or the result of an
  attempt made to obtain a general license or permission for the use of
  such proprietary rights by implementers or users of this
  specification can be obtained from the IETF on-line IPR repository at
  http://www.ietf.org/ipr.

  The IETF invites any interested party to bring to its attention any
  copyrights, patents or patent applications, or other proprietary
  rights that may cover technology that may be required to implement
  this standard.  Please address the information to the IETF at ietf-
  [email protected].

Acknowledgement

  Funding for the RFC Editor function is currently provided by the
  Internet Society.







Lee, et al.                 Standards Track                    [Page 12]