Network Working Group                                  H. Haverinen, Ed.
Request for Comments: 4186                                         Nokia
Category: Informational                                  J. Salowey, Ed.
                                                          Cisco Systems
                                                           January 2006


            Extensible Authentication Protocol Method for
            Global System for Mobile Communications (GSM)
                Subscriber Identity Modules (EAP-SIM)

Status of This Memo

  This memo provides information for the Internet community.  It does
  not specify an Internet standard of any kind.  Distribution of this
  memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (2006).

IESG Note

  The EAP-SIM protocol was developed by 3GPP.  The documentation of
  EAP-SIM is provided as information to the Internet community.  While
  the EAP WG has verified that EAP-SIM is compatible with EAP, as
  defined in RFC 3748, no other review has been done, including
  validation of the security claims.  The IETF has also not reviewed
  the security of the cryptographic algorithms.

Abstract

  This document specifies an Extensible Authentication Protocol (EAP)
  mechanism for authentication and session key distribution using the
  Global System for Mobile Communications (GSM) Subscriber Identity
  Module (SIM).  GSM is a second generation mobile network standard.
  The EAP-SIM mechanism specifies enhancements to GSM authentication
  and key agreement whereby multiple authentication triplets can be
  combined to create authentication responses and session keys of
  greater strength than the individual GSM triplets.  The mechanism
  also includes network authentication, user anonymity support, result
  indications, and a fast re-authentication procedure.









Haverinen & Salowey          Informational                      [Page 1]

RFC 4186                 EAP-SIM Authentication             January 2006


Table of Contents

  1. Introduction ....................................................4
  2. Terms ...........................................................5
  3. Overview ........................................................8
  4. Operation ......................................................10
     4.1. Version Negotiation .......................................10
     4.2. Identity Management .......................................11
          4.2.1. Format, Generation and Usage of Peer Identities ....11
          4.2.2. Communicating the Peer Identity to the Server ......17
          4.2.3. Choice of Identity for the EAP-Response/Identity ...19
          4.2.4. Server Operation in the Beginning of
                 EAP-SIM Exchange ...................................19
          4.2.5. Processing of EAP-Request/SIM/Start by the Peer ....20
          4.2.6. Attacks Against Identity Privacy ...................21
          4.2.7. Processing of AT_IDENTITY by the Server ............22
     4.3. Message Sequence Examples (Informative) ...................23
          4.3.1. Full Authentication ................................24
          4.3.2. Fast Re-authentication .............................25
          4.3.3. Fall Back to Full Authentication ...................26
          4.3.4. Requesting the Permanent Identity 1 ................27
          4.3.5. Requesting the Permanent Identity 2 ................28
          4.3.6. Three EAP-SIM/Start Roundtrips .....................28
  5. Fast Re-Authentication .........................................30
     5.1. General ...................................................30
     5.2. Comparison to UMTS AKA ....................................31
     5.3. Fast Re-authentication Identity ...........................31
     5.4. Fast Re-authentication Procedure ..........................33
     5.5. Fast Re-authentication Procedure when Counter Is
          Too Small .................................................36
  6. EAP-SIM Notifications ..........................................37
     6.1. General ...................................................37
     6.2. Result Indications ........................................39
     6.3. Error Cases ...............................................40
          6.3.1. Peer Operation .....................................40
          6.3.2. Server Operation ...................................41
          6.3.3. EAP-Failure ........................................42
          6.3.4. EAP-Success ........................................42
  7. Key Generation .................................................43
  8. Message Format and Protocol Extensibility ......................45
     8.1. Message Format ............................................45
     8.2. Protocol Extensibility ....................................47
  9. Messages .......................................................48
     9.1. EAP-Request/SIM/Start .....................................48
     9.2. EAP-Response/SIM/Start ....................................49
     9.3. EAP-Request/SIM/Challenge .................................49
     9.4. EAP-Response/SIM/Challenge ................................50
     9.5. EAP-Request/SIM/Re-authentication .........................51



Haverinen & Salowey          Informational                      [Page 2]

RFC 4186                 EAP-SIM Authentication             January 2006


     9.6. EAP-Response/SIM/Re-authentication ........................51
     9.7. EAP-Response/SIM/Client-Error .............................52
     9.8. EAP-Request/SIM/Notification ..............................52
     9.9. EAP-Response/SIM/Notification .............................53
  10. Attributes ....................................................53
     10.1. Table of Attributes ......................................53
     10.2. AT_VERSION_LIST ..........................................54
     10.3. AT_SELECTED_VERSION ......................................55
     10.4. AT_NONCE_MT ..............................................55
     10.5. AT_PERMANENT_ID_REQ ......................................56
     10.6. AT_ANY_ID_REQ ............................................56
     10.7. AT_FULLAUTH_ID_REQ .......................................57
     10.8. AT_IDENTITY ..............................................57
     10.9. AT_RAND ..................................................58
     10.10. AT_NEXT_PSEUDONYM .......................................59
     10.11. AT_NEXT_REAUTH_ID .......................................59
     10.12. AT_IV, AT_ENCR_DATA, and AT_PADDING .....................60
     10.13. AT_RESULT_IND ...........................................62
     10.14. AT_MAC ..................................................62
     10.15. AT_COUNTER ..............................................63
     10.16. AT_COUNTER_TOO_SMALL ....................................63
     10.17. AT_NONCE_S ..............................................64
     10.18. AT_NOTIFICATION .........................................64
     10.19. AT_CLIENT_ERROR_CODE ....................................65
  11. IANA Considerations ...........................................66
  12. Security Considerations .......................................66
     12.1. A3 and A8 Algorithms .....................................66
     12.2. Identity Protection ......................................66
     12.3. Mutual Authentication and Triplet Exposure ...............67
     12.4. Flooding the Authentication Centre .......................69
     12.5. Key Derivation ...........................................69
     12.6. Cryptographic Separation of Keys and Session
           Independence .............................................70
     12.7. Dictionary Attacks .......................................71
     12.8. Credentials Re-use .......................................71
     12.9. Integrity and Replay Protection, and Confidentiality .....72
     12.10. Negotiation Attacks .....................................73
     12.11. Protected Result Indications ............................73
     12.12. Man-in-the-Middle Attacks ...............................74
     12.13. Generating Random Numbers ...............................74
  13. Security Claims ...............................................74
  14. Acknowledgements and Contributions ............................75
     14.1. Contributors .............................................75
     14.2. Acknowledgements .........................................75
          14.2.1. Contributors' Addresses ...........................77
  15. References ....................................................78
     15.1. Normative References .....................................78
     15.2. Informative References ...................................79



Haverinen & Salowey          Informational                      [Page 3]

RFC 4186                 EAP-SIM Authentication             January 2006


  Appendix A.  Test Vectors .........................................81
     A.1.  EAP-Request/Identity .....................................81
     A.2.  EAP-Response/Identity ....................................81
     A.3.  EAP-Request/SIM/Start ....................................82
     A.4.  EAP-Response/SIM/Start ...................................82
     A.5.  EAP-Request/SIM/Challenge ................................83
     A.6.  EAP-Response/SIM/Challenge ...............................86
     A.7.  EAP-Success ..............................................86
     A.8.  Fast Re-authentication ...................................86
     A.9.  EAP-Request/SIM/Re-authentication ........................87
     A.10.  EAP-Response/SIM/Re-authentication ......................89
  Appendix B.  Pseudo-Random Number Generator .......................90

1.  Introduction

  This document specifies an Extensible Authentication Protocol (EAP)
  [RFC3748] mechanism for authentication and session key distribution
  using the Global System for Mobile Communications (GSM) Subscriber
  Identity Module (SIM).

  GSM is a second generation mobile network standard.  Second
  generation mobile networks and third generation mobile networks use
  different authentication and key agreement mechanisms.  EAP-AKA
  [EAP-AKA] specifies an EAP method that is based on the Authentication
  and Key Agreement (AKA) mechanism used in 3rd generation mobile
  networks.

  GSM authentication is based on a challenge-response mechanism.  The
  A3/A8 authentication and key derivation algorithms that run on the
  SIM can be given a 128-bit random number (RAND) as a challenge.  The
  SIM runs operator-specific algorithms, which take the RAND and a
  secret key Ki (stored on the SIM) as input, and produce a 32-bit
  response (SRES) and a 64-bit long key Kc as output.  The Kc key is
  originally intended to be used as an encryption key over the air
  interface, but in this protocol, it is used for deriving keying
  material and is not directly used.  Hence, the secrecy of Kc is
  critical to the security of this protocol.  For more information
  about GSM authentication, see [GSM-03.20].  See Section 12.1 for more
  discussion about the GSM algorithms used in EAP-SIM.

  The lack of mutual authentication is a weakness in GSM
  authentication.  The derived 64-bit cipher key (Kc) is not strong
  enough for data networks in which stronger and longer keys are
  required.  Hence, in EAP-SIM, several RAND challenges are used for
  generating several 64-bit Kc keys, which are combined to constitute
  stronger keying material.  In EAP-SIM, the client issues a random
  number NONCE_MT to the network in order to contribute to key
  derivation, and to prevent replays of EAP-SIM requests from previous



Haverinen & Salowey          Informational                      [Page 4]

RFC 4186                 EAP-SIM Authentication             January 2006


  exchanges.  The NONCE_MT can be conceived as the client's challenge
  to the network.  EAP-SIM also extends the combined RAND challenges
  and other messages with a message authentication code in order to
  provide message integrity protection along with mutual
  authentication.

  EAP-SIM specifies optional support for protecting the privacy of
  subscriber identity using the same concept as the GSM, which uses
  pseudonyms/temporary identifiers.  It also specifies an optional fast
  re-authentication procedure.

  The security of EAP-SIM builds on underlying GSM mechanisms.  The
  security properties of EAP-SIM are documented in Section 11 of this
  document.  Implementers and users of EAP-SIM are advised to carefully
  study the security considerations in Section 11 in order to determine
  whether the security properties are sufficient for the environment in
  question, especially as the secrecy of Kc keys is essential to the
  security of EAP-SIM.  In brief, EAP-SIM is in no sense weaker than
  the GSM mechanisms.  In some cases EAP-SIM provides better security
  properties than the underlying GSM mechanisms, particularly if the
  SIM credentials are only used for EAP-SIM and are not re-used from
  GSM/GPRS.  Many of the security features of EAP-SIM rely upon the
  secrecy of the Kc values in the SIM triplets, so protecting these
  values is key to the security of the EAP-SIM protocol.

  The 3rd Generation Partnership Project (3GPP) has specified an
  enhanced Authentication and Key Agreement (AKA) architecture for the
  Universal Mobile Telecommunications System (UMTS).  The 3rd
  generation AKA mechanism includes mutual authentication, replay
  protection, and derivation of longer session keys.  EAP-AKA [EAP-AKA]
  specifies an EAP method that is based on the 3rd generation AKA.
  EAP-AKA, which is a more secure protocol, may be used instead of
  EAP-SIM, if 3rd generation identity modules and 3G network
  infrastructures are available.

2.  Terms

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in [RFC2119].

  The terms and abbreviations "authenticator", "backend authentication
  server", "EAP server", "peer", "Silently Discard", "Master Session
  Key (MSK)", and "Extended Master Session Key (EMSK)" in this document
  are to be interpreted as described in [RFC3748].






Haverinen & Salowey          Informational                      [Page 5]

RFC 4186                 EAP-SIM Authentication             January 2006


  This document frequently uses the following terms and abbreviations:

  AAA protocol

        Authentication, Authorization, and Accounting protocol

  AuC

        Authentication Centre.  The GSM network element that provides
        the authentication triplets for authenticating
        the subscriber.

  Authentication vector

        GSM triplets can be alternatively called authentication
        vectors.

  EAP

        Extensible Authentication Protocol

  Fast re-authentication

        An EAP-SIM authentication exchange that is based on keys
        derived upon a preceding full authentication exchange.
        The GSM authentication and key exchange algorithms are not
        used in the fast re-authentication procedure.

  Fast Re-authentication Identity

        A fast re-authentication identity of the peer, including an NAI
        realm portion in environments where a realm is used.  Used on
        fast re-authentication only.

  Fast Re-authentication Username

        The username portion of fast re-authentication identity,
        i.e., not including any realm portions.

  Full authentication

        An EAP-SIM authentication exchange based on the GSM
        authentication and key agreement algorithms.

  GSM

        Global System for Mobile communications.




Haverinen & Salowey          Informational                      [Page 6]

RFC 4186                 EAP-SIM Authentication             January 2006


  GSM Triplet

        The tuple formed by the three GSM authentication values RAND,
        Kc, and SRES.

  IMSI

        International Mobile Subscriber Identifier, used in GSM to
        identify subscribers.

  MAC

        Message Authentication Code

  NAI

        Network Access Identifier

  Nonce

        A value that is used at most once or that is never repeated
        within the same cryptographic context.  In general, a nonce can
        be predictable (e.g., a counter) or unpredictable (e.g., a
        random value).  Since some cryptographic properties may depend
        on the randomness of the nonce, attention should be paid to
        whether a nonce is required to be random or not.  In this
        document, the term nonce is only used to denote random nonces,
        and it is not used to denote counters.

  Permanent Identity

        The permanent identity of the peer, including an NAI realm
        portion in environments where a realm is used.  The permanent
        identity is usually based on the IMSI.  Used on full
        authentication only.

  Permanent Username

        The username portion of permanent identity, i.e., not including
        any realm portions.

  Pseudonym Identity

        A pseudonym identity of the peer, including an NAI realm
        portion in environments where a realm is used.  Used on
        full authentication only.





Haverinen & Salowey          Informational                      [Page 7]

RFC 4186                 EAP-SIM Authentication             January 2006


  Pseudonym Username

        The username portion of pseudonym identity, i.e., not including
        any realm portions.

  SIM

        Subscriber Identity Module.  The SIM is traditionally a smart
        card distributed by a GSM operator.

3.  Overview

  Figure 1 shows an overview of the EAP-SIM full authentication
  procedure, wherein optional protected success indications are not
  used.  The authenticator typically communicates with an EAP server
  that is located on a backend authentication server using an AAA
  protocol.  The authenticator shown in the figure is often simply
  relaying EAP messages to and from the EAP server, but these backend
  AAA communications are not shown.

    Peer                                               Authenticator
      |                               EAP-Request/Identity       |
      |<---------------------------------------------------------|
      |                                                          |
      | EAP-Response/Identity                                    |
      |--------------------------------------------------------->|
      |                                                          |
      |                  EAP-Request/SIM/Start (AT_VERSION_LIST) |
      |<---------------------------------------------------------|
      |                                                          |
      | EAP-Response/SIM/Start (AT_NONCE_MT, AT_SELECTED_VERSION)|
      |--------------------------------------------------------->|
      |                                                          |
      |           EAP-Request/SIM/Challenge (AT_RAND, AT_MAC)    |
      |<---------------------------------------------------------|
  +-------------------------------------+                        |
  | Peer runs GSM algorithms, verifies  |                        |
  | AT_MAC and derives session keys     |                        |
  +-------------------------------------+                        |
      | EAP-Response/SIM/Challenge (AT_MAC)                      |
      |--------------------------------------------------------->|
      |                                                          |
      |                                             EAP-Success  |
      |<---------------------------------------------------------|
      |                                                          |

           Figure 1: EAP-SIM full authentication procedure




Haverinen & Salowey          Informational                      [Page 8]

RFC 4186                 EAP-SIM Authentication             January 2006


  The first EAP Request issued by the authenticator is
  EAP-Request/Identity.  On full authentication, the peer's response
  includes either the user's International Mobile Subscriber Identity
  (IMSI) or a temporary identity (pseudonym) if identity privacy is in
  effect, as specified in Section 4.2.

  Following the peer's EAP-Response/Identity packet, the peer receives
  EAP Requests of Type 18 (SIM) from the EAP server and sends the
  corresponding EAP Responses.  The EAP packets that are of the Type
  SIM also have a Subtype field.  On full authentication, the first
  EAP-Request/SIM packet is of the Subtype 10 (Start).  EAP-SIM packets
  encapsulate parameters in attributes, encoded in a Type, Length,
  Value format.  The packet format and the use of attributes are
  specified in Section 8.

  The EAP-Request/SIM/Start packet contains the list of EAP-SIM
  versions supported by the EAP server in the AT_VERSION_LIST
  attribute.  This packet may also include attributes for requesting
  the subscriber identity, as specified in Section 4.2.

  The peer responds to a EAP-Request/SIM/Start with the
  EAP-Response/SIM/Start packet, which includes the AT_NONCE_MT
  attribute that contains a random number NONCE_MT, chosen by the peer,
  and the AT_SELECTED_VERSION attribute that contains the version
  number selected by the peer.  The version negotiation is protected by
  including the version list and the selected version in the
  calculation of keying material (Section 7).

  After receiving the EAP Response/SIM/Start, the EAP server obtains n
  GSM triplets for use in authenticating the subscriber, where n = 2 or
  n = 3.  From the triplets, the EAP server derives the keying
  material, as specified in Section 7.  The triplets may be obtained by
  contacting an Authentication Centre (AuC) on the GSM network; per GSM
  specifications, between 1 and 5 triplets may be obtained at a time.
  Triplets may be stored in the EAP server for use at a later time, but
  triplets MUST NOT be re-used, except in some error cases that are
  specified in Section 10.9.

  The next EAP Request the EAP Server issues is of the type SIM and
  subtype Challenge (11).  It contains the RAND challenges and a
  message authentication code attribute AT_MAC to cover the challenges.
  The AT_MAC attribute is a general message authentication code
  attribute that is used in many EAP-SIM messages.

  On receipt of the EAP-Request/SIM/Challenge message, the peer runs
  the GSM authentication algorithm and calculates a copy of the message
  authentication code.  The peer then verifies that the calculated MAC
  equals the received MAC.  If the MAC's do not match, then the peer



Haverinen & Salowey          Informational                      [Page 9]

RFC 4186                 EAP-SIM Authentication             January 2006


  sends the EAP-Response/SIM/Client-Error packet and the authentication
  exchange terminates.

  Since the RANDs given to a peer are accompanied by the message
  authentication code AT_MAC, and since the peer's NONCE_MT value
  contributes to AT_MAC, the peer is able to verify that the EAP-SIM
  message is fresh (i.e., not a replay) and that the sender possesses
  valid GSM triplets for the subscriber.

  If all checks out, the peer responds with the
  EAP-Response/SIM/Challenge, containing the AT_MAC attribute that
  covers the peer's SRES response values (Section 9.4).  The EAP server
  verifies that the MAC is correct.  Because protected success
  indications are not used in this example, the EAP server sends the
  EAP-Success packet, indicating that the authentication was
  successful.  (Protected success indications are discussed in
  Section 6.2.)  The EAP server may also include derived keying
  material in the message it sends to the authenticator.  The peer has
  derived the same keying material, so the authenticator does not
  forward the keying material to the peer along with EAP-Success.

  EAP-SIM also includes a separate fast re-authentication procedure
  that does not make use of the A3/A8 algorithms or the GSM
  infrastructure.  Fast re-authentication is based on keys derived on
  full authentication.  If the peer has maintained state information
  for fast re-authentication and wants to use fast re-authentication,
  then the peer indicates this by using a specific fast
  re-authentication identity instead of the permanent identity or a
  pseudonym identity.  The fast re-authentication procedure is
  described in Section 5.

4.  Operation

4.1.  Version Negotiation

  EAP-SIM includes version negotiation so as to allow future
  developments in the protocol.  The version negotiation is performed
  on full authentication and it uses two attributes, AT_VERSION_LIST,
  which the server always includes in EAP-Request/SIM/Start, and
  AT_SELECTED_VERSION, which the peer includes in
  EAP-Response/SIM/Start on full authentication.

  AT_VERSION_LIST includes the EAP-SIM versions supported by the
  server.  If AT_VERSION_LIST does not include a version that is
  implemented by the peer and allowed in the peer's security policy,
  then the peer MUST send the EAP-Response/SIM/Client-Error packet
  (Section 9.7) to the server with the error code "unsupported
  version".  If a suitable version is included, then the peer includes



Haverinen & Salowey          Informational                     [Page 10]

RFC 4186                 EAP-SIM Authentication             January 2006


  the AT_SELECTED_VERSION attribute, containing the selected version in
  the EAP-Response/SIM/Start packet.  The peer MUST only indicate a
  version that is included in the AT_VERSION_LIST.  If several versions
  are acceptable, then the peer SHOULD choose the version that occurs
  first in the version list.

  The version number list of AT_VERSION_LIST and the selected version
  of AT_SELECTED_VERSION are included in the key derivation procedure
  (Section 7).  If an attacker modifies either one of these attributes,
  then the peer and the server derive different keying material.
  Because K_aut keys are different, the server and peer calculate
  different AT_MAC values.  Hence, the peer detects that AT_MAC,
  included in EAP-Request/SIM/Challenge, is incorrect and sends the
  EAP-Response/SIM/Client-Error packet.  The authentication procedure
  terminates.

4.2.  Identity Management

4.2.1.  Format, Generation and Usage of Peer Identities

4.2.1.1.  General

  In the beginning of EAP authentication, the Authenticator or the EAP
  server usually issues the EAP-Request/Identity packet to the peer.
  The peer responds with the EAP-Response/Identity, which contains the
  user's identity.  The formats of these packets are specified in
  [RFC3748].

  GSM subscribers are identified with the International Mobile
  Subscriber Identity (IMSI) [GSM-03.03].  The IMSI is a string of not
  more than 15 digits.  It is composed of a three digit Mobile Country
  Code (MCC), a two or three digit Mobile Network Code (MNC), and a
  Mobile Subscriber Identification Number (MSIN) of no more than 10
  digits.  MCC and MNC uniquely identify the GSM operator and help
  identify the AuC from which the authentication vectors need to be
  retrieved for this subscriber.

  Internet AAA protocols identify users with the Network Access
  Identifier (NAI) [RFC4282].  When used in a roaming environment, the
  NAI is composed of a username and a realm, separated with "@"
  (username@realm).  The username portion identifies the subscriber
  within the realm.

  This section specifies the peer identity format used in EAP-SIM.  In
  this document, the term "identity" or "peer identity" refers to the
  whole identity string that is used to identify the peer.  The peer





Haverinen & Salowey          Informational                     [Page 11]

RFC 4186                 EAP-SIM Authentication             January 2006


  identity may include a realm portion.  "Username" refers to the
  portion of the peer identity that identifies the user, i.e., the
  username does not include the realm portion.

4.2.1.2.  Identity Privacy Support

  EAP-SIM includes optional identity privacy (anonymity) support that
  can be used to hide the cleartext permanent identity and thereby make
  the subscriber's EAP exchanges untraceable to eavesdroppers.  Because
  the permanent identity never changes, revealing it would help
  observers to track the user.  The permanent identity is usually based
  on the IMSI, which may further help the tracking, because the same
  identifier may be used in other contexts as well.  Identity privacy
  is based on temporary identities, or pseudonyms, which are equivalent
  to but separate from the Temporary Mobile Subscriber Identities
  (TMSI) that are used on cellular networks.  Please see Section 12.2
  for security considerations regarding identity privacy.

4.2.1.3.  Username Types in EAP-SIM identities

  There are three types of usernames in EAP-SIM peer identities:

  (1) Permanent usernames.  For example,
  [email protected] might be a valid permanent identity.
  In this example, 1123456789098765 is the permanent username.

  (2) Pseudonym usernames.  For example, [email protected] might
  be a valid pseudonym identity.  In this example, 3s7ah6n9q is the
  pseudonym username.

  (3) Fast re-authentication usernames.  For example,
  [email protected] might be a valid fast re-authentication
  identity.  In this case, 53953754 is the fast re-authentication
  username.  Unlike permanent usernames and pseudonym usernames, fast
  re-authentication usernames are one-time identifiers, which are not
  re-used across EAP exchanges.

  The first two types of identities are used only on full
  authentication and the last one only on fast re-authentication.  When
  the optional identity privacy support is not used, the non-pseudonym
  permanent identity is used on full authentication.  The fast
  re-authentication exchange is specified in Section 5.

4.2.1.4.  Username Decoration

  In some environments, the peer may need to decorate the identity by
  prepending or appending the username with a string, in order to
  indicate supplementary AAA routing information in addition to the NAI



Haverinen & Salowey          Informational                     [Page 12]

RFC 4186                 EAP-SIM Authentication             January 2006


  realm.  (The usage of an NAI realm portion is not considered
  decoration.)  Username decoration is out of the scope of this
  document.  However, it should be noted that username decoration might
  prevent the server from recognizing a valid username.  Hence,
  although the peer MAY use username decoration in the identities that
  the peer includes in EAP-Response/Identity, and although the EAP
  server MAY accept a decorated peer username in this message, the peer
  or the EAP server MUST NOT decorate any other peer identities that
  are used in various EAP-SIM attributes.  Only the identity used in
  the EAP-Response/Identity may be decorated.

4.2.1.5.  NAI Realm Portion

  The peer MAY include a realm portion in the peer identity, as per the
  NAI format.  The use of a realm portion is not mandatory.

  If a realm is used, the realm MAY be chosen by the subscriber's home
  operator and it MAY be a configurable parameter in the EAP-SIM peer
  implementation.  In this case, the peer is typically configured with
  the NAI realm of the home operator.  Operators MAY reserve a specific
  realm name for EAP-SIM users.  This convention makes it easy to
  recognize that the NAI identifies a GSM subscriber.  Such a reserved
  NAI realm may be a useful hint as to the first authentication method
  to use during method negotiation.  When the peer is using a pseudonym
  username instead of the permanent username, the peer selects the
  realm name portion similarly as it select the realm portion when
  using the permanent username.

  If no configured realm name is available, the peer MAY derive the
  realm name from the MCC and MNC portions of the IMSI.  A RECOMMENDED
  way to derive the realm from the IMSI using the realm 3gppnetwork.org
  is specified in [3GPP-TS-23.003].

  Some old implementations derive the realm name from the IMSI by
  concatenating "mnc", the MNC digits of IMSI, ".mcc", the MCC digits
  of IMSI, and ".owlan.org".  For example, if the IMSI is
  123456789098765, and the MNC is three digits long, then the derived
  realm name is "mnc456.mcc123.owlan.org".  As there are no DNS servers
  running at owlan.org, these realm names can only be used with
  manually configured AAA routing.  New implementations SHOULD use the
  mechanism specified in [3GPP-TS-23.003] instead of owlan.org.

  The IMSI is a string of digits without any explicit structure, so the
  peer may not be able to determine the length of the MNC portion.  If
  the peer is not able to determine whether the MNC is two or three
  digits long, the peer MAY use a 3-digit MNC.  If the correct length
  of the MNC is two, then the MNC used in the realm name includes the
  first digit of the MSIN.  Hence, when configuring AAA networks for



Haverinen & Salowey          Informational                     [Page 13]

RFC 4186                 EAP-SIM Authentication             January 2006


  operators that have 2-digit MNCs, the network SHOULD also be prepared
  for realm names with incorrect, 3-digit MNCs.

4.2.1.6.  Format of the Permanent Username

  The non-pseudonym permanent username SHOULD be derived from the IMSI.
  In this case, the permanent username MUST be of the format "1" |
  IMSI, where the character "|" denotes concatenation.  In other words,
  the first character of the username is the digit one (ASCII value 31
  hexadecimal), followed by the IMSI.  The IMSI is encoded as an ASCII
  string that consists of not more than 15 decimal digits (ASCII values
  between 30 and 39 hexadecimal), one character per IMSI digit, in the
  order specified in [GSM-03.03].  For example, a permanent username
  derived from the IMSI 295023820005424 would be encoded as the ASCII
  string "1295023820005424" (byte values in hexadecimal notation: 31 32
  39 35 30 32 33 38 32 30 30 30 35 34 32 34).

  The EAP server MAY use the leading "1" as a hint to try EAP-SIM as
  the first authentication method during method negotiation, rather
  than, for example EAP/AKA.  The EAP-SIM server MAY propose EAP-SIM,
  even if the leading character was not "1".

  Alternatively, an implementation MAY choose a permanent username that
  is not based on the IMSI.  In this case, the selection of the
  username, its format, and its processing is out of the scope of this
  document.  In this case, the peer implementation MUST NOT prepend any
  leading characters to the username.

4.2.1.7.  Generating Pseudonyms and Fast Re-authentication Identities by
         the Server

  Pseudonym usernames and fast re-authentication identities are
  generated by the EAP server.  The EAP server produces pseudonym
  usernames and fast re-authentication identities in an
  implementation-dependent manner.  Only the EAP server needs to be
  able to map the pseudonym username to the permanent identity, or to
  recognize a fast re-authentication identity.

  EAP-SIM includes no provisions to ensure that the same EAP server
  that generated a pseudonym username will be used on the
  authentication exchange when the pseudonym username is used.  It is
  recommended that the EAP servers implement some centralized mechanism
  to allow all EAP servers of the home operator to map pseudonyms
  generated by other severs to the permanent identity.  If no such
  mechanism is available, then the EAP server failing to understand a
  pseudonym issued by another server can request the that peer send the
  permanent identity.




Haverinen & Salowey          Informational                     [Page 14]

RFC 4186                 EAP-SIM Authentication             January 2006


  When issuing a fast re-authentication identity, the EAP server may
  include a realm name in the identity to make the fast
  re-authentication request be forwarded to the same EAP server.

  When generating fast re-authentication identities, the server SHOULD
  choose a fresh, new fast re-authentication identity that is different
  from the previous ones that were used after the same full
  authentication exchange.  A full authentication exchange and the
  associated fast re-authentication exchanges are referred to here as
  the same "full authentication context".  The fast re-authentication
  identity SHOULD include a random component.  This random component
  works as a full authentication context identifier.  A
  context-specific fast re-authentication identity can help the server
  to detect whether its fast re-authentication state information
  matches that of its peer (in other words, whether the state
  information is from the same full authentication exchange).  The
  random component also makes the fast re-authentication identities
  unpredictable, so an attacker cannot initiate a fast
  re-authentication exchange to get the server's EAP-Request/SIM/
  Re-authentication packet.

  Transmitting pseudonyms and fast re-authentication identities from
  the server to the peer is discussed in Section 4.2.1.8.  The
  pseudonym is transmitted as a username, without an NAI realm, and the
  fast re-authentication identity is transmitted as a complete NAI,
  including a realm portion if a realm is required.  The realm is
  included in the fast re-authentication identity to allow the server
  to include a server-specific realm.

  Regardless of the construction method, the pseudonym username MUST
  conform to the grammar specified for the username portion of an NAI.
  The fast re-authentication identity also MUST conform to the NAI
  grammar.  The EAP servers that the subscribers of an operator can use
  MUST ensure that the pseudonym usernames and the username portions
  used in fast re-authentication identities they generate are unique.

  In any case, it is necessary that permanent usernames, pseudonym
  usernames, and fast re-authentication usernames are separate and
  recognizable from each other.  It is also desirable that EAP-SIM and
  EAP-AKA [EAP-AKA] usernames be distinguishable from each other as an
  aid for the server on which method to offer.

  In general, it is the task of the EAP server and the policies of its
  administrator to ensure sufficient separation of the usernames.
  Pseudonym usernames and fast re-authentication usernames are both
  produced and used by the EAP server.  The EAP server MUST compose
  pseudonym usernames and fast re-authentication usernames so that it
  can determine if an NAI username is an EAP-SIM pseudonym username or



Haverinen & Salowey          Informational                     [Page 15]

RFC 4186                 EAP-SIM Authentication             January 2006


  an EAP-SIM fast re-authentication username.  For instance, when the
  usernames have been derived from the IMSI, the server could use
  different leading characters in the pseudonym usernames and fast
  re-authentication usernames (e.g., the pseudonym could begin with a
  leading "3" character).  When mapping a fast re-authentication
  identity to a permanent identity, the server SHOULD only examine the
  username portion of the fast re-authentication identity and ignore
  the realm portion of the identity.

  Because the peer may fail to save a pseudonym username sent in an
  EAP-Request/SIM/Challenge, for example due to malfunction, the EAP
  server SHOULD maintain at least the most recently used pseudonym
  username in addition to the most recently issued pseudonym username.
  If the authentication exchange is not completed successfully, then
  the server SHOULD NOT overwrite the pseudonym username that was
  issued during the most recent successful authentication exchange.

4.2.1.8.  Transmitting Pseudonyms and Fast Re-authentication Identities
         to the Peer

  The server transmits pseudonym usernames and fast re-authentication
  identities to the peer in cipher, using the AT_ENCR_DATA attribute.

  The EAP-Request/SIM/Challenge message MAY include an encrypted
  pseudonym username and/or an encrypted fast re-authentication
  identity in the value field of the AT_ENCR_DATA attribute.  Because
  identity privacy support and fast re-authentication are optional
  implementations, the peer MAY ignore the AT_ENCR_DATA attribute and
  always use the permanent identity.  On fast re-authentication
  (discussed in Section 5), the server MAY include a new, encrypted
  fast re-authentication identity in the
  EAP-Request/SIM/Re-authentication message.

  On receipt of the EAP-Request/SIM/Challenge, the peer MAY decrypt the
  encrypted data in AT_ENCR_DATA.  If the authentication exchange is
  successful, and the encrypted data includes a pseudonym username,
  then the peer may use the obtained pseudonym username on the next
  full authentication.  If a fast re-authentication identity is
  included, then the peer MAY save it together with other fast
  re-authentication state information, as discussed in Section 5, for
  the next fast re-authentication.  If the authentication exchange does
  not complete successfully, the peer MUST ignore the received
  pseudonym username and the fast re-authentication identity.

  If the peer does not receive a new pseudonym username in the
  EAP-Request/SIM/Challenge message, the peer MAY use an old pseudonym
  username instead of the permanent username on the next full
  authentication.  The username portions of fast re-authentication



Haverinen & Salowey          Informational                     [Page 16]

RFC 4186                 EAP-SIM Authentication             January 2006


  identities are one-time usernames, which the peer MUST NOT re-use.
  When the peer uses a fast re-authentication identity in an EAP
  exchange, the peer MUST discard the fast re-authentication identity
  and not re-use it in another EAP authentication exchange, even if the
  authentication exchange was not completed.

4.2.1.9.  Usage of the Pseudonym by the Peer

  When the optional identity privacy support is used on full
  authentication, the peer MAY use a pseudonym username received as
  part of a previous full authentication sequence as the username
  portion of the NAI.  The peer MUST NOT modify the pseudonym username
  received in AT_NEXT_PSEUDONYM.  However, as discussed above, the peer
  MAY need to decorate the username in some environments by appending
  or prepending the username with a string that indicates supplementary
  AAA routing information.

  When using a pseudonym username in an environment where a realm
  portion is used, the peer concatenates the received pseudonym
  username with the "@" character and an NAI realm portion.  The
  selection of the NAI realm is discussed above.  The peer can select
  the realm portion similarly, regardless of whether it uses the
  permanent username or a pseudonym username.

4.2.1.10.  Usage of the Fast Re-authentication Identity by the Peer

  On fast re-authentication, the peer uses the fast re-authentication
  identity that was received as part of the previous authentication
  sequence.  A new re-authentication identity may be delivered as part
  of both full authentication and fast re-authentication.  The peer
  MUST NOT modify the username part of the fast re-authentication
  identity received in AT_NEXT_REAUTH_ID, except in cases when username
  decoration is required.  Even in these cases, the "root" fast
  re-authentication username must not be modified, but it may be
  appended or prepended with another string.

4.2.2.  Communicating the Peer Identity to the Server

4.2.2.1.  General

  The peer identity MAY be communicated to the server with the
  EAP-Response/Identity message.  This message MAY contain the
  permanent identity, a pseudonym identity, or a fast re-authentication
  identity.  If the peer uses the permanent identity or a pseudonym
  identity, which the server is able to map to the permanent identity,
  then the authentication proceeds as discussed in the overview of
  Section 3.  If the peer uses a fast re-authentication identity, and
  if the fast re-authentication identity matches with a valid fast



Haverinen & Salowey          Informational                     [Page 17]

RFC 4186                 EAP-SIM Authentication             January 2006


  re-authentication identity maintained by the server, and if the
  server agrees to use fast re-authentication, then a fast
  re-authentication exchange is performed, as described in Section 5.

  The peer identity can also be transmitted from the peer to the server
  using EAP-SIM messages instead of the EAP-Response/Identity.  In this
  case, the server includes an identity-requesting attribute
  (AT_ANY_ID_REQ, AT_FULLAUTH_ID_REQ or AT_PERMANENT_ID_REQ) in the
  EAP-Request/SIM/Start message, and the peer includes the AT_IDENTITY
  attribute, which contains the peer's identity, in the
  EAP-Response/SIM/Start message.  The AT_ANY_ID_REQ attribute is a
  general identity-requesting attribute, which the server uses if it
  does not specify which kind of an identity the peer should return in
  AT_IDENTITY.  The server uses the AT_FULLAUTH_ID_REQ attribute to
  request either the permanent identity or a pseudonym identity.  The
  server uses the AT_PERMANENT_ID_REQ attribute to request that the
  peer send its permanent identity.

  The identity format in the AT_IDENTITY attribute is the same as in
  the EAP-Response/Identity packet (except that identity decoration is
  not allowed).  The AT_IDENTITY attribute contains a permanent
  identity, a pseudonym identity, or a fast re-authentication identity.

  Please note that the EAP-SIM peer and the EAP-SIM server only process
  the AT_IDENTITY attribute; entities that only pass through EAP
  packets do not process this attribute.  Hence, the authenticator and
  other intermediate AAA elements (such as possible AAA proxy servers)
  will continue to refer to the peer with the original identity from
  the EAP-Response/Identity packet unless the identity authenticated in
  the AT_IDENTITY attribute is communicated to them in another way
  within the AAA protocol.

4.2.2.2.  Relying on EAP-Response/Identity Discouraged

  The EAP-Response/Identity packet is not method-specific, so in many
  implementations it may be handled by an EAP Framework.  This
  introduces an additional layer of processing between the EAP peer and
  EAP server.  The extra layer of processing may cache identity
  responses or add decorations to the identity.  A modification of the
  identity response will cause the EAP peer and EAP server to use
  different identities in the key derivation, which will cause the
  protocol to fail.

  For this reason, it is RECOMMENDED that the EAP peer and server use
  the method-specific identity attributes in EAP-SIM, and the server is
  strongly discouraged from relying upon the EAP-Response/Identity.





Haverinen & Salowey          Informational                     [Page 18]

RFC 4186                 EAP-SIM Authentication             January 2006


  In particular, if the EAP server receives a decorated identity in
  EAP-Response/Identity, then the EAP server MUST use the
  identity-requesting attributes to request that the peer send an
  unmodified and undecorated copy of the identity in AT_IDENTITY.

4.2.3.  Choice of Identity for the EAP-Response/Identity

  If EAP-SIM peer is started upon receiving an EAP-Request/Identity
  message, then the peer MAY use an EAP-SIM identity in the EAP-
  Response/Identity packet.  In this case, the peer performs the
  following steps.

  If the peer has maintained fast re-authentication state information
  and wants to use fast re-authentication, then the peer transmits the
  fast re-authentication identity in EAP-Response/Identity.

  Else, if the peer has a pseudonym username available, then the peer
  transmits the pseudonym identity in EAP-Response/Identity.

  In other cases, the peer transmits the permanent identity in
  EAP-Response/Identity.

4.2.4.  Server Operation in the Beginning of EAP-SIM Exchange

  As discussed in Section 4.2.2.2, the server SHOULD NOT rely on an
  identity string received in EAP-Response/Identity.  Therefore, the
  RECOMMENDED way to start an EAP-SIM exchange is to ignore any
  received identity strings.  The server SHOULD begin the EAP-SIM
  exchange by issuing the EAP-Request/SIM/Start packet with an
  identity-requesting attribute to indicate that the server wants the
  peer to include an identity in the AT_IDENTITY attribute of the EAP-
  Response/SIM/Start message.  Three methods to request an identity
  from the peer are discussed below.

  If the server chooses not to ignore the contents of EAP-
  Response/Identity, then the server may have already received an EAP-
  SIM identity in this packet.  However, if the EAP server has not
  received any EAP-SIM peer identity (permanent identity, pseudonym
  identity, or fast re-authentication identity) from the peer when
  sending the first EAP-SIM request, or if the EAP server has received
  an EAP-Response/Identity packet but the contents do not appear to be
  a valid permanent identity, pseudonym identity or a re-authentication
  identity, then the server MUST request an identity from the peer
  using one of the methods below.

  The server sends the EAP-Request/SIM/Start message with the
  AT_PERMANENT_ID_REQ attribute to indicate that the server wants the
  peer to include the permanent identity in the AT_IDENTITY attribute



Haverinen & Salowey          Informational                     [Page 19]

RFC 4186                 EAP-SIM Authentication             January 2006


  of the EAP-Response/SIM/Start message.  This is done in the following
  cases:

  o  The server does not support fast re-authentication or identity
     privacy.

  o  The server decided to process a received identity, and the server
     recognizes the received identity as a pseudonym identity but the
     server is not able to map the pseudonym identity to a permanent
     identity.

  The server issues the EAP-Request/SIM/Start packet with the
  AT_FULLAUTH_ID_REQ attribute to indicate that the server wants the
  peer to include a full authentication identity (pseudonym identity or
  permanent identity) in the AT_IDENTITY attribute of the
  EAP-Response/SIM/Start message.  This is done in the following cases:

  o  The server does not support fast re-authentication and the server
     supports identity privacy.

  o  The server decided to process a received identity, and the server
     recognizes the received identity as a re-authentication identity
     but the server is not able to map the re-authentication identity
     to a permanent identity.

  The server issues the EAP-Request/SIM/Start packet with the
  AT_ANY_ID_REQ attribute to indicate that the server wants the peer to
  include an identity in the AT_IDENTITY attribute of the
  EAP-Response/SIM/Start message, and the server does not indicate any
  preferred type for the identity.  This is done in other cases, such
  as when the server ignores a received EAP-Response/Identity, the
  server does not have any identity, or the server does not recognize
  the format of a received identity.

4.2.5.  Processing of EAP-Request/SIM/Start by the Peer

  Upon receipt of an EAP-Request/SIM/Start message, the peer MUST
  perform the following steps.

  If the EAP-Request/SIM/Start does not include an identity request
  attribute, then the peer responds with EAP-Response/SIM/Start without
  AT_IDENTITY.  The peer includes the AT_SELECTED_VERSION and
  AT_NONCE_MT attributes, because the exchange is a full authentication
  exchange.

  If the EAP-Request/SIM/Start includes AT_PERMANENT_ID_REQ, and if the
  peer does not have a pseudonym available, then the peer MUST respond
  with EAP-Response/SIM/Start and include the permanent identity in



Haverinen & Salowey          Informational                     [Page 20]

RFC 4186                 EAP-SIM Authentication             January 2006


  AT_IDENTITY.  If the peer has a pseudonym available, then the peer
  MAY refuse to send the permanent identity; hence, in this case the
  peer MUST either respond with EAP-Response/SIM/Start and include the
  permanent identity in AT_IDENTITY or respond with EAP-Response/SIM/
  Client-Error packet with the code "unable to process packet".

  If the EAP-Request/SIM/Start includes AT_FULL_AUTH_ID_REQ, and if the
  peer has a pseudonym available, then the peer SHOULD respond with
  EAP-Response/SIM/Start and include the pseudonym identity in
  AT_IDENTITY.  If the peer does not have a pseudonym when it receives
  this message, then the peer MUST respond with EAP-Response/SIM/Start
  and include the permanent identity in AT_IDENTITY.  The Peer MUST NOT
  use a re-authentication identity in the AT_IDENTITY attribute.

  If the EAP-Request/SIM/Start includes AT_ANY_ID_REQ, and if the peer
  has maintained fast re-authentication state information and the peer
  wants to use fast re-authentication, then the peer responds with
  EAP-Response/SIM/Start and includes the fast re-authentication
  identity in AT_IDENTITY.  Else, if the peer has a pseudonym identity
  available, then the peer responds with EAP-Response/SIM/Start and
  includes the pseudonym identity in AT_IDENTITY.  Else, the peer
  responds with EAP-Response/SIM/Start and includes the permanent
  identity in AT_IDENTITY.

  An EAP-SIM exchange may include several EAP/SIM/Start rounds.  The
  server may issue a second EAP-Request/SIM/Start if it was not able to
  recognize the identity that the peer used in the previous AT_IDENTITY
  attribute.  At most, three EAP/SIM/Start rounds can be used, so the
  peer MUST NOT respond to more than three EAP-Request/SIM/Start
  messages within an EAP exchange.  The peer MUST verify that the
  sequence of EAP-Request/SIM/Start packets that the peer receives
  comply with the sequencing rules defined in this document.  That is,
  AT_ANY_ID_REQ can only be used in the first EAP-Request/SIM/Start; in
  other words, AT_ANY_ID_REQ MUST NOT be used in the second or third
  EAP-Request/SIM/Start.  AT_FULLAUTH_ID_REQ MUST NOT be used if the
  previous EAP-Request/SIM/Start included AT_PERMANENT_ID_REQ.  The
  peer operation, in cases when it receives an unexpected attribute or
  an unexpected message, is specified in Section 6.3.1.

4.2.6.  Attacks Against Identity Privacy

  The section above specifies two possible ways the peer can operate
  upon receipt of AT_PERMANENT_ID_REQ.  This is because a received
  AT_PERMANENT_ID_REQ does not necessarily originate from the valid
  network, but an active attacker may transmit an EAP-Request/SIM/
  Start packet with an AT_PERMANENT_ID_REQ attribute to the peer, in an
  effort to find out the true identity of the user.  If the peer does
  not want to reveal its permanent identity, then the peer sends the



Haverinen & Salowey          Informational                     [Page 21]

RFC 4186                 EAP-SIM Authentication             January 2006


  EAP-Response/SIM/Client-Error packet with the error code "unable to
  process packet", and the authentication exchange terminates.

  Basically, there are two different policies that the peer can employ
  with regard to AT_PERMANENT_ID_REQ.  A "conservative" peer assumes
  that the network is able to maintain pseudonyms robustly.  Therefore,
  if a conservative peer has a pseudonym username, the peer responds
  with EAP-Response/SIM/Client-Error to the EAP packet with
  AT_PERMANENT_ID_REQ, because the peer believes that the valid network
  is able to map the pseudonym identity to the peer's permanent
  identity.  (Alternatively, the conservative peer may accept
  AT_PERMANENT_ID_REQ in certain circumstances, for example, if the
  pseudonym was received a long time ago.)  The benefit of this policy
  is that it protects the peer against active attacks on anonymity.  On
  the other hand, a "liberal" peer always accepts the
  AT_PERMANENT_ID_REQ and responds with the permanent identity.  The
  benefit of this policy is that it works even if the valid network
  sometimes loses pseudonyms and is not able to map them to the
  permanent identity.

4.2.7.  Processing of AT_IDENTITY by the Server

  When the server receives an EAP-Response/SIM/Start message with the
  AT_IDENTITY (in response to the server's identity requesting
  attribute), the server MUST operate as follows.

  If the server used AT_PERMANENT_ID_REQ, and if the AT_IDENTITY does
  not contain a valid permanent identity, then the server sends
  EAP-Request/SIM/Notification with AT_NOTIFICATION code "General
  failure" (16384), and the EAP exchange terminates.  If the server
  recognizes the permanent identity and is able to continue, then the
  server proceeds with full authentication by sending EAP-Request/SIM/
  Challenge.

  If the server used AT_FULLAUTH_ID_REQ, and if AT_IDENTITY contains a
  valid permanent identity or a pseudonym identity that the server can
  map to a valid permanent identity, then the server proceeds with full
  authentication by sending EAP-Request/SIM/Challenge.  If AT_IDENTITY
  contains a pseudonym identity that the server is not able to map to a
  valid permanent identity, or an identity that the server is not able
  to recognize or classify, then the server sends EAP-Request/SIM/Start
  with AT_PERMANENT_ID_REQ.

  If the server used AT_ANY_ID_REQ, and if the AT_IDENTITY contains a
  valid permanent identity or a pseudonym identity that the server can
  map to a valid permanent identity, then the server proceeds with full
  authentication by sending EAP-Request/SIM/Challenge.




Haverinen & Salowey          Informational                     [Page 22]

RFC 4186                 EAP-SIM Authentication             January 2006


  If the server used AT_ANY_ID_REQ, and if AT_IDENTITY contains a valid
  fast re-authentication identity and the server agrees on using
  re-authentication, then the server proceeds with fast
  re-authentication by sending EAP-Request/SIM/Re-authentication
  (Section 5).

  If the server used AT_ANY_ID_REQ, and if the peer sent an
  EAP-Response/SIM/Start with only AT_IDENTITY (indicating
  re-authentication), but the server is not able to map the identity to
  a permanent identity, then the server sends EAP-Request/SIM/Start
  with AT_FULLAUTH_ID_REQ.

  If the server used AT_ANY_ID_REQ, and if AT_IDENTITY contains a valid
  fast re-authentication identity that the server is able to map to a
  permanent identity, and if the server does not want to use fast
  re-authentication, then the server sends EAP-Request/SIM/Start
  without any identity requesting attributes.

  If the server used AT_ANY_ID_REQ, and AT_IDENTITY contains an
  identity that the server recognizes as a pseudonym identity but the
  server is not able to map the pseudonym identity to a permanent
  identity, then the server sends EAP-Request/SIM/Start with
  AT_PERMANENT_ID_REQ.

  If the server used AT_ANY_ID_REQ, and AT_IDENTITY contains an
  identity that the server is not able to recognize or classify, then
  the server sends EAP-Request/SIM/Start with AT_FULLAUTH_ID_REQ.

4.3.  Message Sequence Examples (Informative)

  This section contains non-normative message sequence examples to
  illustrate how the peer identity can be communicated to the server.



















Haverinen & Salowey          Informational                     [Page 23]

RFC 4186                 EAP-SIM Authentication             January 2006


4.3.1.  Full Authentication

  This case for full authentication is illustrated below in Figure 2.
  In this case, AT_IDENTITY contains either the permanent identity or a
  pseudonym identity.  The same sequence is also used in case the
  server uses the AT_FULLAUTH_ID_REQ in EAP-Request/SIM/Start.

     Peer                                             Authenticator
       |                                                       |
       |                            +------------------------------+
       |                            | Server does not have a       |
       |                            | Subscriber identity available|
       |                            | When starting EAP-SIM        |
       |                            +------------------------------+
       |                                                       |
       |          EAP-Request/SIM/Start                        |
       |          (AT_ANY_ID_REQ, AT_VERSION_LIST)             |
       |<------------------------------------------------------|
       |                                                       |
       |                                                       |
       | EAP-Response/SIM/Start                                |
       | (AT_IDENTITY, AT_NONCE_MT,                            |
       |  AT_SELECTED_VERSION)                                 |
       |------------------------------------------------------>|
       |                                                       |

        Figure 2: Requesting any identity, full authentication

  If the peer uses its full authentication identity and the AT_IDENTITY
  attribute contains a valid permanent identity or a valid pseudonym
  identity that the EAP server is able to map to the permanent
  identity, then the full authentication sequence proceeds as usual
  with the EAP Server issuing the EAP-Request/SIM/Challenge message.


















Haverinen & Salowey          Informational                     [Page 24]

RFC 4186                 EAP-SIM Authentication             January 2006


4.3.2.  Fast Re-authentication

  The case when the server uses the AT_ANY_ID_REQ and the peer wants to
  perform fast re-authentication is illustrated below in Figure 3.

     Peer                                             Authenticator
       |                                                       |
       |                            +------------------------------+
       |                            | Server does not have a       |
       |                            | Subscriber identity available|
       |                            | When starting EAP-SIM        |
       |                            +------------------------------+
       |                                                       |
       |        EAP-Request/SIM/Start                          |
       |        (AT_ANY_ID_REQ, AT_VERSION_LIST)               |
       |<------------------------------------------------------|
       |                                                       |
       |                                                       |
       | EAP-Response/SIM/Start                                |
       | (AT_IDENTITY containing a fast re-auth. identity)     |
       |------------------------------------------------------>|
       |                                                       |

      Figure 3: Requesting any identity, fast re-authentication

  On fast re-authentication, if the AT_IDENTITY attribute contains a
  valid fast re-authentication identity and the server agrees on using
  fast re-authentication, then the server proceeds with the fast
  re-authentication sequence and issues the EAP-Request/SIM/
  Re-authentication packet, as specified in Section 5.





















Haverinen & Salowey          Informational                     [Page 25]

RFC 4186                 EAP-SIM Authentication             January 2006


4.3.3.  Fall Back to Full Authentication

  Figure 4 illustrates cases in which the server does not recognize the
  fast re-authentication identity the peer used in AT_IDENTITY, and
  issues a second EAP-Request/SIM/Start message.

     Peer                                             Authenticator
       |                                                       |
       |                            +------------------------------+
       |                            | Server does not have a       |
       |                            | Subscriber identity available|
       |                            | When starting EAP-SIM        |
       |                            +------------------------------+
       |                                                       |
       |        EAP-Request/SIM/Start                          |
       |        (AT_ANY_ID_REQ, AT_VERSION_LIST)               |
       |<------------------------------------------------------|
       |                                                       |
       |                                                       |
       | EAP-Response/SIM/Start                                |
       | (AT_IDENTITY containing a fast re-auth. identity)     |
       |------------------------------------------------------>|
       |                                                       |
       |                            +------------------------------+
       |                            | Server does not recognize    |
       |                            | The fast re-auth.            |
       |                            | Identity                     |
       |                            +------------------------------+
       |                                                       |
       |     EAP-Request/SIM/Start                             |
       |     (AT_FULLAUTH_ID_REQ, AT_VERSION_LIST)             |
       |<------------------------------------------------------|
       |                                                       |
       |                                                       |
       | EAP-Response/SIM/Start                                |
       | (AT_IDENTITY with a full-auth. identity, AT_NONCE_MT, |
       |  AT_SELECTED_VERSION)                                 |
       |------------------------------------------------------>|
       |                                                       |

             Figure 4: Fall back to full authentication










Haverinen & Salowey          Informational                     [Page 26]

RFC 4186                 EAP-SIM Authentication             January 2006


4.3.4.  Requesting the Permanent Identity 1

  Figure 5 illustrates the case in which the EAP server fails to map
  the pseudonym identity included in the EAP-Response/Identity packet
  to a valid permanent identity.

     Peer                                             Authenticator
        |                                                       |
        |                               EAP-Request/Identity    |
        |<------------------------------------------------------|
        |                                                       |
        | EAP-Response/Identity                                 |
        | (Includes a pseudonym)                                |
        |------------------------------------------------------>|
        |                                                       |
        |                            +------------------------------+
        |                            | Server fails to map the      |
        |                            | Pseudonym to a permanent id. |
        |                            +------------------------------+
        |  EAP-Request/SIM/Start                                |
        |  (AT_PERMANENT_ID_REQ, AT_VERSION_LIST)               |
        |<------------------------------------------------------|
        |                                                       |
        | EAP-Response/SIM/Start                                |
        | (AT_IDENTITY with permanent identity, AT_NONCE_MT,    |
        |  AT_SELECTED_VERSION)                                 |
        |------------------------------------------------------>|
        |                                                       |

             Figure 5: Requesting the permanent identity

  If the server recognizes the permanent identity, then the
  authentication sequence proceeds as usual with the EAP Server issuing
  the EAP-Request/SIM/Challenge message.

















Haverinen & Salowey          Informational                     [Page 27]

RFC 4186                 EAP-SIM Authentication             January 2006


4.3.5.  Requesting the Permanent Identity 2

  Figure 6 illustrates the case in which the EAP server fails to map
  the pseudonym included in the AT_IDENTITY attribute to a valid
  permanent identity.

     Peer                                             Authenticator
        |                                                       |
        |                            +------------------------------+
        |                            | Server does not have a       |
        |                            | Subscriber identity available|
        |                            | When starting EAP-SIM        |
        |                            +------------------------------+
        |        EAP-Request/SIM/Start                          |
        |        (AT_ANY_ID_REQ, AT_VERSION_LIST)               |
        |<------------------------------------------------------|
        |                                                       |
        |EAP-Response/SIM/Start                                 |
        |(AT_IDENTITY with a pseudonym identity, AT_NONCE_MT,   |
        | AT_SELECTED_VERSION)                                  |
        |------------------------------------------------------>|
        |                           +-------------------------------+
        |                           | Server fails to map the       |
        |                           | Pseudonym in AT_IDENTITY      |
        |                           | to a valid permanent identity |
        |                           +-------------------------------+
        |                                                       |
        |                EAP-Request/SIM/Start                  |
        |                (AT_PERMANENT_ID_REQ, AT_VERSION_LIST) |
        |<------------------------------------------------------|
        |                                                       |
        | EAP-Response/SIM/Start                                |
        | (AT_IDENTITY with permanent identity,                 |
        |  AT_NONCE_MT, AT_SELECTED_VERSION)                    |
        |------------------------------------------------------>|
        |                                                       |

  Figure 6: Requesting a permanent identity (two EAP-SIM Start rounds)

4.3.6.  Three EAP-SIM/Start Roundtrips

  In the worst case, there are three EAP/SIM/Start round trips before
  the server obtains an acceptable identity.  This case is illustrated
  in Figure 7.







Haverinen & Salowey          Informational                     [Page 28]

RFC 4186                 EAP-SIM Authentication             January 2006


     Peer                                             Authenticator
      |                                                       |
      |                            +------------------------------+
      |                            | Server does not have a       |
      |                            | Subscriber identity available|
      |                            | When starting EAP-SIM        |
      |                            +------------------------------+
      |        EAP-Request/SIM/Start                          |
      |        (Includes AT_ANY_ID_REQ, AT_VERSION_LIST)      |
      |<------------------------------------------------------|
      |                                                       |
      | EAP-Response/SIM/Start                                |
      | (AT_IDENTITY with fast re-auth. identity)             |
      |------------------------------------------------------>|
      |                                                       |
      |                            +------------------------------+
      |                            | Server does not accept       |
      |                            | The fast re-auth.            |
      |                            | Identity                     |
      |                            +------------------------------+
      |     EAP-Request/SIM/Start                             |
      |     (AT_FULLAUTH_ID_REQ, AT_VERSION_LIST)             |
      |<------------------------------------------------------|
      |                                                       |
      :                                                       :
      :                                                       :
      :                                                       :
      :                                                       :
      |EAP-Response/SIM/Start                                 |
      |(AT_IDENTITY with a pseudonym identity, AT_NONCE_MT,   |
      | AT_SELECTED_VERSION)                                  |
      |------------------------------------------------------>|
      |                                                       |
      |                           +-------------------------------+
      |                           | Server fails to map the       |
      |                           | Pseudonym in AT_IDENTITY      |
      |                           | to a valid permanent identity |
      |                           +-------------------------------+
      |           EAP-Request/SIM/Start                       |
      |           (AT_PERMANENT_ID_REQ, AT_VERSION_LIST)      |
      |<------------------------------------------------------|
      |                                                       |
      | EAP-Response/SIM/Start                                |
      | (AT_IDENTITY with permanent identity, AT_NONCE_MT,    |
      |  AT_SELECTED_VERSION)                                 |
      |------------------------------------------------------>|
      |                                                       |
               Figure 7: Three EAP-SIM Start rounds



Haverinen & Salowey          Informational                     [Page 29]

RFC 4186                 EAP-SIM Authentication             January 2006


  After the last EAP-Response/SIM/Start message, the full
  authentication sequence proceeds as usual.  If the EAP Server
  recognizes the permanent identity and is able to proceed, the server
  issues the EAP-Request/SIM/Challenge message.

5.  Fast Re-Authentication

5.1.  General

  In some environments, EAP authentication may be performed frequently.
  Because the EAP-SIM full authentication procedure makes use of the
  GSM SIM A3/A8 algorithms, and therefore requires 2 or 3 fresh
  triplets from the Authentication Centre, the full authentication
  procedure is not very well suited for frequent use.  Therefore,
  EAP-SIM includes a more inexpensive fast re-authentication procedure
  that does not make use of the SIM A3/A8 algorithms and does not need
  new triplets from the Authentication Centre.  Re-authentication can
  be performed in fewer roundtrips than the full authentication.

  Fast re-authentication is optional to implement for both the EAP-SIM
  server and peer.  On each EAP authentication, either one of the
  entities may also fall back on full authentication if it does not
  want to use fast re-authentication.

  Fast re-authentication is based on the keys derived on the preceding
  full authentication.  The same K_aut and K_encr keys that were used
  in full authentication are used to protect EAP-SIM packets and
  attributes, and the original Master Key from full authentication is
  used to generate a fresh Master Session Key, as specified in Section
  7.

  The fast re-authentication exchange makes use of an unsigned 16-bit
  counter, included in the AT_COUNTER attribute.  The counter has three
  goals: 1) it can be used to limit the number of successive
  reauthentication exchanges without full authentication 2) it
  contributes to the keying material, and 3) it protects the peer and
  the server from replays.  On full authentication, both the server and
  the peer initialize the counter to one.  The counter value of at
  least one is used on the first fast re-authentication.  On subsequent
  fast re-authentications, the counter MUST be greater than on any of
  the previous re-authentications.  For example, on the second fast
  re-authentication, the counter value is two or greater.  The
  AT_COUNTER attribute is encrypted.

  Both the peer and the EAP server maintain a copy of the counter.  The
  EAP server sends its counter value to the peer in the fast
  re-authentication request.  The peer MUST verify that its counter
  value is less than or equal to the value sent by the EAP server.



Haverinen & Salowey          Informational                     [Page 30]

RFC 4186                 EAP-SIM Authentication             January 2006


  The server includes an encrypted server random nonce (AT_NONCE_S) in
  the fast re-authentication request.  The AT_MAC attribute in the
  peer's response is calculated over NONCE_S to provide a
  challenge/response authentication scheme.  The NONCE_S also
  contributes to the new Master Session Key.

  Both the peer and the server SHOULD have an upper limit for the
  number of subsequent fast re-authentications allowed before a full
  authentication needs to be performed.  Because a 16-bit counter is
  used in fast re-authentication, the theoretical maximum number of
  re-authentications is reached when the counter value reaches FFFF
  hexadecimal.

  In order to use fast re-authentication, the peer and the EAP server
  need to store the following values: Master Key, latest counter value
  and the next fast re-authentication identity.  K_aut, K_encr may
  either be stored or derived again from MK.  The server may also need
  to store the permanent identity of the user.

5.2.  Comparison to UMTS AKA

  When analyzing the fast re-authentication exchange, it may be helpful
  to compare it with the UMTS Authentication and Key Agreement (AKA)
  exchange, which it resembles closely.  The counter corresponds to the
  UMTS AKA sequence number, NONCE_S corresponds to RAND, AT_MAC in
  EAP-Request/SIM/Re-authentication corresponds to AUTN, the AT_MAC in
  EAP-Response/SIM/Re-authentication corresponds to RES,
  AT_COUNTER_TOO_SMALL corresponds to AUTS, and encrypting the counter
  corresponds to the usage of the Anonymity Key.  Also, the key
  generation on fast re-authentication, with regard to random or fresh
  material, is similar to UMTS AKA -- the server generates the NONCE_S
  and counter values, and the peer only verifies that the counter value
  is fresh.

  It should also be noted that encrypting the AT_NONCE_S, AT_COUNTER,
  or AT_COUNTER_TOO_SMALL attributes is not important to the security
  of the fast re-authentication exchange.

5.3.  Fast Re-authentication Identity

  The fast re-authentication procedure makes use of separate
  re-authentication user identities.  Pseudonyms and the permanent
  identity are reserved for full authentication only.  If a
  re-authentication identity is lost and the network does not recognize
  it, the EAP server can fall back on full authentication.






Haverinen & Salowey          Informational                     [Page 31]

RFC 4186                 EAP-SIM Authentication             January 2006


  If the EAP server supports fast re-authentication, it MAY include the
  skippable AT_NEXT_REAUTH_ID attribute in the encrypted data of
  EAP-Request/SIM/Challenge message (Section 9.3).  This attribute
  contains a new fast re-authentication identity for the next fast
  re-authentication.  The attribute also works as a capability flag
  that, indicating that the server supports fast re-authentication, and
  that the server wants to continue using fast re-authentication within
  the current context.  The peer MAY ignore this attribute, in which
  case it MUST use full authentication next time.  If the peer wants to
  use re-authentication, it uses this fast re-authentication identity
  on next authentication.  Even if the peer has a fast
  re-authentication identity, the peer MAY discard the fast
  re-authentication identity and use a pseudonym or the permanent
  identity instead, in which case full authentication MUST be
  performed.  If the EAP server does not include the AT_NEXT_REAUTH_ID
  in the encrypted data of EAP-Request/SIM/Challenge or
  EAP-Request/SIM/ Re-authentication, then the peer MUST discard its
  current fast re-authentication state information and perform a full
  authentication next time.

  In environments where a realm portion is needed in the peer identity,
  the fast re-authentication identity received in AT_NEXT_REAUTH_ID
  MUST contain both a username portion and a realm portion, as per the
  NAI format.  The EAP Server can choose an appropriate realm part in
  order to have the AAA infrastructure route subsequent fast
  re-authentication related requests to the same AAA server.  For
  example, the realm part MAY include a portion that is specific to the
  AAA server.  Hence, it is sufficient to store the context required
  for fast re-authentication in the AAA server that performed the full
  authentication.

  The peer MAY use the fast re-authentication identity in the
  EAP-Response/Identity packet or, in response to the server's
  AT_ANY_ID_REQ attribute, the peer MAY use the fast re-authentication
  identity in the AT_IDENTITY attribute of the EAP-Response/SIM/Start
  packet.

  The peer MUST NOT modify the username portion of the fast
  re-authentication identity, but the peer MAY modify the realm portion
  or replace it with another realm portion.  The peer might need to
  modify the realm in order to influence the AAA routing, for example,
  to make sure that the correct server is reached.  It should be noted
  that sharing the same fast re-authentication key among several
  servers may have security risks, so changing the realm portion of the
  NAI in order to change the EAP server is not desirable.






Haverinen & Salowey          Informational                     [Page 32]

RFC 4186                 EAP-SIM Authentication             January 2006


  Even if the peer uses a fast re-authentication identity, the server
  may want to fall back on full authentication, for example because the
  server does not recognize the fast re-authentication identity or does
  not want to use fast re-authentication.  In this case, the server
  starts the full authentication procedure by issuing an
  EAP-Request/SIM/Start packet.  This packet always starts a full
  authentication sequence if it does not include the AT_ANY_ID_REQ
  attribute.  If the server was not able to recover the peer's identity
  from the fast re-authentication identity, the server includes either
  the AT_FULLAUTH_ID_REQ or the AT_PERMANENT_ID_REQ attribute in this
  EAP request.

5.4.  Fast Re-authentication Procedure

  Figure 8 illustrates the fast re-authentication procedure.  In this
  example, the optional protected success indication is not used.
  Encrypted attributes are denoted with '*'.  The peer uses its
  re-authentication identity in the EAP-Response/Identity packet.  As
  discussed above, an alternative way to communicate the
  re-authentication identity to the server is for the peer to use the
  AT_IDENTITY attribute in the EAP-Response/SIM/Start message.  This
  latter case is not illustrated in the figure below, and it is only
  possible when the server requests that the peer send its identity by
  including the AT_ANY_ID_REQ attribute in the EAP-Request/SIM/Start
  packet.

  If the server recognizes the identity as a valid fast
  re-authentication identity, and if the server agrees to use fast
  re-authentication, then the server sends the EAP-Request/SIM/
  Re-authentication packet to the peer.  This packet MUST include the
  encrypted AT_COUNTER attribute, with a fresh counter value, the
  encrypted AT_NONCE_S attribute that contains a random number chosen
  by the server, the AT_ENCR_DATA and the AT_IV attributes used for
  encryption, and the AT_MAC attribute that contains a message
  authentication code over the packet.  The packet MAY also include an
  encrypted AT_NEXT_REAUTH_ID attribute that contains the next fast
  re-authentication identity.

  Fast re-authentication identities are one-time identities.  If the
  peer does not receive a new fast re-authentication identity, it MUST
  use either the permanent identity or a pseudonym identity on the next
  authentication to initiate full authentication.

  The peer verifies that AT_MAC is correct, and that the counter value
  is fresh (greater than any previously used value).  The peer MAY save
  the next fast re-authentication identity from the encrypted
  AT_NEXT_REAUTH_ID for next time.  If all checks are successful, the
  peer responds with the EAP-Response/SIM/Re-authentication packet,



Haverinen & Salowey          Informational                     [Page 33]

RFC 4186                 EAP-SIM Authentication             January 2006


  including the AT_COUNTER attribute with the same counter value and
  AT_MAC attribute.

  The server verifies the AT_MAC attribute and also verifies that the
  counter value is the same that it used in the EAP-Request/SIM/
  Re-authentication packet.  If these checks are successful, the
  re-authentication has succeeded and the server sends the EAP-Success
  packet to the peer.

  If protected success indications (Section 6.2) were used, the
  EAP-Success packet would be preceded by an EAP-SIM notification
  round.







































Haverinen & Salowey          Informational                     [Page 34]

RFC 4186                 EAP-SIM Authentication             January 2006


      Peer                                             Authenticator
         |                                                       |
         |                               EAP-Request/Identity    |
         |<------------------------------------------------------|
         |                                                       |
         | EAP-Response/Identity                                 |
         | (Includes a fast re-authentication identity)          |
         |------------------------------------------------------>|
         |                                                       |
         |                          +--------------------------------+
         |                          | Server recognizes the identity |
         |                          | and agrees to use fast         |
         |                          | re-authentication              |
         |                          +--------------------------------+
         |                                                       |
         :                                                       :
         :                                                       :
         :                                                       :
         :                                                       :
         |  EAP-Request/SIM/Re-authentication                    |
         |  (AT_IV, AT_ENCR_DATA, *AT_COUNTER,                   |
         |   *AT_NONCE_S, *AT_NEXT_REAUTH_ID, AT_MAC)            |
         |<------------------------------------------------------|
         |                                                       |
    +-----------------------------------------------+            |
    | Peer verifies AT_MAC and the freshness of     |            |
    | the counter. Peer MAY store the new fast re-  |            |
    | authentication identity for next re-auth.     |            |
    +-----------------------------------------------+            |
         |                                                       |
         | EAP-Response/SIM/Re-authentication                    |
         | (AT_IV, AT_ENCR_DATA, *AT_COUNTER with same value,    |
         |  AT_MAC)                                              |
         |------------------------------------------------------>|
         |                          +--------------------------------+
         |                          | Server verifies AT_MAC and     |
         |                          | the counter                    |
         |                          +--------------------------------+
         |                                                       |
         |                                          EAP-Success  |
         |<------------------------------------------------------|
         |                                                       |

                   Figure 8: Fast Re-authentication







Haverinen & Salowey          Informational                     [Page 35]

RFC 4186                 EAP-SIM Authentication             January 2006


5.5.  Fast Re-authentication Procedure when Counter Is Too Small

  If the peer does not accept the counter value of EAP-Request/SIM/
  Re-authentication, it indicates the counter synchronization problem
  by including the encrypted AT_COUNTER_TOO_SMALL in EAP-Response/SIM/
  Re-authentication.  The server responds with EAP-Request/SIM/Start to
  initiate a normal full authentication procedure.  This is illustrated
  in Figure 9.  Encrypted attributes are denoted with '*'.

      Peer                                             Authenticator
         |          EAP-Request/SIM/Start                        |
         |          (AT_ANY_ID_REQ, AT_VERSION_LIST)             |
         |<------------------------------------------------------|
         |                                                       |
         | EAP-Response/SIM/Start                                |
         | (AT_IDENTITY)                                         |
         | (Includes a fast re-authentication identity)          |
         |------------------------------------------------------>|
         |                                                       |
         |  EAP-Request/SIM/Re-authentication                    |
         |  (AT_IV, AT_ENCR_DATA, *AT_COUNTER,                   |
         |   *AT_NONCE_S, *AT_NEXT_REAUTH_ID, AT_MAC)            |
         |<------------------------------------------------------|
    +-----------------------------------------------+            |
    | AT_MAC is valid but the counter is not fresh. |            |
    +-----------------------------------------------+            |
         |                                                       |
         | EAP-Response/SIM/Re-authentication                    |
         | (AT_IV, AT_ENCR_DATA, *AT_COUNTER_TOO_SMALL,          |
         |  *AT_COUNTER, AT_MAC)                                 |
         |------------------------------------------------------>|
         |            +----------------------------------------------+
         |            | Server verifies AT_MAC but detects           |
         |            | That peer has included AT_COUNTER_TOO_SMALL  |
         |            +----------------------------------------------+
         |                                                       |
         |                        EAP-Request/SIM/Start          |
         |                        (AT_VERSION_LIST)              |
         |<------------------------------------------------------|
    +---------------------------------------------------------------+
    |                Normal full authentication follows.            |
    +---------------------------------------------------------------+
         |                                                       |

         Figure 9: Fast Re-authentication, counter is not fresh






Haverinen & Salowey          Informational                     [Page 36]

RFC 4186                 EAP-SIM Authentication             January 2006


  In the figure above, the first three messages are similar to the
  basic fast re-authentication case.  When the peer detects that the
  counter value is not fresh, it includes the AT_COUNTER_TOO_SMALL
  attribute in EAP-Response/SIM/Re-authentication.  This attribute
  doesn't contain any data, but it is a request for the server to
  initiate full authentication.  In this case, the peer MUST ignore the
  contents of the server's AT_NEXT_REAUTH_ID attribute.

  On receipt of AT_COUNTER_TOO_SMALL, the server verifies AT_MAC and
  verifies that AT_COUNTER contains the same counter value as in the
  EAP-Request/SIM/Re-authentication packet.  If not, the server
  terminates the authentication exchange by sending the
  EAP-Request/SIM/Notification with AT_NOTIFICATION code "General
  failure" (16384).  If all checks on the packet are successful, the
  server transmits a new EAP-Request/SIM/Start packet and the full
  authentication procedure is performed as usual.  Since the server
  already knows the subscriber identity, it MUST NOT include
  AT_ANY_ID_REQ, AT_FULLAUTH_ID_REQ, or AT_PERMANENT_ID_REQ in the
  EAP-Request/SIM/Start.

  It should be noted that in this case, peer identity is only
  transmitted in the AT_IDENTITY attribute at the beginning of the
  whole EAP exchange.  The fast re-authentication identity used in this
  AT_IDENTITY attribute will be used in key derivation (see Section 7).

6.  EAP-SIM Notifications

6.1.  General

  EAP-SIM does not prohibit the use of the EAP Notifications as
  specified in [RFC3748].  EAP Notifications can be used at any time in
  the EAP-SIM exchange.  It should be noted that EAP-SIM does not
  protect EAP Notifications.  EAP-SIM also specifies method-specific
  EAP-SIM notifications that are protected in some cases.

  The EAP server can use EAP-SIM notifications to convey notifications
  and result indications (Section 6.2) to the peer.

  The server MUST use notifications in cases discussed in
  Section 6.3.2.  When the EAP server issues an
  EAP-Request/SIM/Notification packet to the peer, the peer MUST
  process the notification packet.  The peer MAY show a notification
  message to the user and the peer MUST respond to the EAP server with
  an EAP-Response/SIM/Notification packet, even if the peer did not
  recognize the notification code.






Haverinen & Salowey          Informational                     [Page 37]

RFC 4186                 EAP-SIM Authentication             January 2006


  An EAP-SIM full authentication exchange or a fast re-authentication
  exchange MUST NOT include more than one EAP-SIM notification round.

  The notification code is a 16-bit number.  The most significant bit
  is called the Success bit (S bit).  The S bit specifies whether the
  notification implies failure.  The code values with the S bit set to
  zero (code values 0...32767) are used on unsuccessful cases.  The
  receipt of a notification code from this range implies a failed EAP
  exchange, so the peer can use the notification as a failure
  indication.  After receiving the EAP-Response/SIM/Notification for
  these notification codes, the server MUST send the EAP-Failure
  packet.

  The receipt of a notification code with the S bit set to one (values
  32768...65536) does not imply failure.  Notification code "Success"
  (32768) has been reserved as a general notification code to indicate
  successful authentication.

  The second most significant bit of the notification code is called
  the Phase bit (P bit).  It specifies at which phase of the EAP-SIM
  exchange the notification can be used.  If the P bit is set to zero,
  the notification can only be used after a successful
  EAP/SIM/Challenge round in full authentication or a successful
  EAP/SIM/Re-authentication round in reauthentication.  A
  re-authentication round is considered successful only if the peer has
  successfully verified AT_MAC and AT_COUNTER attributes, and does not
  include the AT_COUNTER_TOO_SMALL attribute in
  EAP-Response/SIM/Re-authentication.

  If the P bit is set to one, the notification can only by used before
  the EAP/SIM/Challenge round in full authentication, or before the
  EAP/SIM/Re-authentication round in reauthentication.  These
  notifications can only be used to indicate various failure cases.  In
  other words, if the P bit is set to one, then the S bit MUST be set
  to zero.

  Section 9.8 and Section 9.9 specify what other attributes must be
  included in the notification packets.

  Some of the notification codes are authorization related and, hence,
  are not usually considered part of the responsibility of an EAP
  method.  However, they are included as part of EAP-SIM because there
  are currently no other ways to convey this information to the user in
  a localizable way, and the information is potentially useful for the
  user.  An EAP-SIM server implementation may decide never to send
  these EAP-SIM notifications.





Haverinen & Salowey          Informational                     [Page 38]

RFC 4186                 EAP-SIM Authentication             January 2006


6.2.  Result Indications

  As discussed in Section 6.3, the server and the peer use explicit
  error messages in all error cases.  If the server detects an error
  after successful authentication, the server uses an EAP-SIM
  notification to indicate failure to the peer.  In this case, the
  result indication is integrity and replay protected.

  By sending an EAP-Response/SIM/Challenge packet or an
  EAP-Response/SIM/Re-authentication packet (without
  AT_COUNTER_TOO_SMALL), the peer indicates that it has successfully
  authenticated the server and that the peer's local policy accepts the
  EAP exchange.  In other words, these packets are implicit success
  indications from the peer to the server.

  EAP-SIM also supports optional protected success indications from the
  server to the peer.  If the EAP server wants to use protected success
  indications, it includes the AT_RESULT_IND attribute in the
  EAP-Request/SIM/Challenge or the EAP-Request/SIM/Re-authentication
  packet.  This attribute indicates that the EAP server would like to
  use result indications in both successful and unsuccessful cases.  If
  the peer also wants this, the peer includes AT_RESULT_IND in
  EAP-Response/SIM/Challenge or EAP-Response/SIM/Re-authentication.
  The peer MUST NOT include AT_RESULT_IND if it did not receive
  AT_RESULT_IND from the server.  If both the peer and the server used
  AT_RESULT_IND, then the EAP exchange is not complete yet, but an
  EAP-SIM notification round will follow.  The following EAP-SIM
  notification may indicate either failure or success.

  Success indications with the AT_NOTIFICATION code "Success" (32768)
  can only be used if both the server and the peer indicate they want
  to use them with AT_RESULT_IND.  If the server did not include
  AT_RESULT_IND in the EAP-Request/SIM/Challenge or
  EAP-Request/SIM/Re-authentication packet, or if the peer did not
  include AT_RESULT_IND in the corresponding response packet, then the
  server MUST NOT use protected success indications.

  Because the server uses the AT_NOTIFICATION code "Success" (32768) to
  indicate that the EAP exchange has completed successfully, the EAP
  exchange cannot fail when the server processes the EAP-SIM response
  to this notification.  Hence, the server MUST ignore the contents of
  the EAP-SIM response it receives from the
  EAP-Request/SIM/Notification with this code.  Regardless of the
  contents of the EAP-SIM response, the server MUST send EAP-Success as
  the next packet.






Haverinen & Salowey          Informational                     [Page 39]

RFC 4186                 EAP-SIM Authentication             January 2006


6.3.  Error Cases

  This section specifies the operation of the peer and the server in
  error cases.  The subsections below require the EAP-SIM peer and
  server to send an error packet (EAP-Response/SIM/Client-Error from
  the peer or EAP-Request/SIM/Notification from the server) in error
  cases.  However, implementations SHOULD NOT rely upon the correct
  error reporting behavior of the peer, authenticator, or the server.
  It is possible for error and other messages to be lost in transit or
  for a malicious participant to attempt to consume resources by not
  issuing error messages.  Both the peer and the EAP server SHOULD have
  a mechanism to clean up state, even if an error message or
  EAP-Success is not received after a timeout period.

6.3.1.  Peer Operation

  In general, if an EAP-SIM peer detects an error in a received EAP-SIM
  packet, the EAP-SIM implementation responds with the
  EAP-Response/SIM/Client-Error packet.  In response to the
  EAP-Response/SIM/Client-Error, the EAP server MUST issue the
  EAP-Failure packet and the authentication exchange terminates.

  By default, the peer uses the client error code 0, "unable to process
  packet".  This error code is used in the following cases:

  o  EAP exchange is not acceptable according to the peer's local
     policy.

  o  the peer is not able to parse the EAP request, i.e., the EAP
     request is malformed.

  o  the peer encountered a malformed attribute.

  o  wrong attribute types or duplicate attributes have been included
     in the EAP request.

  o  a mandatory attribute is missing.

  o  unrecognized, non-skippable attribute.

  o  unrecognized or unexpected EAP-SIM Subtype in the EAP request.

  o  A RAND challenge repeated in AT_RAND.

  o  invalid AT_MAC.  The peer SHOULD log this event.

  o  invalid pad bytes in AT_PADDING.




Haverinen & Salowey          Informational                     [Page 40]

RFC 4186                 EAP-SIM Authentication             January 2006


  o  the peer does not want to process AT_PERMANENT_ID_REQ.

  Separate error codes have been defined for the following error cases
  in Section 10.19:

  As specified in Section 4.1, when processing the AT_VERSION_LIST
  attribute, which lists the EAP-SIM versions supported by the server,
  if the attribute does not include a version that is implemented by
  the peer and allowed in the peer's security policy, then the peer
  MUST send the EAP-Response/SIM/Client-Error packet with the error
  code "unsupported version".

  If the number of RAND challenges is smaller than what is required by
  peer's local policy when processing the AT_RAND attribute, the peer
  MUST send the EAP-Response/SIM/Client-Error packet with the error
  code "insufficient number of challenges".

  If the peer believes that the RAND challenges included in AT_RAND are
  not fresh e.g., because it is capable of remembering some previously
  used RANDs, the peer MUST send the EAP-Response/SIM/Client-Error
  packet with the error code "RANDs are not fresh".

6.3.2.  Server Operation

  If an EAP-SIM server detects an error in a received EAP-SIM response,
  the server MUST issue the EAP-Request/SIM/Notification packet with an
  AT_NOTIFICATION code that implies failure.  By default, the server
  uses one of the general failure codes ("General failure after
  authentication" (0), or "General failure" (16384)).  The choice
  between these two codes depends on the phase of the EAP-SIM exchange,
  see Section 6.  When the server issues an EAP-
  Request/SIM/Notification that implies failure, the error cases
  include the following:

  o  the server is not able to parse the peer's EAP response

  o  the server encounters a malformed attribute, a non-recognized
     non-skippable attribute, or a duplicate attribute

  o  a mandatory attribute is missing or an invalid attribute was
     included

  o  unrecognized or unexpected EAP-SIM Subtype in the EAP Response

  o  invalid AT_MAC.  The server SHOULD log this event.

  o  invalid AT_COUNTER




Haverinen & Salowey          Informational                     [Page 41]

RFC 4186                 EAP-SIM Authentication             January 2006


6.3.3.  EAP-Failure

  The EAP-SIM server sends EAP-Failure in two cases:

  1) In response to an EAP-Response/SIM/Client-Error packet the server
     has received from the peer, or

  2) Following an EAP-SIM notification round, when the AT_NOTIFICATION
     code implies failure.

  The EAP-SIM server MUST NOT send EAP-Failure in cases other than
  these two.  However, it should be noted that even though the EAP-SIM
  server would not send an EAP-Failure, an authorization decision that
  happens outside EAP-SIM, such as in the AAA server or in an
  intermediate AAA proxy, may result in a failed exchange.

  The peer MUST accept the EAP-Failure packet in case 1) and case 2),
  above.  The peer SHOULD silently discard the EAP-Failure packet in
  other cases.

6.3.4.  EAP-Success

  On full authentication, the server can only send EAP-Success after
  the EAP/SIM/Challenge round.  The peer MUST silently discard any
  EAP-Success packets if they are received before the peer has
  successfully authenticated the server and sent the
  EAP-Response/SIM/Challenge packet.

  If the peer did not indicate that it wants to use protected success
  indications with AT_RESULT_IND (as discussed in Section 6.2) on full
  authentication, then the peer MUST accept EAP-Success after a
  successful EAP/SIM/Challenge round.

  If the peer indicated that it wants to use protected success
  indications with AT_RESULT_IND (as discussed in Section 6.2), then
  the peer MUST NOT accept EAP-Success after a successful
  EAP/SIM/Challenge round.  In this case, the peer MUST only accept
  EAP-Success after receiving an EAP-SIM Notification with the
  AT_NOTIFICATION code "Success" (32768).

  On fast re-authentication, EAP-Success can only be sent after the
  EAP/SIM/Re-authentication round.  The peer MUST silently discard any
  EAP-Success packets if they are received before the peer has
  successfully authenticated the server and sent the
  EAP-Response/SIM/Re-authentication packet.

  If the peer did not indicate that it wants to use protected success
  indications with AT_RESULT_IND (as discussed in Section 6.2) on fast



Haverinen & Salowey          Informational                     [Page 42]

RFC 4186                 EAP-SIM Authentication             January 2006


  re-authentication, then the peer MUST accept EAP-Success after a
  successful EAP/SIM/Re-authentication round.

  If the peer indicated that it wants to use protected success
  indications with AT_RESULT_IND (as discussed in Section 6.2), then
  the peer MUST NOT accept EAP-Success after a successful EAP/SIM/Re-
  authentication round.  In this case, the peer MUST only accept
  EAP-Success after receiving an EAP-SIM Notification with the
  AT_NOTIFICATION code "Success" (32768).

  If the peer receives an EAP-SIM notification (Section 6) that
  indicates failure, then the peer MUST no longer accept the
  EAP-Success packet, even if the server authentication was
  successfully completed.

7.  Key Generation

  This section specifies how keying material is generated.

  On EAP-SIM full authentication, a Master Key (MK) is derived from the
  underlying GSM authentication values (Kc keys), the NONCE_MT, and
  other relevant context as follows.

  MK = SHA1(Identity|n*Kc| NONCE_MT| Version List| Selected Version)

  In the formula above, the "|" character denotes concatenation.
  "Identity" denotes the peer identity string without any terminating
  null characters.  It is the identity from the last AT_IDENTITY
  attribute sent by the peer in this exchange, or, if AT_IDENTITY was
  not used, it is the identity from the EAP-Response/Identity packet.
  The identity string is included as-is, without any changes.  As
  discussed in Section 4.2.2.2, relying on EAP-Response/Identity for
  conveying the EAP-SIM peer identity is discouraged, and the server
  SHOULD use the EAP-SIM method-specific identity attributes.

  The notation n*Kc in the formula above denotes the n Kc values
  concatenated.  The Kc keys are used in the same order as the RAND
  challenges in AT_RAND attribute.  NONCE_MT denotes the NONCE_MT value
  (not the AT_NONCE_MT attribute, but only the nonce value).  The
  Version List includes the 2-byte-supported version numbers from
  AT_VERSION_LIST, in the same order as in the attribute.  The Selected
  Version is the 2-byte selected version from AT_SELECTED_VERSION.
  Network byte order is used, just as in the attributes.  The hash
  function SHA-1 is specified in [SHA-1].  If several EAP/SIM/Start
  roundtrips are used in an EAP-SIM exchange, then the NONCE_MT,
  Version List and Selected version from the last EAP/SIM/Start round
  are used, and the previous EAP/SIM/Start rounds are ignored.




Haverinen & Salowey          Informational                     [Page 43]

RFC 4186                 EAP-SIM Authentication             January 2006


  The Master Key is fed into a Pseudo-Random number Function (PRF)
  which generates separate Transient EAP Keys (TEKs) for protecting
  EAP-SIM packets, as well as a Master Session Key (MSK) for link layer
  security, and an Extended Master Session Key (EMSK) for other
  purposes.  On fast re-authentication, the same TEKs MUST be used for
  protecting EAP packets, but a new MSK and a new EMSK MUST be derived
  from the original MK and from new values exchanged in the fast
  re-authentication.

  EAP-SIM requires two TEKs for its own purposes; the authentication
  key K_aut is to be used with the AT_MAC attribute, and the encryption
  key K_encr is to be used with the AT_ENCR_DATA attribute.  The same
  K_aut and K_encr keys are used in full authentication and subsequent
  fast re-authentications.

  Key derivation is based on the random number generation specified in
  NIST Federal Information Processing Standards (FIPS) Publication
  186-2 [PRF].  The pseudo-random number generator is specified in the
  change notice 1 (2001 October 5) of [PRF] (Algorithm 1).  As
  specified in the change notice (page 74), when Algorithm 1 is used as
  a general-purpose pseudo-random number generator, the "mod q" term in
  step 3.3 is omitted.  The function G used in the algorithm is
  constructed via the Secure Hash Standard, as specified in Appendix
  3.3 of the standard.  It should be noted that the function G is very
  similar to SHA-1, but the message padding is different.  Please refer
  to [PRF] for full details.  For convenience, the random number
  algorithm with the correct modification is cited in Appendix B.

  160-bit XKEY and XVAL values are used, so b = 160.  On each full
  authentication, the Master Key is used as the initial secret seed-key
  XKEY.  The optional user input values (XSEED_j) in step 3.1 are set
  to zero.

  On full authentication, the resulting 320-bit random numbers (x_0,
  x_1, ..., x_m-1) are concatenated and partitioned into suitable-sized
  chunks and used as keys in the following order: K_encr (128 bits),
  K_aut (128 bits), Master Session Key (64 bytes), Extended Master
  Session Key (64 bytes).

  On fast re-authentication, the same pseudo-random number generator
  can be used to generate a new Master Session Key and a new Extended
  Master Session Key.  The seed value XKEY' is calculated as follows:

  XKEY' = SHA1(Identity|counter|NONCE_S| MK)

  In the formula above, the Identity denotes the fast re-authentication
  identity, without any terminating null characters, from the
  AT_IDENTITY attribute of the EAP-Response/SIM/Start packet, or, if



Haverinen & Salowey          Informational                     [Page 44]

RFC 4186                 EAP-SIM Authentication             January 2006


  EAP-Response/SIM/Start was not used on fast re-authentication, it
  denotes the identity string from the EAP-Response/Identity packet.
  The counter denotes the counter value from the AT_COUNTER attribute
  used in the EAP-Response/SIM/Re-authentication packet.  The counter
  is used in network byte order.  NONCE_S denotes the 16-byte NONCE_S
  value from the AT_NONCE_S attribute used in the
  EAP-Request/SIM/Re-authentication packet.  The MK is the Master Key
  derived on the preceding full authentication.

  On fast re-authentication, the pseudo-random number generator is run
  with the new seed value XKEY', and the resulting 320-bit random
  numbers (x_0, x_1, ..., x_m-1) are concatenated and partitioned into
  two 64-byte chunks and used as the new 64-byte Master Session Key and
  the new 64-byte Extended Master Session Key.  Note that because
  K_encr and K_aut are not derived on fast re-authentication, the
  Master Session Key and the Extended Master Session key are obtained
  from the beginning of the key stream (x_0, x_1, ...).

  The first 32 bytes of the MSK can be used as the Pairwise Master Key
  (PMK) for IEEE 802.11i.

  When the RADIUS attributes specified in [RFC2548] are used to
  transport keying material, then the first 32 bytes of the MSK
  correspond to MS-MPPE-RECV-KEY and the second 32 bytes to
  MS-MPPE-SEND-KEY.  In this case, only 64 bytes of keying material
  (the MSK) are used.

  When generating the initial Master Key, the hash function is used as
  a mixing function to combine several session keys (Kc's) generated by
  the GSM authentication procedure and the random number NONCE_MT into
  a single session key.  There are several reasons for this.  The
  current GSM session keys are, at most, 64 bits, so two or more of
  them are needed to generate a longer key.  By using a one-way
  function to combine the keys, we are assured that, even if an
  attacker managed to learn one of the EAP-SIM session keys, it
  wouldn't help him in learning the original GSM Kc's.  In addition,
  since we include the random number NONCE_MT in the calculation, the
  peer is able to verify that the EAP-SIM packets it receives from the
  network are fresh and not replays (also see Section 11).

8.  Message Format and Protocol Extensibility

8.1.  Message Format

  As specified in [RFC3748], EAP packets begin with the Code,
  Identifiers, Length, and Type fields, which are followed by EAP-
  method-specific Type-Data.  The Code field in the EAP header is set
  to 1 for EAP requests, and to 2 for EAP Responses.  The usage of the



Haverinen & Salowey          Informational                     [Page 45]

RFC 4186                 EAP-SIM Authentication             January 2006


  Length and Identifier fields in the EAP header are also specified in
  [RFC3748].  In EAP-SIM, the Type field is set to 18.

  In EAP-SIM, the Type-Data begins with an EAP-SIM header that consists
  of a 1-octet Subtype field and a 2-octet reserved field.  The Subtype
  values used in EAP-SIM are defined in the IANA considerations section
  of the EAP-AKA specification [EAP-AKA].  The formats of the EAP
  header and the EAP-SIM header are shown below.

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |     Code      |  Identifier   |            Length             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |     Type      |    Subtype    |           Reserved            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  The rest of the Type-Data that immediately follows the EAP-SIM header
  consists of attributes that are encoded in Type, Length, Value
  format.  The figure below shows the generic format of an attribute.

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |      Type     |    Length     |  Value...
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


  Attribute Type

        Indicates the particular type of attribute.  The attribute type
        values are listed in the IANA considerations section of the
        EAP-AKA specification [EAP-AKA].

  Length

        Indicates the length of this attribute in multiples of four
        bytes.  The maximum length of an attribute is 1024 bytes.  The
        length includes the Attribute Type and Length bytes.

  Value

        The particular data associated with this attribute.  This field
        is always included and it may be two or more bytes in length.
        The type and length fields determine the format and length
        of the value field.





Haverinen & Salowey          Informational                     [Page 46]

RFC 4186                 EAP-SIM Authentication             January 2006


  Attributes numbered within the range 0 through 127 are called
  non-skippable attributes.  When an EAP-SIM peer encounters a
  non-skippable attribute that the peer does not recognize, the peer
  MUST send the EAP-Response/SIM/Client-Error packet, which terminates
  the authentication exchange.  If an EAP-SIM server encounters a
  non-skippable attribute that the server does not recognize, then the
  server sends the EAP-Request/SIM/Notification packet with an
  AT_NOTIFICATION code, which implies general failure ("General failure
  after authentication" (0), or "General failure" (16384), depending on
  the phase of the exchange), which terminates the authentication
  exchange.

  Attributes within the range of 128 through 255 are called skippable
  attributes.  When a skippable attribute is encountered and is not
  recognized, it is ignored.  The rest of the attributes and message
  data MUST still be processed.  The Length field of the attribute is
  used to skip the attribute value in searching for the next attribute.

  Unless otherwise specified, the order of the attributes in an EAP-SIM
  message is insignificant and an EAP-SIM implementation should not
  assume a certain order to be used.

  Attributes can be encapsulated within other attributes.  In other
  words, the value field of an attribute type can be specified to
  contain other attributes.

8.2.  Protocol Extensibility

  EAP-SIM can be extended by specifying new attribute types.  If
  skippable attributes are used, it is possible to extend the protocol
  without breaking old implementations.

  However, any new attributes added to the EAP-Request/SIM/Start or
  EAP-Response/SIM/Start packets would not be integrity-protected.
  Therefore, these messages MUST NOT be extended in the current version
  of EAP-SIM.  If the list of supported EAP-SIM versions in the
  AT_VERSION_LIST does not include versions other than 1, then the
  server MUST NOT include attributes other than those specified in this
  document in the EAP-Request/SIM/Start message.  Note that future
  versions of this protocol might specify new attributes for
  EAP-Request/SIM/Start and still support version 1 of the protocol.
  In this case, the server might send an EAP-Request/SIM/Start message
  that includes new attributes and indicates support for protocol
  version 1 and other versions in the AT_VERSION_LIST attribute.  If
  the peer selects version 1, then the peer MUST ignore any other
  attributes included in EAP-Request/SIM/Start, other than those
  specified in this document.  If the selected EAP-SIM version in
  peer's AT_SELECTED_VERSION is 1, then the peer MUST NOT include other



Haverinen & Salowey          Informational                     [Page 47]

RFC 4186                 EAP-SIM Authentication             January 2006


  attributes aside from those specified in this document in the
  EAP-Response/SIM/Start message.

  When specifying new attributes, it should be noted that EAP-SIM does
  not support message fragmentation.  Hence, the sizes of the new
  extensions MUST be limited so that the maximum transfer unit (MTU) of
  the underlying lower layer is not exceeded.  According to [RFC3748],
  lower layers must provide an EAP MTU of 1020 bytes or greater, so any
  extensions to EAP-SIM SHOULD NOT exceed the EAP MTU of 1020 bytes.

  Because EAP-SIM supports version negotiation, new versions of the
  protocol can also be specified by using a new version number.

9.  Messages

  This section specifies the messages used in EAP-SIM.  It specifies
  when a message may be transmitted or accepted, which attributes are
  allowed in a message, which attributes are required in a message, and
  other message-specific details.  The general message format is
  specified in Section 8.1.

9.1.  EAP-Request/SIM/Start

  In full authentication the first SIM-specific EAP Request is
  EAP-Request/SIM/Start.  The EAP/SIM/Start roundtrip is used for two
  purposes.  In full authentication this packet is used to request the
  peer to send the AT_NONCE_MT attribute to the server.  In addition,
  as specified in Section 4.2, the Start round trip may be used by the
  server for obtaining the peer identity.  As discussed in Section 4.2,
  several Start rounds may be required to obtain a valid peer identity.

  The server MUST always include the AT_VERSION_LIST attribute.

  The server MAY include one of the following identity-requesting
  attributes: AT_PERMANENT_ID_REQ, AT_FULLAUTH_ID_REQ, or
  AT_ANY_ID_REQ.  These three attributes are mutually exclusive, so the
  server MUST NOT include more than one of the attributes.

  If the server has received a response from the peer, it MUST NOT
  issue a new EAP-Request/SIM/Start packet if it has previously issued
  an EAP-Request/SIM/Start message either without any identity
  requesting attributes or with the AT_PERMANENT_ID_REQ attribute.

  If the server has received a response from the peer, it MUST NOT
  issue a new EAP-Request/SIM/Start packet with the AT_ANY_ID_REQ or
  AT_FULLAUTH_ID_REQ attributes if it has previously issued an
  EAP-Request/SIM/Start message with the AT_FULLAUTH_ID_REQ attribute.




Haverinen & Salowey          Informational                     [Page 48]

RFC 4186                 EAP-SIM Authentication             January 2006


  If the server has received a response from the peer, it MUST NOT
  issue a new EAP-Request/SIM/Start packet with the AT_ANY_ID_REQ
  attribute if the server has previously issued an
  EAP-Request/SIM/Start message with the AT_ANY_ID_REQ attribute.

  This message MUST NOT include AT_MAC, AT_IV, or AT_ENCR_DATA.

9.2.  EAP-Response/SIM/Start

  The peer sends EAP-Response/SIM/Start in response to a valid
  EAP-Request/SIM/Start from the server.

  If and only if the server's EAP-Request/SIM/Start includes one of the
  identity-requesting attributes, then the peer MUST include the
  AT_IDENTITY attribute.  The usage of AT_IDENTITY is defined in
  Section 4.2.

  The AT_NONCE_MT attribute MUST NOT be included if the AT_IDENTITY
  with a fast re-authentication identity is present for fast
  re-authentication.  AT_NONCE_MT MUST be included in all other cases
  (full authentication).

  The AT_SELECTED_VERSION attribute MUST NOT be included if the
  AT_IDENTITY attribute with a fast re-authentication identity is
  present for fast re-authentication.  In all other cases,
  AT_SELECTED_VERSION MUST be included (full authentication).  This
  attribute is used in version negotiation, as specified in
  Section 4.1.

  This message MUST NOT include AT_MAC, AT_IV, or AT_ENCR_DATA.

9.3.  EAP-Request/SIM/Challenge

  The server sends the EAP-Request/SIM/Challenge after receiving a
  valid EAP-Response/SIM/Start that contains AT_NONCE_MT and
  AT_SELECTED_VERSION, and after successfully obtaining the subscriber
  identity.

  The AT_RAND attribute MUST be included.

  The AT_RESULT_IND attribute MAY be included.  The usage of this
  attribute is discussed in Section 6.2.

  The AT_MAC attribute MUST be included.  For
  EAP-Request/SIM/Challenge, the MAC code is calculated over the
  following data:

  EAP packet| NONCE_MT



Haverinen & Salowey          Informational                     [Page 49]

RFC 4186                 EAP-SIM Authentication             January 2006


  The EAP packet is represented as specified in Section 8.1.  It is
  followed by the 16-byte NONCE_MT value from the peer's AT_NONCE_MT
  attribute.

  The EAP-Request/SIM/Challenge packet MAY include encrypted attributes
  for identity privacy and for communicating the next fast
  re-authentication identity.  In this case, the AT_IV and AT_ENCR_DATA
  attributes are included (Section 10.12).

  The plaintext of the AT_ENCR_DATA value field consists of nested
  attributes.  The nested attributes MAY include AT_PADDING (as
  specified in Section 10.12).  If the server supports identity privacy
  and wants to communicate a pseudonym to the peer for the next full
  authentication, then the nested encrypted attributes include the
  AT_NEXT_PSEUDONYM attribute.  If the server supports
  re-authentication and wants to communicate a fast re-authentication
  identity to the peer, then the nested encrypted attributes include
  the AT_NEXT_REAUTH_ID attribute.

  When processing this message, the peer MUST process AT_RAND before
  processing other attributes.  Only if AT_RAND is verified to be
  valid, the peer derives keys and verifies AT_MAC.  The operation in
  case an error occurs is specified in Section 6.3.1.

9.4.  EAP-Response/SIM/Challenge

  The peer sends EAP-Response/SIM/Challenge in response to a valid
  EAP-Request/SIM/Challenge.

  Sending this packet indicates that the peer has successfully
  authenticated the server and that the EAP exchange will be accepted
  by the peer's local policy.  Hence, if these conditions are not met,
  then the peer MUST NOT send EAP-Response/SIM/Challenge, but the peer
  MUST send EAP-Response/SIM/Client-Error.

  The AT_MAC attribute MUST be included.  For EAP-
  Response/SIM/Challenge, the MAC code is calculated over the following
  data:

  EAP packet| n*SRES

  The EAP packet is represented as specified in Section 8.1.  The EAP
  packet bytes are immediately followed by the two or three SRES values
  concatenated, denoted above with the notation n*SRES.  The SRES
  values are used in the same order as the corresponding RAND
  challenges in the server's AT_RAND attribute.





Haverinen & Salowey          Informational                     [Page 50]

RFC 4186                 EAP-SIM Authentication             January 2006


  The AT_RESULT_IND attribute MAY be included if it was included in
  EAP-Request/SIM/Challenge.  The usage of this attribute is discussed
  in Section 6.2.

  Later versions of this protocol MAY make use of the AT_ENCR_DATA and
  AT_IV attributes in this message to include encrypted (skippable)
  attributes.  The EAP server MUST process EAP-Response/SIM/Challenge
  messages that include these attributes even if the server did not
  implement these optional attributes.

9.5.  EAP-Request/SIM/Re-authentication

  The server sends the EAP-Request/SIM/Re-authentication message if it
  wants to use fast re-authentication, and if it has received a valid
  fast re-authentication identity in EAP-Response/Identity or
  EAP-Response/SIM/Start.

  AT_MAC MUST be included.  No message-specific data is included in the
  MAC calculation.  See Section 10.14.

  The AT_RESULT_IND attribute MAY be included.  The usage of this
  attribute is discussed in Section 6.2.

  The AT_IV and AT_ENCR_DATA attributes MUST be included.  The
  plaintext consists of the following nested encrypted attributes,
  which MUST be included: AT_COUNTER and AT_NONCE_S.  In addition, the
  nested encrypted attributes MAY include the following attributes:
  AT_NEXT_REAUTH_ID and AT_PADDING.

9.6.  EAP-Response/SIM/Re-authentication

  The client sends the EAP-Response/SIM/Re-authentication packet in
  response to a valid EAP-Request/SIM/Re-authentication.

  The AT_MAC attribute MUST be included.  For
  EAP-Response/SIM/Re-authentication, the MAC code is calculated over
  the following data:

  EAP packet| NONCE_S

  The EAP packet is represented as specified in Section 8.1.  It is
  followed by the 16-byte NONCE_S value from the server's AT_NONCE_S
  attribute.

  The AT_IV and AT_ENCR_DATA attributes MUST be included.  The nested
  encrypted attributes MUST include the AT_COUNTER attribute.  The
  AT_COUNTER_TOO_SMALL attribute MAY be included in the nested




Haverinen & Salowey          Informational                     [Page 51]

RFC 4186                 EAP-SIM Authentication             January 2006


  encrypted attributes, and it is included in cases specified in
  Section 5.  The AT_PADDING attribute MAY be included.

  The AT_RESULT_IND attribute MAY be included if it was included in
  EAP-Request/SIM/Re-authentication.  The usage of this attribute is
  discussed in Section 6.2.

  Sending this packet without AT_COUNTER_TOO_SMALL indicates that the
  peer has successfully authenticated the server and that the EAP
  exchange will be accepted by the peer's local policy.  Hence, if
  these conditions are not met, then the peer MUST NOT send
  EAP-Response/SIM/Re-authentication, but the peer MUST send
  EAP-Response/SIM/Client-Error.

9.7.  EAP-Response/SIM/Client-Error

  The peer sends EAP-Response/SIM/Client-Error in error cases, as
  specified in Section 6.3.1.

  The AT_CLIENT_ERROR_CODE attribute MUST be included.

  The AT_MAC, AT_IV, or AT_ENCR_DATA attributes MUST NOT be used with
  this packet.

9.8.  EAP-Request/SIM/Notification

  The usage of this message is specified in Section 6.  The
  AT_NOTIFICATION attribute MUST be included.

  The AT_MAC attribute MUST be included if the P bit of the
  notification code in AT_NOTIFICATION is set to zero, and MUST NOT be
  included in cases when the P bit is set to one.  The P bit is
  discussed in Section 6.

  No message-specific data is included in the MAC calculation.  See
  Section 10.14.

  If EAP-Request/SIM/Notification is used on a fast re-authentication
  exchange, and if the P bit in AT_NOTIFICATION is set to zero, then
  AT_COUNTER is used for replay protection.  In this case, the
  AT_ENCR_DATA and AT_IV attributes MUST be included, and the
  encapsulated plaintext attributes MUST include the AT_COUNTER
  attribute.  The counter value included in AT_COUNTER MUST be the same
  as in the EAP-Request/SIM/Re-authentication packet on the same fast
  re-authentication exchange.






Haverinen & Salowey          Informational                     [Page 52]

RFC 4186                 EAP-SIM Authentication             January 2006


9.9.  EAP-Response/SIM/Notification

  The usage of this message is specified in Section 6.  This packet is
  an acknowledgement of EAP-Request/SIM/Notification.

  The AT_MAC attribute MUST be included in cases when the P bit of the
  notification code in AT_NOTIFICATION of EAP-Request/SIM/Notification
  is set to zero, and MUST NOT be included in cases when the P bit is
  set to one.  The P bit is discussed in Section 6.

  No message-specific data is included in the MAC calculation, see
  Section 10.14.

  If EAP-Request/SIM/Notification is used on a fast re-authentication
  exchange, and if the P bit in AT_NOTIFICATION is set to zero, then
  AT_COUNTER is used for replay protection.  In this case, the
  AT_ENCR_DATA and AT_IV attributes MUST be included, and the
  encapsulated plaintext attributes MUST include the AT_COUNTER
  attribute.  The counter value included in AT_COUNTER MUST be the same
  as in the EAP-Request/SIM/Re-authentication packet on the same fast
  re-authentication exchange.

10.  Attributes

  This section specifies the format of message attributes.  The
  attribute type numbers are specified in the IANA considerations
  section of the EAP-AKA specification [EAP-AKA].

10.1.  Table of Attributes

  The following table provides a guide to which attributes may be found
  in which kinds of messages, and in what quantity.  Messages are
  denoted with numbers in parentheses as follows: (1)
  EAP-Request/SIM/Start, (2) EAP-Response/SIM/Start, (3)
  EAP-Request/SIM/Challenge, (4) EAP-Response/SIM/Challenge, (5)
  EAP-Request/SIM/Notification, (6) EAP-Response/SIM/Notification, (7)
  EAP-Response/SIM/Client-Error, (8) EAP-Request/SIM/Re-authentication,
  and (9) EAP-Response/SIM/Re-authentication.  The column denoted with
  "Encr" indicates whether the attribute is a nested attribute that
  MUST be included within AT_ENCR_DATA, and the column denoted with
  "Skip" indicates whether the attribute is a skippable attribute.

  "0" indicates that the attribute MUST NOT be included in the message,
  "1" indicates that the attribute MUST be included in the message,
  "0-1" indicates that the attribute is sometimes included in the
  message, and "0*" indicates that the attribute is not included in the
  message in cases specified in this document, but MAY be included in
  future versions of the protocol.



Haverinen & Salowey          Informational                     [Page 53]

RFC 4186                 EAP-SIM Authentication             January 2006


             Attribute (1) (2) (3) (4) (5) (6) (7) (8) (9)  Encr Skip
       AT_VERSION_LIST  1   0   0   0   0   0   0   0   0   N     N
   AT_SELECTED_VERSION  0  0-1  0   0   0   0   0   0   0   N     N
           AT_NONCE_MT  0  0-1  0   0   0   0   0   0   0   N     N
   AT_PERMANENT_ID_REQ 0-1  0   0   0   0   0   0   0   0   N     N
         AT_ANY_ID_REQ 0-1  0   0   0   0   0   0   0   0   N     N
    AT_FULLAUTH_ID_REQ 0-1  0   0   0   0   0   0   0   0   N     N
           AT_IDENTITY  0  0-1  0   0   0   0   0   0   0   N     N
               AT_RAND  0   0   1   0   0   0   0   0   0   N     N
     AT_NEXT_PSEUDONYM  0   0  0-1  0   0   0   0   0   0   Y     Y
     AT_NEXT_REAUTH_ID  0   0  0-1  0   0   0   0  0-1  0   Y     Y
                 AT_IV  0   0  0-1  0* 0-1 0-1  0   1   1   N     Y
          AT_ENCR_DATA  0   0  0-1  0* 0-1 0-1  0   1   1   N     Y
            AT_PADDING  0   0  0-1  0* 0-1 0-1  0  0-1 0-1  Y     N
         AT_RESULT_IND  0   0  0-1 0-1  0   0   0  0-1 0-1  N     Y
                AT_MAC  0   0   1   1  0-1 0-1  0   1   1   N     N
            AT_COUNTER  0   0   0   0  0-1 0-1  0   1   1   Y     N
  AT_COUNTER_TOO_SMALL  0   0   0   0   0   0   0   0  0-1  Y     N
            AT_NONCE_S  0   0   0   0   0   0   0   1   0   Y     N
       AT_NOTIFICATION  0   0   0   0   1   0   0   0   0   N     N
  AT_CLIENT_ERROR_CODE  0   0   0   0   0   0   1   0   0   N     N

  It should be noted that attributes AT_PERMANENT_ID_REQ,
  AT_ANY_ID_REQ, and AT_FULLAUTH_ID_REQ are mutually exclusive; only
  one of them can be included at the same time.  If one of the
  attributes AT_IV and AT_ENCR_DATA is included, then both of the
  attributes MUST be included.

10.2.  AT_VERSION_LIST

  The format of the AT_VERSION_LIST attribute is shown below.

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | AT_VERSION_L..| Length        | Actual Version List Length    |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Supported Version 1          |  Supported Version 2          |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   .                                                               .
   .                                                               .
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | Supported Version N           |     Padding                   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  This attribute is used in version negotiation, as specified in
  Section 4.1.  The attribute contains the version numbers supported by
  the EAP-SIM server.  The server MUST only include versions that it



Haverinen & Salowey          Informational                     [Page 54]

RFC 4186                 EAP-SIM Authentication             January 2006


  implements and that are allowed in its security policy.  The server
  SHOULD list the versions in the order of preference, with the most
  preferred versions listed first.  At least one version number MUST be
  included.  The version number for the protocol described in this
  document is one (0001 hexadecimal).

  The value field of this attribute begins with 2-byte Actual Version
  List Length, which specifies the length of the Version List in bytes,
  not including the Actual Version List Length attribute length.  This
  field is followed by the list of the versions supported by the
  server, which each have a length of 2 bytes.  For example, if there
  is only one supported version, then the Actual Version List Length is
  2.  Because the length of the attribute must be a multiple of 4
  bytes, the sender pads the value field with zero bytes when
  necessary.

10.3.  AT_SELECTED_VERSION

  The format of the AT_SELECTED_VERSION attribute is shown below.

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | AT_SELECTED...| Length = 1    |    Selected Version           |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  This attribute is used in version negotiation, as specified in
  Section 4.1.  The value field of this attribute contains a two-byte
  version number, which indicates the EAP-SIM version that the peer
  wants to use.

10.4.  AT_NONCE_MT

  The format of the AT_NONCE_MT attribute is shown below.

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |AT_NONCE_MT    | Length = 5    |           Reserved            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                                               |
   |                           NONCE_MT                            |
   |                                                               |
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+






Haverinen & Salowey          Informational                     [Page 55]

RFC 4186                 EAP-SIM Authentication             January 2006


  The value field of the NONCE_MT attribute contains two reserved bytes
  followed by a random number freshly generated by the peer (16 bytes
  long) for this EAP-SIM authentication exchange.  The random number is
  used as a seed value for the new keying material.  The reserved bytes
  are set to zero upon sending and ignored upon reception.

  The peer MUST NOT re-use the NONCE_MT value from a previous EAP-SIM
  authentication exchange.  If an EAP-SIM exchange includes several
  EAP/SIM/Start rounds, then the peer SHOULD use the same NONCE_MT
  value in all EAP-Response/SIM/Start packets.  The peer SHOULD use a
  good source of randomness to generate NONCE_MT.  Please see [RFC4086]
  for more information about generating random numbers for security
  applications.

10.5.  AT_PERMANENT_ID_REQ

  The format of the AT_PERMANENT_ID_REQ attribute is shown below.

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |AT_PERM..._REQ | Length = 1    |           Reserved            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  The use of the AT_PERMANENT_ID_REQ is defined in Section 4.2.  The
  value field contains only two reserved bytes, which are set to zero
  on sending and ignored on reception.

10.6.  AT_ANY_ID_REQ

  The format of the AT_ANY_ID_REQ attribute is shown below.

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |AT_ANY_ID_REQ  | Length = 1    |           Reserved            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  The use of the AT_ANY_ID_REQ is defined in Section 4.2.  The value
  field contains only two reserved bytes, which are set to zero on
  sending and ignored on reception.










Haverinen & Salowey          Informational                     [Page 56]

RFC 4186                 EAP-SIM Authentication             January 2006


10.7.  AT_FULLAUTH_ID_REQ

  The format of the AT_FULLAUTH_ID_REQ attribute is shown below.

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |AT_FULLAUTH_...| Length = 1    |           Reserved            |
   +---------------+---------------+-------------------------------+

  The use of the AT_FULLAUTH_ID_REQ is defined in Section 4.2.  The
  value field contains only two reserved bytes, which are set to zero
  on sending and ignored on reception.

10.8.  AT_IDENTITY

  The format of the AT_IDENTITY attribute is shown below.

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | AT_IDENTITY   | Length        | Actual Identity Length        |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                                               |
   .                       Identity (optional)                     .
   .                                                               .
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  The use of the AT_IDENTITY is defined in Section 4.2.  The value
  field of this attribute begins with a 2-byte actual identity length,
  which specifies the length of the identity in bytes.  This field is
  followed by the subscriber identity of the indicated actual length.
  The identity is the permanent identity, a pseudonym identity, or a
  fast re-authentication identity.  The identity format is specified in
  Section 4.2.1.  The same identity format is used in the AT_IDENTITY
  attribute and the EAP-Response/Identity packet, with the exception
  that the peer MUST NOT decorate the identity it includes in
  AT_IDENTITY.  The identity does not include any terminating null
  characters.  Because the length of the attribute must be a multiple
  of 4 bytes, the sender pads the identity with zero bytes when
  necessary.









Haverinen & Salowey          Informational                     [Page 57]

RFC 4186                 EAP-SIM Authentication             January 2006


10.9.  AT_RAND

  The format of the AT_RAND attribute is shown below.

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | AT_RAND       | Length        |           Reserved            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                                               |
   .                            n*RAND                             .
   .                                                               .
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  The value field of this attribute contains two reserved bytes
  followed by n GSM RANDs, each 16 bytes long.  The value of n can be
  determined by the attribute length.  The reserved bytes are set to
  zero upon sending and ignored upon reception.

  The number of RAND challenges (n) MUST be two or three.  The peer
  MUST verify that the number of RAND challenges is sufficient
  according to the peer's policy.  The server MUST use different RAND
  values.  In other words, a RAND value can only be included once in
  AT_RAND.  When processing the AT_RAND attribute, the peer MUST check
  that the RANDs are different.

  The EAP server MUST obtain fresh RANDs for each EAP-SIM full
  authentication exchange.  More specifically, the server MUST consider
  RANDs it included in AT_RAND to be consumed if the server receives an
  EAP-Response/SIM/Challenge packet with a valid AT_MAC, or an
  EAP-Response/SIM/Client-Error with the code "insufficient number of
  challenges" or "RANDs are not fresh".  However, in other cases (if
  the server does not receive a response to its
  EAP-Request/SIM/Challenge packet, or if the server receives a
  response other than the cases listed above), the server does not need
  to consider the RANDs to be consumed, and the server MAY re-use the
  RANDs in the AT_RAND attribute of the next full authentication
  attempt.












Haverinen & Salowey          Informational                     [Page 58]

RFC 4186                 EAP-SIM Authentication             January 2006


10.10.  AT_NEXT_PSEUDONYM

  The format of the AT_NEXT_PSEUDONYM attribute is shown below.

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | AT_NEXT_PSEU..| Length        | Actual Pseudonym Length       |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                                               |
   .                          Next Pseudonym                       .
   .                                                               .
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  The value field of this attribute begins with the 2-byte actual
  pseudonym length, which specifies the length of the following
  pseudonym in bytes.  This field is followed by a pseudonym username
  that the peer can use in the next authentication.  The username MUST
  NOT include any realm portion.  The username does not include any
  terminating null characters.  Because the length of the attribute
  must be a multiple of 4 bytes, the sender pads the pseudonym with
  zero bytes when necessary.  The username encoding MUST follow the
  UTF-8 transformation format [RFC3629].  This attribute MUST always be
  encrypted by encapsulating it within the AT_ENCR_DATA attribute.

10.11.  AT_NEXT_REAUTH_ID

  The format of the AT_NEXT_REAUTH_ID attribute is shown below.

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | AT_NEXT_REAU..| Length        | Actual Re-Auth Identity Length|
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                                               |
   .               Next Fast Re-authentication Username            .
   .                                                               .
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  The value field of this attribute begins with the 2-byte actual
  re-authentication identity length which specifies the length of the
  following fast re-authentication identity in bytes.  This field is
  followed by a fast re-authentication identity that the peer can use
  in the next fast re-authentication, as described in Section 5.  In
  environments where a realm portion is required, the fast
  re-authentication identity includes both a username portion and a



Haverinen & Salowey          Informational                     [Page 59]

RFC 4186                 EAP-SIM Authentication             January 2006


  realm name portion.  The fast re-authentication identity does not
  include any terminating null characters.  Because the length of the
  attribute must be a multiple of 4 bytes, the sender pads the fast
  re-authentication identity with zero bytes when necessary.  The
  identity encoding MUST follow the UTF-8 transformation format
  [RFC3629].  This attribute MUST always be encrypted by encapsulating
  it within the AT_ENCR_DATA attribute.

10.12.  AT_IV, AT_ENCR_DATA, and AT_PADDING

  AT_IV and AT_ENCR_DATA attributes can be used to transmit encrypted
  information between the EAP-SIM peer and server.

  The value field of AT_IV contains two reserved bytes followed by a
  16-byte initialization vector required by the AT_ENCR_DATA attribute.
  The reserved bytes are set to zero when sending and ignored on
  reception.  The AT_IV attribute MUST be included if and only if the
  AT_ENCR_DATA is included.  Section 6.3 specifies the operation if a
  packet that does not meet this condition is encountered.

  The sender of the AT_IV attribute chooses the initialization vector
  at random.  The sender MUST NOT re-use the initialization vector
  value from previous EAP-SIM packets.  The sender SHOULD use a good
  source of randomness to generate the initialization vector.  Please
  see [RFC4086] for more information about generating random numbers
  for security applications.  The format of AT_IV is shown below.

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |     AT_IV     | Length = 5    |           Reserved            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                                               |
   |                 Initialization Vector                         |
   |                                                               |
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  The value field of the AT_ENCR_DATA attribute consists of two
  reserved bytes followed by cipher text bytes encrypted using the
  Advanced Encryption Standard (AES) [AES] with a 128-bit key in the
  Cipher Block Chaining (CBC) mode of operation using the
  initialization vector from the AT_IV attribute.  The reserved bytes
  are set to zero when sending and ignored on reception.  Please see
  [CBC] for a description of the CBC mode.  The format of the
  AT_ENCR_DATA attribute is shown below.





Haverinen & Salowey          Informational                     [Page 60]

RFC 4186                 EAP-SIM Authentication             January 2006


    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | AT_ENCR_DATA  | Length        |           Reserved            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                                               |
   .                    Encrypted Data                             .
   .                                                               .
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  The derivation of the encryption key (K_encr) is specified in Section
  7.

  The plaintext consists of nested EAP-SIM attributes.

  The encryption algorithm requires the length of the plaintext to be a
  multiple of 16 bytes.  The sender may need to include the AT_PADDING
  attribute as the last attribute within AT_ENCR_DATA.  The AT_PADDING
  attribute is not included if the total length of other nested
  attributes within the AT_ENCR_DATA attribute is a multiple of 16
  bytes.  As usual, the Length of the Padding attribute includes the
  Attribute Type and Attribute Length fields.  The length of the
  Padding attribute is 4, 8, or 12 bytes.  It is chosen so that the
  length of the value field of the AT_ENCR_DATA attribute becomes a
  multiple of 16 bytes.  The actual pad bytes in the value field are
  set to zero (00 hexadecimal) on sending.  The recipient of the
  message MUST verify that the pad bytes are set to zero.  If this
  verification fails on the peer, then it MUST send the
  EAP-Response/SIM/Client-Error packet with the error code "unable to
  process packet" to terminate the authentication exchange.  If this
  verification fails on the server, then the server sends the peer the
  EAP-Request/SIM/Notification packet with an AT_NOTIFICATION code that
  implies failure to terminate the authentication exchange.  The format
  of the AT_PADDING attribute is shown below.

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  AT_PADDING   | Length        | Padding...                    |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               |
   |                                                               |
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+







Haverinen & Salowey          Informational                     [Page 61]

RFC 4186                 EAP-SIM Authentication             January 2006


10.13.  AT_RESULT_IND

  The format of the AT_RESULT_IND attribute is shown below.

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  AT_RESULT_...| Length = 1    |           Reserved            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  The value field of this attribute consists of two reserved bytes,
  which are set to zero upon sending and ignored upon reception.  This
  attribute is always sent unencrypted, so it MUST NOT be encapsulated
  within the AT_ENCR_DATA attribute.

10.14.  AT_MAC

  The AT_MAC attribute is used for EAP-SIM message authentication.
  Section 8 specifies in which messages AT_MAC MUST be included.

  The value field of the AT_MAC attribute contains two reserved bytes
  followed by a keyed message authentication code (MAC).  The MAC is
  calculated over the whole EAP packet and concatenated with optional
  message-specific data, with the exception that the value field of the
  MAC attribute is set to zero when calculating the MAC.  The EAP
  packet includes the EAP header that begins with the Code field, the
  EAP-SIM header that begins with the Subtype field, and all the
  attributes, as specified in Section 8.1.  The reserved bytes in
  AT_MAC are set to zero when sending and ignored on reception.  The
  contents of the message-specific data that may be included in the MAC
  calculation are specified separately for each EAP-SIM message in
  Section 9.

  The format of the AT_MAC attribute is shown below.

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |     AT_MAC    | Length = 5    |           Reserved            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                                               |
   |                           MAC                                 |
   |                                                               |
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+






Haverinen & Salowey          Informational                     [Page 62]

RFC 4186                 EAP-SIM Authentication             January 2006


  The MAC algorithm is an HMAC-SHA1-128 [RFC2104] keyed hash value.
  (The HMAC-SHA1-128 value is obtained from the 20-byte HMAC-SHA1 value
  by truncating the output to the first 16 bytes.  Hence, the length of
  the MAC is 16 bytes.  The derivation of the authentication key
  (K_aut) used in the calculation of the MAC is specified in Section 7.

  When the AT_MAC attribute is included in an EAP-SIM message, the
  recipient MUST process the AT_MAC attribute before looking at any
  other attributes, except when processing EAP-Request/SIM/Challenge.
  The processing of EAP-Request/SIM/Challenge is specified in Section
  9.3.  If the message authentication code is invalid, then the
  recipient MUST ignore all other attributes in the message and operate
  as specified in Section 6.3.

10.15.  AT_COUNTER

  The format of the AT_COUNTER attribute is shown below.

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  AT_COUNTER   | Length = 1    |           Counter             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  The value field of the AT_COUNTER attribute consists of a 16-bit
  unsigned integer counter value, represented in network byte order.
  This attribute MUST always be encrypted by encapsulating it within
  the AT_ENCR_DATA attribute.

10.16.  AT_COUNTER_TOO_SMALL

  The format of the AT_COUNTER_TOO_SMALL attribute is shown below.

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  AT_COUNTER...| Length = 1    |           Reserved            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  The value field of this attribute consists of two reserved bytes,
  which are set to zero upon sending and ignored upon reception.  This
  attribute MUST always be encrypted by encapsulating it within the
  AT_ENCR_DATA attribute.








Haverinen & Salowey          Informational                     [Page 63]

RFC 4186                 EAP-SIM Authentication             January 2006


10.17.  AT_NONCE_S

  The format of the AT_NONCE_S attribute is shown below.

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | AT_NONCE_S    | Length = 5    |           Reserved            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                                               |
   |                                                               |
   |                            NONCE_S                            |
   |                                                               |
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  The value field of the AT_NONCE_S attribute contains two reserved
  bytes followed by a random number freshly generated by the server (16
  bytes) for this EAP-SIM fast re-authentication.  The random number is
  used as a challenge for the peer and also as a seed value for the new
  keying material.  The reserved bytes are set to zero upon sending and
  ignored upon reception.  This attribute MUST always be encrypted by
  encapsulating it within the AT_ENCR_DATA attribute.

  The server MUST NOT re-use the NONCE_S value from any previous
  EAP-SIM fast re-authentication exchange.  The server SHOULD use a
  good source of randomness to generate NONCE_S.  Please see [RFC4086]
  for more information about generating random numbers for security
  applications.

10.18.  AT_NOTIFICATION

  The format of the AT_NOTIFICATION attribute is shown below.

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |AT_NOTIFICATION| Length = 1    |S|P|  Notification Code        |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  The value field of this attribute contains a two-byte notification
  code.  The first and second bit (S and P) of the notification code
  are interpreted as described in Section 6.

  The notification code values listed below have been reserved.  The
  descriptions below illustrate the semantics of the notifications.





Haverinen & Salowey          Informational                     [Page 64]

RFC 4186                 EAP-SIM Authentication             January 2006


  The peer implementation MAY use different wordings when presenting
  the notifications to the user.  The "requested service" depends on
  the environment where EAP-SIM is applied.

  0 - General failure after authentication.  (Implies failure, used
  after successful authentication.)

  16384 - General failure.  (Implies failure, used before
  authentication.)

  32768 - Success.  User has been successfully authenticated.  (Does
  not imply failure, used after successful authentication).  The usage
  of this code is discussed in Section 6.2.

  1026 - User has been temporarily denied access to the requested
  service.  (Implies failure, used after successful authentication.)

  1031 - User has not subscribed to the requested service.  (Implies
  failure, used after successful authentication.)

10.19.  AT_CLIENT_ERROR_CODE

  The format of the AT_CLIENT_ERROR_CODE attribute is shown below.

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |AT_CLIENT_ERR..| Length = 1    |     Client Error Code         |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  The value field of this attribute contains a two-byte client error
  code.  The following error code values have been reserved.


   0    "unable to process packet": a general error code

   1    "unsupported version": the peer does not support any of
        the versions listed in AT_VERSION_LIST

   2    "insufficient number of challenges": the peer's policy
        requires more triplets than the server included in AT_RAND

   3    "RANDs are not fresh": the peer believes that the RAND
        challenges included in AT_RAND were not fresh







Haverinen & Salowey          Informational                     [Page 65]

RFC 4186                 EAP-SIM Authentication             January 2006


11.  IANA Considerations

  IANA has assigned the EAP type number 18 for this protocol.

  EAP-SIM shares most of the protocol design, such as attributes and
  message Subtypes, with EAP-AKA [EAP-AKA].  EAP-SIM protocol numbers
  should be administered in the same IANA registry as EAP-AKA.  The
  initial values are listed in [EAP-AKA] for both protocols, so this
  document does not require any new registries or parameter allocation.
  As a common registry is used for EAP-SIM and EAP-AKA, the protocol
  number allocation policy for both protocols is specified in
  [EAP-AKA].

12.  Security Considerations

  The EAP specification [RFC3748] describes the security
  vulnerabilities of EAP, which does not include its own security
  mechanisms.  This section discusses the claimed security properties
  of EAP-SIM, as well as vulnerabilities and security recommendations.

12.1.  A3 and A8 Algorithms

  The GSM A3 and A8 algorithms are used in EAP-SIM.  [GSM-03.20]
  specifies the general GSM authentication procedure and the external
  interface (inputs and outputs) of the A3 and A8 algorithms.  The
  operation of these functions falls completely within the domain of an
  individual operator, and therefore, the functions are specified by
  each operator rather than being fully standardised.  The GSM-MILENAGE
  algorithm, specified publicly in [3GPP-TS-55.205], is an example
  algorithm set for A3 and A8 algorithms.

  The security of the A3 and A8 algorithms is important to the security
  of EAP-SIM.  Some A3/A8 algorithms have been compromised; see [GSM-
  Cloning] for discussion about the security of COMP-128 version 1.
  Note that several revised versions of the COMP-128 A3/A8 algorithm
  have been devised after the publication of these weaknesses and that
  the publicly specified GSM-MILENAGE algorithm is not vulnerable to
  any known attacks.

12.2.  Identity Protection

  EAP-SIM includes optional identity privacy support that protects the
  privacy of the subscriber identity against passive eavesdropping.
  This document only specifies a mechanism to deliver pseudonyms from
  the server to the peer as part of an EAP-SIM exchange.  Hence, a peer
  that has not yet performed any EAP-SIM exchanges does not typically
  have a pseudonym available.  If the peer does not have a pseudonym
  available, then the privacy mechanism cannot be used, but the



Haverinen & Salowey          Informational                     [Page 66]

RFC 4186                 EAP-SIM Authentication             January 2006


  permanent identity will have to be sent in the clear.  The terminal
  SHOULD store the pseudonym in a non-volatile memory so that it can be
  maintained across reboots.  An active attacker that impersonates the
  network may use the AT_PERMANENT_ID_REQ attribute to attempt to learn
  the subscriber's permanent identity.  However, as discussed in
  Section 4.2.2, the terminal can refuse to send the cleartext
  permanent identity if it believes that the network should be able to
  recognize the pseudonym.

  If the peer and server cannot guarantee that the pseudonym will be
  maintained reliably, and identity privacy is required, then
  additional protection from an external security mechanism (such as
  Protected Extensible Authentication Protocol (PEAP) [PEAP]) may be
  used.  If an external security mechanism is in use, the identity
  privacy features of EAP-SIM may not be useful.  The security
  considerations of using an external security mechanism with EAP-SIM
  are beyond the scope of this document.

12.3.  Mutual Authentication and Triplet Exposure

  EAP-SIM provides mutual authentication.  The peer believes that the
  network is authentic because the network can calculate a correct
  AT_MAC value in the EAP-Request/SIM/Challenge packet.  To calculate
  AT_MAC it is sufficient to know the RAND and Kc values from the GSM
  triplets (RAND, SRES, Kc) used in the authentication.  Because the
  network selects the RAND challenges and the triplets, an attacker
  that knows n (2 or 3) GSM triplets for the subscriber is able to
  impersonate a valid network to the peer.  (Some peers MAY employ an
  implementation-specific counter-measure against impersonating a valid
  network by re-using a previously used RAND; see below.)  In other
  words, the security of EAP-SIM is based on the secrecy of Kc keys,
  which are considered secret intermediate results in the EAP-SIM
  cryptographic calculations.

  Given physical access to the SIM card, it is easy to obtain any
  number of GSM triplets.

  Another way to obtain triplets is to mount an attack on the peer
  platform via a virus or other malicious piece of software.  The peer
  SHOULD be protected against triplet querying attacks by malicious
  software.  Care should be taken not to expose Kc keys to attackers
  when they are stored or handled by the peer, or transmitted between
  subsystems of the peer.  Steps should be taken to limit the
  transport, storage, and handling of these values outside a protected
  environment within the peer.  However, the virus protection of the
  peer and the security capabilities of the peer's operating system are
  outside the scope of this document.




Haverinen & Salowey          Informational                     [Page 67]

RFC 4186                 EAP-SIM Authentication             January 2006


  The EAP-SIM server typically obtains the triplets from the Home
  Location Register (HLR).  An attacker might try to obtain triplets by
  attacking against the network used between the EAP-SIM server and the
  HLR.  Care should be taken not to expose Kc keys to attackers when
  they are stored or handled by the EAP-SIM server, or transmitted
  between the EAP server and the HLR.  Steps should be taken to limit
  the transport, storage, and handling of these values outside a
  protected environment.  However, the protection of the communications
  between the EAP-SIM server and the HLR is outside the scope of this
  document.

  If the same SIM credentials are also used for GSM traffic, the
  triplets could be revealed in the GSM network; see Section 12.8.

  In GSM, the network is allowed to re-use the RAND challenge in
  consecutive authentication exchanges.  This is not allowed in
  EAP-SIM.  The EAP-SIM server is mandated to use fresh triplets (RAND
  challenges) in consecutive authentication exchanges, as specified in
  Section 3.  EAP-SIM does not mandate any means for the peer to check
  if the RANDs are fresh, so the security of the scheme leans on the
  secrecy of the triplets.  However, the peer MAY employ
  implementation-specific mechanisms to remember some of the previously
  used RANDs, and the peer MAY check the freshness of the server's
  RANDs.  The operation in cases when the peer detects that the RANDs
  are not fresh is specified in Section 6.3.1.

  Preventing the re-use of authentication vectors has been taken into
  account in the design of the UMTS Authentication and Key Agreement
  (AKA), which is used in EAP-AKA [EAP-AKA].  In cases when the triplet
  re-use properties of EAP-SIM are not considered sufficient, it is
  advised to use EAP-AKA.

  Note that EAP-SIM mutual authentication is done with the EAP server.
  In general, EAP methods do not authenticate the identity or services
  provided by the EAP authenticator (if distinct from the EAP server)
  unless they provide the so-called channel bindings property.  The
  vulnerabilities related to this have been discussed in [RFC3748],
  [EAP-Keying], [Service-Identity].

  EAP-SIM does not provide the channel bindings property, so it only
  authenticates the EAP server.  However, ongoing work such as
  [Service-Identity] may provide such support as an extension to
  popular EAP methods such as EAP-TLS, EAP-SIM, or EAP-AKA.








Haverinen & Salowey          Informational                     [Page 68]

RFC 4186                 EAP-SIM Authentication             January 2006


12.4.  Flooding the Authentication Centre

  The EAP-SIM server typically obtains authentication vectors from the
  Authentication Centre (AuC).  EAP-SIM introduces a new usage for the
  AuC.  The protocols between the EAP-SIM server and the AuC are out of
  the scope of this document.  However, it should be noted that a
  malicious EAP-SIM peer may generate a lot of protocol requests to
  mount a denial of service attack.  The EAP-SIM server implementation
  SHOULD take this into account and SHOULD take steps to limit the
  traffic that it generates towards the AuC, preventing the attacker
  from flooding the AuC and from extending the denial of service attack
  from EAP-SIM to other users of the AuC.

12.5.  Key Derivation

  EAP-SIM supports key derivation.  The key hierarchy is specified in
  Section 7.  EAP-SIM combines several GSM triplets in order to
  generate stronger keying material and stronger AT_MAC values.  The
  actual strength of the resulting keys depends, among other things, on
  operator-specific parameters including authentication algorithms, the
  strength of the Ki key, and the quality of the RAND challenges.  For
  example, some SIM cards generate Kc keys with 10 bits set to zero.
  Such restrictions may prevent the concatenation technique from
  yielding strong session keys.  Because the strength of the Ki key is
  128 bits, the ultimate strength of any derived secret key material is
  never more than 128 bits.

  It should also be noted that a security policy that allows n=2 to be
  used may compromise the security of a future policy that requires
  three triplets, because adversaries may be able to exploit the
  messages exchanged when the weaker policy is applied.

  There is no known way to obtain complete GSM triplets by mounting an
  attack against EAP-SIM.  A passive eavesdropper can learn n*RAND and
  AT_MAC and may be able to link this information to the subscriber
  identity.  An active attacker that impersonates a GSM subscriber can
  easily obtain n*RAND and AT_MAC values from the EAP server for any
  given subscriber identity.  However, calculating the Kc and SRES
  values from AT_MAC would require the attacker to reverse the keyed
  message authentication code function HMAC-SHA1-128.

  As EAP-SIM does not expose any values calculated from an individual
  GSM Kc keys, it is not possible to mount a brute force attack on only
  one of the Kc keys in EAP-SIM.  Therefore, when considering brute
  force attacks on the values exposed in EAP-SIM, the effective length
  of EAP-SIM session keys is not compromised by the fact that they are





Haverinen & Salowey          Informational                     [Page 69]

RFC 4186                 EAP-SIM Authentication             January 2006


  combined from several shorter keys, i.e., the effective length of 128
  bits may be achieved.  For additional considerations, see Section
  12.8.

12.6.  Cryptographic Separation of Keys and Session Independence

  The EAP Transient Keys used to protect EAP-SIM packets (K_encr,
  K_aut), the Master Session Key, and the Extended Master Session Key
  are cryptographically separate in EAP-SIM.  An attacker cannot derive
  any non-trivial information about any of these keys based on the
  other keys.  An attacker also cannot calculate the pre-shared secret
  (Ki) from the GSM Kc keys, from EAP-SIM K_encr, from EAP-SIM K_aut,
  from the Master Session Key, or from the Extended Master Session Key.

  Each EAP-SIM exchange generates fresh keying material, and the keying
  material exported from the method upon separate EAP-SIM exchanges is
  cryptographically separate.  The EAP-SIM peer contributes to the
  keying material with the NONCE_MT parameter, which must be chosen
  freshly for each full authentication exchange.  The EAP server is
  mandated to choose the RAND challenges freshly for each full
  authentication exchange.  If either the server or the peer chooses
  its random value (NONCE_MT or RAND challenges) freshly, even if the
  other entity re-used its value from a previous exchange, then the EAP
  Transient Keys, the Master Session Key, and the Extended Master
  Session Key will be different and cryptographically separate from the
  corresponding values derived upon the previous full authentication
  exchange.

  On fast re-authentication, freshness of the Master Session Key and
  the Extended Master Session Key is provided with a counter
  (AT_COUNTER).  The same EAP Transient Keys (K_encr, K_aut) that were
  used in the full authentication exchange are used to protect the EAP
  negotiation.  However, replay and integrity protection across all the
  fast re-authentication exchanges that use the same EAP Transient Keys
  is provided with AT_COUNTER.

  [RFC3748] defines session independence as the "demonstration that
  passive attacks (such as capture of the EAP conversation) or active
  attacks (including compromise of the MSK or EMSK) do not enable
  compromise of subsequent or prior MSKs or EMSKs".  Because the MSKs
  and EMSKs are separate between EAP exchanges, EAP-SIM supports this
  security claim.

  It should be noted that [Patel-2003], which predates [RFC3748], uses
  a slightly different meaning for session independence.  The EAP-SIM
  protocol does not allow the peer to ensure that different Kc key
  values would be used in different exchanges.  Only the server is able
  to ensure that fresh RANDs, and therefore, fresh Kc keys are used.



Haverinen & Salowey          Informational                     [Page 70]

RFC 4186                 EAP-SIM Authentication             January 2006


  Hence, the peer cannot guarantee EAP-SIM sessions to be independent
  with regard to the internal Kc values.  However, in EAP-SIM, the Kc
  keys are considered to be secret intermediate results, which are not
  exported outside the method.  See Section 12.3 for more information
  about RAND re-use.

12.7.  Dictionary Attacks

  Because EAP-SIM is not a password protocol, it is not vulnerable to
  dictionary attacks.  (The pre-shared symmetric secret stored on the
  SIM card is not a passphrase, nor is it derived from a passphrase.)

12.8.  Credentials Re-use

  EAP-SIM cannot prevent attacks over the GSM or GPRS radio networks.
  If the same SIM credentials are also used in GSM or GPRS, it is
  possible to mount attacks over the cellular interface.

  A passive attacker can eavesdrop GSM or GPRS traffic and obtain RAND,
  SRES pairs.  He can then use a brute force attack or other
  cryptanalysis techniques to obtain the 64-bit Kc keys used to encrypt
  the GSM or GPRS data.  This makes it possible to attack each 64-bit
  key separately.

  An active attacker can mount a "rogue GSM/GPRS base station attack",
  replaying previously seen RAND challenges to obtain SRES values.  He
  can then use a brute force attack to obtain the Kc keys.  If
  successful, the attacker can impersonate a valid network or decrypt
  previously seen traffic, because EAP-SIM does not provide perfect
  forward secrecy (PFS).

  Due to several weaknesses in the GSM encryption algorithms, the
  effective key strength of the Kc keys is much less than the expected
  64 bits (no more than 40 bits if the A5/1 GSM encryption algorithm is
  used; as documented in [Barkan-2003], an active attacker can force
  the peer to use the weaker A5/2 algorithm that can be broken in less
  than a second).

  Because the A5 encryption algorithm is not used in EAP-SIM, and
  because EAP-SIM does not expose any values calculated from individual
  Kc keys, it should be noted that these attacks are not possible if
  the SIM credentials used in EAP-SIM are not shared in GSM/GPRS.

  At the time this document was written, the 3rd Generation Partnership
  Project (3GPP) has started to work on fixes to these A5
  vulnerabilities.  One of the solution proposals discussed in 3GPP is
  integrity-protected A5 version negotiation, which would require the
  base station to prove knowledge of the Kc key before the terminal



Haverinen & Salowey          Informational                     [Page 71]

RFC 4186                 EAP-SIM Authentication             January 2006


  sends any values calculated from the Kc to the network.  Another
  proposal is so-called special RANDs, where some bits of the RAND
  challenge would be used for cryptographic separation by indicating
  the allowed use of the triplet, such as the allowed A5 algorithm in
  GSM or the fact that the triplet is intended for EAP-SIM.  This is
  currently a work in progress, and the mechanisms have not been
  selected yet.

12.9.  Integrity and Replay Protection, and Confidentiality

  AT_MAC, AT_IV, AT_ENCR_DATA, and AT_COUNTER attributes are used to
  provide integrity, replay and confidentiality protection for EAP-SIM
  requests and responses.  Integrity protection with AT_MAC includes
  the EAP header.  These attributes cannot be used during the
  EAP/SIM/Start roundtrip.  However, the protocol values (user identity
  string, NONCE_MT, and version negotiation parameters) are
  (implicitly) protected by later EAP-SIM messages by including them in
  key derivation.

  Integrity protection (AT_MAC) is based on a keyed message
  authentication code.  Confidentiality (AT_ENCR_DATA and AT_IV) is
  based on a block cipher.

  Confidentiality protection is applied only to a part of the protocol
  fields.  The table of attributes in Section 10.1 summarizes which
  fields are confidentiality-protected.  It should be noted that the
  error and notification code attributes AT_CLIENT_ERROR_CODE and
  AT_NOTIFICATION are not confidential, but they are transmitted in the
  clear.  Identity protection is discussed in Section 12.2.

  On full authentication, replay protection of the EAP exchange is
  provided by the RAND values from the underlying GSM authentication
  scheme and the use of the NONCE_MT value.  Protection against replays
  of EAP-SIM messages is also based on the fact that messages that can
  include AT_MAC can only be sent once with a certain EAP-SIM Subtype,
  and on the fact that a different K_aut key will be used for
  calculating AT_MAC in each full authentication exchange.

  On fast re-authentication, a counter included in AT_COUNTER and a
  server random nonce is used to provide replay protection.  The
  AT_COUNTER attribute is also included in EAP-SIM notifications if it
  is used after successful authentication in order to provide replay
  protection between re-authentication exchanges.

  Because EAP-SIM is not a tunneling method, EAP-Request/Notification,
  EAP-Response/Notification, EAP-Success, or EAP-Failure packets are
  not confidential, integrity-protected, or replay-protected in
  EAP-SIM.  On physically insecure networks, this may enable an



Haverinen & Salowey          Informational                     [Page 72]

RFC 4186                 EAP-SIM Authentication             January 2006


  attacker to send false notifications to the peer and to mount denial
  of service attacks by spoofing these packets.  As discussed in
  Section 6.3, the peer will only accept EAP-Success after the peer
  successfully authenticates the server.  Hence, the attacker cannot
  force the peer to believe successful mutual authentication has
  occurred until the peer successfully authenticates the server or
  after the peer fails to authenticate the server.

  The security considerations of EAP-SIM result indications are covered
  in Section 12.11

  An eavesdropper will see the EAP-Request/Notification,
  EAP-Response/Notification, EAP-Success, and EAP-Failure packets sent
  in the clear.  With EAP-SIM, confidential information MUST NOT be
  transmitted in EAP Notification packets.

12.10.  Negotiation Attacks

  EAP-SIM does not protect the EAP-Response/Nak packet.  Because
  EAP-SIM does not protect the EAP method negotiation, EAP method
  downgrading attacks may be possible, especially if the user uses the
  same identity with EAP-SIM and other EAP methods.

  EAP-SIM includes a version negotiation procedure.  In EAP-SIM the
  keying material derivation includes the version list and selected
  version to ensure that the protocol cannot be downgraded and that the
  peer and server use the same version of EAP-SIM.

  EAP-SIM does not support ciphersuite negotiation.

12.11.  Protected Result Indications

  EAP-SIM supports optional protected success indications and
  acknowledged failure indications.  If a failure occurs after
  successful authentication, then the EAP-SIM failure indication is
  integrity- and replay-protected.

  Even if an EAP-Failure packet is lost when using EAP-SIM over an
  unreliable medium, then the EAP-SIM failure indications will help
  ensure that the peer and EAP server will know the other party's
  authentication decision.  If protected success indications are used,
  then the loss of Success packet will also be addressed by the
  acknowledged, integrity- and replay-protected EAP-SIM success
  indication.  If the optional success indications are not used, then
  the peer may end up believing that the server succeeded
  authentication, when it actually failed.  Since access will not be





Haverinen & Salowey          Informational                     [Page 73]

RFC 4186                 EAP-SIM Authentication             January 2006


  granted in this case, protected result indications are not needed
  unless the client is not able to realize it does not have access for
  an extended period of time.

12.12.  Man-in-the-Middle Attacks

  In order to avoid man-in-the-middle attacks and session hijacking,
  user data SHOULD be integrity-protected on physically insecure
  networks.  The EAP-SIM Master Session Key, or keys derived from it,
  MAY be used as the integrity protection keys, or, if an external
  security mechanism such as PEAP is used, then the link integrity
  protection keys MAY be derived by the external security mechanism.

  There are man-in-the-middle attacks associated with the use of any
  EAP method within a tunneled protocol.  For instance, an early
  version of PEAP [PEAP-02] was vulnerable to this attack.  This
  specification does not address these attacks.  If EAP-SIM is used
  with a tunneling protocol, there should be cryptographic binding
  provided between the protocol and EAP-SIM to prevent
  man-in-the-middle attacks through rogue authenticators being able to
  setup one-way authenticated tunnels.  For example, newer versions of
  PEAP include such cryptographic binding.  The EAP-SIM Master Session
  Key MAY be used to provide the cryptographic binding.  However, the
  mechanism by which the binding is provided depends on the tunneling
  protocol and is beyond the scope of this document.

12.13.  Generating Random Numbers

  An EAP-SIM implementation SHOULD use a good source of randomness to
  generate the random numbers required in the protocol.  Please see
  [RFC4086] for more information on generating random numbers for
  security applications.

13.  Security Claims

  This section provides the security claims required by [RFC3748].

  Auth. mechanism: EAP-SIM is based on the GSM SIM mechanism, which is
  a challenge/response authentication and key agreement mechanism based
  on a symmetric 128-bit pre-shared secret.  EAP-SIM also makes use of
  a peer challenge to provide mutual authentication.

  Ciphersuite negotiation: No

  Mutual authentication: Yes (Section 12.3)

  Integrity protection: Yes (Section 12.9)




Haverinen & Salowey          Informational                     [Page 74]

RFC 4186                 EAP-SIM Authentication             January 2006


  Replay protection: Yes (Section 12.9)

  Confidentiality: Yes, except method-specific success and failure
  indications (Section 12.2, Section 12.9)

  Key derivation: Yes

  Key strength: EAP-SIM supports key derivation with 128-bit effective
  key strength (Section 12.5).  However, as discussed in Section 11, if
  the same credentials are used in GSM/GPRS and in EAP-SIM, then the
  key strength may be reduced considerably, basically to the same level
  as in GSM, by mounting attacks over GSM/GPRS.  For example an active
  attack using a false GSM/GPRS base station reduces the effective key
  strength to almost zero.

  Description of key hierarchy: Please see Section 7.

  Dictionary attack protection: N/A (Section 12.7)

  Fast reconnect: Yes

  Cryptographic binding: N/A

  Session independence: Yes (Section 12.6)

  Fragmentation: No

  Channel binding: No

  Indication of vulnerabilities: Vulnerabilities are discussed in
  Section 12.

14.  Acknowledgements and Contributions

14.1.  Contributors

  In addition to the editors, Nora Dabbous, Jose Puthenkulam, and
  Prasanna Satarasinghe were significant contributors to this document.

  Pasi Eronen and Jukka-Pekka Honkanen contributed Appendix A.

14.2.  Acknowledgements

  Juha Ala-Laurila, N. Asokan, Jan-Erik Ekberg, Patrik Flykt,
  Jukka-Pekka Honkanen, Antti Kuikka, Jukka Latva, Lassi Lehtinen, Jyri
  Rinnemaa, Timo Takamaki, and Raimo Vuonnala contributed many original
  ideas and concepts to this protocol.




Haverinen & Salowey          Informational                     [Page 75]

RFC 4186                 EAP-SIM Authentication             January 2006


  N. Asokan, Pasi Eronen, and Jukka-Pekka Honkanen contributed and
  helped in innumerable ways during the development of the protocol.

  Valtteri Niemi and Kaisa Nyberg contributed substantially to the
  design of the key derivation and the fast re-authentication
  procedure, and have also provided their cryptographic expertise in
  many discussions related to this protocol.

  Simon Blake-Wilson provided very helpful comments on key derivation
  and version negotiation.

  Thanks to Greg Rose for his very valuable comments to an early
  version of this specification [S3-020125], and for reviewing and
  providing very useful comments on version 12.

  Thanks to Bernard Aboba, Vladimir Alperovich, Florent Bersani,
  Jacques Caron, Gopal Dommety, Augustin Farrugia, Mark Grayson, Max de
  Groot, Prakash Iyer, Nishi Kant, Victor Lortz, Jouni Malinen, Sarvar
  Patel, Tom Porcher, Michael Richardson, Stefan Schroeder, Uma
  Shankar, Jesse Walker, and Thomas Wieland for their contributions and
  critiques.  Special thanks to Max for proposing improvements to the
  MAC calculation.

  Thanks to Glen Zorn for reviewing this document and for providing
  very useful comments on the protocol.

  Thanks to Sarvar Patel for his review of the protocol [Patel-2003].

  Thanks to Bernard Aboba for reviewing this document for RFC 3748
  compliance.

  The identity privacy support is based on the identity privacy support
  of [EAP-SRP].  The attribute format is based on the extension format
  of Mobile IPv4 [RFC3344].

  This protocol has been partly developed in parallel with EAP-AKA
  [EAP-AKA], and hence this specification incorporates many ideas from
  Jari Arkko.













Haverinen & Salowey          Informational                     [Page 76]

RFC 4186                 EAP-SIM Authentication             January 2006


14.2.1.  Contributors' Addresses

  Nora Dabbous
  Gemplus
  34 rue Guynemer
  92447 Issy les Moulineaux
  France

  Phone: +33 1 4648 2000
  EMail: [email protected]


  Jose Puthenkulam
  Intel Corporation
  2111 NE 25th Avenue, JF2-58
  Hillsboro, OR 97124
  USA

  Phone: +1 503 264 6121
  EMail: [email protected]


  Prasanna Satarasinghe
  Transat Technologies
  180 State Street, Suite 240
  Southlake, TX 76092
  USA

  Phone: + 1 817 4814412
  EMail: [email protected]





















Haverinen & Salowey          Informational                     [Page 77]

RFC 4186                 EAP-SIM Authentication             January 2006


15.  References

15.1.  Normative References

  [GSM-03.20]        European Telecommunications Standards  Institute,
                     "GSM Technical Specification GSM 03.20 (ETS 300
                     534):  "Digital cellular telecommunication system
                     (Phase 2); Security related network functions"",
                     August 1997.

  [RFC2119]          Bradner, S., "Key words for use in RFCs to
                     Indicate Requirement Levels", BCP 14, RFC 2119,
                     March 1997.

  [GSM-03.03]        European Telecommunications Standards Institute,
                     "GSM Technical Specification GSM 03.03 (ETS 300
                     523): "Digital cellular telecommunication system
                     (Phase 2); Numbering, addressing and
                     identification"", April 1997.

  [RFC2104]          Krawczyk, H., Bellare, M., and R. Canetti, "HMAC:
                     Keyed-Hashing for Message Authentication", RFC
                     2104, February 1997.

  [RFC4282]          Aboba, B., Beadles, M., Arkko, J., and P. Eronen,
                     "The Network Access Identifier", RFC 4282,
                     December 2005.

  [AES]              National Institute of  Standards and Technology,
                     "Federal Information Processing Standards (FIPS)
                     Publication 197, "Advanced Encryption Standard
                     (AES)"", November 2001.
                     http://csrc.nist.gov/publications/fips/fips197/
                     fips-197.pdf

  [CBC]              National Institute of Standards and Technology,
                     "NIST Special Publication 800-38A, "Recommendation
                     for Block Cipher Modes of Operation - Methods and
                     Techniques"", December 2001.
                     http://csrc.nist.gov/publications/nistpubs/
                     800-38a/sp800-38a.pdf

  [SHA-1]            National Institute of Standards and Technology,
                     U.S.  Department of Commerce, "Federal Information
                     Processing Standard (FIPS) Publication 180-1,
                     "Secure Hash Standard"", April 1995.





Haverinen & Salowey          Informational                     [Page 78]

RFC 4186                 EAP-SIM Authentication             January 2006


  [PRF]              National Institute of Standards and Technology,
                     "Federal Information Processing Standards (FIPS)
                     Publication  186-2 (with change notice); Digital
                     Signature Standard (DSS)", January 2000.
                     Available on-line at:
                     http://csrc.nist.gov/publications/
                     fips/fips186-2/fips186-2-change1.pdf

  [RFC3629]          Yergeau, F., "UTF-8, a transformation format of
                     ISO 10646", STD 63, RFC 3629, November 2003.

  [RFC3748]          Aboba, B., Blunk, L., Vollbrecht, J., Carlson, J.,
                     and H. Levkowetz, "Extensible Authentication
                     Protocol (EAP)", RFC 3748, June 2004.

  [EAP-AKA]          Arkko, J. and H. Haverinen, "Extensible
                     Authentication Protocol Method for 3rd Generation
                     Authentication and Key Agreement (EAP-AKA)", RFC
                     4187, January 2006.

15.2.  Informative References

  [3GPP-TS-23.003]   3rd Generation Partnership Project, "3GPP
                     Technical Specification 3GPP TS 23.003 V6.8.0:
                     "3rd Generation Parnership Project; Technical
                     Specification Group Core Network; Numbering,
                     addressing and identification (Release 6)"",
                     December 2005.

  [3GPP-TS-55.205]   3rd Generation Partnership Project, "3GPP
                     Technical Specification 3GPP TS 55.205 V 6.0.0:
                     "3rd Generation Partnership Project; Technical
                     Specification Group Services and System Aspects;
                     Specification of the GSM-MILENAGE Algorithms: An
                     example algorithm set for the GSM Authentication
                     and Key Generation functions A3 and A8 (Release
                     6)"", December 2002.

  [PEAP]             Palekar, A., Simon, D., Zorn, G., Salowey, J.,
                     Zhou, H., and S. Josefsson, "Protected EAP
                     Protocol (PEAP) Version 2", Work in Progress,
                     October 2004.

  [PEAP-02]          Anderson, H., Josefsson, S., Zorn, G., Simon, D.,
                     and A. Palekar, "Protected EAP Protocol (PEAP)",
                     Work in Progress, February 2002.





Haverinen & Salowey          Informational                     [Page 79]

RFC 4186                 EAP-SIM Authentication             January 2006


  [EAP-Keying]       Aboba, B., Simon, D., Arkko, J., Eronen, P., and
                     H.  Levkowetz, "Extensible Authentication Protocol
                     (EAP) Key Management Framework", Work in Progress,
                     October 2005.

  [Service-Identity] Arkko, J. and P. Eronen, "Authenticated Service
                     Information for the Extensible Authentication
                     Protocol (EAP)", Work in Progress, October 2004.

  [RFC4086]          Eastlake, D., 3rd, Schiller, J., and S. Crocker,
                     "Randomness Requirements for Security", BCP 106,
                     RFC 4086, June 2005.

  [S3-020125]        Qualcomm, "Comments on draft EAP/SIM, 3rd
                     Generation Partnership Project document 3GPP TSG
                     SA WG3 Security S3#22, S3-020125", February 2002.

  [RFC3344]          Perkins, C., "IP Mobility Support for IPv4", RFC
                     3344, August 2002.

  [RFC2548]          Zorn, G., "Microsoft Vendor-specific RADIUS
                     Attributes ", RFC 2548, March 1999.

  [EAP-SRP]          Carlson, J., Aboba, B., and H. Haverinen, "EAP
                     SRP-SHA1 Authentication Protocol", Work in
                     Progress, July 2001.

  [GSM-Cloning]      Wagner, D., "GSM Cloning".  Web page about
                     COMP-128 version 1 vulnerabilities, available at
                     http://www.isaac.cs.berkeley.edu/isaac/gsm.html

  [Barkan-2003]      Barkan, E., Biham, E., and N. Keller, "Instant
                     Ciphertext-Only Cryptanalysis of GSM Encrypted
                     Communications".  available on-line at
                     http://cryptome.org/gsm-crack-bbk.pdf

  [Patel-2003]       Patel, S., "Analysis of EAP-SIM Session Key
                     Agreement".  Posted to the EAP mailing list 29
                     May,2003. http://
                     mail.frascone.com/pipermail/public/eap/2003-May/
                     001267.html










Haverinen & Salowey          Informational                     [Page 80]

RFC 4186                 EAP-SIM Authentication             January 2006


Appendix A.  Test Vectors

  Test vectors for the NIST FIPS 186-2 pseudo-random number generator
  [PRF] are available at the following URL:
  http://csrc.nist.gov/encryption/dss/Examples-1024bit.pdf

  The following examples show the contents of EAP-SIM packets on full
  authentication and fast re-authentication.

A.1.  EAP-Request/Identity

  The first packet is a plain Identity Request:

     01                   ; Code: Request
     00                   ; Identifier: 0
     00 05                ; Length: 5 octets
     01                   ; Type: Identity

A.2.  EAP-Response/Identity

  The client's identity is "[email protected]", so it
  responds with the following packet:

     02                   ; Code: Response
     00                   ; Identifier: 0
     00 20                ; Length: 32 octets
     01                   ; Type: Identity
        31 32 34 34       ; "[email protected]"
        30 37 30 31
        30 30 30 30
        30 30 30 31
        40 65 61 70
        73 69 6d 2e
        66 6f 6f

















Haverinen & Salowey          Informational                     [Page 81]

RFC 4186                 EAP-SIM Authentication             January 2006


A.3.  EAP-Request/SIM/Start

  The server's first packet looks like this:

     01                   ; Code: Request
     01                   ; Identifier: 1
     00 10                ; Length: 16 octets
     12                   ; Type: EAP-SIM
        0a                ; EAP-SIM subtype: Start
        00 00             ; (reserved)
        0f                ; Attribute type: AT_VERSION_LIST
           02             ; Attribute length: 8 octets (2*4)
           00 02          ; Actual version list length: 2 octets
           00 01          ; Version: 1
           00 00          ; (attribute padding)

A.4.  EAP-Response/SIM/Start

  The client selects a nonce and responds with the following packet:

     02                   ; Code: Response
     01                   ; Identifier: 1
     00 20                ; Length: 32 octets
     12                   ; Type: EAP-SIM
        0a                ; EAP-SIM subtype: Start
        00 00             ; (reserved)
        07                ; Attribute type: AT_NONCE_MT
           05             ; Attribute length: 20 octets (5*4)
           00 00          ; (reserved)
           01 23 45 67    ; NONCE_MT value
           89 ab cd ef
           fe dc ba 98
           76 54 32 10
        10                ; Attribute type: AT_SELECTED_VERSION
           01             ; Attribute length: 4 octets (1*4)
           00 01          ; Version: 1















Haverinen & Salowey          Informational                     [Page 82]

RFC 4186                 EAP-SIM Authentication             January 2006


A.5.  EAP-Request/SIM/Challenge

  Next, the server selects three authentication triplets

        (RAND1,SRES1,Kc1) = (10111213 14151617 18191a1b 1c1d1e1f,
                             d1d2d3d4,
                             a0a1a2a3 a4a5a6a7)
        (RAND2,SRES2,Kc2) = (20212223 24252627 28292a2b 2c2d2e2f,
                             e1e2e3e4,
                             b0b1b2b3 b4b5b6b7)
        (RAND3,SRES3,Kc3) = (30313233 34353637 38393a3b 3c3d3e3f,
                             f1f2f3f4,
                             c0c1c2c3 c4c5c6c7)

  Next, the MK is calculated as specified in Section 7*.

  MK = e576d5ca 332e9930 018bf1ba ee2763c7 95b3c712

  And the other keys are derived using the PRNG:

        K_encr = 536e5ebc 4465582a a6a8ec99 86ebb620
        K_aut =  25af1942 efcbf4bc 72b39434 21f2a974
        MSK =    39d45aea f4e30601 983e972b 6cfd46d1
                 c3637733 65690d09 cd44976b 525f47d3
                 a60a985e 955c53b0 90b2e4b7 3719196a
                 40254296 8fd14a88 8f46b9a7 886e4488
        EMSK =   5949eab0 fff69d52 315c6c63 4fd14a7f
                 0d52023d 56f79698 fa6596ab eed4f93f
                 bb48eb53 4d985414 ceed0d9a 8ed33c38
                 7c9dfdab 92ffbdf2 40fcecf6 5a2c93b9

  Next, the server selects a pseudonym and a fast re-authentication
  identity (in this case, "w8w49PexCazWJ&xCIARmxuMKht5S1sxR
  DqXSEFBEg3DcZP9cIxTe5J4OyIwNGVzxeJOU1G" and
  "Y24fNSrz8BP274jOJaF17WfxI8YO7QX0
  [email protected]", respectively).















Haverinen & Salowey          Informational                     [Page 83]

RFC 4186                 EAP-SIM Authentication             January 2006


  The following plaintext will be encrypted and stored in the
  AT_ENCR_DATA attribute:

        84               ; Attribute type: AT_NEXT_PSEUDONYM
           13            ; Attribute length: 76 octets (19*4)
           00 46         ; Actual pseudonym length: 70 octets
           77 38 77 34 39 50 65 78 43 61 7a 57 4a 26 78 43
           49 41 52 6d 78 75 4d 4b 68 74 35 53 31 73 78 52
           44 71 58 53 45 46 42 45 67 33 44 63 5a 50 39 63
           49 78 54 65 35 4a 34 4f 79 49 77 4e 47 56 7a 78
           65 4a 4f 55 31 47
           00 00          ; (attribute padding)
        85                ; Attribute type: AT_NEXT_REAUTH_ID
           16             ; Attribute length: 88 octets (22*4)
           00 51          ; Actual re-auth identity length: 81 octets
           59 32 34 66 4e 53 72 7a 38 42 50 32 37 34 6a 4f
           4a 61 46 31 37 57 66 78 49 38 59 4f 37 51 58 30
           30 70 4d 58 6b 39 58 4d 4d 56 4f 77 37 62 72 6f
           61 4e 68 54 63 7a 75 46 71 35 33 61 45 70 4f 6b
           6b 33 4c 30 64 6d 40 65 61 70 73 69 6d 2e 66 6f
           6f
           00 00 00       ; (attribute padding)
        06                ; Attribute type: AT_PADDING
           03             ; Attribute length: 12 octets (3*4)
           00 00 00 00
           00 00 00 00
           00 00

  The EAP packet looks like this:

     01                   ; Code: Request
     02                   ; Identifier: 2
     01 18                ; Length: 280 octets
     12                   ; Type: EAP-SIM
        0b                ; EAP-SIM subtype: Challenge
        00 00             ; (reserved)
        01                ; Attribute type: AT_RAND
           0d             ; Attribute length: 52 octets (13*4)
           00 00          ; (reserved)
           10 11 12 13    ; first RAND
           14 15 16 17
           18 19 1a 1b
           1c 1d 1e 1f
           20 21 22 23    ; second RAND
           24 25 26 27
           28 29 2a 2b
           2c 2d 2e 2f




Haverinen & Salowey          Informational                     [Page 84]

RFC 4186                 EAP-SIM Authentication             January 2006


           30 31 32 33    ; third RAND
           34 35 36 37
           38 39 3a 3b
           3c 3d 3e 3f
        81                ; Attribute type: AT_IV
           05             ; Attribute length: 20 octets (5*4)
           00 00          ; (reserved)
           9e 18 b0 c2    ; IV value
           9a 65 22 63
           c0 6e fb 54
           dd 00 a8 95
        82               ; Attribute type: AT_ENCR_DATA
           2d            ; Attribute length: 180 octets (45*4)
           00 00         ; (reserved)
           55 f2 93 9b bd b1 b1 9e a1 b4 7f c0 b3 e0 be 4c
           ab 2c f7 37 2d 98 e3 02 3c 6b b9 24 15 72 3d 58
           ba d6 6c e0 84 e1 01 b6 0f 53 58 35 4b d4 21 82
           78 ae a7 bf 2c ba ce 33 10 6a ed dc 62 5b 0c 1d
           5a a6 7a 41 73 9a e5 b5 79 50 97 3f c7 ff 83 01
           07 3c 6f 95 31 50 fc 30 3e a1 52 d1 e1 0a 2d 1f
           4f 52 26 da a1 ee 90 05 47 22 52 bd b3 b7 1d 6f
           0c 3a 34 90 31 6c 46 92 98 71 bd 45 cd fd bc a6
           11 2f 07 f8 be 71 79 90 d2 5f 6d d7 f2 b7 b3 20
           bf 4d 5a 99 2e 88 03 31 d7 29 94 5a ec 75 ae 5d
           43 c8 ed a5 fe 62 33 fc ac 49 4e e6 7a 0d 50 4d
        0b                ; Attribute type: AT_MAC
           05             ; Attribute length: 20 octets (5*4)
           00 00          ; (reserved)
           fe f3 24 ac    ; MAC value
           39 62 b5 9f
           3b d7 82 53
           ae 4d cb 6a

  The MAC is calculated over the EAP packet above (with MAC value set
  to zero), followed by the NONCE_MT value (a total of 296 bytes).
















Haverinen & Salowey          Informational                     [Page 85]

RFC 4186                 EAP-SIM Authentication             January 2006


A.6.  EAP-Response/SIM/Challenge

  The client's response looks like this:

     02                   ; Code: Response
     02                   ; Identifier: 2
     00 1c                ; Length: 28 octets
     12                   ; Type: EAP-SIM
        0b                ; EAP-SIM subtype: Challenge
        00 00             ; (reserved)
        0b                ; Attribute type: AT_MAC
           05             ; Attribute length: 20 octets (5*4)
           00 00          ; (reserved)
           f5 6d 64 33    ; MAC value
           e6 8e d2 97
           6a c1 19 37
           fc 3d 11 54

  The MAC is calculated over the EAP packet above (with MAC value set
  to zero), followed by the SRES values (a total of 40 bytes).

A.7.  EAP-Success

  The last packet is an EAP-Success:

     03                   ; Code: Success
     02                   ; Identifier: 2
     00 04                ; Length: 4 octets

A.8.  Fast Re-authentication

  When performing fast re-authentication, the EAP-Request/Identity
  packet is the same as usual.  The EAP-Response/Identity contains the
  fast re-authentication identity (from AT_ENCR_DATA attribute above):

     02                   ; Code: Response
     00                   ; Identifier: 0
     00 56                ; Length: 86 octets
     01                   ; Type: Identity
        59 32 34 66 4e 53 72 7a 38 42 50 32 37 34 6a 4f
        4a 61 46 31 37 57 66 78 49 38 59 4f 37 51 58 30
        30 70 4d 58 6b 39 58 4d 4d 56 4f 77 37 62 72 6f
        61 4e 68 54 63 7a 75 46 71 35 33 61 45 70 4f 6b
        6b 33 4c 30 64 6d 40 65 61 70 73 69 6d 2e 66 6f
        6f






Haverinen & Salowey          Informational                     [Page 86]

RFC 4186                 EAP-SIM Authentication             January 2006


A.9.  EAP-Request/SIM/Re-authentication

  The server recognizes the reauthentication identity, so it will
  respond with EAP-Request/SIM/Re-authentication.  It retrieves the
  associated counter value, generates a nonce, and picks a new
  reauthentication identity (in this case,
  "uta0M0iyIsMwWp5TTdSdnOLvg2XDVf21OYt1vnfiMcs5dnIDHOIFVavIRzMR
  [email protected]").

  The following plaintext will be encrypted and stored in the
  AT_ENCR_DATA attribute.  Note that AT_PADDING is not used because the
  length of the plaintext is a multiple of 16 bytes.

        13                ; Attribute type: AT_COUNTER
           01             ; Attribute length: 4 octets (1*4)
           00 01          ; Counter value
        15                ; Attribute type: AT_NONCE_S
           05             ; Attribute length: 20 octets (5*4)
           00 00          ; (reserved)
           01 23 45 67    ; NONCE_S value
           89 ab cd ef
           fe dc ba 98
           76 54 32 10
        85                ; Attribute type: AT_NEXT_REAUTH_ID
           16             ; Attribute length: 88 octets (22*4)
           00 51          ; Actual re-auth identity length: 81 octets
           75 74 61 30 4d 30 69 79 49 73 4d 77 57 70 35 54
           54 64 53 64 6e 4f 4c 76 67 32 58 44 56 66 32 31
           4f 59 74 31 76 6e 66 69 4d 63 73 35 64 6e 49 44
           48 4f 49 46 56 61 76 49 52 7a 4d 52 79 7a 57 36
           76 46 7a 64 48 57 40 65 61 70 73 69 6d 2e 66 6f
           6f
           00 00 00       ; (attribute padding)


















Haverinen & Salowey          Informational                     [Page 87]

RFC 4186                 EAP-SIM Authentication             January 2006


  The EAP packet looks like this:

     01                   ; Code: Request
     01                   ; Identifier: 1
     00 a4                ; Length: 164 octets
     12                   ; Type: EAP-SIM
        0d                ; EAP-SIM subtype: Re-authentication
        00 00             ; (reserved)
        81                ; Attribute type: AT_IV
           05             ; Attribute length: 20 octets (5*4)
           00 00          ; (reserved)
           d5 85 ac 77    ; IV value
           86 b9 03 36
           65 7c 77 b4
           65 75 b9 c4
        82                ; Attribute type: AT_ENCR_DATA
           1d             ; Attribute length: 116 octets (29*4)
           00 00          ; (reserved)
           68 62 91 a9 d2 ab c5 8c aa 32 94 b6 e8 5b 44 84
           6c 44 e5 dc b2 de 8b 9e 80 d6 9d 49 85 8a 5d b8
           4c dc 1c 9b c9 5c 01 b9 6b 6e ca 31 34 74 ae a6
           d3 14 16 e1 9d aa 9d f7 0f 05 00 88 41 ca 80 14
           96 4d 3b 30 a4 9b cf 43 e4 d3 f1 8e 86 29 5a 4a
           2b 38 d9 6c 97 05 c2 bb b0 5c 4a ac e9 7d 5e af
           f5 64 04 6c 8b d3 0b c3 9b e5 e1 7a ce 2b 10 a6
        0b                ; Attribute type: AT_MAC
           05             ; Attribute length: 20 octets (5*4)
           00 00          ; (reserved)
           48 3a 17 99    ; MAC value
           b8 3d 7c d3
           d0 a1 e4 01
           d9 ee 47 70

  The MAC is calculated over the EAP packet above (with MAC value set
  to zero; a total of 164 bytes).

  Finally, the server derives new keys.  The XKEY' is calculated as
  described in Section 7*:

  XKEY' = 863dc120 32e08343 c1a2308d b48377f6 801f58d4











Haverinen & Salowey          Informational                     [Page 88]

RFC 4186                 EAP-SIM Authentication             January 2006


  The new MSK and EMSK are derived using the PRNG (note that K_encr and
  K_aut stay the same).

        MSK   =  6263f614 973895e1 335f7e30 cff028ee
                 2176f519 002c9abe 732fe0ef 00cf167c
                 756d9e4c ed6d5ed6 40eb3fe3 8565ca07
                 6e7fb8a8 17cfe8d9 adbce441 d47c4f5e
        EMSK  =  3d8ff786 3a630b2b 06e2cf20 9684c13f
                 6b82f992 f2b06f1b 54bf51ef 237f2a40
                 1ef5e0d7 e098a34c 533eaebf 34578854
                 b7721526 20a777f0 e0340884 a294fb73

A.10.  EAP-Response/SIM/Re-authentication

  The client's response includes the counter as well.  The following
  plaintext will be encrypted and stored in the AT_ENCR_DATA attribute:

        13                ; Attribute type: AT_COUNTER
           01             ; Attribute length: 4 octets (1*4)
           00 01          ; Counter value
        06                ; Attribute type: AT_PADDING
           03             ; Attribute length: 12 octets (3*4)
           00 00 00 00
           00 00 00 00
           00 00

  The EAP packet looks like this:

     02                   ; Code: Response
     01                   ; Identifier: 1
     00 44                ; Length: 68 octets
     12                   ; Type: EAP-SIM
        0d                ; EAP-SIM subtype: Re-authentication
        00 00             ; (reserved)
        81                ; Attribute type: AT_IV
           05             ; Attribute length: 20 octets (5*4)
           00 00          ; (reserved)
           cd f7 ff a6    ; IV value
           5d e0 4c 02
           6b 56 c8 6b
           76 b1 02 ea
        82                ; Attribute type: AT_ENCR_DATA
           05             ; Attribute length: 20 octets (5*4)
           00 00          ; (reserved)
           b6 ed d3 82
           79 e2 a1 42
           3c 1a fc 5c
           45 5c 7d 56



Haverinen & Salowey          Informational                     [Page 89]

RFC 4186                 EAP-SIM Authentication             January 2006


        0b                ; Attribute type: AT_MAC
           05             ; Attribute length: 20 octets (5*4)
           00 00          ; (reserved)
           fa f7 6b 71    ; MAC value
           fb e2 d2 55
           b9 6a 35 66
           c9 15 c6 17

  The MAC is calculated over the EAP packet above (with MAC value set
  to zero), followed by the NONCE_S value (a total of 84 bytes).

  The next packet will be EAP-Success:

     03                   ; Code: Success
     01                   ; Identifier: 1
     00 04                ; Length: 4 octets

Appendix B.  Pseudo-Random Number Generator

  The "|" character denotes concatenation, and "^" denotes
  exponentiation.

  Step 1: Choose a new, secret value for the seed-key, XKEY

  Step 2: In hexadecimal notation let
      t = 67452301 EFCDAB89 98BADCFE 10325476 C3D2E1F0
      This is the initial value for H0|H1|H2|H3|H4
      in the FIPS SHS [SHA-1]

  Step 3: For j = 0 to m - 1 do
        3.1 XSEED_j = 0 /* no optional user input */
        3.2 For i = 0 to 1 do
            a. XVAL = (XKEY + XSEED_j) mod 2^b
            b. w_i = G(t, XVAL)
            c. XKEY = (1 + XKEY + w_i) mod 2^b
        3.3 x_j = w_0|w_1















Haverinen & Salowey          Informational                     [Page 90]

RFC 4186                 EAP-SIM Authentication             January 2006


Authors' Addresses

  Henry Haverinen (editor)
  Nokia Enterprise Solutions
  P.O. Box 12
  FIN-40101 Jyvaskyla
  Finland

  EMail: [email protected]


  Joseph Salowey (editor)
  Cisco Systems
  2901 Third Avenue
  Seattle, WA  98121
  USA

  Phone: +1 206 256 3380
  EMail: [email protected]
































Haverinen & Salowey          Informational                     [Page 91]

RFC 4186                 EAP-SIM Authentication             January 2006


Full Copyright Statement

  Copyright (C) The Internet Society (2006).

  This document is subject to the rights, licenses and restrictions
  contained in BCP 78, and except as set forth therein, the authors
  retain all their rights.

  This document and the information contained herein are provided on an
  "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
  OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
  ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
  INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
  INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
  WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

  The IETF takes no position regarding the validity or scope of any
  Intellectual Property Rights or other rights that might be claimed to
  pertain to the implementation or use of the technology described in
  this document or the extent to which any license under such rights
  might or might not be available; nor does it represent that it has
  made any independent effort to identify any such rights.  Information
  on the procedures with respect to rights in RFC documents can be
  found in BCP 78 and BCP 79.

  Copies of IPR disclosures made to the IETF Secretariat and any
  assurances of licenses to be made available, or the result of an
  attempt made to obtain a general license or permission for the use of
  such proprietary rights by implementers or users of this
  specification can be obtained from the IETF on-line IPR repository at
  http://www.ietf.org/ipr.

  The IETF invites any interested party to bring to its attention any
  copyrights, patents or patent applications, or other proprietary
  rights that may cover technology that may be required to implement
  this standard.  Please address the information to the IETF at
  [email protected].

Acknowledgement

  Funding for the RFC Editor function is provided by the IETF
  Administrative Support Activity (IASA).







Haverinen & Salowey          Informational                     [Page 92]